Meta-Analysis of gross insertions causing human genetic disease: Novel mutational mechanisms and the role of replication slippage
Although gross insertions (>20 bp) comprise <1% of disease‐causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and ∼10 kb were identified usi...
Saved in:
Published in | Human mutation Vol. 25; no. 2; pp. 207 - 221 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.02.2005
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although gross insertions (>20 bp) comprise <1% of disease‐causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and ∼10 kb were identified using the Human Gene Mutation Database (www.hgmd.org). A careful meta‐analytical study revealed extensive diversity in terms of the nature of the inserted DNA sequence and has provided new insights into the underlying mutational mechanisms. Some 70% of gross insertions were found to represent sequence duplications of different types (tandem, partial tandem, or complex). Although most of the tandem duplications were explicable by simple replication slippage, the three complex duplications appear to result from multiple slippage events. Some 11% of gross insertions were attributable to nonpolyglutamine repeat expansions (including octapeptide repeat expansions in the prion protein gene [PRNP] and polyalanine tract expansions) and evidence is presented to support the contention that these mutations are also caused by replication slippage rather than by unequal crossing over. Some 17% of gross insertions, all ≥276 bp in length, were found to be due to LINE‐1 (L1) retrotransposition involving different types of element (L1 trans‐driven Alu, L1 direct, and L1 trans‐driven SVA). A second example of pathological mitochondrial‐nuclear sequence transfer was identified in the USH1C gene but appears to arise via a novel mechanism, trans‐replication slippage. Finally, evidence for another novel mechanism of human genetic disease, involving the possible capture of DNA oligonucleotides, is presented in the context of a 26‐bp insertion into the ERCC6 gene. Hum Mutat 25:207–221, 2005. © 2005 Wiley‐Liss, Inc. |
---|---|
AbstractList | Although gross insertions (>20 bp) comprise <1% of disease-causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and approximately 10 kb were identified using the Human Gene Mutation Database (www.hgmd.org). A careful meta-analytical study revealed extensive diversity in terms of the nature of the inserted DNA sequence and has provided new insights into the underlying mutational mechanisms. Some 70% of gross insertions were found to represent sequence duplications of different types (tandem, partial tandem, or complex). Although most of the tandem duplications were explicable by simple replication slippage, the three complex duplications appear to result from multiple slippage events. Some 11% of gross insertions were attributable to nonpolyglutamine repeat expansions (including octapeptide repeat expansions in the prion protein gene [PRNP] and polyalanine tract expansions) and evidence is presented to support the contention that these mutations are also caused by replication slippage rather than by unequal crossing over. Some 17% of gross insertions, all >or=276 bp in length, were found to be due to LINE-1 (L1) retrotransposition involving different types of element (L1 trans-driven Alu, L1 direct, and L1 trans-driven SVA). A second example of pathological mitochondrial-nuclear sequence transfer was identified in the USH1C gene but appears to arise via a novel mechanism, trans-replication slippage. Finally, evidence for another novel mechanism of human genetic disease, involving the possible capture of DNA oligonucleotides, is presented in the context of a 26-bp insertion into the ERCC6 gene.Although gross insertions (>20 bp) comprise <1% of disease-causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and approximately 10 kb were identified using the Human Gene Mutation Database (www.hgmd.org). A careful meta-analytical study revealed extensive diversity in terms of the nature of the inserted DNA sequence and has provided new insights into the underlying mutational mechanisms. Some 70% of gross insertions were found to represent sequence duplications of different types (tandem, partial tandem, or complex). Although most of the tandem duplications were explicable by simple replication slippage, the three complex duplications appear to result from multiple slippage events. Some 11% of gross insertions were attributable to nonpolyglutamine repeat expansions (including octapeptide repeat expansions in the prion protein gene [PRNP] and polyalanine tract expansions) and evidence is presented to support the contention that these mutations are also caused by replication slippage rather than by unequal crossing over. Some 17% of gross insertions, all >or=276 bp in length, were found to be due to LINE-1 (L1) retrotransposition involving different types of element (L1 trans-driven Alu, L1 direct, and L1 trans-driven SVA). A second example of pathological mitochondrial-nuclear sequence transfer was identified in the USH1C gene but appears to arise via a novel mechanism, trans-replication slippage. Finally, evidence for another novel mechanism of human genetic disease, involving the possible capture of DNA oligonucleotides, is presented in the context of a 26-bp insertion into the ERCC6 gene. Although gross insertions (>20 bp) comprise <1% of disease‐causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and ∼10 kb were identified using the Human Gene Mutation Database (www.hgmd.org). A careful meta‐analytical study revealed extensive diversity in terms of the nature of the inserted DNA sequence and has provided new insights into the underlying mutational mechanisms. Some 70% of gross insertions were found to represent sequence duplications of different types (tandem, partial tandem, or complex). Although most of the tandem duplications were explicable by simple replication slippage, the three complex duplications appear to result from multiple slippage events. Some 11% of gross insertions were attributable to nonpolyglutamine repeat expansions (including octapeptide repeat expansions in the prion protein gene [PRNP] and polyalanine tract expansions) and evidence is presented to support the contention that these mutations are also caused by replication slippage rather than by unequal crossing over. Some 17% of gross insertions, all ≥276 bp in length, were found to be due to LINE‐1 (L1) retrotransposition involving different types of element (L1 trans‐driven Alu, L1 direct, and L1 trans‐driven SVA). A second example of pathological mitochondrial‐nuclear sequence transfer was identified in the USH1C gene but appears to arise via a novel mechanism, trans‐replication slippage. Finally, evidence for another novel mechanism of human genetic disease, involving the possible capture of DNA oligonucleotides, is presented in the context of a 26‐bp insertion into the ERCC6 gene. Hum Mutat 25:207–221, 2005. © 2005 Wiley‐Liss, Inc. Although gross insertions (>20 bp) comprise <1% of disease-causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and <10 kb were identified using the Human Gene Mutation Database (www.hgmd.org). A careful meta-analytical study revealed extensive diversity in terms of the nature of the inserted DNA sequence and has provided new insights into the underlying mutational mechanisms. Some 70% of gross insertions were found to represent sequence duplications of different types (tandem, partial tandem, or complex). Although most of the tandem duplications were explicable by simple replication slippage, the three complex duplications appear to result from multiple slippage events. Some 11% of gross insertions were attributable to nonpolyglutamine repeat expansions (including octapeptide repeat expansions in the prion protein gene [PRNP] and polyalanine tract expansions) and evidence is presented to support the contention that these mutations are also caused by replication slippage rather than by unequal crossing over. Some 17% of gross insertions, all e276 bp in length, were found to be due to LINE-1 (L1) retrotransposition involving different types of element (L1 trans-driven Alu, L1 direct, and L1 trans-driven SVA). A second example of pathological mitochondrial-nuclear sequence transfer was identified in the USH1C gene but appears to arise via a novel mechanism, trans-replication slippage. Finally, evidence for another novel mechanism of human genetic disease, involving the possible capture of DNA oligonucleotides, is presented in the context of a 26-bp insertion into the ERCC6 gene. Hum Mutat 25:207-221, 2005. © 2005 Wiley-Liss, Inc. Although gross insertions (>20 bp) comprise <1% of disease-causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and ~10 kb were identified using the Human Gene Mutation Database (www.hgmd.org). A careful meta-analytical study revealed extensive diversity in terms of the nature of the inserted DNA sequence and has provided new insights into the underlying mutational mechanisms. Some 70% of gross insertions were found to represent sequence duplications of different types (tandem, partial tandem, or complex). Although most of the tandem duplications were explicable by simple replication slippage, the three complex duplications appear to result from multiple slippage events. Some 11% of gross insertions were attributable to nonpolyglutamine repeat expansions (including octapeptide repeat expansions in the prion protein gene [PRNP] and polyalanine tract expansions) and evidence is presented to support the contention that these mutations are also caused by replication slippage rather than by unequal crossing over. Some 17% of gross insertions, all =>276 bp in length, were found to be due to LINE-1 (L1) retrotransposition involving different types of element (L1 trans-driven Alu, L1 direct, and L1 trans-driven SVA). A second example of pathological mitochondrial-nuclear sequence transfer was identified in the USH1C gene but appears to arise via a novel mechanism, trans-replication slippage. Finally, evidence for another novel mechanism of human genetic disease, involving the possible capture of DNA oligonucleotides, is presented in the context of a 26-bp insertion into the ERCC6 gene. Hum Mutat 25:207-221, 2005. Although gross insertions (>20 bp) comprise <1% of disease-causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and approximately 10 kb were identified using the Human Gene Mutation Database (www.hgmd.org). A careful meta-analytical study revealed extensive diversity in terms of the nature of the inserted DNA sequence and has provided new insights into the underlying mutational mechanisms. Some 70% of gross insertions were found to represent sequence duplications of different types (tandem, partial tandem, or complex). Although most of the tandem duplications were explicable by simple replication slippage, the three complex duplications appear to result from multiple slippage events. Some 11% of gross insertions were attributable to nonpolyglutamine repeat expansions (including octapeptide repeat expansions in the prion protein gene [PRNP] and polyalanine tract expansions) and evidence is presented to support the contention that these mutations are also caused by replication slippage rather than by unequal crossing over. Some 17% of gross insertions, all >or=276 bp in length, were found to be due to LINE-1 (L1) retrotransposition involving different types of element (L1 trans-driven Alu, L1 direct, and L1 trans-driven SVA). A second example of pathological mitochondrial-nuclear sequence transfer was identified in the USH1C gene but appears to arise via a novel mechanism, trans-replication slippage. Finally, evidence for another novel mechanism of human genetic disease, involving the possible capture of DNA oligonucleotides, is presented in the context of a 26-bp insertion into the ERCC6 gene. |
Author | Férec, Claude Stenson, Peter D. Cooper, David N. Chuzhanova, Nadia Chen, Jian-Min |
Author_xml | – sequence: 1 givenname: Jian-Min surname: Chen fullname: Chen, Jian-Min email: Jian-Min.Chen@univ-brest.fr organization: INSERM (Institut National de la Santé et de la Recherche Médicale) U613-Génétique Moléculaire et Génétique Epidémiologique, Etablissement Français du Sang-Bretagne, Université de Bretagne Occidentale, Centre Hospitalier Universitaire, Brest, France – sequence: 2 givenname: Nadia surname: Chuzhanova fullname: Chuzhanova, Nadia organization: Biostatistics and Bioinformatics Unit, Cardiff University, Heath Park, Cardiff, United Kingdom – sequence: 3 givenname: Peter D. surname: Stenson fullname: Stenson, Peter D. organization: Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, United Kingdom – sequence: 4 givenname: Claude surname: Férec fullname: Férec, Claude organization: INSERM (Institut National de la Santé et de la Recherche Médicale) U613-Génétique Moléculaire et Génétique Epidémiologique, Etablissement Français du Sang-Bretagne, Université de Bretagne Occidentale, Centre Hospitalier Universitaire, Brest, France – sequence: 5 givenname: David N. surname: Cooper fullname: Cooper, David N. organization: Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15643617$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS3Uij5gww9AFgsWSGn9dsKuqmgL6pQuOiCxsdzkZsbFcVI7AWbJPydpWpAqBCtf-X7nXOmcPbQV2gAIvaDkgBLCDtdDMxwwQjl_gnYpKfJs_BZb0yyLTOtC7KC9lG4IIbmU_CnaoVIJrqjeRT8X0NvsKFi_SS7htsar2KaEXUgQe9eGhEs7JBdWeDxjA15BgN6VuHIJbIK3-KL9Bh43Q28n3I4jlGsbXGoStqHC_RpwbD1M3hE678o7ECfvus6u4Bnarq1P8Pz-3UfLk3dXx2fZ-cfT98dH51kp8oJnQmhaSZ0TzpjMKTDCdSVrS3OgBautUrkAWjOor6elJUJJpUnOCl5JXhO-j17Pvl1sbwdIvWlcKsF7G6AdklGaKyVE8V-Qai2oVmoEXz0Cb9ohjhGMTKGZZoJNZ1_eQ8N1A5Xpomts3JiHCkbgzQyUU_AR6j8IMVO_ZurX3PU7wuQRXLo5-D5a5_8uobPku_Ow-Ye5OVsulg-abNa41MOP3xobv04xaWk-X5yaxZdL9elEKPOB_wJfwscB |
CitedBy_id | crossref_primary_10_2353_jmoldx_2007_060096 crossref_primary_10_1371_journal_pgen_1003877 crossref_primary_10_1002_ajmg_a_35843 crossref_primary_10_1016_j_mrrev_2011_10_002 crossref_primary_10_1093_mutage_gead031 crossref_primary_10_1016_j_anbehav_2011_06_011 crossref_primary_10_1053_j_ajkd_2006_10_024 crossref_primary_10_1002_humu_20486 crossref_primary_10_1038_s10038_017_0345_3 crossref_primary_10_1016_j_jcf_2007_04_001 crossref_primary_10_1002_humu_20230 crossref_primary_10_1007_s00277_008_0479_7 crossref_primary_10_1002_humu_20591 crossref_primary_10_1016_j_rmr_2013_03_007 crossref_primary_10_1111_j_1365_2265_2007_03157_x crossref_primary_10_1186_s13059_015_0685_2 crossref_primary_10_1016_j_tig_2009_05_005 crossref_primary_10_1134_S1022795413010080 crossref_primary_10_1134_S0031030119110078 crossref_primary_10_1016_j_ympev_2012_10_020 crossref_primary_10_1007_s00439_009_0742_6 crossref_primary_10_1016_j_ajhg_2010_05_001 crossref_primary_10_1093_hmg_ddr078 crossref_primary_10_1002_humu_21196 crossref_primary_10_1159_000507988 crossref_primary_10_1002_0471250953_bi0113s12 crossref_primary_10_1042_BJ20121221 crossref_primary_10_1093_hmg_ddr074 crossref_primary_10_1101_gr_214973_116 crossref_primary_10_1093_molbev_msv062 crossref_primary_10_1038_s41467_023_35794_9 crossref_primary_10_1159_000347029 crossref_primary_10_1002_humu_22569 crossref_primary_10_1016_j_ajhg_2015_06_002 crossref_primary_10_1016_j_ajhg_2010_02_001 crossref_primary_10_1186_1755_8417_1_4 crossref_primary_10_1101_gr_123463_111 crossref_primary_10_1109_TKDE_2008_65 crossref_primary_10_1093_dnares_dsx019 crossref_primary_10_1093_molbev_msm025 crossref_primary_10_1016_j_resp_2008_05_011 crossref_primary_10_1002_gcc_20556 crossref_primary_10_1002_humu_22831 crossref_primary_10_4161_mge_19031 crossref_primary_10_1534_genetics_106_065532 crossref_primary_10_1111_evo_12416 crossref_primary_10_1016_j_ygeno_2008_09_016 crossref_primary_10_1016_j_ymgme_2006_12_003 crossref_primary_10_1155_2012_341932 crossref_primary_10_1007_s00439_011_1125_3 crossref_primary_10_1038_ejhg_2009_73 crossref_primary_10_1002_humu_22341 crossref_primary_10_1038_sj_ejhg_5201590 crossref_primary_10_1093_gbe_evx078 crossref_primary_10_1101_gr_081737_108 crossref_primary_10_1038_jhg_2014_20 crossref_primary_10_1371_journal_pgen_1002340 crossref_primary_10_1016_j_bbcan_2006_08_007 crossref_primary_10_1164_rccm_200807_1069ST crossref_primary_10_1186_1471_2164_12_517 crossref_primary_10_3109_03630269_2011_644651 crossref_primary_10_1002_humu_20202 crossref_primary_10_1186_s13059_020_02199_6 crossref_primary_10_1186_1471_2164_13_172 crossref_primary_10_1002_humu_20327 crossref_primary_10_1186_1750_1172_5_33 crossref_primary_10_1038_nrg_2015_25 crossref_primary_10_1111_1749_4877_12582 crossref_primary_10_1371_journal_pgen_1000834 crossref_primary_10_1002_humu_21088 crossref_primary_10_1016_j_gene_2006_06_012 crossref_primary_10_3109_03630269_2011_641135 crossref_primary_10_1007_s00439_005_1321_0 crossref_primary_10_1016_j_ymgme_2005_08_009 crossref_primary_10_1186_s12864_021_07493_6 crossref_primary_10_1016_j_gde_2016_02_005 crossref_primary_10_1073_pnas_1321854111 crossref_primary_10_1038_ng_2768 crossref_primary_10_1007_s10048_006_0065_x crossref_primary_10_1016_j_clinbiochem_2008_05_011 crossref_primary_10_1016_j_dnarep_2006_05_032 crossref_primary_10_1016_j_semcancer_2017_05_004 crossref_primary_10_1016_j_mrrev_2013_07_003 crossref_primary_10_1093_gbe_evp049 crossref_primary_10_1016_j_ymgme_2006_09_005 crossref_primary_10_1186_s13073_017_0420_6 crossref_primary_10_1016_j_ejca_2021_08_003 crossref_primary_10_3389_fgeed_2022_937853 crossref_primary_10_1186_1479_7364_4_6_384 crossref_primary_10_1016_j_ajhg_2007_10_011 crossref_primary_10_1534_genetics_107_070805 crossref_primary_10_1007_s00439_006_0180_7 crossref_primary_10_1016_j_tig_2007_02_006 crossref_primary_10_1073_pnas_1603823113 crossref_primary_10_1038_jhg_2009_21 crossref_primary_10_1002_humu_21557 crossref_primary_10_1371_journal_pone_0202279 crossref_primary_10_3390_ijms22042072 crossref_primary_10_1038_sj_ejhg_5201684 crossref_primary_10_1111_j_1365_2052_2010_02130_x crossref_primary_10_1101_gr_190470_115 crossref_primary_10_1016_j_gene_2006_07_040 crossref_primary_10_1016_j_semcancer_2010_05_007 crossref_primary_10_1093_molehr_gal017 crossref_primary_10_1146_annurev_genom_082509_141802 crossref_primary_10_1101_gr_091827_109 crossref_primary_10_1007_s10048_017_0512_x crossref_primary_10_1016_j_jtbi_2005_08_033 crossref_primary_10_1101_cshperspect_a033134 crossref_primary_10_1002_bies_202000256 |
Cites_doi | 10.1086/302271 10.1002/humu.20009 10.1086/301965 10.1136/jmg.36.4.285 10.1038/sj.ejhg.5200503 10.1128/9781555817954.ch35 10.1073/pnas.241524898 10.1002/(SICI)1096-8628(19990604)84:4<346::AID-AJMG7>3.0.CO;2-E 10.1038/1689 10.1016/S0385-8146(02)00055-X 10.1002/humu.20006 10.1021/bi972546c 10.1073/pnas.1430924100 10.1001/archopht.120.9.1189 10.1093/hmg/ddg295 10.1007/s00439-002-0732-4 10.1093/hmg/4.6.1109 10.1101/gr.227202. Article published online before print in May 2002 10.1073/pnas.84.7.1936 10.1093/oxfordjournals.molbev.a003971 10.1007/BF00290109 10.1212/WNL.59.6.923 10.1038/ng1223 10.1161/01.CIR.100.12.1264 10.1093/bioinformatics/15.12.994 10.1016/S0168-9525(01)02312-5 10.1016/0092-8674(93)90078-5 10.1073/pnas.79.13.4128 10.1111/j.1399-0004.1992.tb03672.x 10.1073/pnas.1633606100 10.1002/humu.9062 10.1007/BF02703683 10.1038/ng1193-254 10.1038/nature01435 10.1002/humu.9072 10.1128/MCB.5.10.2599 10.1086/301686 10.1111/j.1600-0625.1998.tb00309.x 10.1007/s00239-003-2485-7 10.1002/1098-1004(200008)16:2<166::AID-HUMU9>3.0.CO;2-4 10.1038/ng1293-413 10.1128/MCB.9.7.3049 10.1126/science.275.5298.408 10.1038/78182 10.1038/ng1048 10.1038/71667 10.1126/science.1089670 10.1016/0092-8674(82)90401-9 10.1086/340848 10.1006/geno.2002.6798 10.1016/j.tig.2003.11.002 10.1038/sj.ejhg.5200242 10.1093/hmg/5.2.249 10.1007/BF00217444 10.1007/BF00197158 10.1086/301827 10.1016/S0092-8674(00)81415-4 10.1016/j.gene.2003.11.003 10.1002/humu.10212 10.1093/hmg/2.8.1317 10.1073/pnas.88.23.10926 10.1146/annurev.genet.35.102401.091032 10.1093/hmg/5.3.319 10.1128/MCB.9.11.4596 10.1007/BF00194629 10.1073/pnas.87.10.3889 10.1136/gut.48.4.515 10.1111/j.1365-2958.2004.04076.x 10.1101/SQB.1966.031.01.014 10.1093/nar/19.25.7201 10.1073/pnas.0831042100 10.1016/S0021-9258(19)38851-9 10.1128/MCB.8.12.5350 10.1038/ni788 10.1111/j.1365-2958.1994.tb01042.x 10.1002/(SICI)1098-1004(200002)15:2<173::AID-HUMU6>3.0.CO;2-W 10.1038/365274a0 10.1046/j.1365-2141.1997.1983013.x 10.1006/jmbi.1994.1002 10.1007/s00439-002-0892-2 10.1111/j.1600-0609.1993.tb00634.x 10.1093/hmg/4.10.1845 10.1111/j.1365-2141.1993.tb03143.x 10.1038/35057062 10.1055/s-0037-1615098 10.1086/316951 10.1016/S0021-9258(18)68106-2 10.1086/302211 10.1007/s100380170014 10.1093/hmg/3.6.1021 10.1093/genetics/112.3.441 10.1128/MCB.13.7.3937 10.1002/(SICI)1098-1004(1996)8:3<265::AID-HUMU11>3.0.CO;2-0 10.1002/humu.10254 10.1007/s004390100564 10.1002/humu.10253 10.1002/humu.10146 10.1038/ng898 10.1086/380207 10.1093/nar/13.18.6559 10.1159/000472231 10.1210/mend.12.11.0189 |
ContentType | Journal Article |
Copyright | Copyright © 2005 Wiley‐Liss, Inc. Copyright © 2005 Wiley-Liss, Inc., A Wiley Company |
Copyright_xml | – notice: Copyright © 2005 Wiley‐Liss, Inc. – notice: Copyright © 2005 Wiley-Liss, Inc., A Wiley Company |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TK 7X7 7XB 88A 88E 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 |
DOI | 10.1002/humu.20133 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1098-1004 |
EndPage | 221 |
ExternalDocumentID | 781966511 15643617 10_1002_humu_20133 HUMU20133 ark_67375_WNG_MZP6VF46_J |
Genre | article Research Support, Non-U.S. Gov't Meta-Analysis Journal Article |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GrantInformation_xml | – fundername: INSERM (Institut National de la Santé et de la Recherche Médicale), France |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 29I 31~ 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88A 88E 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BVXVI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DVXWH EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GNP GODZA H.T H.X H13 HBH HCIFZ HF~ HHY HHZ HMCUK HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M0L M1P M66 M7P MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PIMPY PQQKQ PROAC PSQYO Q.N Q11 Q2X QB0 QRW R.K RHX RIWAO RJQFR ROL RWI RWV RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS UKHRP V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WTM WXSBR WYISQ X7M XG1 XSW XV2 ZZTAW ~IA ~KM ~WT AANHP ACCMX ACRPL ACYXJ ADNMO AAYXX AGQPQ CITATION PHGZM PHGZT RPM CGR CUY CVF ECM EIF NPM 7QP 7TK 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 |
ID | FETCH-LOGICAL-c4893-4471d5780322581e2037d5fa18e192fa6684e1f2efb1e20a04656708293d53f03 |
IEDL.DBID | DR2 |
ISSN | 1059-7794 1098-1004 |
IngestDate | Fri Jul 11 07:38:05 EDT 2025 Fri Jul 11 03:06:48 EDT 2025 Fri Jul 25 10:56:37 EDT 2025 Wed Feb 19 01:37:43 EST 2025 Tue Jul 01 01:11:44 EDT 2025 Thu Apr 24 23:12:30 EDT 2025 Wed Jan 22 16:31:06 EST 2025 Wed Oct 30 09:56:10 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4893-4471d5780322581e2037d5fa18e192fa6684e1f2efb1e20a04656708293d53f03 |
Notes | Supporting Information file jwsHUMU.v25.2.207.pdf INSERM (Institut National de la Santé et de la Recherche Médicale), France ArticleID:HUMU20133 ark:/67375/WNG-MZP6VF46-J Communicated by Nobuyoshi Shimizu The Supplementary Material referred to in this article can be accessed at http://www.interscience.wiley.com/jpages/1059-7794/suppmat istex:DD8156777D160D0CB35F32655874CF98D2470AA9 http://www.interscience.wiley.com/jpages/1059‐7794/suppmat The Supplementary Material referred to in this article can be accessed at ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/197272420?pq-origsite=%requestingapplication% |
PMID | 15643617 |
PQID | 197272420 |
PQPubID | 30498 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_67366449 proquest_miscellaneous_17741766 proquest_journals_197272420 pubmed_primary_15643617 crossref_primary_10_1002_humu_20133 crossref_citationtrail_10_1002_humu_20133 wiley_primary_10_1002_humu_20133_HUMU20133 istex_primary_ark_67375_WNG_MZP6VF46_J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2005 |
PublicationDateYYYYMMDD | 2005-02-01 |
PublicationDate_xml | – month: 02 year: 2005 text: February 2005 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Human mutation |
PublicationTitleAlternate | Hum. Mutat |
PublicationYear | 2005 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company John Wiley & Sons, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: John Wiley & Sons, Inc |
References | Hansen LL, Horn N, Dahl HH, Kruse TA. 1994. Pyruvate dehydrogenase deficiency caused by a 33 base pair duplication in the PDH E1 alpha subunit. Hum Mol Genet 3:1021-1022. Lovett ST. 2004. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol 52:1243-1253. Yamanouchi Y, Takano T, Hamaguchi H, Tokunaga K. 2001. A novel apolipoprotein E5 variant with a 24-bp insertion causing hyperlipidemia. J Hum Genet 46:633-639. Thai TH, Purugganan MM, Roth DB, Kearney JF. 2002. Distinct and opposite diversifying activities of terminal transferase splice variants. Nat Immunol 3:457-462. Kornreich R, Bishop DF, Desnick RJ. 1990. Alpha-galactosidase A gene rearrangements causing Fabry disease. Identification of short direct repeats at breakpoints in an Alu-rich gene. J Biol Chem 265:9319-9326. Stegemann S, Hartmann S, Ruf S, Bock R. 2003. High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100:8828-8833. Tartary M, Vidaud D, Piao Y, Costa JM, Bahnak BR, Fressinaud E, Congard B, Laurian Y, Meyer D, Lavergne JM, Vidaud M. 1993. Detection of a molecular defect in 40 of 44 patients with haemophilia B by PCR and denaturing gradient gel electrophoresis. Br J Haematol 84:662-669. Van de Water N, Williams R, Ockelford P, Browett P. 1998. A 20.7 kb deletion within the factor VIII gene associated with LINE-1 element insertion. Thromb Haemost 79:938-942. Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z, Sadeh M, Mahjneh I, Marconi G, Passos-Bueno MR, Moreira Ede S, Zatz M, Beckmann JS, Bushby K. 1998. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet 20:37-42. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr. 2003. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA 100:5280-5285. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN. 2003. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21:577-581. Singer BS, Gold L, Gauss P, Doherty DH. 1982. Determination of the amount of homology required for recombination in bacteriophage T4. Cell 31:25-33. Weber B, Guo XH, Kleijer WJ, van de Kamp JJ, Poorthuis BJ, Hopwood JJ. 1999. Sanfilippo type B syndrome (mucopolysaccharidosis III B): allelic heterogeneity corresponds to the wide spectrum of clinical phenotypes. Eur J Hum Genet 7:34-44. Chung MY, Ranum LP, Duvick LA, Servadio A, Zoghbi HY, Orr HT. 1993. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat Genet 5:254-258. Willett-Brozick JE, Savul SA, Richey LE, Baysal BE. 2001. Germ line insertion of mtDNA at the breakpoint junction of a reciprocal constitutional translocation. Hum Genet 109:216-223. Vorechovsky I, Luo L, Prudente S, Chessa L, Russo G, Kanariou M, James M, Negrini M, Webster AD, Hammarstrom L. 1996. Exon-scanning mutation analysis of the ATM gene in patients with ataxia-telangiectasia. Eur J Hum Genet 4:352-355. Perrault I, Rozet JM, Gerber S, Ghazi I, Ducroq D, Souied E, Leowski C, Bonnemaison M, Dufier JL, Munnich A, Kaplan J. 2000. Spectrum of retGC1 mutations in Leber's congenital amaurosis. Eur J Hum Genet 8:578-582. Shen P, Huang HV. 1986. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112:441-457. Breuer DK, Yashar BM, Filippova E, Hiriyanna S, Lyons RH, Mears AJ, Asaye B, Acar C, Vervoort R, Wright AF, Musarella MA, Wheeler P, MacDonald I, Iannaccone A, Birch D, Hoffman DR, Fishman GA, Heckenlively JR, Jacobson SG, Sieving PA, Swaroop A. 2002. A comprehensive mutation analysis of RP2 and RPGR in a North American cohort of families with X-linked retinitis pigmentosa. Am J Hum Genet 70:1545-1554. Ostertag EM, Kazazian HH, Jr. 2001. Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501-538. Tiller GE, Rimoin DL, Murray LW, Cohn DH. 1990. Tandem duplication within a type II collagen gene (COL2A1) exon in an individual with spondyloepiphyseal dysplasia. Proc Natl Acad Sci USA 87:3889-3893. Roth DB, Proctor GN, Stewart LK, Wilson JH. 1991. Oligonucleotide capture during end joining in mammalian cells. Nucleic Acids Res 19:7201-7205. Goldfarb LG, Brown P, McCombie WR, Goldgaber D, Swergold GD, Wills PR, Cervenakova L, Baron H, Gibbs CJ Jr, Gajdusek DC. 1991. Transmissible familial Creutzfeldt-Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene. Proc Natl Acad Sci USA 88:10926-10930. Gusev VD, Nemytikova LA, Chuzhanova NA. 1999. On the complexity measures of genetic sequences. Bioinformatics 15:994-999. Brown LY, Brown SA. 2004. Alanine tracts: the expanding story of human illness and trinucleotide repeats. Trends Genet 20:51-58. Huang CY, Ayliffe MA, Timmis JN. 2003. Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72-76. Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, van Hul W, Whyte MP, Nakatsuka K, Hovy L, Anderson DM. 2000. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 24:45-48. Martin W. 2003. Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc Natl Acad Sci USA 100:8612-8614. Kazazian HH, Jr. 2004. Mobile elements: drivers of genome evolution. Science 303:1626-1632. Dabora SL, Jozwiak S, Franz DN, Roberts PS, Nieto A, Chung J, Choy YS, Reeve MP, Thiele E, Egelhoff JC, Kasprzyk-Obara J, Domanska-Pakiela D, Kwiatkowski DJ. 2001. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68:64-80. Stoppa-Lyonnet D, Duponchel C, Meo T, Laurent J, Carter PE, Arala-Chaves M, Cohen JH, Dewald G, Goetz J, Hauptmann G, Lagrue G, Lesavre P, Lopez-Trascasa M, Misiano G, Moraine C, Sobel A, Spath PJ, Tosi M. 1991. Recombinational biases in the rearranged C1-inhibitor genes of hereditary angioedema patients. Am J Hum Genet 49:1055-1062. Lovett ST, Gluckman TJ, Simon PJ, Sutera VA Jr, Drapkin PT. 1994. Recombination between repeats in Escherichia coli by a recA-independent, proximity-sensitive mechanism. Mol Gen Genet 245:294-300. Roth DB, Porter TN, Wilson JH. 1985. Mechanisms of nonhomologous recombination in mammalian cells. Mol Cell Biol 5:2599-2607. Friedl W, Caspari R, Sengteller M, Uhlhaas S, Lamberti C, Jungck M, Kadmon M, Wolf M, Fahnenstich J, Gebert J, Moslein G, Mangold E, Propping P. 2001. Can APC mutation analysis contribute to therapeutic decisions in familial adenomatous polyposis? Experience from 680 FAP families. Gut 48:515-521. Laplanche JL, Delasnerie-Laupretre N, Brandel JP, Dussaucy M, Chatelain J, Launay JM. 1995. Two novel insertions in the prion protein gene in patients with late-onset dementia. Hum Mol Genet 4:1109-1111. Abeysinghe SS, Stenson PD, Krawczak M, Cooper DN. 2004. Gross Rearrangement Breakpoint Database (GRaBD). Hum Mutat 23:219-221. Sinden RR. 1999. Biological implications of the DNA structures associated with disease-causing triplet repeats. Am J Hum Genet 64:346-353. Luan DD, Korman MH, Jakubczak JL, Eickbush TH. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595-605. Woischnik M, Moraes CT. 2002. Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res 12:885-893. Chedin F, Dervyn E, Dervyn R, Ehrlich SD, Noirot P. 1994. Frequency of deletion formation decreases exponentially with distance between short direct repeats. Mol Microbiol 12:561-569. Carpten JD, Robbins CM, Villablanca A, Forsberg L, Presciuttini S, Bailey-Wilson J, Simonds WF, Gillanders EM, Kennedy AM, Chen JD, Agarwal SK, Sood R, Jones MP, Moses TY, Haven C, Petillo D, Leotlela PD, Harding B, Cameron D, Pannett AA, Hoog A, Heath 3rd H, James-Newton LA, Robinson B, Zarbo RJ, Cavaco BM, Wassif W, Perrier ND, Rosen IB, Kristoffersson U, Turnpenny PD, Farnebo LO, Besser GM, Jackson CE, Morreau H, Trent JM, Thakker RV, Marx SJ, Teh BT, Larsson C, Hobbs MR. 2002. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 32:676-680. Vervoort R, Lennon A, Bird AC, Tulloch B, Axton R, Miano MG, Meindl A, Meitinger T, Ciccodicola A, Wright AF. 2000. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet 25:462-466. Chuzhanova N, Abeysinghe SS, Krawczak M, Cooper DN. 2003b. Translocation and gross deletion breakpoints in human inherited disease and cancer II: potential involvement of repetitive sequence elements in secondary structure formation between DNA ends. Hum Mutat 22:245-251. Smith M, Sperling D. 1999. Novel 23-base-pair duplication mutation in TSC1 exon 15 in an infant presenting with cardiac rhabdomyomas. Am J Med Genet 84:346-349. Marcus S, Hellgren D, Lambert B, Fallstrom SP, Wahlstrom J. 1993. Duplication in the hypoxanthine phosphoribosyl-transferase gene caused by Alu-Alu recombination in a patient with Lesch Nyhan syndrome. Hum Genet 90:477-482. Sinden RR, Potaman VN, Oussatcheva EA, Pearson CE, Lyubchenko YL, Shlyakhtenko LS. 2002. Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA. J Biosci 27(Suppl 1):53-65. Bi X, Liu LF. 1994. recA-independent and recA-dependent intramolecular plasmid recombination. Differential homology requirement and distance effect. J Mol Biol 235:414-423. Bogdanova N, McCluskey M, Sikmann K, Markoff A, Todorov V, Dimitrakov D, Schiavello T, Thomas M, Kalaydjieva L, Dworniczak B, Horst J. 2000. Screening the 3′ region of the polycystic kidney disease 1 (PKD1) gene in 41 Bulgarian and Australian kindreds reveals a prevalence of protein truncating mutations. Hum Mutat 16:166-174. Wu SM, Hallermeier KM, Laue L, 2004; 20 2002; 59 1991; 19 2002; 110 2002; 12 1997; 275 2004; 23 2000; 8 2003; 57 2001; 48 1988; 263 1999; 84 2004; 327 2001; 46 1993; 2 1990; 265 2003; 112 2001; 109 1993; 5 1993; 365 2003; 12 1990; 87 1991; 49 2000; 16 1987; 84 1997; 98 2000; 15 1993; 72 1991; 87 1991; 88 1991; 86 1999; 15 1998; 94 2001; 17 2001; 18 1996; 4 1996; 5 1996; 8 1998; 12 2003a; 21 1985; 13 2001; 98 1992; 41 1982; 79 2004; 303 1994; 235 1985; 5 1993; 84 2000; 25 2002; 31 1986; 112 2000; 24 1982; 31 2002; 32 2003b; 22 1989; 9 2003; 35 2002; 3 2001; 409 1999; 64 1993 1993; 90 2004 1999; 100 2002 2002; 80 1998; 63 1998; 62 1999; 7 2001; 68 1995; 4 2003; 73 1998; 20 1966; 31 2002; 27 1994; 245 1998; 37 1993; 13 2004; 52 2002; 29 2002; 120 1993; 51 2002; 20 1988; 8 1999; 36 1994; 12 1994; 55 2002; 70 1998; 7 2003; 422 1994; 3 2001; 35 2003; 100 2003; 21 2003; 22 1998; 79 Shen P (e_1_2_1_77_1) 1986; 112 e_1_2_1_81_1 e_1_2_1_20_1 e_1_2_1_66_1 e_1_2_1_89_1 e_1_2_1_62_1 e_1_2_1_43_1 e_1_2_1_28_1 e_1_2_1_47_1 e_1_2_1_92_1 Cooper DN (e_1_2_1_24_1) 1993 e_1_2_1_103_1 e_1_2_1_107_1 e_1_2_1_31_1 e_1_2_1_54_1 e_1_2_1_8_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_73_1 e_1_2_1_96_1 e_1_2_1_4_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_58_1 van Slegtenhorst M (e_1_2_1_94_1) 1999; 36 e_1_2_1_82_1 Wildin RS (e_1_2_1_101_1) 1994; 55 e_1_2_1_40_1 e_1_2_1_67_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_63_1 e_1_2_1_86_1 e_1_2_1_25_1 e_1_2_1_29_1 e_1_2_1_93_1 e_1_2_1_70_1 e_1_2_1_102_1 e_1_2_1_106_1 e_1_2_1_7_1 e_1_2_1_55_1 e_1_2_1_78_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_51_1 e_1_2_1_97_1 e_1_2_1_32_1 e_1_2_1_74_1 e_1_2_1_17_1 e_1_2_1_36_1 e_1_2_1_59_1 Stoppa‐Lyonnet D (e_1_2_1_84_1) 1991; 49 e_1_2_1_60_1 e_1_2_1_41_1 e_1_2_1_87_1 e_1_2_1_68_1 e_1_2_1_83_1 Strachan T (e_1_2_1_85_1) 2004 e_1_2_1_22_1 e_1_2_1_64_1 e_1_2_1_49_1 e_1_2_1_26_1 e_1_2_1_71_1 e_1_2_1_90_1 e_1_2_1_105_1 Kunkel TA (e_1_2_1_48_1) 1988; 263 e_1_2_1_56_1 e_1_2_1_79_1 e_1_2_1_98_1 e_1_2_1_6_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_52_1 e_1_2_1_75_1 e_1_2_1_2_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_18_1 Kornreich R (e_1_2_1_45_1) 1990; 265 e_1_2_1_80_1 e_1_2_1_42_1 e_1_2_1_65_1 e_1_2_1_88_1 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_61_1 e_1_2_1_27_1 e_1_2_1_69_1 e_1_2_1_100_1 e_1_2_1_91_1 e_1_2_1_104_1 e_1_2_1_30_1 e_1_2_1_76_1 e_1_2_1_5_1 e_1_2_1_57_1 e_1_2_1_99_1 e_1_2_1_34_1 e_1_2_1_72_1 e_1_2_1_11_1 e_1_2_1_53_1 e_1_2_1_95_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_9_1 e_1_2_1_19_1 Hum Mutat. 2005 Mar;25(3):318 |
References_xml | – reference: Cserhalmi-Friedman PB, Baden H, Burgeson RE, Christiano AM. 1998. Molecular basis of non-lethal junctional epidermolysis bullosa: identification of a 38 basepair insertion and a splice site mutation in exon 14 of the LAMB3 gene. Exp Dermatol 7:105-111. – reference: Yamanouchi Y, Takano T, Hamaguchi H, Tokunaga K. 2001. A novel apolipoprotein E5 variant with a 24-bp insertion causing hyperlipidemia. J Hum Genet 46:633-639. – reference: Kawakami H, Inoue K, Sakakihara I, Nakamura S. 2002. Novel mutation in X-linked Charcot-Marie-Tooth disease associated with CNS impairment. Neurology 59:923-926. – reference: Weber B, Guo XH, Kleijer WJ, van de Kamp JJ, Poorthuis BJ, Hopwood JJ. 1999. Sanfilippo type B syndrome (mucopolysaccharidosis III B): allelic heterogeneity corresponds to the wide spectrum of clinical phenotypes. Eur J Hum Genet 7:34-44. – reference: Vorechovsky I, Luo L, Prudente S, Chessa L, Russo G, Kanariou M, James M, Negrini M, Webster AD, Hammarstrom L. 1996. Exon-scanning mutation analysis of the ATM gene in patients with ataxia-telangiectasia. Eur J Hum Genet 4:352-355. – reference: Michalik A, Van Broeckhoven C. 2003. Pathogenesis of polyglutamine disorders: aggregation revisited. Hum Mol Genet 12(Spec No 2):R173-R186. – reference: Turner C, Killoran C, Thomas NS, Rosenberg M, Chuzhanova NA, Johnston J, Kemel Y, Cooper DN, Biesecker LG. 2003. Human genetic disease caused by de novo mitochondrial-nuclear DNA transfer. Hum Genet 112:303-309. – reference: Smith M, Sperling D. 1999. Novel 23-base-pair duplication mutation in TSC1 exon 15 in an infant presenting with cardiac rhabdomyomas. Am J Med Genet 84:346-349. – reference: Breuer DK, Yashar BM, Filippova E, Hiriyanna S, Lyons RH, Mears AJ, Asaye B, Acar C, Vervoort R, Wright AF, Musarella MA, Wheeler P, MacDonald I, Iannaccone A, Birch D, Hoffman DR, Fishman GA, Heckenlively JR, Jacobson SG, Sieving PA, Swaroop A. 2002. A comprehensive mutation analysis of RP2 and RPGR in a North American cohort of families with X-linked retinitis pigmentosa. Am J Hum Genet 70:1545-1554. – reference: Kazazian HH, Jr. 2004. Mobile elements: drivers of genome evolution. Science 303:1626-1632. – reference: Warren ST. 1997. Polyalanine expansion in synpolydactyly might result from unequal crossing-over of HOXD13. Science 275:408-409. – reference: Hansen LL, Horn N, Dahl HH, Kruse TA. 1994. Pyruvate dehydrogenase deficiency caused by a 33 base pair duplication in the PDH E1 alpha subunit. Hum Mol Genet 3:1021-1022. – reference: Chedin F, Dervyn E, Dervyn R, Ehrlich SD, Noirot P. 1994. Frequency of deletion formation decreases exponentially with distance between short direct repeats. Mol Microbiol 12:561-569. – reference: Bi X, Liu LF. 1994. recA-independent and recA-dependent intramolecular plasmid recombination. Differential homology requirement and distance effect. J Mol Biol 235:414-423. – reference: Giampieri C, Centurelli M, Bonafe M, Olivieri F, Cardelli M, Marchegiani F, Cavallone L, Giovagnetti S, Mugianesi E, Carrieri G, Lisa R, Cenerelli S, Testa R, Boemi M, Petropoulou C, Gonos ES, Franceschi C. 2004. A novel mitochondrial DNA-like sequence insertion polymorphism in intron I of the FOXO1A gene. Gene 327:215-219. – reference: Roth DB, Chang XB, Wilson JH. 1989. Comparison of filler DNA at immune, nonimmune, and oncogenic rearrangements suggests multiple mechanisms of formation. Mol Cell Biol 9:3049-3057. – reference: Dabora SL, Jozwiak S, Franz DN, Roberts PS, Nieto A, Chung J, Choy YS, Reeve MP, Thiele E, Egelhoff JC, Kasprzyk-Obara J, Domanska-Pakiela D, Kwiatkowski DJ. 2001. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68:64-80. – reference: Rabbani H, de Boer M, Ahlin A, Sundin U, Elinder G, Hammarstrom L, Palmblad J, Smith CI, Roos D. 1993. A 40-base-pair duplication in the gp91-phox gene leading to X-linked chronic granulomatous disease. Eur J Haematol 51:218-222. – reference: Wu SM, Hallermeier KM, Laue L, Brain C, Berry AC, Grant DB, Griffin JE, Wilson JD, Cutler GB, Jr, Chan WY. 1998. Inactivation of the luteinizing hormone/chorionic gonadotropin receptor by an insertional mutation in Leydig cell hypoplasia. Mol Endocrinol 12:1651-1660. – reference: Chuzhanova NA, Anassis EJ, Ball EV, Krawczak M, Cooper DN. 2003a. Meta-analysis of indels causing human genetic disease: mechanisms of mutagenesis and the role of local DNA sequence complexity. Hum Mutat 21:28-44. – reference: Kunkel TA, Soni A. 1988. Mutagenesis by transient misalignment. J Biol Chem 263:14784-14789. – reference: Laplanche JL, Delasnerie-Laupretre N, Brandel JP, Dussaucy M, Chatelain J, Launay JM. 1995. Two novel insertions in the prion protein gene in patients with late-onset dementia. Hum Mol Genet 4:1109-1111. – reference: Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z, Sadeh M, Mahjneh I, Marconi G, Passos-Bueno MR, Moreira Ede S, Zatz M, Beckmann JS, Bushby K. 1998. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet 20:37-42. – reference: Marcus S, Hellgren D, Lambert B, Fallstrom SP, Wahlstrom J. 1993. Duplication in the hypoxanthine phosphoribosyl-transferase gene caused by Alu-Alu recombination in a patient with Lesch Nyhan syndrome. Hum Genet 90:477-482. – reference: Godart F, Bellanne-Chantelot C, Clauin S, Gragnoli C, Abderrahmani A, Blanche H, Boutin P, Chevre JC, Froguel P, Bailleul B. 2000. Identification of seven novel nucleotide variants in the hepatocyte nuclear factor-1alpha (TCF1) promoter region in MODY patients. Hum Mutat 15:173-180. – reference: Roth DB, Proctor GN, Stewart LK, Wilson JH. 1991. Oligonucleotide capture during end joining in mammalian cells. Nucleic Acids Res 19:7201-7205. – reference: Tourmen Y, Baris O, Dessen P, Jacques C, Malthiery Y, Reynier P. 2002. Structure and chromosomal distribution of human mitochondrial pseudogenes. Genomics 80:71-77. – reference: Yuge I, Ohtsuka A, Matsunaga T, Usami S. 2002. Identification of 605ins46, a novel GJB2 mutation in a Japanese family. Auris Nasus Larynx 29:379-382. – reference: Tartary M, Vidaud D, Piao Y, Costa JM, Bahnak BR, Fressinaud E, Congard B, Laurian Y, Meyer D, Lavergne JM, Vidaud M. 1993. Detection of a molecular defect in 40 of 44 patients with haemophilia B by PCR and denaturing gradient gel electrophoresis. Br J Haematol 84:662-669. – reference: Henze K, Martin W. 2001. How do mitochondrial genes get into the nucleus? Trends Genet 17:383-387. – reference: Bogdanova N, McCluskey M, Sikmann K, Markoff A, Todorov V, Dimitrakov D, Schiavello T, Thomas M, Kalaydjieva L, Dworniczak B, Horst J. 2000. Screening the 3′ region of the polycystic kidney disease 1 (PKD1) gene in 41 Bulgarian and Australian kindreds reveals a prevalence of protein truncating mutations. Hum Mutat 16:166-174. – reference: Strand M, Prolla TA, Liskay RM, Petes TD. 1993. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365:274-276. – reference: Oshima A, Yoshida K, Ishizaki A, Shimmoto M, Fukuhara Y, Sakuraba H, Suzuki Y. 1992. GM1-gangliosidosis: tandem duplication within exon 3 of beta-galactosidase gene in an infantile patient. Clin Genet 41:235-238. – reference: Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, Szustakowki J, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ; International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome. Nature 409:860-921. – reference: Friedl W, Caspari R, Sengteller M, Uhlhaas S, Lamberti C, Jungck M, Kadmon M, Wolf M, Fahnenstich J, Gebert J, Moslein G, Mangold E, Propping P. 2001. Can APC mutation analysis contribute to therapeutic decisions in familial adenomatous polyposis? Experience from 680 FAP families. Gut 48:515-521. – reference: Chuzhanova N, Abeysinghe SS, Krawczak M, Cooper DN. 2003b. Translocation and gross deletion breakpoints in human inherited disease and cancer II: potential involvement of repetitive sequence elements in secondary structure formation between DNA ends. Hum Mutat 22:245-251. – reference: Van de Water N, Williams R, Ockelford P, Browett P. 1998. A 20.7 kb deletion within the factor VIII gene associated with LINE-1 element insertion. Thromb Haemost 79:938-942. – reference: Woischnik M, Moraes CT. 2002. Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res 12:885-893. – reference: Bogdanova N, Markoff A, Pollmann H, Nowak-Gottl U, Eisert R, Dworniczak B, Eigel A, Horst J. 2002. Prevalence of small rearrangements in the factor VIII gene F8C among patients with severe hemophilia A. Hum Mutat 20:236-237. – reference: Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN. 2003. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21:577-581. – reference: Abeysinghe SS, Stenson PD, Krawczak M, Cooper DN. 2004. Gross Rearrangement Breakpoint Database (GRaBD). Hum Mutat 23:219-221. – reference: Puget N, Sinilnikova OM, Stoppa-Lyonnet D, Audoynaud C, Pages S, Lynch HT, Goldgar D, Lenoir GM, Mazoyer S. 1999. An Alu-mediated 6-kb duplication in the BRCA1 gene: a new founder mutation? Am J Hum Genet 64:300-302. – reference: Tiller GE, Rimoin DL, Murray LW, Cohn DH. 1990. Tandem duplication within a type II collagen gene (COL2A1) exon in an individual with spondyloepiphyseal dysplasia. Proc Natl Acad Sci USA 87:3889-3893. – reference: Chung MY, Ranum LP, Duvick LA, Servadio A, Zoghbi HY, Orr HT. 1993. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat Genet 5:254-258. – reference: Dewannieux M, Esnault C, Heidmann T. 2003. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41-48 – reference: Ahmed ZM, Smith TN, Riazuddin S, Makishima T, Ghosh M, Bokhari S, Menon PS, Deshmukh D, Griffith AJ, Riazuddin S, Friedman TB, Wilcox ER. 2002. Nonsyndromic recessive deafness DFNB18 and Usher syndrome type IC are allelic mutations of USHIC. Hum Genet 110:527-531. – reference: van Slegtenhorst M, Verhoef S, Tempelaars A, Bakker L, Wang Q, Wessels M, Bakker R, Nellist M, Lindhout D, Halley D, van den Ouweland A. 1999. Mutational spectrum of the TSC1 gene in a cohort of 225 tuberous sclerosis complex patients: no evidence for genotype-phenotype correlation. J Med Genet 36:285-289. – reference: Goldfarb LG, Brown P, McCombie WR, Goldgaber D, Swergold GD, Wills PR, Cervenakova L, Baron H, Gibbs CJ Jr, Gajdusek DC. 1991. Transmissible familial Creutzfeldt-Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene. Proc Natl Acad Sci USA 88:10926-10930. – reference: Hamalainen ER, Renieri A, Pecoraro C, De Marchi M, Pihlajaniemi T. 1996. Unequal homologous crossing over resulting in duplication of 36 base pairs within exon 47 of the COL4A5 gene in a family with Alport syndrome. Hum Mutat 8:265-269. – reference: Waldman AS, Liskay RM. 1988. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol Cell Biol 8:5350-5357. – reference: Pusch CM, Broghammer M, Jurklies B, Besch D, Jacobi FK. 2002. Ten novel ORF15 mutations confirm mutational hot spot in the RPGR gene in European patients with X-linked retinitis pigmentosa. Hum Mutat 20:405. – reference: Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, Taccioli GE, Batzer MA, Moran JV. 2002. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31:159-165. – reference: Pearson CE, Eichler EE, Lorenzetti D, Kramer SF, Zoghbi HY, Nelson DL, Sinden RR. 1998. Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation. Biochemistry 37:2701-2708. – reference: Li L, Bales ES, Peterson CA, Legerski RJ. 1993. Characterization of molecular defects in xeroderma pigmentosum group C. Nat Genet 5:413-417. – reference: Ostertag EM, Goodier JL, Zhang Y, Kazazian Jr. 2003. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 73:1444-1451. – reference: Chen X, Kinoshita K, Honjo T. 2001. Variable deletion and duplication at recombination junction ends: implication for staggered double-strand cleavage in class-switch recombination. Proc Natl Acad Sci USA 98:13860-13865. – reference: Stegemann S, Hartmann S, Ruf S, Bock R. 2003. High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100:8828-8833. – reference: Lovett ST. 2004. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol 52:1243-1253. – reference: Streisinger G, Okada Y, Emrich J, Newton J, Tsugita A, Terzaghi E, Inouye M. 1966. Frameshift mutations and the genetic code. Cold Spring Harb Symp Quant Biol 31:77-84. – reference: Sinden RR. 1999. Biological implications of the DNA structures associated with disease-causing triplet repeats. Am J Hum Genet 64:346-353. – reference: Mallery DL, Tanganelli B, Colella S, Steingrimsdottir H, van Gool AJ, Troelstra C, Stefanini M, Lehmann AR. 1998. Molecular analysis of mutations in the CSB (ERCC6) gene in patients with Cockayne syndrome. Am J Hum Genet 62:77-85. – reference: Martin W. 2003. Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc Natl Acad Sci USA 100:8612-8614. – reference: Alward WL, Kwon YH, Khanna CL, Johnson AT, Hayreh SS, Zimmerman MB, Narkiewicz J, Andorf JL, Moore PA, Fingert JH, Sheffield VC, Stone EM. 2002. Variations in the myocilin gene in patients with open-angle glaucoma. Arch Ophthalmol 120:1189-1197. – reference: Walker GJ, Hussussian CJ, Flores JF, Glendening JM, Haluska FG, Dracopoli NC, Hayward NK, Fountain JW. 1995. Mutations of the CDKN2/p16INK4 gene in Australian melanoma kindreds. Hum Mol Genet 4:1845-1852. – reference: Cooper DN, Krawczak M. 1991. Mechanisms of insertional mutagenesis in human genes causing genetic disease. Hum Genet 87:409-415. – reference: Carpten JD, Robbins CM, Villablanca A, Forsberg L, Presciuttini S, Bailey-Wilson J, Simonds WF, Gillanders EM, Kennedy AM, Chen JD, Agarwal SK, Sood R, Jones MP, Moses TY, Haven C, Petillo D, Leotlela PD, Harding B, Cameron D, Pannett AA, Hoog A, Heath 3rd H, James-Newton LA, Robinson B, Zarbo RJ, Cavaco BM, Wassif W, Perrier ND, Rosen IB, Kristoffersson U, Turnpenny PD, Farnebo LO, Besser GM, Jackson CE, Morreau H, Trent JM, Thakker RV, Marx SJ, Teh BT, Larsson C, Hobbs MR. 2002. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 32:676-680. – reference: Krawczak M, Ball EV, Cooper DN. 1998. Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet 63:474-488. – reference: Vervoort R, Lennon A, Bird AC, Tulloch B, Axton R, Miano MG, Meindl A, Meitinger T, Ciccodicola A, Wright AF. 2000. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet 25:462-466. – reference: Hoorntje T, Alders M, van Tintelen P, van der Lip K, Sreeram N, van der Wal A, Mannens M, Wilde A. 1999. Homozygous premature truncation of the HERG protein: the human HERG knockout. Circulation 100:1264-1267. – reference: Shen P, Huang HV. 1986. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112:441-457. – reference: Huang CY, Ayliffe MA, Timmis JN. 2003. Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72-76. – reference: Reiter LT, Hastings PJ, Nelis E, De Jonghe P, Van Broeckhoven C, Lupski JR. 1998. Human meiotic recombination products revealed by sequencing a hotspot for homologous strand exchange in multiple HNPP deletion patients. Am J Hum Genet 62:1023-1033. – reference: Strachan T, Read AP. 2004. Human molecular genetics 3, 3rd edition. New York: John Wiley & Sons. p 329. – reference: Bensasson D, Feldman MW, Petrov DA. 2003. Rates of DNA duplication and mitochondrial DNA insertion in the human genome. J Mol Evol 57:343-354. – reference: Krawczak M, Cooper DN. 1991. Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment. Hum Genet 86:425-441. – reference: Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr. 2003. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA 100:5280-5285. – reference: Lovett ST, Gluckman TJ, Simon PJ, Sutera VA Jr, Drapkin PT. 1994. Recombination between repeats in Escherichia coli by a recA-independent, proximity-sensitive mechanism. Mol Gen Genet 245:294-300. – reference: Bianchi P, Zanella A, Alloisio N, Barosi G, Bredi E, Pelissero G, Zappa M, Vercellati C, Baronciani L, Delaunay J, Sirchia G. 1997. A variant of the EPB3 gene of the anti-Lepore type in hereditary spherocytosis. Br J Haematol 98:283-288. – reference: Ostertag EM, Kazazian HH, Jr. 2001. Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501-538. – reference: Roth DB, Porter TN, Wilson JH. 1985. Mechanisms of nonhomologous recombination in mammalian cells. Mol Cell Biol 5:2599-2607. – reference: Stoppa-Lyonnet D, Duponchel C, Meo T, Laurent J, Carter PE, Arala-Chaves M, Cohen JH, Dewald G, Goetz J, Hauptmann G, Lagrue G, Lesavre P, Lopez-Trascasa M, Misiano G, Moraine C, Sobel A, Spath PJ, Tosi M. 1991. Recombinational biases in the rearranged C1-inhibitor genes of hereditary angioedema patients. Am J Hum Genet 49:1055-1062. – reference: Cooper DN, Krawczak M. 1993. Human gene mutation. Oxford: BIOS Scientific Publishers. 412 p. – reference: Gusev VD, Nemytikova LA, Chuzhanova NA. 1999. On the complexity measures of genetic sequences. Bioinformatics 15:994-999. – reference: Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, van Hul W, Whyte MP, Nakatsuka K, Hovy L, Anderson DM. 2000. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 24:45-48. – reference: Ripley LS. 1982. Model for the participation of quasi-palindromic DNA sequences in frameshift mutation. Proc Natl Acad Sci USA 79:4128-4132. – reference: Wilson PJ, Ramesh V, Kristiansen A, Bove C, Jozwiak S, Kwiatkowski DJ, Short MP, Haines JL. 1996. Novel mutations detected in the TSC2 gene from both sporadic and familial TSC patients. Hum Mol Genet 5:249-256. – reference: Thai TH, Purugganan MM, Roth DB, Kearney JF. 2002. Distinct and opposite diversifying activities of terminal transferase splice variants. Nat Immunol 3:457-462. – reference: Abeysinghe SS, Chuzhanova N, Krawczak M, Ball EV, Cooper DN. 2003. Translocation and gross deletion breakpoints in human inherited disease and cancer I. Nucleotide composition and recombination-associated motifs. Hum Mutat 22:229-244. – reference: Mourier T, Hansen AJ, Willerslev E, Arctander P. 2001. The Human Genome Project reveals a continuous transfer of large mitochondrial fragments to the nucleus. Mol Biol Evol 18:1833-1837. – reference: Willett-Brozick JE, Savul SA, Richey LE, Baysal BE. 2001. Germ line insertion of mtDNA at the breakpoint junction of a reciprocal constitutional translocation. Hum Genet 109:216-223. – reference: Plesner P, Goodchild J, Kalckar HM, Zamecnik PC. 1987. Oligonucleotides with rapid turnover of the phosphate groups occur endogenously in eukaryotic cells. Proc Natl Acad Sci USA 84:1936-1939. – reference: Dunn JM, Phillips RA, Zhu X, Becker A, Gallie BL. 1989. Mutations in the RB1 gene and their effects on transcription. Mol Cell Biol 9:4596-4604. – reference: Sinden RR, Potaman VN, Oussatcheva EA, Pearson CE, Lyubchenko YL, Shlyakhtenko LS. 2002. Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA. J Biosci 27(Suppl 1):53-65. – reference: Singer BS, Gold L, Gauss P, Doherty DH. 1982. Determination of the amount of homology required for recombination in bacteriophage T4. Cell 31:25-33. – reference: Eichler EE, Macpherson JN, Murray A, Jacobs PA, Chakravarti A, Nelson DL. 1996. Haplotype and interspersion analysis of the FMR1 CGG repeat identifies two different mutational pathways for the origin of the fragile X syndrome. Hum Mol Genet 5:319-330. – reference: Wildin RS, Antush MJ, Bennett RL, Schoof JM, Scott CR. 1994. Heterogeneous AVPR2 gene mutations in congenital nephrogenic diabetes insipidus. Am J Hum Genet 55:266-277. – reference: Mager DL, Henthorn PS, Smithies O. 1985. A Chinese Gγ+ (Aγδβ)° thalassemia deletion: comparison to other deletions in the human β-globin gene cluster and sequence analysis of the breakpoints. Nucleic Acids Res 13:6559-6575. – reference: Kornreich R, Bishop DF, Desnick RJ. 1990. Alpha-galactosidase A gene rearrangements causing Fabry disease. Identification of short direct repeats at breakpoints in an Alu-rich gene. J Biol Chem 265:9319-9326. – reference: Audrezet MP, Chen JM, Raguenes O, Chuzhanova N, Giteau K, Le Marechal C, Quere I, Cooper DN, Férec C. 2004. Genomic rearrangements in the CFTR gene: extensive allelic heterogeneity and diverse mutational mechanisms. Hum Mutat 23:343-357. – reference: Luan DD, Korman MH, Jakubczak JL, Eickbush TH. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595-605. – reference: Perrault I, Rozet JM, Gerber S, Ghazi I, Ducroq D, Souied E, Leowski C, Bonnemaison M, Dufier JL, Munnich A, Kaplan J. 2000. Spectrum of retGC1 mutations in Leber's congenital amaurosis. Eur J Hum Genet 8:578-582. – reference: Jinks-Robertson S, Michelitch M, Ramcharan S. 1993. Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae. Mol Cell Biol 13:3937-3950. – reference: Brown LY, Brown SA. 2004. Alanine tracts: the expanding story of human illness and trinucleotide repeats. Trends Genet 20:51-58. – reference: Chillon M, Casals T, Nunes V, Gimenez J, Estivill X. 1993. Identification of a 31-bp insertion (3860ins31) in exon 20 of the cystic fibrosis (CFTR) gene. Hum Mol Genet 2:1317-1318. – reference: Djian P. 1998. Evolution of simple repeats in DNA and their relation to human disease. Cell 94:155-160. – volume: 35 start-page: 501 year: 2001 end-page: 538 article-title: Biology of mammalian L1 retrotransposons publication-title: Annu Rev Genet – volume: 9 start-page: 4596 year: 1989 end-page: 4604 article-title: Mutations in the gene and their effects on transcription publication-title: Mol Cell Biol – volume: 51 start-page: 218 year: 1993 end-page: 222 article-title: A 40‐base‐pair duplication in the gp91‐phox gene leading to X‐linked chronic granulomatous disease publication-title: Eur J Haematol – volume: 263 start-page: 14784 year: 1988 end-page: 14789 article-title: Mutagenesis by transient misalignment publication-title: J Biol Chem – volume: 15 start-page: 173 year: 2000 end-page: 180 article-title: Identification of seven novel nucleotide variants in the hepatocyte nuclear factor‐1alpha ( ) promoter region in MODY patients publication-title: Hum Mutat – volume: 72 start-page: 595 year: 1993 end-page: 605 article-title: Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non‐LTR retrotransposition publication-title: Cell – volume: 62 start-page: 77 year: 1998 end-page: 85 article-title: Molecular analysis of mutations in the CSB ( ) gene in patients with Cockayne syndrome publication-title: Am J Hum Genet – volume: 20 start-page: 405 year: 2002 article-title: Ten novel ORF15 mutations confirm mutational hot spot in the gene in European patients with X‐linked retinitis pigmentosa publication-title: Hum Mutat – volume: 100 start-page: 8828 year: 2003 end-page: 8833 article-title: High‐frequency gene transfer from the chloroplast genome to the nucleus publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: R173 issue: Spec No 2 year: 2003 end-page: R186 article-title: Pathogenesis of polyglutamine disorders: aggregation revisited publication-title: Hum Mol Genet – volume: 79 start-page: 4128 year: 1982 end-page: 4132 article-title: Model for the participation of quasi‐palindromic DNA sequences in frameshift mutation publication-title: Proc Natl Acad Sci USA – volume: 235 start-page: 414 year: 1994 end-page: 423 article-title: ‐independent and ‐dependent intramolecular plasmid recombination. Differential homology requirement and distance effect publication-title: J Mol Biol – volume: 37 start-page: 2701 year: 1998 end-page: 2708 article-title: Interruptions in the triplet repeats of and reduce the propensity and complexity of slipped strand DNA (S‐DNA) formation publication-title: Biochemistry – volume: 94 start-page: 155 year: 1998 end-page: 160 article-title: Evolution of simple repeats in DNA and their relation to human disease publication-title: Cell – volume: 409 start-page: 860 year: 2001 end-page: 921 article-title: Initial sequencing and analysis of the human genome publication-title: Nature – volume: 59 start-page: 923 year: 2002 end-page: 926 article-title: Novel mutation in X‐linked Charcot‐Marie‐Tooth disease associated with CNS impairment publication-title: Neurology – volume: 84 start-page: 1936 year: 1987 end-page: 1939 article-title: Oligonucleotides with rapid turnover of the phosphate groups occur endogenously in eukaryotic cells publication-title: Proc Natl Acad Sci USA – volume: 25 start-page: 462 year: 2000 end-page: 466 article-title: Mutational hot spot within a new exon in X‐linked retinitis pigmentosa publication-title: Nat Genet – volume: 27 start-page: 53 issue: Suppl 1 year: 2002 end-page: 65 article-title: Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA publication-title: J Biosci – volume: 365 start-page: 274 year: 1993 end-page: 276 article-title: Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair publication-title: Nature – volume: 70 start-page: 1545 year: 2002 end-page: 1554 article-title: A comprehensive mutation analysis of and in a North American cohort of families with X‐linked retinitis pigmentosa publication-title: Am J Hum Genet – year: 1993 – volume: 2 start-page: 1317 year: 1993 end-page: 1318 article-title: Identification of a 31‐bp insertion (3860ins31) in exon 20 of the cystic fibrosis ( ) gene publication-title: Hum Mol Genet – volume: 31 start-page: 77 year: 1966 end-page: 84 article-title: Frameshift mutations and the genetic code publication-title: Cold Spring Harb Symp Quant Biol – volume: 32 start-page: 676 year: 2002 end-page: 680 article-title: , encoding parafibromin, is mutated in hyperparathyroidism‐jaw tumor syndrome publication-title: Nat Genet – volume: 48 start-page: 515 year: 2001 end-page: 521 article-title: Can mutation analysis contribute to therapeutic decisions in familial adenomatous polyposis? Experience from 680 FAP families publication-title: Gut – volume: 62 start-page: 1023 year: 1998 end-page: 1033 article-title: Human meiotic recombination products revealed by sequencing a hotspot for homologous strand exchange in multiple HNPP deletion patients publication-title: Am J Hum Genet – volume: 87 start-page: 409 year: 1991 end-page: 415 article-title: Mechanisms of insertional mutagenesis in human genes causing genetic disease publication-title: Hum Genet – volume: 80 start-page: 71 year: 2002 end-page: 77 article-title: Structure and chromosomal distribution of human mitochondrial pseudogenes publication-title: Genomics – volume: 63 start-page: 474 year: 1998 end-page: 488 article-title: Neighboring‐nucleotide effects on the rates of germ‐line single‐base‐pair substitution in human genes publication-title: Am J Hum Genet – volume: 23 start-page: 219 year: 2004 end-page: 221 article-title: Gross Rearrangement Breakpoint Database (GRaBD) publication-title: Hum Mutat – volume: 41 start-page: 235 year: 1992 end-page: 238 article-title: GM1‐gangliosidosis: tandem duplication within exon 3 of beta‐galactosidase gene in an infantile patient publication-title: Clin Genet – volume: 12 start-page: 1651 year: 1998 end-page: 1660 article-title: Inactivation of the luteinizing hormone/chorionic gonadotropin receptor by an insertional mutation in Leydig cell hypoplasia publication-title: Mol Endocrinol – volume: 86 start-page: 425 year: 1991 end-page: 441 article-title: Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment publication-title: Hum Genet – start-page: 329 year: 2004 – volume: 22 start-page: 229 year: 2003 end-page: 244 article-title: Translocation and gross deletion breakpoints in human inherited disease and cancer I. Nucleotide composition and recombination‐associated motifs publication-title: Hum Mutat – volume: 84 start-page: 662 year: 1993 end-page: 669 article-title: Detection of a molecular defect in 40 of 44 patients with haemophilia B by PCR and denaturing gradient gel electrophoresis publication-title: Br J Haematol – volume: 327 start-page: 215 year: 2004 end-page: 219 article-title: A novel mitochondrial DNA‐like sequence insertion polymorphism in intron I of the gene publication-title: Gene – volume: 31 start-page: 159 year: 2002 end-page: 165 article-title: DNA repair mediated by endonuclease‐independent LINE‐1 retrotransposition publication-title: Nat Genet – volume: 79 start-page: 938 year: 1998 end-page: 942 article-title: A 20.7 kb deletion within the factor VIII gene associated with LINE‐1 element insertion publication-title: Thromb Haemost – volume: 98 start-page: 13860 year: 2001 end-page: 13865 article-title: Variable deletion and duplication at recombination junction ends: implication for staggered double‐strand cleavage in class‐switch recombination publication-title: Proc Natl Acad Sci USA – volume: 68 start-page: 64 year: 2001 end-page: 80 article-title: Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs publication-title: Am J Hum Genet – volume: 21 start-page: 28 year: 2003a end-page: 44 article-title: Meta‐analysis of indels causing human genetic disease: mechanisms of mutagenesis and the role of local DNA sequence complexity publication-title: Hum Mutat – volume: 31 start-page: 25 year: 1982 end-page: 33 article-title: Determination of the amount of homology required for recombination in bacteriophage T4 publication-title: Cell – volume: 109 start-page: 216 year: 2001 end-page: 223 article-title: Germ line insertion of mtDNA at the breakpoint junction of a reciprocal constitutional translocation publication-title: Hum Genet – volume: 303 start-page: 1626 year: 2004 end-page: 1632 article-title: Mobile elements: drivers of genome evolution publication-title: Science – volume: 3 start-page: 1021 year: 1994 end-page: 1022 article-title: Pyruvate dehydrogenase deficiency caused by a 33 base pair duplication in the PDH E1 alpha subunit publication-title: Hum Mol Genet – volume: 265 start-page: 9319 year: 1990 end-page: 9326 article-title: Alpha‐galactosidase A gene rearrangements causing Fabry disease. Identification of short direct repeats at breakpoints in an ‐rich gene publication-title: J Biol Chem – volume: 55 start-page: 266 year: 1994 end-page: 277 article-title: Heterogeneous gene mutations in congenital nephrogenic diabetes insipidus publication-title: Am J Hum Genet – volume: 4 start-page: 1845 year: 1995 end-page: 1852 article-title: Mutations of the gene in Australian melanoma kindreds publication-title: Hum Mol Genet – volume: 29 start-page: 379 year: 2002 end-page: 382 article-title: Identification of 605ins46, a novel mutation in a Japanese family publication-title: Auris Nasus Larynx – volume: 13 start-page: 3937 year: 1993 end-page: 3950 article-title: Substrate length requirements for efficient mitotic recombination in publication-title: Mol Cell Biol – volume: 7 start-page: 34 year: 1999 end-page: 44 article-title: Sanfilippo type B syndrome (mucopolysaccharidosis III B): allelic heterogeneity corresponds to the wide spectrum of clinical phenotypes publication-title: Eur J Hum Genet – start-page: 836 year: 2002 end-page: 869 – volume: 16 start-page: 166 year: 2000 end-page: 174 article-title: Screening the 3′ region of the polycystic kidney disease 1 ( ) gene in 41 Bulgarian and Australian kindreds reveals a prevalence of protein truncating mutations publication-title: Hum Mutat – volume: 8 start-page: 578 year: 2000 end-page: 582 article-title: Spectrum of GC1 mutations in Leber's congenital amaurosis publication-title: Eur J Hum Genet – volume: 87 start-page: 3889 year: 1990 end-page: 3893 article-title: Tandem duplication within a type II collagen gene (COL2A1) exon in an individual with spondyloepiphyseal dysplasia publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 5350 year: 1988 end-page: 5357 article-title: Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology publication-title: Mol Cell Biol – volume: 5 start-page: 2599 year: 1985 end-page: 2607 article-title: Mechanisms of nonhomologous recombination in mammalian cells publication-title: Mol Cell Biol – volume: 49 start-page: 1055 year: 1991 end-page: 1062 article-title: Recombinational biases in the rearranged C1‐inhibitor genes of hereditary angioedema patients publication-title: Am J Hum Genet – volume: 22 start-page: 245 year: 2003b end-page: 251 article-title: Translocation and gross deletion breakpoints in human inherited disease and cancer II: potential involvement of repetitive sequence elements in secondary structure formation between DNA ends publication-title: Hum Mutat – volume: 64 start-page: 300 year: 1999 end-page: 302 article-title: An ‐mediated 6‐kb duplication in the gene: a new founder mutation? publication-title: Am J Hum Genet – volume: 20 start-page: 236 year: 2002 end-page: 237 article-title: Prevalence of small rearrangements in the factor VIII gene among patients with severe hemophilia A publication-title: Hum Mutat – volume: 275 start-page: 408 year: 1997 end-page: 409 article-title: Polyalanine expansion in synpolydactyly might result from unequal crossing‐over of publication-title: Science – volume: 422 start-page: 72 year: 2003 end-page: 76 article-title: Direct measurement of the transfer rate of chloroplast DNA into the nucleus publication-title: Nature – volume: 3 start-page: 457 year: 2002 end-page: 462 article-title: Distinct and opposite diversifying activities of terminal transferase splice variants publication-title: Nat Immunol – volume: 9 start-page: 3049 year: 1989 end-page: 3057 article-title: Comparison of filler DNA at immune, nonimmune, and oncogenic rearrangements suggests multiple mechanisms of formation publication-title: Mol Cell Biol – volume: 15 start-page: 994 year: 1999 end-page: 999 article-title: On the complexity measures of genetic sequences publication-title: Bioinformatics – volume: 100 start-page: 8612 year: 2003 end-page: 8614 article-title: Gene transfer from organelles to the nucleus: frequent and in big chunks publication-title: Proc Natl Acad Sci USA – volume: 35 start-page: 41 year: 2003 end-page: 48 article-title: LINE‐mediated retrotransposition of marked sequences publication-title: Nat Genet – volume: 245 start-page: 294 year: 1994 end-page: 300 article-title: Recombination between repeats in by a ‐independent, proximity‐sensitive mechanism publication-title: Mol Gen Genet – volume: 112 start-page: 303 year: 2003 end-page: 309 article-title: Human genetic disease caused by de novo mitochondrial‐nuclear DNA transfer publication-title: Hum Genet – volume: 17 start-page: 383 year: 2001 end-page: 387 article-title: How do mitochondrial genes get into the nucleus? publication-title: Trends Genet – volume: 64 start-page: 346 year: 1999 end-page: 353 article-title: Biological implications of the DNA structures associated with disease‐causing triplet repeats publication-title: Am J Hum Genet – volume: 13 start-page: 6559 year: 1985 end-page: 6575 article-title: A Chinese γ ( γδβ)° thalassemia deletion: comparison to other deletions in the human β‐globin gene cluster and sequence analysis of the breakpoints publication-title: Nucleic Acids Res – volume: 20 start-page: 51 year: 2004 end-page: 58 article-title: Alanine tracts: the expanding story of human illness and trinucleotide repeats publication-title: Trends Genet – volume: 12 start-page: 561 year: 1994 end-page: 569 article-title: Frequency of deletion formation decreases exponentially with distance between short direct repeats publication-title: Mol Microbiol – volume: 100 start-page: 1264 year: 1999 end-page: 1267 article-title: Homozygous premature truncation of the HERG protein: the human knockout publication-title: Circulation – volume: 8 start-page: 265 year: 1996 end-page: 269 article-title: Unequal homologous crossing over resulting in duplication of 36 base pairs within exon 47 of the gene in a family with Alport syndrome publication-title: Hum Mutat – volume: 20 start-page: 37 year: 1998 end-page: 42 article-title: A gene related to spermatogenesis factor fer‐1 is mutated in limb‐girdle muscular dystrophy type 2B publication-title: Nat Genet – volume: 88 start-page: 10926 year: 1991 end-page: 10930 article-title: Transmissible familial Creutzfeldt‐Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the gene publication-title: Proc Natl Acad Sci USA – volume: 46 start-page: 633 year: 2001 end-page: 639 article-title: A novel apolipoprotein E5 variant with a 24‐bp insertion causing hyperlipidemia publication-title: J Hum Genet – volume: 4 start-page: 352 year: 1996 end-page: 355 article-title: Exon‐scanning mutation analysis of the gene in patients with ataxia‐telangiectasia publication-title: Eur J Hum Genet – volume: 21 start-page: 577 year: 2003 end-page: 581 article-title: Human Gene Mutation Database (HGMD): 2003 update publication-title: Hum Mutat – volume: 7 start-page: 105 year: 1998 end-page: 111 article-title: Molecular basis of non‐lethal junctional epidermolysis bullosa: identification of a 38 basepair insertion and a splice site mutation in exon 14 of the gene publication-title: Exp Dermatol – volume: 100 start-page: 5280 year: 2003 end-page: 5285 article-title: Hot L1s account for the bulk of retrotransposition in the human population publication-title: Proc Natl Acad Sci USA – volume: 18 start-page: 1833 year: 2001 end-page: 1837 article-title: The Human Genome Project reveals a continuous transfer of large mitochondrial fragments to the nucleus publication-title: Mol Biol Evol – volume: 5 start-page: 254 year: 1993 end-page: 258 article-title: Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I publication-title: Nat Genet – volume: 5 start-page: 319 year: 1996 end-page: 330 article-title: Haplotype and interspersion analysis of the CGG repeat identifies two different mutational pathways for the origin of the fragile X syndrome publication-title: Hum Mol Genet – volume: 110 start-page: 527 year: 2002 end-page: 531 article-title: Nonsyndromic recessive deafness DFNB18 and Usher syndrome type IC are allelic mutations of publication-title: Hum Genet – volume: 52 start-page: 1243 year: 2004 end-page: 1253 article-title: Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences publication-title: Mol Microbiol – volume: 5 start-page: 249 year: 1996 end-page: 256 article-title: Novel mutations detected in the gene from both sporadic and familial TSC patients publication-title: Hum Mol Genet – volume: 4 start-page: 1109 year: 1995 end-page: 1111 article-title: Two novel insertions in the prion protein gene in patients with late‐onset dementia publication-title: Hum Mol Genet – volume: 5 start-page: 413 year: 1993 end-page: 417 article-title: Characterization of molecular defects in xeroderma pigmentosum group C publication-title: Nat Genet – volume: 57 start-page: 343 year: 2003 end-page: 354 article-title: Rates of DNA duplication and mitochondrial DNA insertion in the human genome publication-title: J Mol Evol – volume: 24 start-page: 45 year: 2000 end-page: 48 article-title: Mutations in , affecting the signal peptide of RANK, cause familial expansile osteolysis publication-title: Nat Genet – volume: 90 start-page: 477 year: 1993 end-page: 482 article-title: Duplication in the hypoxanthine phosphoribosyl‐transferase gene caused by recombination in a patient with Lesch Nyhan syndrome publication-title: Hum Genet – volume: 73 start-page: 1444 year: 2003 end-page: 1451 article-title: SVA elements are nonautonomous retrotransposons that cause disease in humans publication-title: Am J Hum Genet – volume: 120 start-page: 1189 year: 2002 end-page: 1197 article-title: Variations in the myocilin gene in patients with open‐angle glaucoma publication-title: Arch Ophthalmol – volume: 19 start-page: 7201 year: 1991 end-page: 7205 article-title: Oligonucleotide capture during end joining in mammalian cells publication-title: Nucleic Acids Res – volume: 112 start-page: 441 year: 1986 end-page: 457 article-title: Homologous recombination in : dependence on substrate length and homology publication-title: Genetics – volume: 84 start-page: 346 year: 1999 end-page: 349 article-title: Novel 23‐base‐pair duplication mutation in exon 15 in an infant presenting with cardiac rhabdomyomas publication-title: Am J Med Genet – volume: 23 start-page: 343 year: 2004 end-page: 357 article-title: Genomic rearrangements in the gene: extensive allelic heterogeneity and diverse mutational mechanisms publication-title: Hum Mutat – volume: 98 start-page: 283 year: 1997 end-page: 288 article-title: A variant of the gene of the anti‐Lepore type in hereditary spherocytosis publication-title: Br J Haematol – volume: 36 start-page: 285 year: 1999 end-page: 289 article-title: Mutational spectrum of the gene in a cohort of 225 tuberous sclerosis complex patients: no evidence for genotype‐phenotype correlation publication-title: J Med Genet – volume: 12 start-page: 885 year: 2002 end-page: 893 article-title: Pattern of organization of human mitochondrial pseudogenes in the nuclear genome publication-title: Genome Res – ident: e_1_2_1_78_1 doi: 10.1086/302271 – ident: e_1_2_1_6_1 doi: 10.1002/humu.20009 – ident: e_1_2_1_47_1 doi: 10.1086/301965 – volume: 36 start-page: 285 year: 1999 ident: e_1_2_1_94_1 article-title: Mutational spectrum of the TSC1 gene in a cohort of 225 tuberous sclerosis complex patients: no evidence for genotype‐phenotype correlation publication-title: J Med Genet doi: 10.1136/jmg.36.4.285 – ident: e_1_2_1_67_1 doi: 10.1038/sj.ejhg.5200503 – ident: e_1_2_1_60_1 doi: 10.1128/9781555817954.ch35 – ident: e_1_2_1_18_1 doi: 10.1073/pnas.241524898 – ident: e_1_2_1_81_1 doi: 10.1002/(SICI)1096-8628(19990604)84:4<346::AID-AJMG7>3.0.CO;2-E – ident: e_1_2_1_7_1 doi: 10.1038/1689 – ident: e_1_2_1_107_1 doi: 10.1016/S0385-8146(02)00055-X – ident: e_1_2_1_3_1 doi: 10.1002/humu.20006 – ident: e_1_2_1_66_1 doi: 10.1021/bi972546c – ident: e_1_2_1_82_1 doi: 10.1073/pnas.1430924100 – ident: e_1_2_1_5_1 doi: 10.1001/archopht.120.9.1189 – ident: e_1_2_1_59_1 doi: 10.1093/hmg/ddg295 – ident: e_1_2_1_4_1 doi: 10.1007/s00439-002-0732-4 – volume: 55 start-page: 266 year: 1994 ident: e_1_2_1_101_1 article-title: Heterogeneous AVPR2 gene mutations in congenital nephrogenic diabetes insipidus publication-title: Am J Hum Genet – ident: e_1_2_1_50_1 doi: 10.1093/hmg/4.6.1109 – ident: e_1_2_1_104_1 doi: 10.1101/gr.227202. Article published online before print in May 2002 – ident: e_1_2_1_68_1 doi: 10.1073/pnas.84.7.1936 – ident: e_1_2_1_62_1 doi: 10.1093/oxfordjournals.molbev.a003971 – volume-title: Human gene mutation year: 1993 ident: e_1_2_1_24_1 – ident: e_1_2_1_53_1 doi: 10.1007/BF00290109 – ident: e_1_2_1_43_1 doi: 10.1212/WNL.59.6.923 – ident: e_1_2_1_27_1 doi: 10.1038/ng1223 – ident: e_1_2_1_39_1 doi: 10.1161/01.CIR.100.12.1264 – start-page: 329 volume-title: Human molecular genetics 3 year: 2004 ident: e_1_2_1_85_1 – ident: e_1_2_1_35_1 doi: 10.1093/bioinformatics/15.12.994 – ident: e_1_2_1_38_1 doi: 10.1016/S0168-9525(01)02312-5 – ident: e_1_2_1_54_1 doi: 10.1016/0092-8674(93)90078-5 – ident: e_1_2_1_73_1 doi: 10.1073/pnas.79.13.4128 – ident: e_1_2_1_63_1 doi: 10.1111/j.1399-0004.1992.tb03672.x – ident: e_1_2_1_58_1 doi: 10.1073/pnas.1633606100 – ident: e_1_2_1_12_1 doi: 10.1002/humu.9062 – ident: e_1_2_1_79_1 doi: 10.1007/BF02703683 – ident: e_1_2_1_20_1 doi: 10.1038/ng1193-254 – ident: e_1_2_1_40_1 doi: 10.1038/nature01435 – ident: e_1_2_1_70_1 doi: 10.1002/humu.9072 – ident: e_1_2_1_74_1 doi: 10.1128/MCB.5.10.2599 – ident: e_1_2_1_56_1 doi: 10.1086/301686 – ident: e_1_2_1_25_1 doi: 10.1111/j.1600-0625.1998.tb00309.x – ident: e_1_2_1_8_1 doi: 10.1007/s00239-003-2485-7 – ident: e_1_2_1_11_1 doi: 10.1002/1098-1004(200008)16:2<166::AID-HUMU9>3.0.CO;2-4 – ident: e_1_2_1_51_1 doi: 10.1038/ng1293-413 – ident: e_1_2_1_75_1 doi: 10.1128/MCB.9.7.3049 – ident: e_1_2_1_99_1 doi: 10.1126/science.275.5298.408 – ident: e_1_2_1_95_1 doi: 10.1038/78182 – ident: e_1_2_1_16_1 doi: 10.1038/ng1048 – ident: e_1_2_1_41_1 doi: 10.1038/71667 – ident: e_1_2_1_44_1 doi: 10.1126/science.1089670 – ident: e_1_2_1_80_1 doi: 10.1016/0092-8674(82)90401-9 – ident: e_1_2_1_13_1 doi: 10.1086/340848 – ident: e_1_2_1_91_1 doi: 10.1006/geno.2002.6798 – ident: e_1_2_1_15_1 doi: 10.1016/j.tig.2003.11.002 – ident: e_1_2_1_100_1 doi: 10.1038/sj.ejhg.5200242 – ident: e_1_2_1_103_1 doi: 10.1093/hmg/5.2.249 – ident: e_1_2_1_57_1 doi: 10.1007/BF00217444 – ident: e_1_2_1_23_1 doi: 10.1007/BF00197158 – ident: e_1_2_1_72_1 doi: 10.1086/301827 – ident: e_1_2_1_28_1 doi: 10.1016/S0092-8674(00)81415-4 – ident: e_1_2_1_32_1 doi: 10.1016/j.gene.2003.11.003 – ident: e_1_2_1_83_1 doi: 10.1002/humu.10212 – ident: e_1_2_1_19_1 doi: 10.1093/hmg/2.8.1317 – ident: e_1_2_1_34_1 doi: 10.1073/pnas.88.23.10926 – ident: e_1_2_1_64_1 doi: 10.1146/annurev.genet.35.102401.091032 – ident: e_1_2_1_30_1 doi: 10.1093/hmg/5.3.319 – ident: e_1_2_1_29_1 doi: 10.1128/MCB.9.11.4596 – ident: e_1_2_1_46_1 doi: 10.1007/BF00194629 – ident: e_1_2_1_90_1 doi: 10.1073/pnas.87.10.3889 – ident: e_1_2_1_31_1 doi: 10.1136/gut.48.4.515 – ident: e_1_2_1_52_1 doi: 10.1111/j.1365-2958.2004.04076.x – ident: e_1_2_1_87_1 doi: 10.1101/SQB.1966.031.01.014 – ident: e_1_2_1_76_1 doi: 10.1093/nar/19.25.7201 – ident: e_1_2_1_14_1 doi: 10.1073/pnas.0831042100 – volume: 265 start-page: 9319 year: 1990 ident: e_1_2_1_45_1 article-title: Alpha‐galactosidase A gene rearrangements causing Fabry disease. Identification of short direct repeats at breakpoints in an Alu‐rich gene publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)38851-9 – ident: e_1_2_1_97_1 doi: 10.1128/MCB.8.12.5350 – ident: e_1_2_1_89_1 doi: 10.1038/ni788 – ident: e_1_2_1_17_1 doi: 10.1111/j.1365-2958.1994.tb01042.x – ident: e_1_2_1_33_1 doi: 10.1002/(SICI)1098-1004(200002)15:2<173::AID-HUMU6>3.0.CO;2-W – ident: e_1_2_1_86_1 doi: 10.1038/365274a0 – ident: e_1_2_1_10_1 doi: 10.1046/j.1365-2141.1997.1983013.x – volume: 49 start-page: 1055 year: 1991 ident: e_1_2_1_84_1 article-title: Recombinational biases in the rearranged C1‐inhibitor genes of hereditary angioedema patients publication-title: Am J Hum Genet – ident: e_1_2_1_9_1 doi: 10.1006/jmbi.1994.1002 – ident: e_1_2_1_92_1 doi: 10.1007/s00439-002-0892-2 – ident: e_1_2_1_71_1 doi: 10.1111/j.1600-0609.1993.tb00634.x – ident: e_1_2_1_98_1 doi: 10.1093/hmg/4.10.1845 – ident: e_1_2_1_88_1 doi: 10.1111/j.1365-2141.1993.tb03143.x – ident: e_1_2_1_49_1 doi: 10.1038/35057062 – ident: e_1_2_1_93_1 doi: 10.1055/s-0037-1615098 – ident: e_1_2_1_26_1 doi: 10.1086/316951 – volume: 263 start-page: 14784 year: 1988 ident: e_1_2_1_48_1 article-title: Mutagenesis by transient misalignment publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)68106-2 – ident: e_1_2_1_69_1 doi: 10.1086/302211 – ident: e_1_2_1_106_1 doi: 10.1007/s100380170014 – ident: e_1_2_1_37_1 doi: 10.1093/hmg/3.6.1021 – volume: 112 start-page: 441 year: 1986 ident: e_1_2_1_77_1 article-title: Homologous recombination in Escherichia coli: dependence on substrate length and homology publication-title: Genetics doi: 10.1093/genetics/112.3.441 – ident: e_1_2_1_42_1 doi: 10.1128/MCB.13.7.3937 – ident: e_1_2_1_36_1 doi: 10.1002/(SICI)1098-1004(1996)8:3<265::AID-HUMU11>3.0.CO;2-0 – ident: e_1_2_1_2_1 doi: 10.1002/humu.10254 – ident: e_1_2_1_102_1 doi: 10.1007/s004390100564 – ident: e_1_2_1_22_1 doi: 10.1002/humu.10253 – ident: e_1_2_1_21_1 doi: 10.1002/humu.10146 – ident: e_1_2_1_61_1 doi: 10.1038/ng898 – ident: e_1_2_1_65_1 doi: 10.1086/380207 – ident: e_1_2_1_55_1 doi: 10.1093/nar/13.18.6559 – ident: e_1_2_1_96_1 doi: 10.1159/000472231 – ident: e_1_2_1_105_1 doi: 10.1210/mend.12.11.0189 – reference: - Hum Mutat. 2005 Mar;25(3):318 |
SSID | ssj0008553 |
Score | 2.1690564 |
SecondaryResourceType | review_article |
Snippet | Although gross insertions (>20 bp) comprise <1% of disease‐causing mutations, they nevertheless represent an important category of pathological lesion. In an... Although gross insertions (>20 bp) comprise <1% of disease-causing mutations, they nevertheless represent an important category of pathological lesion. In an... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 207 |
SubjectTerms | Base Sequence Cell Nucleus - genetics DNA Mutational Analysis DNA Repeat Expansion DNA Replication duplication Genes, Mitochondrial Genetic Diseases, Inborn - genetics Genetic disorders gross insertion Humans LINE-1 mechanism meta-analysis mitochondrial-nuclear transfer Models, Genetic Molecular Sequence Data Mutagenesis, Insertional Mutation Oligodeoxyribonucleotides - metabolism Recombination, Genetic repeat expansion Retroelements slipped strand mispairing trans-replication slippage unequal crossover |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEB70DsUX0fNXvTsNKIJCubZp0-29yCGuy0EXH1xdfAlpk5yHt-26uxV99D93Js1WDs57K3Ro084k-ZL58g3Ay6QudFbXVVilRYQLlFiHhFpDkVghbKKsSOm8czkVk1l6Os_mnpuz9rTK7ZjoBmrd1rRHfkTlsXKcT6K3yx8hFY2i5KqvoHETdkm5jII6nw_rLWJg9fz6rEAQWaSDOmly9K1bdMTr4vzSfLRLv_bXVWDzMnZ1k8_4Htz1qJGd9G6-DzdMswe3-jqSv_fgdukz5A_gT2k2KtxKjbDWsjN6LztvKO1OMcZqRWT3M-bK8zEMIDrHyHym5phN25_mgi26jd8mZAtDp4PP14s1U41miBgZcRLp2SszpL8ZAtYljU4PYTZ-_-ndJPRlFsKalGfCFOcnjR03or49ik0S8VxnVsUjg_DPKiFGqYltYmxFN1VEEms5ncnlOuM24o9gp2kb8wSYFbEdIQK2Jqc8cVFpq3mhMQLyOrKcB_B6-7Nl7TXIqRTGhezVkxNJjpHOMQG8GGyXvfLGlVavnM8GE7X6Tly1PJNfph9k-fWj-DxOhTwNYH_rVOm76VoOQRXA8-Eu9i9KmqjGtB2aID4mEc3_WxAzDlFlEcDjPlb-NTdDvIcQMYA3Lniu-Q45mZUzd_X02obuwx0nHut44wews1l15hBh0aZ65oL_L8KBCwE priority: 102 providerName: ProQuest |
Title | Meta-Analysis of gross insertions causing human genetic disease: Novel mutational mechanisms and the role of replication slippage |
URI | https://api.istex.fr/ark:/67375/WNG-MZP6VF46-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhumu.20133 https://www.ncbi.nlm.nih.gov/pubmed/15643617 https://www.proquest.com/docview/197272420 https://www.proquest.com/docview/17741766 https://www.proquest.com/docview/67366449 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qi-IXX-pLY_VcUASFtHndJOIXLT2Pwh2leHoUZNkku21pL1fuElE_Cf4Bf6O_xJnNy1Gpgn45DjJ3ZDezs092nnkG4KmXJXmYZamdBomDLyhubhNqtbmnOdee1DygeufhiA_Gwd4knKzAq7YWptaH6A7caGWYeE0LXKaL7aVo6HE1rYia5ZPUJ5G1CBEdLLWj4jCs2fVhghAyCTptUm97-dMLu9EaTezny6DmReRqtp7-TfjY3nTNODndqsp0K_v6m57j_47qFtxoMCl7XTvRbVhRxTpcrbtUflmHa8Mm_34Hvg9VKX9--9FKmbCZZkc0MnZSUFqffJhlksj0R8y0_2PooFQnyZpM0Es2mn1SZ2xalc0xJJsqqj4-WUwXTBY5Q0TKiPNI_z1XXXqdISA-p-h3F8b93Xc7A7tp42BnpGxjB7j_5RgYHIodsas8x4_yUEs3VggvteQ8DpSrPaVTuigdknCLqObXz0NfO_49WC1mhdoAprmrY0TYWkWUh07SXOd-kqOHRZmjfd-C5-3jFFmjcU6tNs5Erc7sCZpfYebXgied7Xmt7HGp1TPjFZ2JnJ8SFy4KxYfRWzE83Ofv-wEXexZstm4jmjCwENTTLUIQ5FjwuLuK65eSMrJQswpNEH-TSOefLYh5h6g1seB-7Y3L2w0RTyIEteCF8am_jEMMxsOx-fbgX4w34brRqjU09YewWs4r9QhRWJn24Eo0ifAz3nF7sPZmd7R_0DMr8Bc6GDJU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FRCwXBGEzAdISiwSSFdvtFQkhFBgmi0ccMiHi0tju7hCRsYeZMZAjH8Q_UtVeokght9wsueSxp15XP7teVQE884pEBkWR27mfOPiC4kqbWKsdejoMtZfp0Kd653QUDsf-9kFwsAR_u1oYklV2MdEEalkV9I18g8ZjRbifOG-nP2waGkXJ1W6CRoOKHXXyC9_Y5m-23qN7n3ve4MPe5tBuhwrYBfVZsX2MxhJh6hCSY1d5Do9koDM3Vkh2dBaGsa9c7Smd08nMoYZiEVWgchlw7XC87hVY8TmuTCpM3zxVlMRB0Oj5gwRJa-L33VC9jW_1pCYdGedn9r8VcuXv88jtWa5sNrvBLbjZslT2roHVbVhS5SpcbeZWnqzCtbTNyN-BP6laZHbX2oRVmh3S77KjktL8hGlWZCSuP2RmHCBDwFLdJGszQ6_ZqPqpjtmkXrSfJdlEUTXy0XwyZ1kpGTJURhpIuvZM9el2hgR5StHwLowvxQP3YLmsSvUAmA5dHSPj1iqivHSSSy15IhFxUeFozi142f3Zomh7ntPojWPRdGv2BDlGGMdY8LS3nTadPs61emF81ptks--kjYsC8Xn0UaRfPoX7Az8U2xasdU4VbViYix7EFqz3Z3E9U5ImK1VVownycWra-X8LUuIhi00suN9g5fR2A-SXSEkteGXAc8FziOE4HZujhxfe6DpcH-6lu2J3a7SzBjdM41qjWX8Ey4tZrR4jJVvkT8xCYPD1slfePzT2RFg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVlS9ICgvU6Ar8ZBAsmJ77bWNhBBqCWlLoh4Irbgsfuy2FY0dkhjokZ_Fv2Nm_agqld56s-SVY2e-mf3s-WYG4LmXxXmQZamd-rGDLyhubhNrtYWnhdBeooVP9c7DkRiM_d3D4HAJ_ra1MCSrbGOiCdR5mdE38h6NxwpxP3F6ulFF7G_3301_2DRAihKt7TSNGiF76uwXvr3N3-5so6lfeF7_w-etgd0MGLAz6rli-xiZc4SsQ6iOXOU5PMwDnbiRQuKjEyEiX7naUzqlk4lDzcVCqkblecC1w_G6N2Al5GFELhZtnatLoiCotf1BjAQ29rvOqF7vuJpUpCnj_MJeuEJm_X0Z0b3Im83G178NtxrGyt7XELsDS6pYh5v1DMuzdVgdNtn5u_BnqBaJ3bY5YaVmR_S77KSglD_hm2UJCe2PmBkNyBC8VEPJmizRGzYqf6pTNqkWzSdKNlFUmXwyn8xZUuQM2SojPSRde6a61DtDsjylyHgPxtdigfuwXJSFeghMC1dHyL61CilHHae5znmcI_rCzNGcW_Cq_bNl1vQ_pzEcp7Lu3OxJMow0hrHgWbd2Wnf9uHTVS2Ozbkky-046uTCQB6OPcvh1X3zp-0LuWrDRGlU2IWIuO0BbsNmdRd-mhE1SqLLCJcjNqYHn_1eQKg8ZbWzBgxor57cbINdEemrBawOeK55DDsbDsTl6dOWNbsIq-pz8tDPa24A108PWyNcfw_JiVqknyM4W6VPjBwy-Xbfj_QN_ekiO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-analysis+of+gross+insertions+causing+human+genetic+disease%3A+novel+mutational+mechanisms+and+the+role+of+replication+slippage&rft.jtitle=Human+mutation&rft.au=Chen%2C+Jian-Min&rft.au=Chuzhanova%2C+Nadia&rft.au=Stenson%2C+Peter+D&rft.au=F%C3%A9rec%2C+Claude&rft.date=2005-02-01&rft.issn=1098-1004&rft.eissn=1098-1004&rft.volume=25&rft.issue=2&rft.spage=207&rft_id=info:doi/10.1002%2Fhumu.20133&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-7794&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-7794&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-7794&client=summon |