Meta-Analysis of gross insertions causing human genetic disease: Novel mutational mechanisms and the role of replication slippage

Although gross insertions (>20 bp) comprise <1% of disease‐causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and ∼10 kb were identified usi...

Full description

Saved in:
Bibliographic Details
Published inHuman mutation Vol. 25; no. 2; pp. 207 - 221
Main Authors Chen, Jian-Min, Chuzhanova, Nadia, Stenson, Peter D., Férec, Claude, Cooper, David N.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.02.2005
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although gross insertions (>20 bp) comprise <1% of disease‐causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and ∼10 kb were identified using the Human Gene Mutation Database (www.hgmd.org). A careful meta‐analytical study revealed extensive diversity in terms of the nature of the inserted DNA sequence and has provided new insights into the underlying mutational mechanisms. Some 70% of gross insertions were found to represent sequence duplications of different types (tandem, partial tandem, or complex). Although most of the tandem duplications were explicable by simple replication slippage, the three complex duplications appear to result from multiple slippage events. Some 11% of gross insertions were attributable to nonpolyglutamine repeat expansions (including octapeptide repeat expansions in the prion protein gene [PRNP] and polyalanine tract expansions) and evidence is presented to support the contention that these mutations are also caused by replication slippage rather than by unequal crossing over. Some 17% of gross insertions, all ≥276 bp in length, were found to be due to LINE‐1 (L1) retrotransposition involving different types of element (L1 trans‐driven Alu, L1 direct, and L1 trans‐driven SVA). A second example of pathological mitochondrial‐nuclear sequence transfer was identified in the USH1C gene but appears to arise via a novel mechanism, trans‐replication slippage. Finally, evidence for another novel mechanism of human genetic disease, involving the possible capture of DNA oligonucleotides, is presented in the context of a 26‐bp insertion into the ERCC6 gene. Hum Mutat 25:207–221, 2005. © 2005 Wiley‐Liss, Inc.
AbstractList Although gross insertions (>20 bp) comprise <1% of disease-causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and approximately 10 kb were identified using the Human Gene Mutation Database (www.hgmd.org). A careful meta-analytical study revealed extensive diversity in terms of the nature of the inserted DNA sequence and has provided new insights into the underlying mutational mechanisms. Some 70% of gross insertions were found to represent sequence duplications of different types (tandem, partial tandem, or complex). Although most of the tandem duplications were explicable by simple replication slippage, the three complex duplications appear to result from multiple slippage events. Some 11% of gross insertions were attributable to nonpolyglutamine repeat expansions (including octapeptide repeat expansions in the prion protein gene [PRNP] and polyalanine tract expansions) and evidence is presented to support the contention that these mutations are also caused by replication slippage rather than by unequal crossing over. Some 17% of gross insertions, all >or=276 bp in length, were found to be due to LINE-1 (L1) retrotransposition involving different types of element (L1 trans-driven Alu, L1 direct, and L1 trans-driven SVA). A second example of pathological mitochondrial-nuclear sequence transfer was identified in the USH1C gene but appears to arise via a novel mechanism, trans-replication slippage. Finally, evidence for another novel mechanism of human genetic disease, involving the possible capture of DNA oligonucleotides, is presented in the context of a 26-bp insertion into the ERCC6 gene.Although gross insertions (>20 bp) comprise <1% of disease-causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and approximately 10 kb were identified using the Human Gene Mutation Database (www.hgmd.org). A careful meta-analytical study revealed extensive diversity in terms of the nature of the inserted DNA sequence and has provided new insights into the underlying mutational mechanisms. Some 70% of gross insertions were found to represent sequence duplications of different types (tandem, partial tandem, or complex). Although most of the tandem duplications were explicable by simple replication slippage, the three complex duplications appear to result from multiple slippage events. Some 11% of gross insertions were attributable to nonpolyglutamine repeat expansions (including octapeptide repeat expansions in the prion protein gene [PRNP] and polyalanine tract expansions) and evidence is presented to support the contention that these mutations are also caused by replication slippage rather than by unequal crossing over. Some 17% of gross insertions, all >or=276 bp in length, were found to be due to LINE-1 (L1) retrotransposition involving different types of element (L1 trans-driven Alu, L1 direct, and L1 trans-driven SVA). A second example of pathological mitochondrial-nuclear sequence transfer was identified in the USH1C gene but appears to arise via a novel mechanism, trans-replication slippage. Finally, evidence for another novel mechanism of human genetic disease, involving the possible capture of DNA oligonucleotides, is presented in the context of a 26-bp insertion into the ERCC6 gene.
Although gross insertions (>20 bp) comprise <1% of disease‐causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and ∼10 kb were identified using the Human Gene Mutation Database (www.hgmd.org). A careful meta‐analytical study revealed extensive diversity in terms of the nature of the inserted DNA sequence and has provided new insights into the underlying mutational mechanisms. Some 70% of gross insertions were found to represent sequence duplications of different types (tandem, partial tandem, or complex). Although most of the tandem duplications were explicable by simple replication slippage, the three complex duplications appear to result from multiple slippage events. Some 11% of gross insertions were attributable to nonpolyglutamine repeat expansions (including octapeptide repeat expansions in the prion protein gene [PRNP] and polyalanine tract expansions) and evidence is presented to support the contention that these mutations are also caused by replication slippage rather than by unequal crossing over. Some 17% of gross insertions, all ≥276 bp in length, were found to be due to LINE‐1 (L1) retrotransposition involving different types of element (L1 trans‐driven Alu, L1 direct, and L1 trans‐driven SVA). A second example of pathological mitochondrial‐nuclear sequence transfer was identified in the USH1C gene but appears to arise via a novel mechanism, trans‐replication slippage. Finally, evidence for another novel mechanism of human genetic disease, involving the possible capture of DNA oligonucleotides, is presented in the context of a 26‐bp insertion into the ERCC6 gene. Hum Mutat 25:207–221, 2005. © 2005 Wiley‐Liss, Inc.
Although gross insertions (>20 bp) comprise <1% of disease-causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and <10 kb were identified using the Human Gene Mutation Database (www.hgmd.org). A careful meta-analytical study revealed extensive diversity in terms of the nature of the inserted DNA sequence and has provided new insights into the underlying mutational mechanisms. Some 70% of gross insertions were found to represent sequence duplications of different types (tandem, partial tandem, or complex). Although most of the tandem duplications were explicable by simple replication slippage, the three complex duplications appear to result from multiple slippage events. Some 11% of gross insertions were attributable to nonpolyglutamine repeat expansions (including octapeptide repeat expansions in the prion protein gene [PRNP] and polyalanine tract expansions) and evidence is presented to support the contention that these mutations are also caused by replication slippage rather than by unequal crossing over. Some 17% of gross insertions, all e276 bp in length, were found to be due to LINE-1 (L1) retrotransposition involving different types of element (L1 trans-driven Alu, L1 direct, and L1 trans-driven SVA). A second example of pathological mitochondrial-nuclear sequence transfer was identified in the USH1C gene but appears to arise via a novel mechanism, trans-replication slippage. Finally, evidence for another novel mechanism of human genetic disease, involving the possible capture of DNA oligonucleotides, is presented in the context of a 26-bp insertion into the ERCC6 gene. Hum Mutat 25:207-221, 2005. © 2005 Wiley-Liss, Inc.
Although gross insertions (>20 bp) comprise <1% of disease-causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and ~10 kb were identified using the Human Gene Mutation Database (www.hgmd.org). A careful meta-analytical study revealed extensive diversity in terms of the nature of the inserted DNA sequence and has provided new insights into the underlying mutational mechanisms. Some 70% of gross insertions were found to represent sequence duplications of different types (tandem, partial tandem, or complex). Although most of the tandem duplications were explicable by simple replication slippage, the three complex duplications appear to result from multiple slippage events. Some 11% of gross insertions were attributable to nonpolyglutamine repeat expansions (including octapeptide repeat expansions in the prion protein gene [PRNP] and polyalanine tract expansions) and evidence is presented to support the contention that these mutations are also caused by replication slippage rather than by unequal crossing over. Some 17% of gross insertions, all =>276 bp in length, were found to be due to LINE-1 (L1) retrotransposition involving different types of element (L1 trans-driven Alu, L1 direct, and L1 trans-driven SVA). A second example of pathological mitochondrial-nuclear sequence transfer was identified in the USH1C gene but appears to arise via a novel mechanism, trans-replication slippage. Finally, evidence for another novel mechanism of human genetic disease, involving the possible capture of DNA oligonucleotides, is presented in the context of a 26-bp insertion into the ERCC6 gene. Hum Mutat 25:207-221, 2005.
Although gross insertions (>20 bp) comprise <1% of disease-causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and approximately 10 kb were identified using the Human Gene Mutation Database (www.hgmd.org). A careful meta-analytical study revealed extensive diversity in terms of the nature of the inserted DNA sequence and has provided new insights into the underlying mutational mechanisms. Some 70% of gross insertions were found to represent sequence duplications of different types (tandem, partial tandem, or complex). Although most of the tandem duplications were explicable by simple replication slippage, the three complex duplications appear to result from multiple slippage events. Some 11% of gross insertions were attributable to nonpolyglutamine repeat expansions (including octapeptide repeat expansions in the prion protein gene [PRNP] and polyalanine tract expansions) and evidence is presented to support the contention that these mutations are also caused by replication slippage rather than by unequal crossing over. Some 17% of gross insertions, all >or=276 bp in length, were found to be due to LINE-1 (L1) retrotransposition involving different types of element (L1 trans-driven Alu, L1 direct, and L1 trans-driven SVA). A second example of pathological mitochondrial-nuclear sequence transfer was identified in the USH1C gene but appears to arise via a novel mechanism, trans-replication slippage. Finally, evidence for another novel mechanism of human genetic disease, involving the possible capture of DNA oligonucleotides, is presented in the context of a 26-bp insertion into the ERCC6 gene.
Author Férec, Claude
Stenson, Peter D.
Cooper, David N.
Chuzhanova, Nadia
Chen, Jian-Min
Author_xml – sequence: 1
  givenname: Jian-Min
  surname: Chen
  fullname: Chen, Jian-Min
  email: Jian-Min.Chen@univ-brest.fr
  organization: INSERM (Institut National de la Santé et de la Recherche Médicale) U613-Génétique Moléculaire et Génétique Epidémiologique, Etablissement Français du Sang-Bretagne, Université de Bretagne Occidentale, Centre Hospitalier Universitaire, Brest, France
– sequence: 2
  givenname: Nadia
  surname: Chuzhanova
  fullname: Chuzhanova, Nadia
  organization: Biostatistics and Bioinformatics Unit, Cardiff University, Heath Park, Cardiff, United Kingdom
– sequence: 3
  givenname: Peter D.
  surname: Stenson
  fullname: Stenson, Peter D.
  organization: Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, United Kingdom
– sequence: 4
  givenname: Claude
  surname: Férec
  fullname: Férec, Claude
  organization: INSERM (Institut National de la Santé et de la Recherche Médicale) U613-Génétique Moléculaire et Génétique Epidémiologique, Etablissement Français du Sang-Bretagne, Université de Bretagne Occidentale, Centre Hospitalier Universitaire, Brest, France
– sequence: 5
  givenname: David N.
  surname: Cooper
  fullname: Cooper, David N.
  organization: Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15643617$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS3Uij5gww9AFgsWSGn9dsKuqmgL6pQuOiCxsdzkZsbFcVI7AWbJPydpWpAqBCtf-X7nXOmcPbQV2gAIvaDkgBLCDtdDMxwwQjl_gnYpKfJs_BZb0yyLTOtC7KC9lG4IIbmU_CnaoVIJrqjeRT8X0NvsKFi_SS7htsar2KaEXUgQe9eGhEs7JBdWeDxjA15BgN6VuHIJbIK3-KL9Bh43Q28n3I4jlGsbXGoStqHC_RpwbD1M3hE678o7ECfvus6u4Bnarq1P8Pz-3UfLk3dXx2fZ-cfT98dH51kp8oJnQmhaSZ0TzpjMKTDCdSVrS3OgBautUrkAWjOor6elJUJJpUnOCl5JXhO-j17Pvl1sbwdIvWlcKsF7G6AdklGaKyVE8V-Qai2oVmoEXz0Cb9ohjhGMTKGZZoJNZ1_eQ8N1A5Xpomts3JiHCkbgzQyUU_AR6j8IMVO_ZurX3PU7wuQRXLo5-D5a5_8uobPku_Ow-Ye5OVsulg-abNa41MOP3xobv04xaWk-X5yaxZdL9elEKPOB_wJfwscB
CitedBy_id crossref_primary_10_2353_jmoldx_2007_060096
crossref_primary_10_1371_journal_pgen_1003877
crossref_primary_10_1002_ajmg_a_35843
crossref_primary_10_1016_j_mrrev_2011_10_002
crossref_primary_10_1093_mutage_gead031
crossref_primary_10_1016_j_anbehav_2011_06_011
crossref_primary_10_1053_j_ajkd_2006_10_024
crossref_primary_10_1002_humu_20486
crossref_primary_10_1038_s10038_017_0345_3
crossref_primary_10_1016_j_jcf_2007_04_001
crossref_primary_10_1002_humu_20230
crossref_primary_10_1007_s00277_008_0479_7
crossref_primary_10_1002_humu_20591
crossref_primary_10_1016_j_rmr_2013_03_007
crossref_primary_10_1111_j_1365_2265_2007_03157_x
crossref_primary_10_1186_s13059_015_0685_2
crossref_primary_10_1016_j_tig_2009_05_005
crossref_primary_10_1134_S1022795413010080
crossref_primary_10_1134_S0031030119110078
crossref_primary_10_1016_j_ympev_2012_10_020
crossref_primary_10_1007_s00439_009_0742_6
crossref_primary_10_1016_j_ajhg_2010_05_001
crossref_primary_10_1093_hmg_ddr078
crossref_primary_10_1002_humu_21196
crossref_primary_10_1159_000507988
crossref_primary_10_1002_0471250953_bi0113s12
crossref_primary_10_1042_BJ20121221
crossref_primary_10_1093_hmg_ddr074
crossref_primary_10_1101_gr_214973_116
crossref_primary_10_1093_molbev_msv062
crossref_primary_10_1038_s41467_023_35794_9
crossref_primary_10_1159_000347029
crossref_primary_10_1002_humu_22569
crossref_primary_10_1016_j_ajhg_2015_06_002
crossref_primary_10_1016_j_ajhg_2010_02_001
crossref_primary_10_1186_1755_8417_1_4
crossref_primary_10_1101_gr_123463_111
crossref_primary_10_1109_TKDE_2008_65
crossref_primary_10_1093_dnares_dsx019
crossref_primary_10_1093_molbev_msm025
crossref_primary_10_1016_j_resp_2008_05_011
crossref_primary_10_1002_gcc_20556
crossref_primary_10_1002_humu_22831
crossref_primary_10_4161_mge_19031
crossref_primary_10_1534_genetics_106_065532
crossref_primary_10_1111_evo_12416
crossref_primary_10_1016_j_ygeno_2008_09_016
crossref_primary_10_1016_j_ymgme_2006_12_003
crossref_primary_10_1155_2012_341932
crossref_primary_10_1007_s00439_011_1125_3
crossref_primary_10_1038_ejhg_2009_73
crossref_primary_10_1002_humu_22341
crossref_primary_10_1038_sj_ejhg_5201590
crossref_primary_10_1093_gbe_evx078
crossref_primary_10_1101_gr_081737_108
crossref_primary_10_1038_jhg_2014_20
crossref_primary_10_1371_journal_pgen_1002340
crossref_primary_10_1016_j_bbcan_2006_08_007
crossref_primary_10_1164_rccm_200807_1069ST
crossref_primary_10_1186_1471_2164_12_517
crossref_primary_10_3109_03630269_2011_644651
crossref_primary_10_1002_humu_20202
crossref_primary_10_1186_s13059_020_02199_6
crossref_primary_10_1186_1471_2164_13_172
crossref_primary_10_1002_humu_20327
crossref_primary_10_1186_1750_1172_5_33
crossref_primary_10_1038_nrg_2015_25
crossref_primary_10_1111_1749_4877_12582
crossref_primary_10_1371_journal_pgen_1000834
crossref_primary_10_1002_humu_21088
crossref_primary_10_1016_j_gene_2006_06_012
crossref_primary_10_3109_03630269_2011_641135
crossref_primary_10_1007_s00439_005_1321_0
crossref_primary_10_1016_j_ymgme_2005_08_009
crossref_primary_10_1186_s12864_021_07493_6
crossref_primary_10_1016_j_gde_2016_02_005
crossref_primary_10_1073_pnas_1321854111
crossref_primary_10_1038_ng_2768
crossref_primary_10_1007_s10048_006_0065_x
crossref_primary_10_1016_j_clinbiochem_2008_05_011
crossref_primary_10_1016_j_dnarep_2006_05_032
crossref_primary_10_1016_j_semcancer_2017_05_004
crossref_primary_10_1016_j_mrrev_2013_07_003
crossref_primary_10_1093_gbe_evp049
crossref_primary_10_1016_j_ymgme_2006_09_005
crossref_primary_10_1186_s13073_017_0420_6
crossref_primary_10_1016_j_ejca_2021_08_003
crossref_primary_10_3389_fgeed_2022_937853
crossref_primary_10_1186_1479_7364_4_6_384
crossref_primary_10_1016_j_ajhg_2007_10_011
crossref_primary_10_1534_genetics_107_070805
crossref_primary_10_1007_s00439_006_0180_7
crossref_primary_10_1016_j_tig_2007_02_006
crossref_primary_10_1073_pnas_1603823113
crossref_primary_10_1038_jhg_2009_21
crossref_primary_10_1002_humu_21557
crossref_primary_10_1371_journal_pone_0202279
crossref_primary_10_3390_ijms22042072
crossref_primary_10_1038_sj_ejhg_5201684
crossref_primary_10_1111_j_1365_2052_2010_02130_x
crossref_primary_10_1101_gr_190470_115
crossref_primary_10_1016_j_gene_2006_07_040
crossref_primary_10_1016_j_semcancer_2010_05_007
crossref_primary_10_1093_molehr_gal017
crossref_primary_10_1146_annurev_genom_082509_141802
crossref_primary_10_1101_gr_091827_109
crossref_primary_10_1007_s10048_017_0512_x
crossref_primary_10_1016_j_jtbi_2005_08_033
crossref_primary_10_1101_cshperspect_a033134
crossref_primary_10_1002_bies_202000256
Cites_doi 10.1086/302271
10.1002/humu.20009
10.1086/301965
10.1136/jmg.36.4.285
10.1038/sj.ejhg.5200503
10.1128/9781555817954.ch35
10.1073/pnas.241524898
10.1002/(SICI)1096-8628(19990604)84:4<346::AID-AJMG7>3.0.CO;2-E
10.1038/1689
10.1016/S0385-8146(02)00055-X
10.1002/humu.20006
10.1021/bi972546c
10.1073/pnas.1430924100
10.1001/archopht.120.9.1189
10.1093/hmg/ddg295
10.1007/s00439-002-0732-4
10.1093/hmg/4.6.1109
10.1101/gr.227202. Article published online before print in May 2002
10.1073/pnas.84.7.1936
10.1093/oxfordjournals.molbev.a003971
10.1007/BF00290109
10.1212/WNL.59.6.923
10.1038/ng1223
10.1161/01.CIR.100.12.1264
10.1093/bioinformatics/15.12.994
10.1016/S0168-9525(01)02312-5
10.1016/0092-8674(93)90078-5
10.1073/pnas.79.13.4128
10.1111/j.1399-0004.1992.tb03672.x
10.1073/pnas.1633606100
10.1002/humu.9062
10.1007/BF02703683
10.1038/ng1193-254
10.1038/nature01435
10.1002/humu.9072
10.1128/MCB.5.10.2599
10.1086/301686
10.1111/j.1600-0625.1998.tb00309.x
10.1007/s00239-003-2485-7
10.1002/1098-1004(200008)16:2<166::AID-HUMU9>3.0.CO;2-4
10.1038/ng1293-413
10.1128/MCB.9.7.3049
10.1126/science.275.5298.408
10.1038/78182
10.1038/ng1048
10.1038/71667
10.1126/science.1089670
10.1016/0092-8674(82)90401-9
10.1086/340848
10.1006/geno.2002.6798
10.1016/j.tig.2003.11.002
10.1038/sj.ejhg.5200242
10.1093/hmg/5.2.249
10.1007/BF00217444
10.1007/BF00197158
10.1086/301827
10.1016/S0092-8674(00)81415-4
10.1016/j.gene.2003.11.003
10.1002/humu.10212
10.1093/hmg/2.8.1317
10.1073/pnas.88.23.10926
10.1146/annurev.genet.35.102401.091032
10.1093/hmg/5.3.319
10.1128/MCB.9.11.4596
10.1007/BF00194629
10.1073/pnas.87.10.3889
10.1136/gut.48.4.515
10.1111/j.1365-2958.2004.04076.x
10.1101/SQB.1966.031.01.014
10.1093/nar/19.25.7201
10.1073/pnas.0831042100
10.1016/S0021-9258(19)38851-9
10.1128/MCB.8.12.5350
10.1038/ni788
10.1111/j.1365-2958.1994.tb01042.x
10.1002/(SICI)1098-1004(200002)15:2<173::AID-HUMU6>3.0.CO;2-W
10.1038/365274a0
10.1046/j.1365-2141.1997.1983013.x
10.1006/jmbi.1994.1002
10.1007/s00439-002-0892-2
10.1111/j.1600-0609.1993.tb00634.x
10.1093/hmg/4.10.1845
10.1111/j.1365-2141.1993.tb03143.x
10.1038/35057062
10.1055/s-0037-1615098
10.1086/316951
10.1016/S0021-9258(18)68106-2
10.1086/302211
10.1007/s100380170014
10.1093/hmg/3.6.1021
10.1093/genetics/112.3.441
10.1128/MCB.13.7.3937
10.1002/(SICI)1098-1004(1996)8:3<265::AID-HUMU11>3.0.CO;2-0
10.1002/humu.10254
10.1007/s004390100564
10.1002/humu.10253
10.1002/humu.10146
10.1038/ng898
10.1086/380207
10.1093/nar/13.18.6559
10.1159/000472231
10.1210/mend.12.11.0189
ContentType Journal Article
Copyright Copyright © 2005 Wiley‐Liss, Inc.
Copyright © 2005 Wiley-Liss, Inc., A Wiley Company
Copyright_xml – notice: Copyright © 2005 Wiley‐Liss, Inc.
– notice: Copyright © 2005 Wiley-Liss, Inc., A Wiley Company
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TK
7X7
7XB
88A
88E
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
DOI 10.1002/humu.20133
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1098-1004
EndPage 221
ExternalDocumentID 781966511
15643617
10_1002_humu_20133
HUMU20133
ark_67375_WNG_MZP6VF46_J
Genre article
Research Support, Non-U.S. Gov't
Meta-Analysis
Journal Article
GeographicLocations France
GeographicLocations_xml – name: France
GrantInformation_xml – fundername: INSERM (Institut National de la Santé et de la Recherche Médicale), France
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29I
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88A
88E
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GNP
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0L
M1P
M66
M7P
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
QRW
R.K
RHX
RIWAO
RJQFR
ROL
RWI
RWV
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WTM
WXSBR
WYISQ
X7M
XG1
XSW
XV2
ZZTAW
~IA
~KM
~WT
AANHP
ACCMX
ACRPL
ACYXJ
ADNMO
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
RPM
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
ID FETCH-LOGICAL-c4893-4471d5780322581e2037d5fa18e192fa6684e1f2efb1e20a04656708293d53f03
IEDL.DBID DR2
ISSN 1059-7794
1098-1004
IngestDate Fri Jul 11 07:38:05 EDT 2025
Fri Jul 11 03:06:48 EDT 2025
Fri Jul 25 10:56:37 EDT 2025
Wed Feb 19 01:37:43 EST 2025
Tue Jul 01 01:11:44 EDT 2025
Thu Apr 24 23:12:30 EDT 2025
Wed Jan 22 16:31:06 EST 2025
Wed Oct 30 09:56:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4893-4471d5780322581e2037d5fa18e192fa6684e1f2efb1e20a04656708293d53f03
Notes Supporting Information file jwsHUMU.v25.2.207.pdf
INSERM (Institut National de la Santé et de la Recherche Médicale), France
ArticleID:HUMU20133
ark:/67375/WNG-MZP6VF46-J
Communicated by Nobuyoshi Shimizu
The Supplementary Material referred to in this article can be accessed at http://www.interscience.wiley.com/jpages/1059-7794/suppmat
istex:DD8156777D160D0CB35F32655874CF98D2470AA9
http://www.interscience.wiley.com/jpages/1059‐7794/suppmat
The Supplementary Material referred to in this article can be accessed at
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.proquest.com/docview/197272420?pq-origsite=%requestingapplication%
PMID 15643617
PQID 197272420
PQPubID 30498
PageCount 15
ParticipantIDs proquest_miscellaneous_67366449
proquest_miscellaneous_17741766
proquest_journals_197272420
pubmed_primary_15643617
crossref_primary_10_1002_humu_20133
crossref_citationtrail_10_1002_humu_20133
wiley_primary_10_1002_humu_20133_HUMU20133
istex_primary_ark_67375_WNG_MZP6VF46_J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2005
PublicationDateYYYYMMDD 2005-02-01
PublicationDate_xml – month: 02
  year: 2005
  text: February 2005
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Human mutation
PublicationTitleAlternate Hum. Mutat
PublicationYear 2005
Publisher Wiley Subscription Services, Inc., A Wiley Company
John Wiley & Sons, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: John Wiley & Sons, Inc
References Hansen LL, Horn N, Dahl HH, Kruse TA. 1994. Pyruvate dehydrogenase deficiency caused by a 33 base pair duplication in the PDH E1 alpha subunit. Hum Mol Genet 3:1021-1022.
Lovett ST. 2004. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol 52:1243-1253.
Yamanouchi Y, Takano T, Hamaguchi H, Tokunaga K. 2001. A novel apolipoprotein E5 variant with a 24-bp insertion causing hyperlipidemia. J Hum Genet 46:633-639.
Thai TH, Purugganan MM, Roth DB, Kearney JF. 2002. Distinct and opposite diversifying activities of terminal transferase splice variants. Nat Immunol 3:457-462.
Kornreich R, Bishop DF, Desnick RJ. 1990. Alpha-galactosidase A gene rearrangements causing Fabry disease. Identification of short direct repeats at breakpoints in an Alu-rich gene. J Biol Chem 265:9319-9326.
Stegemann S, Hartmann S, Ruf S, Bock R. 2003. High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100:8828-8833.
Tartary M, Vidaud D, Piao Y, Costa JM, Bahnak BR, Fressinaud E, Congard B, Laurian Y, Meyer D, Lavergne JM, Vidaud M. 1993. Detection of a molecular defect in 40 of 44 patients with haemophilia B by PCR and denaturing gradient gel electrophoresis. Br J Haematol 84:662-669.
Van de Water N, Williams R, Ockelford P, Browett P. 1998. A 20.7 kb deletion within the factor VIII gene associated with LINE-1 element insertion. Thromb Haemost 79:938-942.
Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z, Sadeh M, Mahjneh I, Marconi G, Passos-Bueno MR, Moreira Ede S, Zatz M, Beckmann JS, Bushby K. 1998. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet 20:37-42.
Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr. 2003. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA 100:5280-5285.
Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN. 2003. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21:577-581.
Singer BS, Gold L, Gauss P, Doherty DH. 1982. Determination of the amount of homology required for recombination in bacteriophage T4. Cell 31:25-33.
Weber B, Guo XH, Kleijer WJ, van de Kamp JJ, Poorthuis BJ, Hopwood JJ. 1999. Sanfilippo type B syndrome (mucopolysaccharidosis III B): allelic heterogeneity corresponds to the wide spectrum of clinical phenotypes. Eur J Hum Genet 7:34-44.
Chung MY, Ranum LP, Duvick LA, Servadio A, Zoghbi HY, Orr HT. 1993. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat Genet 5:254-258.
Willett-Brozick JE, Savul SA, Richey LE, Baysal BE. 2001. Germ line insertion of mtDNA at the breakpoint junction of a reciprocal constitutional translocation. Hum Genet 109:216-223.
Vorechovsky I, Luo L, Prudente S, Chessa L, Russo G, Kanariou M, James M, Negrini M, Webster AD, Hammarstrom L. 1996. Exon-scanning mutation analysis of the ATM gene in patients with ataxia-telangiectasia. Eur J Hum Genet 4:352-355.
Perrault I, Rozet JM, Gerber S, Ghazi I, Ducroq D, Souied E, Leowski C, Bonnemaison M, Dufier JL, Munnich A, Kaplan J. 2000. Spectrum of retGC1 mutations in Leber's congenital amaurosis. Eur J Hum Genet 8:578-582.
Shen P, Huang HV. 1986. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112:441-457.
Breuer DK, Yashar BM, Filippova E, Hiriyanna S, Lyons RH, Mears AJ, Asaye B, Acar C, Vervoort R, Wright AF, Musarella MA, Wheeler P, MacDonald I, Iannaccone A, Birch D, Hoffman DR, Fishman GA, Heckenlively JR, Jacobson SG, Sieving PA, Swaroop A. 2002. A comprehensive mutation analysis of RP2 and RPGR in a North American cohort of families with X-linked retinitis pigmentosa. Am J Hum Genet 70:1545-1554.
Ostertag EM, Kazazian HH, Jr. 2001. Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501-538.
Tiller GE, Rimoin DL, Murray LW, Cohn DH. 1990. Tandem duplication within a type II collagen gene (COL2A1) exon in an individual with spondyloepiphyseal dysplasia. Proc Natl Acad Sci USA 87:3889-3893.
Roth DB, Proctor GN, Stewart LK, Wilson JH. 1991. Oligonucleotide capture during end joining in mammalian cells. Nucleic Acids Res 19:7201-7205.
Goldfarb LG, Brown P, McCombie WR, Goldgaber D, Swergold GD, Wills PR, Cervenakova L, Baron H, Gibbs CJ Jr, Gajdusek DC. 1991. Transmissible familial Creutzfeldt-Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene. Proc Natl Acad Sci USA 88:10926-10930.
Gusev VD, Nemytikova LA, Chuzhanova NA. 1999. On the complexity measures of genetic sequences. Bioinformatics 15:994-999.
Brown LY, Brown SA. 2004. Alanine tracts: the expanding story of human illness and trinucleotide repeats. Trends Genet 20:51-58.
Huang CY, Ayliffe MA, Timmis JN. 2003. Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72-76.
Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, van Hul W, Whyte MP, Nakatsuka K, Hovy L, Anderson DM. 2000. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 24:45-48.
Martin W. 2003. Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc Natl Acad Sci USA 100:8612-8614.
Kazazian HH, Jr. 2004. Mobile elements: drivers of genome evolution. Science 303:1626-1632.
Dabora SL, Jozwiak S, Franz DN, Roberts PS, Nieto A, Chung J, Choy YS, Reeve MP, Thiele E, Egelhoff JC, Kasprzyk-Obara J, Domanska-Pakiela D, Kwiatkowski DJ. 2001. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68:64-80.
Stoppa-Lyonnet D, Duponchel C, Meo T, Laurent J, Carter PE, Arala-Chaves M, Cohen JH, Dewald G, Goetz J, Hauptmann G, Lagrue G, Lesavre P, Lopez-Trascasa M, Misiano G, Moraine C, Sobel A, Spath PJ, Tosi M. 1991. Recombinational biases in the rearranged C1-inhibitor genes of hereditary angioedema patients. Am J Hum Genet 49:1055-1062.
Lovett ST, Gluckman TJ, Simon PJ, Sutera VA Jr, Drapkin PT. 1994. Recombination between repeats in Escherichia coli by a recA-independent, proximity-sensitive mechanism. Mol Gen Genet 245:294-300.
Roth DB, Porter TN, Wilson JH. 1985. Mechanisms of nonhomologous recombination in mammalian cells. Mol Cell Biol 5:2599-2607.
Friedl W, Caspari R, Sengteller M, Uhlhaas S, Lamberti C, Jungck M, Kadmon M, Wolf M, Fahnenstich J, Gebert J, Moslein G, Mangold E, Propping P. 2001. Can APC mutation analysis contribute to therapeutic decisions in familial adenomatous polyposis? Experience from 680 FAP families. Gut 48:515-521.
Laplanche JL, Delasnerie-Laupretre N, Brandel JP, Dussaucy M, Chatelain J, Launay JM. 1995. Two novel insertions in the prion protein gene in patients with late-onset dementia. Hum Mol Genet 4:1109-1111.
Abeysinghe SS, Stenson PD, Krawczak M, Cooper DN. 2004. Gross Rearrangement Breakpoint Database (GRaBD). Hum Mutat 23:219-221.
Sinden RR. 1999. Biological implications of the DNA structures associated with disease-causing triplet repeats. Am J Hum Genet 64:346-353.
Luan DD, Korman MH, Jakubczak JL, Eickbush TH. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595-605.
Woischnik M, Moraes CT. 2002. Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res 12:885-893.
Chedin F, Dervyn E, Dervyn R, Ehrlich SD, Noirot P. 1994. Frequency of deletion formation decreases exponentially with distance between short direct repeats. Mol Microbiol 12:561-569.
Carpten JD, Robbins CM, Villablanca A, Forsberg L, Presciuttini S, Bailey-Wilson J, Simonds WF, Gillanders EM, Kennedy AM, Chen JD, Agarwal SK, Sood R, Jones MP, Moses TY, Haven C, Petillo D, Leotlela PD, Harding B, Cameron D, Pannett AA, Hoog A, Heath 3rd H, James-Newton LA, Robinson B, Zarbo RJ, Cavaco BM, Wassif W, Perrier ND, Rosen IB, Kristoffersson U, Turnpenny PD, Farnebo LO, Besser GM, Jackson CE, Morreau H, Trent JM, Thakker RV, Marx SJ, Teh BT, Larsson C, Hobbs MR. 2002. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 32:676-680.
Vervoort R, Lennon A, Bird AC, Tulloch B, Axton R, Miano MG, Meindl A, Meitinger T, Ciccodicola A, Wright AF. 2000. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet 25:462-466.
Chuzhanova N, Abeysinghe SS, Krawczak M, Cooper DN. 2003b. Translocation and gross deletion breakpoints in human inherited disease and cancer II: potential involvement of repetitive sequence elements in secondary structure formation between DNA ends. Hum Mutat 22:245-251.
Smith M, Sperling D. 1999. Novel 23-base-pair duplication mutation in TSC1 exon 15 in an infant presenting with cardiac rhabdomyomas. Am J Med Genet 84:346-349.
Marcus S, Hellgren D, Lambert B, Fallstrom SP, Wahlstrom J. 1993. Duplication in the hypoxanthine phosphoribosyl-transferase gene caused by Alu-Alu recombination in a patient with Lesch Nyhan syndrome. Hum Genet 90:477-482.
Sinden RR, Potaman VN, Oussatcheva EA, Pearson CE, Lyubchenko YL, Shlyakhtenko LS. 2002. Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA. J Biosci 27(Suppl 1):53-65.
Bi X, Liu LF. 1994. recA-independent and recA-dependent intramolecular plasmid recombination. Differential homology requirement and distance effect. J Mol Biol 235:414-423.
Bogdanova N, McCluskey M, Sikmann K, Markoff A, Todorov V, Dimitrakov D, Schiavello T, Thomas M, Kalaydjieva L, Dworniczak B, Horst J. 2000. Screening the 3′ region of the polycystic kidney disease 1 (PKD1) gene in 41 Bulgarian and Australian kindreds reveals a prevalence of protein truncating mutations. Hum Mutat 16:166-174.
Wu SM, Hallermeier KM, Laue L,
2004; 20
2002; 59
1991; 19
2002; 110
2002; 12
1997; 275
2004; 23
2000; 8
2003; 57
2001; 48
1988; 263
1999; 84
2004; 327
2001; 46
1993; 2
1990; 265
2003; 112
2001; 109
1993; 5
1993; 365
2003; 12
1990; 87
1991; 49
2000; 16
1987; 84
1997; 98
2000; 15
1993; 72
1991; 87
1991; 88
1991; 86
1999; 15
1998; 94
2001; 17
2001; 18
1996; 4
1996; 5
1996; 8
1998; 12
2003a; 21
1985; 13
2001; 98
1992; 41
1982; 79
2004; 303
1994; 235
1985; 5
1993; 84
2000; 25
2002; 31
1986; 112
2000; 24
1982; 31
2002; 32
2003b; 22
1989; 9
2003; 35
2002; 3
2001; 409
1999; 64
1993
1993; 90
2004
1999; 100
2002
2002; 80
1998; 63
1998; 62
1999; 7
2001; 68
1995; 4
2003; 73
1998; 20
1966; 31
2002; 27
1994; 245
1998; 37
1993; 13
2004; 52
2002; 29
2002; 120
1993; 51
2002; 20
1988; 8
1999; 36
1994; 12
1994; 55
2002; 70
1998; 7
2003; 422
1994; 3
2001; 35
2003; 100
2003; 21
2003; 22
1998; 79
Shen P (e_1_2_1_77_1) 1986; 112
e_1_2_1_81_1
e_1_2_1_20_1
e_1_2_1_66_1
e_1_2_1_89_1
e_1_2_1_62_1
e_1_2_1_43_1
e_1_2_1_28_1
e_1_2_1_47_1
e_1_2_1_92_1
Cooper DN (e_1_2_1_24_1) 1993
e_1_2_1_103_1
e_1_2_1_107_1
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_8_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_73_1
e_1_2_1_96_1
e_1_2_1_4_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_58_1
van Slegtenhorst M (e_1_2_1_94_1) 1999; 36
e_1_2_1_82_1
Wildin RS (e_1_2_1_101_1) 1994; 55
e_1_2_1_40_1
e_1_2_1_67_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_63_1
e_1_2_1_86_1
e_1_2_1_25_1
e_1_2_1_29_1
e_1_2_1_93_1
e_1_2_1_70_1
e_1_2_1_102_1
e_1_2_1_106_1
e_1_2_1_7_1
e_1_2_1_55_1
e_1_2_1_78_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_51_1
e_1_2_1_97_1
e_1_2_1_32_1
e_1_2_1_74_1
e_1_2_1_17_1
e_1_2_1_36_1
e_1_2_1_59_1
Stoppa‐Lyonnet D (e_1_2_1_84_1) 1991; 49
e_1_2_1_60_1
e_1_2_1_41_1
e_1_2_1_87_1
e_1_2_1_68_1
e_1_2_1_83_1
Strachan T (e_1_2_1_85_1) 2004
e_1_2_1_22_1
e_1_2_1_64_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_71_1
e_1_2_1_90_1
e_1_2_1_105_1
Kunkel TA (e_1_2_1_48_1) 1988; 263
e_1_2_1_56_1
e_1_2_1_79_1
e_1_2_1_98_1
e_1_2_1_6_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_75_1
e_1_2_1_2_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_18_1
Kornreich R (e_1_2_1_45_1) 1990; 265
e_1_2_1_80_1
e_1_2_1_42_1
e_1_2_1_65_1
e_1_2_1_88_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_61_1
e_1_2_1_27_1
e_1_2_1_69_1
e_1_2_1_100_1
e_1_2_1_91_1
e_1_2_1_104_1
e_1_2_1_30_1
e_1_2_1_76_1
e_1_2_1_5_1
e_1_2_1_57_1
e_1_2_1_99_1
e_1_2_1_34_1
e_1_2_1_72_1
e_1_2_1_11_1
e_1_2_1_53_1
e_1_2_1_95_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_9_1
e_1_2_1_19_1
Hum Mutat. 2005 Mar;25(3):318
References_xml – reference: Cserhalmi-Friedman PB, Baden H, Burgeson RE, Christiano AM. 1998. Molecular basis of non-lethal junctional epidermolysis bullosa: identification of a 38 basepair insertion and a splice site mutation in exon 14 of the LAMB3 gene. Exp Dermatol 7:105-111.
– reference: Yamanouchi Y, Takano T, Hamaguchi H, Tokunaga K. 2001. A novel apolipoprotein E5 variant with a 24-bp insertion causing hyperlipidemia. J Hum Genet 46:633-639.
– reference: Kawakami H, Inoue K, Sakakihara I, Nakamura S. 2002. Novel mutation in X-linked Charcot-Marie-Tooth disease associated with CNS impairment. Neurology 59:923-926.
– reference: Weber B, Guo XH, Kleijer WJ, van de Kamp JJ, Poorthuis BJ, Hopwood JJ. 1999. Sanfilippo type B syndrome (mucopolysaccharidosis III B): allelic heterogeneity corresponds to the wide spectrum of clinical phenotypes. Eur J Hum Genet 7:34-44.
– reference: Vorechovsky I, Luo L, Prudente S, Chessa L, Russo G, Kanariou M, James M, Negrini M, Webster AD, Hammarstrom L. 1996. Exon-scanning mutation analysis of the ATM gene in patients with ataxia-telangiectasia. Eur J Hum Genet 4:352-355.
– reference: Michalik A, Van Broeckhoven C. 2003. Pathogenesis of polyglutamine disorders: aggregation revisited. Hum Mol Genet 12(Spec No 2):R173-R186.
– reference: Turner C, Killoran C, Thomas NS, Rosenberg M, Chuzhanova NA, Johnston J, Kemel Y, Cooper DN, Biesecker LG. 2003. Human genetic disease caused by de novo mitochondrial-nuclear DNA transfer. Hum Genet 112:303-309.
– reference: Smith M, Sperling D. 1999. Novel 23-base-pair duplication mutation in TSC1 exon 15 in an infant presenting with cardiac rhabdomyomas. Am J Med Genet 84:346-349.
– reference: Breuer DK, Yashar BM, Filippova E, Hiriyanna S, Lyons RH, Mears AJ, Asaye B, Acar C, Vervoort R, Wright AF, Musarella MA, Wheeler P, MacDonald I, Iannaccone A, Birch D, Hoffman DR, Fishman GA, Heckenlively JR, Jacobson SG, Sieving PA, Swaroop A. 2002. A comprehensive mutation analysis of RP2 and RPGR in a North American cohort of families with X-linked retinitis pigmentosa. Am J Hum Genet 70:1545-1554.
– reference: Kazazian HH, Jr. 2004. Mobile elements: drivers of genome evolution. Science 303:1626-1632.
– reference: Warren ST. 1997. Polyalanine expansion in synpolydactyly might result from unequal crossing-over of HOXD13. Science 275:408-409.
– reference: Hansen LL, Horn N, Dahl HH, Kruse TA. 1994. Pyruvate dehydrogenase deficiency caused by a 33 base pair duplication in the PDH E1 alpha subunit. Hum Mol Genet 3:1021-1022.
– reference: Chedin F, Dervyn E, Dervyn R, Ehrlich SD, Noirot P. 1994. Frequency of deletion formation decreases exponentially with distance between short direct repeats. Mol Microbiol 12:561-569.
– reference: Bi X, Liu LF. 1994. recA-independent and recA-dependent intramolecular plasmid recombination. Differential homology requirement and distance effect. J Mol Biol 235:414-423.
– reference: Giampieri C, Centurelli M, Bonafe M, Olivieri F, Cardelli M, Marchegiani F, Cavallone L, Giovagnetti S, Mugianesi E, Carrieri G, Lisa R, Cenerelli S, Testa R, Boemi M, Petropoulou C, Gonos ES, Franceschi C. 2004. A novel mitochondrial DNA-like sequence insertion polymorphism in intron I of the FOXO1A gene. Gene 327:215-219.
– reference: Roth DB, Chang XB, Wilson JH. 1989. Comparison of filler DNA at immune, nonimmune, and oncogenic rearrangements suggests multiple mechanisms of formation. Mol Cell Biol 9:3049-3057.
– reference: Dabora SL, Jozwiak S, Franz DN, Roberts PS, Nieto A, Chung J, Choy YS, Reeve MP, Thiele E, Egelhoff JC, Kasprzyk-Obara J, Domanska-Pakiela D, Kwiatkowski DJ. 2001. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68:64-80.
– reference: Rabbani H, de Boer M, Ahlin A, Sundin U, Elinder G, Hammarstrom L, Palmblad J, Smith CI, Roos D. 1993. A 40-base-pair duplication in the gp91-phox gene leading to X-linked chronic granulomatous disease. Eur J Haematol 51:218-222.
– reference: Wu SM, Hallermeier KM, Laue L, Brain C, Berry AC, Grant DB, Griffin JE, Wilson JD, Cutler GB, Jr, Chan WY. 1998. Inactivation of the luteinizing hormone/chorionic gonadotropin receptor by an insertional mutation in Leydig cell hypoplasia. Mol Endocrinol 12:1651-1660.
– reference: Chuzhanova NA, Anassis EJ, Ball EV, Krawczak M, Cooper DN. 2003a. Meta-analysis of indels causing human genetic disease: mechanisms of mutagenesis and the role of local DNA sequence complexity. Hum Mutat 21:28-44.
– reference: Kunkel TA, Soni A. 1988. Mutagenesis by transient misalignment. J Biol Chem 263:14784-14789.
– reference: Laplanche JL, Delasnerie-Laupretre N, Brandel JP, Dussaucy M, Chatelain J, Launay JM. 1995. Two novel insertions in the prion protein gene in patients with late-onset dementia. Hum Mol Genet 4:1109-1111.
– reference: Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z, Sadeh M, Mahjneh I, Marconi G, Passos-Bueno MR, Moreira Ede S, Zatz M, Beckmann JS, Bushby K. 1998. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet 20:37-42.
– reference: Marcus S, Hellgren D, Lambert B, Fallstrom SP, Wahlstrom J. 1993. Duplication in the hypoxanthine phosphoribosyl-transferase gene caused by Alu-Alu recombination in a patient with Lesch Nyhan syndrome. Hum Genet 90:477-482.
– reference: Godart F, Bellanne-Chantelot C, Clauin S, Gragnoli C, Abderrahmani A, Blanche H, Boutin P, Chevre JC, Froguel P, Bailleul B. 2000. Identification of seven novel nucleotide variants in the hepatocyte nuclear factor-1alpha (TCF1) promoter region in MODY patients. Hum Mutat 15:173-180.
– reference: Roth DB, Proctor GN, Stewart LK, Wilson JH. 1991. Oligonucleotide capture during end joining in mammalian cells. Nucleic Acids Res 19:7201-7205.
– reference: Tourmen Y, Baris O, Dessen P, Jacques C, Malthiery Y, Reynier P. 2002. Structure and chromosomal distribution of human mitochondrial pseudogenes. Genomics 80:71-77.
– reference: Yuge I, Ohtsuka A, Matsunaga T, Usami S. 2002. Identification of 605ins46, a novel GJB2 mutation in a Japanese family. Auris Nasus Larynx 29:379-382.
– reference: Tartary M, Vidaud D, Piao Y, Costa JM, Bahnak BR, Fressinaud E, Congard B, Laurian Y, Meyer D, Lavergne JM, Vidaud M. 1993. Detection of a molecular defect in 40 of 44 patients with haemophilia B by PCR and denaturing gradient gel electrophoresis. Br J Haematol 84:662-669.
– reference: Henze K, Martin W. 2001. How do mitochondrial genes get into the nucleus? Trends Genet 17:383-387.
– reference: Bogdanova N, McCluskey M, Sikmann K, Markoff A, Todorov V, Dimitrakov D, Schiavello T, Thomas M, Kalaydjieva L, Dworniczak B, Horst J. 2000. Screening the 3′ region of the polycystic kidney disease 1 (PKD1) gene in 41 Bulgarian and Australian kindreds reveals a prevalence of protein truncating mutations. Hum Mutat 16:166-174.
– reference: Strand M, Prolla TA, Liskay RM, Petes TD. 1993. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365:274-276.
– reference: Oshima A, Yoshida K, Ishizaki A, Shimmoto M, Fukuhara Y, Sakuraba H, Suzuki Y. 1992. GM1-gangliosidosis: tandem duplication within exon 3 of beta-galactosidase gene in an infantile patient. Clin Genet 41:235-238.
– reference: Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, Szustakowki J, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ; International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome. Nature 409:860-921.
– reference: Friedl W, Caspari R, Sengteller M, Uhlhaas S, Lamberti C, Jungck M, Kadmon M, Wolf M, Fahnenstich J, Gebert J, Moslein G, Mangold E, Propping P. 2001. Can APC mutation analysis contribute to therapeutic decisions in familial adenomatous polyposis? Experience from 680 FAP families. Gut 48:515-521.
– reference: Chuzhanova N, Abeysinghe SS, Krawczak M, Cooper DN. 2003b. Translocation and gross deletion breakpoints in human inherited disease and cancer II: potential involvement of repetitive sequence elements in secondary structure formation between DNA ends. Hum Mutat 22:245-251.
– reference: Van de Water N, Williams R, Ockelford P, Browett P. 1998. A 20.7 kb deletion within the factor VIII gene associated with LINE-1 element insertion. Thromb Haemost 79:938-942.
– reference: Woischnik M, Moraes CT. 2002. Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res 12:885-893.
– reference: Bogdanova N, Markoff A, Pollmann H, Nowak-Gottl U, Eisert R, Dworniczak B, Eigel A, Horst J. 2002. Prevalence of small rearrangements in the factor VIII gene F8C among patients with severe hemophilia A. Hum Mutat 20:236-237.
– reference: Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN. 2003. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21:577-581.
– reference: Abeysinghe SS, Stenson PD, Krawczak M, Cooper DN. 2004. Gross Rearrangement Breakpoint Database (GRaBD). Hum Mutat 23:219-221.
– reference: Puget N, Sinilnikova OM, Stoppa-Lyonnet D, Audoynaud C, Pages S, Lynch HT, Goldgar D, Lenoir GM, Mazoyer S. 1999. An Alu-mediated 6-kb duplication in the BRCA1 gene: a new founder mutation? Am J Hum Genet 64:300-302.
– reference: Tiller GE, Rimoin DL, Murray LW, Cohn DH. 1990. Tandem duplication within a type II collagen gene (COL2A1) exon in an individual with spondyloepiphyseal dysplasia. Proc Natl Acad Sci USA 87:3889-3893.
– reference: Chung MY, Ranum LP, Duvick LA, Servadio A, Zoghbi HY, Orr HT. 1993. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat Genet 5:254-258.
– reference: Dewannieux M, Esnault C, Heidmann T. 2003. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41-48
– reference: Ahmed ZM, Smith TN, Riazuddin S, Makishima T, Ghosh M, Bokhari S, Menon PS, Deshmukh D, Griffith AJ, Riazuddin S, Friedman TB, Wilcox ER. 2002. Nonsyndromic recessive deafness DFNB18 and Usher syndrome type IC are allelic mutations of USHIC. Hum Genet 110:527-531.
– reference: van Slegtenhorst M, Verhoef S, Tempelaars A, Bakker L, Wang Q, Wessels M, Bakker R, Nellist M, Lindhout D, Halley D, van den Ouweland A. 1999. Mutational spectrum of the TSC1 gene in a cohort of 225 tuberous sclerosis complex patients: no evidence for genotype-phenotype correlation. J Med Genet 36:285-289.
– reference: Goldfarb LG, Brown P, McCombie WR, Goldgaber D, Swergold GD, Wills PR, Cervenakova L, Baron H, Gibbs CJ Jr, Gajdusek DC. 1991. Transmissible familial Creutzfeldt-Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene. Proc Natl Acad Sci USA 88:10926-10930.
– reference: Hamalainen ER, Renieri A, Pecoraro C, De Marchi M, Pihlajaniemi T. 1996. Unequal homologous crossing over resulting in duplication of 36 base pairs within exon 47 of the COL4A5 gene in a family with Alport syndrome. Hum Mutat 8:265-269.
– reference: Waldman AS, Liskay RM. 1988. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol Cell Biol 8:5350-5357.
– reference: Pusch CM, Broghammer M, Jurklies B, Besch D, Jacobi FK. 2002. Ten novel ORF15 mutations confirm mutational hot spot in the RPGR gene in European patients with X-linked retinitis pigmentosa. Hum Mutat 20:405.
– reference: Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, Taccioli GE, Batzer MA, Moran JV. 2002. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31:159-165.
– reference: Pearson CE, Eichler EE, Lorenzetti D, Kramer SF, Zoghbi HY, Nelson DL, Sinden RR. 1998. Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation. Biochemistry 37:2701-2708.
– reference: Li L, Bales ES, Peterson CA, Legerski RJ. 1993. Characterization of molecular defects in xeroderma pigmentosum group C. Nat Genet 5:413-417.
– reference: Ostertag EM, Goodier JL, Zhang Y, Kazazian Jr. 2003. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 73:1444-1451.
– reference: Chen X, Kinoshita K, Honjo T. 2001. Variable deletion and duplication at recombination junction ends: implication for staggered double-strand cleavage in class-switch recombination. Proc Natl Acad Sci USA 98:13860-13865.
– reference: Stegemann S, Hartmann S, Ruf S, Bock R. 2003. High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100:8828-8833.
– reference: Lovett ST. 2004. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol 52:1243-1253.
– reference: Streisinger G, Okada Y, Emrich J, Newton J, Tsugita A, Terzaghi E, Inouye M. 1966. Frameshift mutations and the genetic code. Cold Spring Harb Symp Quant Biol 31:77-84.
– reference: Sinden RR. 1999. Biological implications of the DNA structures associated with disease-causing triplet repeats. Am J Hum Genet 64:346-353.
– reference: Mallery DL, Tanganelli B, Colella S, Steingrimsdottir H, van Gool AJ, Troelstra C, Stefanini M, Lehmann AR. 1998. Molecular analysis of mutations in the CSB (ERCC6) gene in patients with Cockayne syndrome. Am J Hum Genet 62:77-85.
– reference: Martin W. 2003. Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc Natl Acad Sci USA 100:8612-8614.
– reference: Alward WL, Kwon YH, Khanna CL, Johnson AT, Hayreh SS, Zimmerman MB, Narkiewicz J, Andorf JL, Moore PA, Fingert JH, Sheffield VC, Stone EM. 2002. Variations in the myocilin gene in patients with open-angle glaucoma. Arch Ophthalmol 120:1189-1197.
– reference: Walker GJ, Hussussian CJ, Flores JF, Glendening JM, Haluska FG, Dracopoli NC, Hayward NK, Fountain JW. 1995. Mutations of the CDKN2/p16INK4 gene in Australian melanoma kindreds. Hum Mol Genet 4:1845-1852.
– reference: Cooper DN, Krawczak M. 1991. Mechanisms of insertional mutagenesis in human genes causing genetic disease. Hum Genet 87:409-415.
– reference: Carpten JD, Robbins CM, Villablanca A, Forsberg L, Presciuttini S, Bailey-Wilson J, Simonds WF, Gillanders EM, Kennedy AM, Chen JD, Agarwal SK, Sood R, Jones MP, Moses TY, Haven C, Petillo D, Leotlela PD, Harding B, Cameron D, Pannett AA, Hoog A, Heath 3rd H, James-Newton LA, Robinson B, Zarbo RJ, Cavaco BM, Wassif W, Perrier ND, Rosen IB, Kristoffersson U, Turnpenny PD, Farnebo LO, Besser GM, Jackson CE, Morreau H, Trent JM, Thakker RV, Marx SJ, Teh BT, Larsson C, Hobbs MR. 2002. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 32:676-680.
– reference: Krawczak M, Ball EV, Cooper DN. 1998. Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet 63:474-488.
– reference: Vervoort R, Lennon A, Bird AC, Tulloch B, Axton R, Miano MG, Meindl A, Meitinger T, Ciccodicola A, Wright AF. 2000. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet 25:462-466.
– reference: Hoorntje T, Alders M, van Tintelen P, van der Lip K, Sreeram N, van der Wal A, Mannens M, Wilde A. 1999. Homozygous premature truncation of the HERG protein: the human HERG knockout. Circulation 100:1264-1267.
– reference: Shen P, Huang HV. 1986. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112:441-457.
– reference: Huang CY, Ayliffe MA, Timmis JN. 2003. Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72-76.
– reference: Reiter LT, Hastings PJ, Nelis E, De Jonghe P, Van Broeckhoven C, Lupski JR. 1998. Human meiotic recombination products revealed by sequencing a hotspot for homologous strand exchange in multiple HNPP deletion patients. Am J Hum Genet 62:1023-1033.
– reference: Strachan T, Read AP. 2004. Human molecular genetics 3, 3rd edition. New York: John Wiley & Sons. p 329.
– reference: Bensasson D, Feldman MW, Petrov DA. 2003. Rates of DNA duplication and mitochondrial DNA insertion in the human genome. J Mol Evol 57:343-354.
– reference: Krawczak M, Cooper DN. 1991. Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment. Hum Genet 86:425-441.
– reference: Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr. 2003. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA 100:5280-5285.
– reference: Lovett ST, Gluckman TJ, Simon PJ, Sutera VA Jr, Drapkin PT. 1994. Recombination between repeats in Escherichia coli by a recA-independent, proximity-sensitive mechanism. Mol Gen Genet 245:294-300.
– reference: Bianchi P, Zanella A, Alloisio N, Barosi G, Bredi E, Pelissero G, Zappa M, Vercellati C, Baronciani L, Delaunay J, Sirchia G. 1997. A variant of the EPB3 gene of the anti-Lepore type in hereditary spherocytosis. Br J Haematol 98:283-288.
– reference: Ostertag EM, Kazazian HH, Jr. 2001. Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501-538.
– reference: Roth DB, Porter TN, Wilson JH. 1985. Mechanisms of nonhomologous recombination in mammalian cells. Mol Cell Biol 5:2599-2607.
– reference: Stoppa-Lyonnet D, Duponchel C, Meo T, Laurent J, Carter PE, Arala-Chaves M, Cohen JH, Dewald G, Goetz J, Hauptmann G, Lagrue G, Lesavre P, Lopez-Trascasa M, Misiano G, Moraine C, Sobel A, Spath PJ, Tosi M. 1991. Recombinational biases in the rearranged C1-inhibitor genes of hereditary angioedema patients. Am J Hum Genet 49:1055-1062.
– reference: Cooper DN, Krawczak M. 1993. Human gene mutation. Oxford: BIOS Scientific Publishers. 412 p.
– reference: Gusev VD, Nemytikova LA, Chuzhanova NA. 1999. On the complexity measures of genetic sequences. Bioinformatics 15:994-999.
– reference: Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, van Hul W, Whyte MP, Nakatsuka K, Hovy L, Anderson DM. 2000. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 24:45-48.
– reference: Ripley LS. 1982. Model for the participation of quasi-palindromic DNA sequences in frameshift mutation. Proc Natl Acad Sci USA 79:4128-4132.
– reference: Wilson PJ, Ramesh V, Kristiansen A, Bove C, Jozwiak S, Kwiatkowski DJ, Short MP, Haines JL. 1996. Novel mutations detected in the TSC2 gene from both sporadic and familial TSC patients. Hum Mol Genet 5:249-256.
– reference: Thai TH, Purugganan MM, Roth DB, Kearney JF. 2002. Distinct and opposite diversifying activities of terminal transferase splice variants. Nat Immunol 3:457-462.
– reference: Abeysinghe SS, Chuzhanova N, Krawczak M, Ball EV, Cooper DN. 2003. Translocation and gross deletion breakpoints in human inherited disease and cancer I. Nucleotide composition and recombination-associated motifs. Hum Mutat 22:229-244.
– reference: Mourier T, Hansen AJ, Willerslev E, Arctander P. 2001. The Human Genome Project reveals a continuous transfer of large mitochondrial fragments to the nucleus. Mol Biol Evol 18:1833-1837.
– reference: Willett-Brozick JE, Savul SA, Richey LE, Baysal BE. 2001. Germ line insertion of mtDNA at the breakpoint junction of a reciprocal constitutional translocation. Hum Genet 109:216-223.
– reference: Plesner P, Goodchild J, Kalckar HM, Zamecnik PC. 1987. Oligonucleotides with rapid turnover of the phosphate groups occur endogenously in eukaryotic cells. Proc Natl Acad Sci USA 84:1936-1939.
– reference: Dunn JM, Phillips RA, Zhu X, Becker A, Gallie BL. 1989. Mutations in the RB1 gene and their effects on transcription. Mol Cell Biol 9:4596-4604.
– reference: Sinden RR, Potaman VN, Oussatcheva EA, Pearson CE, Lyubchenko YL, Shlyakhtenko LS. 2002. Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA. J Biosci 27(Suppl 1):53-65.
– reference: Singer BS, Gold L, Gauss P, Doherty DH. 1982. Determination of the amount of homology required for recombination in bacteriophage T4. Cell 31:25-33.
– reference: Eichler EE, Macpherson JN, Murray A, Jacobs PA, Chakravarti A, Nelson DL. 1996. Haplotype and interspersion analysis of the FMR1 CGG repeat identifies two different mutational pathways for the origin of the fragile X syndrome. Hum Mol Genet 5:319-330.
– reference: Wildin RS, Antush MJ, Bennett RL, Schoof JM, Scott CR. 1994. Heterogeneous AVPR2 gene mutations in congenital nephrogenic diabetes insipidus. Am J Hum Genet 55:266-277.
– reference: Mager DL, Henthorn PS, Smithies O. 1985. A Chinese Gγ+ (Aγδβ)° thalassemia deletion: comparison to other deletions in the human β-globin gene cluster and sequence analysis of the breakpoints. Nucleic Acids Res 13:6559-6575.
– reference: Kornreich R, Bishop DF, Desnick RJ. 1990. Alpha-galactosidase A gene rearrangements causing Fabry disease. Identification of short direct repeats at breakpoints in an Alu-rich gene. J Biol Chem 265:9319-9326.
– reference: Audrezet MP, Chen JM, Raguenes O, Chuzhanova N, Giteau K, Le Marechal C, Quere I, Cooper DN, Férec C. 2004. Genomic rearrangements in the CFTR gene: extensive allelic heterogeneity and diverse mutational mechanisms. Hum Mutat 23:343-357.
– reference: Luan DD, Korman MH, Jakubczak JL, Eickbush TH. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595-605.
– reference: Perrault I, Rozet JM, Gerber S, Ghazi I, Ducroq D, Souied E, Leowski C, Bonnemaison M, Dufier JL, Munnich A, Kaplan J. 2000. Spectrum of retGC1 mutations in Leber's congenital amaurosis. Eur J Hum Genet 8:578-582.
– reference: Jinks-Robertson S, Michelitch M, Ramcharan S. 1993. Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae. Mol Cell Biol 13:3937-3950.
– reference: Brown LY, Brown SA. 2004. Alanine tracts: the expanding story of human illness and trinucleotide repeats. Trends Genet 20:51-58.
– reference: Chillon M, Casals T, Nunes V, Gimenez J, Estivill X. 1993. Identification of a 31-bp insertion (3860ins31) in exon 20 of the cystic fibrosis (CFTR) gene. Hum Mol Genet 2:1317-1318.
– reference: Djian P. 1998. Evolution of simple repeats in DNA and their relation to human disease. Cell 94:155-160.
– volume: 35
  start-page: 501
  year: 2001
  end-page: 538
  article-title: Biology of mammalian L1 retrotransposons
  publication-title: Annu Rev Genet
– volume: 9
  start-page: 4596
  year: 1989
  end-page: 4604
  article-title: Mutations in the gene and their effects on transcription
  publication-title: Mol Cell Biol
– volume: 51
  start-page: 218
  year: 1993
  end-page: 222
  article-title: A 40‐base‐pair duplication in the gp91‐phox gene leading to X‐linked chronic granulomatous disease
  publication-title: Eur J Haematol
– volume: 263
  start-page: 14784
  year: 1988
  end-page: 14789
  article-title: Mutagenesis by transient misalignment
  publication-title: J Biol Chem
– volume: 15
  start-page: 173
  year: 2000
  end-page: 180
  article-title: Identification of seven novel nucleotide variants in the hepatocyte nuclear factor‐1alpha ( ) promoter region in MODY patients
  publication-title: Hum Mutat
– volume: 72
  start-page: 595
  year: 1993
  end-page: 605
  article-title: Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non‐LTR retrotransposition
  publication-title: Cell
– volume: 62
  start-page: 77
  year: 1998
  end-page: 85
  article-title: Molecular analysis of mutations in the CSB ( ) gene in patients with Cockayne syndrome
  publication-title: Am J Hum Genet
– volume: 20
  start-page: 405
  year: 2002
  article-title: Ten novel ORF15 mutations confirm mutational hot spot in the gene in European patients with X‐linked retinitis pigmentosa
  publication-title: Hum Mutat
– volume: 100
  start-page: 8828
  year: 2003
  end-page: 8833
  article-title: High‐frequency gene transfer from the chloroplast genome to the nucleus
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: R173
  issue: Spec No 2
  year: 2003
  end-page: R186
  article-title: Pathogenesis of polyglutamine disorders: aggregation revisited
  publication-title: Hum Mol Genet
– volume: 79
  start-page: 4128
  year: 1982
  end-page: 4132
  article-title: Model for the participation of quasi‐palindromic DNA sequences in frameshift mutation
  publication-title: Proc Natl Acad Sci USA
– volume: 235
  start-page: 414
  year: 1994
  end-page: 423
  article-title: ‐independent and ‐dependent intramolecular plasmid recombination. Differential homology requirement and distance effect
  publication-title: J Mol Biol
– volume: 37
  start-page: 2701
  year: 1998
  end-page: 2708
  article-title: Interruptions in the triplet repeats of and reduce the propensity and complexity of slipped strand DNA (S‐DNA) formation
  publication-title: Biochemistry
– volume: 94
  start-page: 155
  year: 1998
  end-page: 160
  article-title: Evolution of simple repeats in DNA and their relation to human disease
  publication-title: Cell
– volume: 409
  start-page: 860
  year: 2001
  end-page: 921
  article-title: Initial sequencing and analysis of the human genome
  publication-title: Nature
– volume: 59
  start-page: 923
  year: 2002
  end-page: 926
  article-title: Novel mutation in X‐linked Charcot‐Marie‐Tooth disease associated with CNS impairment
  publication-title: Neurology
– volume: 84
  start-page: 1936
  year: 1987
  end-page: 1939
  article-title: Oligonucleotides with rapid turnover of the phosphate groups occur endogenously in eukaryotic cells
  publication-title: Proc Natl Acad Sci USA
– volume: 25
  start-page: 462
  year: 2000
  end-page: 466
  article-title: Mutational hot spot within a new exon in X‐linked retinitis pigmentosa
  publication-title: Nat Genet
– volume: 27
  start-page: 53
  issue: Suppl 1
  year: 2002
  end-page: 65
  article-title: Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA
  publication-title: J Biosci
– volume: 365
  start-page: 274
  year: 1993
  end-page: 276
  article-title: Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair
  publication-title: Nature
– volume: 70
  start-page: 1545
  year: 2002
  end-page: 1554
  article-title: A comprehensive mutation analysis of and in a North American cohort of families with X‐linked retinitis pigmentosa
  publication-title: Am J Hum Genet
– year: 1993
– volume: 2
  start-page: 1317
  year: 1993
  end-page: 1318
  article-title: Identification of a 31‐bp insertion (3860ins31) in exon 20 of the cystic fibrosis ( ) gene
  publication-title: Hum Mol Genet
– volume: 31
  start-page: 77
  year: 1966
  end-page: 84
  article-title: Frameshift mutations and the genetic code
  publication-title: Cold Spring Harb Symp Quant Biol
– volume: 32
  start-page: 676
  year: 2002
  end-page: 680
  article-title: , encoding parafibromin, is mutated in hyperparathyroidism‐jaw tumor syndrome
  publication-title: Nat Genet
– volume: 48
  start-page: 515
  year: 2001
  end-page: 521
  article-title: Can mutation analysis contribute to therapeutic decisions in familial adenomatous polyposis? Experience from 680 FAP families
  publication-title: Gut
– volume: 62
  start-page: 1023
  year: 1998
  end-page: 1033
  article-title: Human meiotic recombination products revealed by sequencing a hotspot for homologous strand exchange in multiple HNPP deletion patients
  publication-title: Am J Hum Genet
– volume: 87
  start-page: 409
  year: 1991
  end-page: 415
  article-title: Mechanisms of insertional mutagenesis in human genes causing genetic disease
  publication-title: Hum Genet
– volume: 80
  start-page: 71
  year: 2002
  end-page: 77
  article-title: Structure and chromosomal distribution of human mitochondrial pseudogenes
  publication-title: Genomics
– volume: 63
  start-page: 474
  year: 1998
  end-page: 488
  article-title: Neighboring‐nucleotide effects on the rates of germ‐line single‐base‐pair substitution in human genes
  publication-title: Am J Hum Genet
– volume: 23
  start-page: 219
  year: 2004
  end-page: 221
  article-title: Gross Rearrangement Breakpoint Database (GRaBD)
  publication-title: Hum Mutat
– volume: 41
  start-page: 235
  year: 1992
  end-page: 238
  article-title: GM1‐gangliosidosis: tandem duplication within exon 3 of beta‐galactosidase gene in an infantile patient
  publication-title: Clin Genet
– volume: 12
  start-page: 1651
  year: 1998
  end-page: 1660
  article-title: Inactivation of the luteinizing hormone/chorionic gonadotropin receptor by an insertional mutation in Leydig cell hypoplasia
  publication-title: Mol Endocrinol
– volume: 86
  start-page: 425
  year: 1991
  end-page: 441
  article-title: Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment
  publication-title: Hum Genet
– start-page: 329
  year: 2004
– volume: 22
  start-page: 229
  year: 2003
  end-page: 244
  article-title: Translocation and gross deletion breakpoints in human inherited disease and cancer I. Nucleotide composition and recombination‐associated motifs
  publication-title: Hum Mutat
– volume: 84
  start-page: 662
  year: 1993
  end-page: 669
  article-title: Detection of a molecular defect in 40 of 44 patients with haemophilia B by PCR and denaturing gradient gel electrophoresis
  publication-title: Br J Haematol
– volume: 327
  start-page: 215
  year: 2004
  end-page: 219
  article-title: A novel mitochondrial DNA‐like sequence insertion polymorphism in intron I of the gene
  publication-title: Gene
– volume: 31
  start-page: 159
  year: 2002
  end-page: 165
  article-title: DNA repair mediated by endonuclease‐independent LINE‐1 retrotransposition
  publication-title: Nat Genet
– volume: 79
  start-page: 938
  year: 1998
  end-page: 942
  article-title: A 20.7 kb deletion within the factor VIII gene associated with LINE‐1 element insertion
  publication-title: Thromb Haemost
– volume: 98
  start-page: 13860
  year: 2001
  end-page: 13865
  article-title: Variable deletion and duplication at recombination junction ends: implication for staggered double‐strand cleavage in class‐switch recombination
  publication-title: Proc Natl Acad Sci USA
– volume: 68
  start-page: 64
  year: 2001
  end-page: 80
  article-title: Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs
  publication-title: Am J Hum Genet
– volume: 21
  start-page: 28
  year: 2003a
  end-page: 44
  article-title: Meta‐analysis of indels causing human genetic disease: mechanisms of mutagenesis and the role of local DNA sequence complexity
  publication-title: Hum Mutat
– volume: 31
  start-page: 25
  year: 1982
  end-page: 33
  article-title: Determination of the amount of homology required for recombination in bacteriophage T4
  publication-title: Cell
– volume: 109
  start-page: 216
  year: 2001
  end-page: 223
  article-title: Germ line insertion of mtDNA at the breakpoint junction of a reciprocal constitutional translocation
  publication-title: Hum Genet
– volume: 303
  start-page: 1626
  year: 2004
  end-page: 1632
  article-title: Mobile elements: drivers of genome evolution
  publication-title: Science
– volume: 3
  start-page: 1021
  year: 1994
  end-page: 1022
  article-title: Pyruvate dehydrogenase deficiency caused by a 33 base pair duplication in the PDH E1 alpha subunit
  publication-title: Hum Mol Genet
– volume: 265
  start-page: 9319
  year: 1990
  end-page: 9326
  article-title: Alpha‐galactosidase A gene rearrangements causing Fabry disease. Identification of short direct repeats at breakpoints in an ‐rich gene
  publication-title: J Biol Chem
– volume: 55
  start-page: 266
  year: 1994
  end-page: 277
  article-title: Heterogeneous gene mutations in congenital nephrogenic diabetes insipidus
  publication-title: Am J Hum Genet
– volume: 4
  start-page: 1845
  year: 1995
  end-page: 1852
  article-title: Mutations of the gene in Australian melanoma kindreds
  publication-title: Hum Mol Genet
– volume: 29
  start-page: 379
  year: 2002
  end-page: 382
  article-title: Identification of 605ins46, a novel mutation in a Japanese family
  publication-title: Auris Nasus Larynx
– volume: 13
  start-page: 3937
  year: 1993
  end-page: 3950
  article-title: Substrate length requirements for efficient mitotic recombination in
  publication-title: Mol Cell Biol
– volume: 7
  start-page: 34
  year: 1999
  end-page: 44
  article-title: Sanfilippo type B syndrome (mucopolysaccharidosis III B): allelic heterogeneity corresponds to the wide spectrum of clinical phenotypes
  publication-title: Eur J Hum Genet
– start-page: 836
  year: 2002
  end-page: 869
– volume: 16
  start-page: 166
  year: 2000
  end-page: 174
  article-title: Screening the 3′ region of the polycystic kidney disease 1 ( ) gene in 41 Bulgarian and Australian kindreds reveals a prevalence of protein truncating mutations
  publication-title: Hum Mutat
– volume: 8
  start-page: 578
  year: 2000
  end-page: 582
  article-title: Spectrum of GC1 mutations in Leber's congenital amaurosis
  publication-title: Eur J Hum Genet
– volume: 87
  start-page: 3889
  year: 1990
  end-page: 3893
  article-title: Tandem duplication within a type II collagen gene (COL2A1) exon in an individual with spondyloepiphyseal dysplasia
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 5350
  year: 1988
  end-page: 5357
  article-title: Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology
  publication-title: Mol Cell Biol
– volume: 5
  start-page: 2599
  year: 1985
  end-page: 2607
  article-title: Mechanisms of nonhomologous recombination in mammalian cells
  publication-title: Mol Cell Biol
– volume: 49
  start-page: 1055
  year: 1991
  end-page: 1062
  article-title: Recombinational biases in the rearranged C1‐inhibitor genes of hereditary angioedema patients
  publication-title: Am J Hum Genet
– volume: 22
  start-page: 245
  year: 2003b
  end-page: 251
  article-title: Translocation and gross deletion breakpoints in human inherited disease and cancer II: potential involvement of repetitive sequence elements in secondary structure formation between DNA ends
  publication-title: Hum Mutat
– volume: 64
  start-page: 300
  year: 1999
  end-page: 302
  article-title: An ‐mediated 6‐kb duplication in the gene: a new founder mutation?
  publication-title: Am J Hum Genet
– volume: 20
  start-page: 236
  year: 2002
  end-page: 237
  article-title: Prevalence of small rearrangements in the factor VIII gene among patients with severe hemophilia A
  publication-title: Hum Mutat
– volume: 275
  start-page: 408
  year: 1997
  end-page: 409
  article-title: Polyalanine expansion in synpolydactyly might result from unequal crossing‐over of
  publication-title: Science
– volume: 422
  start-page: 72
  year: 2003
  end-page: 76
  article-title: Direct measurement of the transfer rate of chloroplast DNA into the nucleus
  publication-title: Nature
– volume: 3
  start-page: 457
  year: 2002
  end-page: 462
  article-title: Distinct and opposite diversifying activities of terminal transferase splice variants
  publication-title: Nat Immunol
– volume: 9
  start-page: 3049
  year: 1989
  end-page: 3057
  article-title: Comparison of filler DNA at immune, nonimmune, and oncogenic rearrangements suggests multiple mechanisms of formation
  publication-title: Mol Cell Biol
– volume: 15
  start-page: 994
  year: 1999
  end-page: 999
  article-title: On the complexity measures of genetic sequences
  publication-title: Bioinformatics
– volume: 100
  start-page: 8612
  year: 2003
  end-page: 8614
  article-title: Gene transfer from organelles to the nucleus: frequent and in big chunks
  publication-title: Proc Natl Acad Sci USA
– volume: 35
  start-page: 41
  year: 2003
  end-page: 48
  article-title: LINE‐mediated retrotransposition of marked sequences
  publication-title: Nat Genet
– volume: 245
  start-page: 294
  year: 1994
  end-page: 300
  article-title: Recombination between repeats in by a ‐independent, proximity‐sensitive mechanism
  publication-title: Mol Gen Genet
– volume: 112
  start-page: 303
  year: 2003
  end-page: 309
  article-title: Human genetic disease caused by de novo mitochondrial‐nuclear DNA transfer
  publication-title: Hum Genet
– volume: 17
  start-page: 383
  year: 2001
  end-page: 387
  article-title: How do mitochondrial genes get into the nucleus?
  publication-title: Trends Genet
– volume: 64
  start-page: 346
  year: 1999
  end-page: 353
  article-title: Biological implications of the DNA structures associated with disease‐causing triplet repeats
  publication-title: Am J Hum Genet
– volume: 13
  start-page: 6559
  year: 1985
  end-page: 6575
  article-title: A Chinese γ ( γδβ)° thalassemia deletion: comparison to other deletions in the human β‐globin gene cluster and sequence analysis of the breakpoints
  publication-title: Nucleic Acids Res
– volume: 20
  start-page: 51
  year: 2004
  end-page: 58
  article-title: Alanine tracts: the expanding story of human illness and trinucleotide repeats
  publication-title: Trends Genet
– volume: 12
  start-page: 561
  year: 1994
  end-page: 569
  article-title: Frequency of deletion formation decreases exponentially with distance between short direct repeats
  publication-title: Mol Microbiol
– volume: 100
  start-page: 1264
  year: 1999
  end-page: 1267
  article-title: Homozygous premature truncation of the HERG protein: the human knockout
  publication-title: Circulation
– volume: 8
  start-page: 265
  year: 1996
  end-page: 269
  article-title: Unequal homologous crossing over resulting in duplication of 36 base pairs within exon 47 of the gene in a family with Alport syndrome
  publication-title: Hum Mutat
– volume: 20
  start-page: 37
  year: 1998
  end-page: 42
  article-title: A gene related to spermatogenesis factor fer‐1 is mutated in limb‐girdle muscular dystrophy type 2B
  publication-title: Nat Genet
– volume: 88
  start-page: 10926
  year: 1991
  end-page: 10930
  article-title: Transmissible familial Creutzfeldt‐Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the gene
  publication-title: Proc Natl Acad Sci USA
– volume: 46
  start-page: 633
  year: 2001
  end-page: 639
  article-title: A novel apolipoprotein E5 variant with a 24‐bp insertion causing hyperlipidemia
  publication-title: J Hum Genet
– volume: 4
  start-page: 352
  year: 1996
  end-page: 355
  article-title: Exon‐scanning mutation analysis of the gene in patients with ataxia‐telangiectasia
  publication-title: Eur J Hum Genet
– volume: 21
  start-page: 577
  year: 2003
  end-page: 581
  article-title: Human Gene Mutation Database (HGMD): 2003 update
  publication-title: Hum Mutat
– volume: 7
  start-page: 105
  year: 1998
  end-page: 111
  article-title: Molecular basis of non‐lethal junctional epidermolysis bullosa: identification of a 38 basepair insertion and a splice site mutation in exon 14 of the gene
  publication-title: Exp Dermatol
– volume: 100
  start-page: 5280
  year: 2003
  end-page: 5285
  article-title: Hot L1s account for the bulk of retrotransposition in the human population
  publication-title: Proc Natl Acad Sci USA
– volume: 18
  start-page: 1833
  year: 2001
  end-page: 1837
  article-title: The Human Genome Project reveals a continuous transfer of large mitochondrial fragments to the nucleus
  publication-title: Mol Biol Evol
– volume: 5
  start-page: 254
  year: 1993
  end-page: 258
  article-title: Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I
  publication-title: Nat Genet
– volume: 5
  start-page: 319
  year: 1996
  end-page: 330
  article-title: Haplotype and interspersion analysis of the CGG repeat identifies two different mutational pathways for the origin of the fragile X syndrome
  publication-title: Hum Mol Genet
– volume: 110
  start-page: 527
  year: 2002
  end-page: 531
  article-title: Nonsyndromic recessive deafness DFNB18 and Usher syndrome type IC are allelic mutations of
  publication-title: Hum Genet
– volume: 52
  start-page: 1243
  year: 2004
  end-page: 1253
  article-title: Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences
  publication-title: Mol Microbiol
– volume: 5
  start-page: 249
  year: 1996
  end-page: 256
  article-title: Novel mutations detected in the gene from both sporadic and familial TSC patients
  publication-title: Hum Mol Genet
– volume: 4
  start-page: 1109
  year: 1995
  end-page: 1111
  article-title: Two novel insertions in the prion protein gene in patients with late‐onset dementia
  publication-title: Hum Mol Genet
– volume: 5
  start-page: 413
  year: 1993
  end-page: 417
  article-title: Characterization of molecular defects in xeroderma pigmentosum group C
  publication-title: Nat Genet
– volume: 57
  start-page: 343
  year: 2003
  end-page: 354
  article-title: Rates of DNA duplication and mitochondrial DNA insertion in the human genome
  publication-title: J Mol Evol
– volume: 24
  start-page: 45
  year: 2000
  end-page: 48
  article-title: Mutations in , affecting the signal peptide of RANK, cause familial expansile osteolysis
  publication-title: Nat Genet
– volume: 90
  start-page: 477
  year: 1993
  end-page: 482
  article-title: Duplication in the hypoxanthine phosphoribosyl‐transferase gene caused by recombination in a patient with Lesch Nyhan syndrome
  publication-title: Hum Genet
– volume: 73
  start-page: 1444
  year: 2003
  end-page: 1451
  article-title: SVA elements are nonautonomous retrotransposons that cause disease in humans
  publication-title: Am J Hum Genet
– volume: 120
  start-page: 1189
  year: 2002
  end-page: 1197
  article-title: Variations in the myocilin gene in patients with open‐angle glaucoma
  publication-title: Arch Ophthalmol
– volume: 19
  start-page: 7201
  year: 1991
  end-page: 7205
  article-title: Oligonucleotide capture during end joining in mammalian cells
  publication-title: Nucleic Acids Res
– volume: 112
  start-page: 441
  year: 1986
  end-page: 457
  article-title: Homologous recombination in : dependence on substrate length and homology
  publication-title: Genetics
– volume: 84
  start-page: 346
  year: 1999
  end-page: 349
  article-title: Novel 23‐base‐pair duplication mutation in exon 15 in an infant presenting with cardiac rhabdomyomas
  publication-title: Am J Med Genet
– volume: 23
  start-page: 343
  year: 2004
  end-page: 357
  article-title: Genomic rearrangements in the gene: extensive allelic heterogeneity and diverse mutational mechanisms
  publication-title: Hum Mutat
– volume: 98
  start-page: 283
  year: 1997
  end-page: 288
  article-title: A variant of the gene of the anti‐Lepore type in hereditary spherocytosis
  publication-title: Br J Haematol
– volume: 36
  start-page: 285
  year: 1999
  end-page: 289
  article-title: Mutational spectrum of the gene in a cohort of 225 tuberous sclerosis complex patients: no evidence for genotype‐phenotype correlation
  publication-title: J Med Genet
– volume: 12
  start-page: 885
  year: 2002
  end-page: 893
  article-title: Pattern of organization of human mitochondrial pseudogenes in the nuclear genome
  publication-title: Genome Res
– ident: e_1_2_1_78_1
  doi: 10.1086/302271
– ident: e_1_2_1_6_1
  doi: 10.1002/humu.20009
– ident: e_1_2_1_47_1
  doi: 10.1086/301965
– volume: 36
  start-page: 285
  year: 1999
  ident: e_1_2_1_94_1
  article-title: Mutational spectrum of the TSC1 gene in a cohort of 225 tuberous sclerosis complex patients: no evidence for genotype‐phenotype correlation
  publication-title: J Med Genet
  doi: 10.1136/jmg.36.4.285
– ident: e_1_2_1_67_1
  doi: 10.1038/sj.ejhg.5200503
– ident: e_1_2_1_60_1
  doi: 10.1128/9781555817954.ch35
– ident: e_1_2_1_18_1
  doi: 10.1073/pnas.241524898
– ident: e_1_2_1_81_1
  doi: 10.1002/(SICI)1096-8628(19990604)84:4<346::AID-AJMG7>3.0.CO;2-E
– ident: e_1_2_1_7_1
  doi: 10.1038/1689
– ident: e_1_2_1_107_1
  doi: 10.1016/S0385-8146(02)00055-X
– ident: e_1_2_1_3_1
  doi: 10.1002/humu.20006
– ident: e_1_2_1_66_1
  doi: 10.1021/bi972546c
– ident: e_1_2_1_82_1
  doi: 10.1073/pnas.1430924100
– ident: e_1_2_1_5_1
  doi: 10.1001/archopht.120.9.1189
– ident: e_1_2_1_59_1
  doi: 10.1093/hmg/ddg295
– ident: e_1_2_1_4_1
  doi: 10.1007/s00439-002-0732-4
– volume: 55
  start-page: 266
  year: 1994
  ident: e_1_2_1_101_1
  article-title: Heterogeneous AVPR2 gene mutations in congenital nephrogenic diabetes insipidus
  publication-title: Am J Hum Genet
– ident: e_1_2_1_50_1
  doi: 10.1093/hmg/4.6.1109
– ident: e_1_2_1_104_1
  doi: 10.1101/gr.227202. Article published online before print in May 2002
– ident: e_1_2_1_68_1
  doi: 10.1073/pnas.84.7.1936
– ident: e_1_2_1_62_1
  doi: 10.1093/oxfordjournals.molbev.a003971
– volume-title: Human gene mutation
  year: 1993
  ident: e_1_2_1_24_1
– ident: e_1_2_1_53_1
  doi: 10.1007/BF00290109
– ident: e_1_2_1_43_1
  doi: 10.1212/WNL.59.6.923
– ident: e_1_2_1_27_1
  doi: 10.1038/ng1223
– ident: e_1_2_1_39_1
  doi: 10.1161/01.CIR.100.12.1264
– start-page: 329
  volume-title: Human molecular genetics 3
  year: 2004
  ident: e_1_2_1_85_1
– ident: e_1_2_1_35_1
  doi: 10.1093/bioinformatics/15.12.994
– ident: e_1_2_1_38_1
  doi: 10.1016/S0168-9525(01)02312-5
– ident: e_1_2_1_54_1
  doi: 10.1016/0092-8674(93)90078-5
– ident: e_1_2_1_73_1
  doi: 10.1073/pnas.79.13.4128
– ident: e_1_2_1_63_1
  doi: 10.1111/j.1399-0004.1992.tb03672.x
– ident: e_1_2_1_58_1
  doi: 10.1073/pnas.1633606100
– ident: e_1_2_1_12_1
  doi: 10.1002/humu.9062
– ident: e_1_2_1_79_1
  doi: 10.1007/BF02703683
– ident: e_1_2_1_20_1
  doi: 10.1038/ng1193-254
– ident: e_1_2_1_40_1
  doi: 10.1038/nature01435
– ident: e_1_2_1_70_1
  doi: 10.1002/humu.9072
– ident: e_1_2_1_74_1
  doi: 10.1128/MCB.5.10.2599
– ident: e_1_2_1_56_1
  doi: 10.1086/301686
– ident: e_1_2_1_25_1
  doi: 10.1111/j.1600-0625.1998.tb00309.x
– ident: e_1_2_1_8_1
  doi: 10.1007/s00239-003-2485-7
– ident: e_1_2_1_11_1
  doi: 10.1002/1098-1004(200008)16:2<166::AID-HUMU9>3.0.CO;2-4
– ident: e_1_2_1_51_1
  doi: 10.1038/ng1293-413
– ident: e_1_2_1_75_1
  doi: 10.1128/MCB.9.7.3049
– ident: e_1_2_1_99_1
  doi: 10.1126/science.275.5298.408
– ident: e_1_2_1_95_1
  doi: 10.1038/78182
– ident: e_1_2_1_16_1
  doi: 10.1038/ng1048
– ident: e_1_2_1_41_1
  doi: 10.1038/71667
– ident: e_1_2_1_44_1
  doi: 10.1126/science.1089670
– ident: e_1_2_1_80_1
  doi: 10.1016/0092-8674(82)90401-9
– ident: e_1_2_1_13_1
  doi: 10.1086/340848
– ident: e_1_2_1_91_1
  doi: 10.1006/geno.2002.6798
– ident: e_1_2_1_15_1
  doi: 10.1016/j.tig.2003.11.002
– ident: e_1_2_1_100_1
  doi: 10.1038/sj.ejhg.5200242
– ident: e_1_2_1_103_1
  doi: 10.1093/hmg/5.2.249
– ident: e_1_2_1_57_1
  doi: 10.1007/BF00217444
– ident: e_1_2_1_23_1
  doi: 10.1007/BF00197158
– ident: e_1_2_1_72_1
  doi: 10.1086/301827
– ident: e_1_2_1_28_1
  doi: 10.1016/S0092-8674(00)81415-4
– ident: e_1_2_1_32_1
  doi: 10.1016/j.gene.2003.11.003
– ident: e_1_2_1_83_1
  doi: 10.1002/humu.10212
– ident: e_1_2_1_19_1
  doi: 10.1093/hmg/2.8.1317
– ident: e_1_2_1_34_1
  doi: 10.1073/pnas.88.23.10926
– ident: e_1_2_1_64_1
  doi: 10.1146/annurev.genet.35.102401.091032
– ident: e_1_2_1_30_1
  doi: 10.1093/hmg/5.3.319
– ident: e_1_2_1_29_1
  doi: 10.1128/MCB.9.11.4596
– ident: e_1_2_1_46_1
  doi: 10.1007/BF00194629
– ident: e_1_2_1_90_1
  doi: 10.1073/pnas.87.10.3889
– ident: e_1_2_1_31_1
  doi: 10.1136/gut.48.4.515
– ident: e_1_2_1_52_1
  doi: 10.1111/j.1365-2958.2004.04076.x
– ident: e_1_2_1_87_1
  doi: 10.1101/SQB.1966.031.01.014
– ident: e_1_2_1_76_1
  doi: 10.1093/nar/19.25.7201
– ident: e_1_2_1_14_1
  doi: 10.1073/pnas.0831042100
– volume: 265
  start-page: 9319
  year: 1990
  ident: e_1_2_1_45_1
  article-title: Alpha‐galactosidase A gene rearrangements causing Fabry disease. Identification of short direct repeats at breakpoints in an Alu‐rich gene
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)38851-9
– ident: e_1_2_1_97_1
  doi: 10.1128/MCB.8.12.5350
– ident: e_1_2_1_89_1
  doi: 10.1038/ni788
– ident: e_1_2_1_17_1
  doi: 10.1111/j.1365-2958.1994.tb01042.x
– ident: e_1_2_1_33_1
  doi: 10.1002/(SICI)1098-1004(200002)15:2<173::AID-HUMU6>3.0.CO;2-W
– ident: e_1_2_1_86_1
  doi: 10.1038/365274a0
– ident: e_1_2_1_10_1
  doi: 10.1046/j.1365-2141.1997.1983013.x
– volume: 49
  start-page: 1055
  year: 1991
  ident: e_1_2_1_84_1
  article-title: Recombinational biases in the rearranged C1‐inhibitor genes of hereditary angioedema patients
  publication-title: Am J Hum Genet
– ident: e_1_2_1_9_1
  doi: 10.1006/jmbi.1994.1002
– ident: e_1_2_1_92_1
  doi: 10.1007/s00439-002-0892-2
– ident: e_1_2_1_71_1
  doi: 10.1111/j.1600-0609.1993.tb00634.x
– ident: e_1_2_1_98_1
  doi: 10.1093/hmg/4.10.1845
– ident: e_1_2_1_88_1
  doi: 10.1111/j.1365-2141.1993.tb03143.x
– ident: e_1_2_1_49_1
  doi: 10.1038/35057062
– ident: e_1_2_1_93_1
  doi: 10.1055/s-0037-1615098
– ident: e_1_2_1_26_1
  doi: 10.1086/316951
– volume: 263
  start-page: 14784
  year: 1988
  ident: e_1_2_1_48_1
  article-title: Mutagenesis by transient misalignment
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)68106-2
– ident: e_1_2_1_69_1
  doi: 10.1086/302211
– ident: e_1_2_1_106_1
  doi: 10.1007/s100380170014
– ident: e_1_2_1_37_1
  doi: 10.1093/hmg/3.6.1021
– volume: 112
  start-page: 441
  year: 1986
  ident: e_1_2_1_77_1
  article-title: Homologous recombination in Escherichia coli: dependence on substrate length and homology
  publication-title: Genetics
  doi: 10.1093/genetics/112.3.441
– ident: e_1_2_1_42_1
  doi: 10.1128/MCB.13.7.3937
– ident: e_1_2_1_36_1
  doi: 10.1002/(SICI)1098-1004(1996)8:3<265::AID-HUMU11>3.0.CO;2-0
– ident: e_1_2_1_2_1
  doi: 10.1002/humu.10254
– ident: e_1_2_1_102_1
  doi: 10.1007/s004390100564
– ident: e_1_2_1_22_1
  doi: 10.1002/humu.10253
– ident: e_1_2_1_21_1
  doi: 10.1002/humu.10146
– ident: e_1_2_1_61_1
  doi: 10.1038/ng898
– ident: e_1_2_1_65_1
  doi: 10.1086/380207
– ident: e_1_2_1_55_1
  doi: 10.1093/nar/13.18.6559
– ident: e_1_2_1_96_1
  doi: 10.1159/000472231
– ident: e_1_2_1_105_1
  doi: 10.1210/mend.12.11.0189
– reference: - Hum Mutat. 2005 Mar;25(3):318
SSID ssj0008553
Score 2.1690564
SecondaryResourceType review_article
Snippet Although gross insertions (>20 bp) comprise <1% of disease‐causing mutations, they nevertheless represent an important category of pathological lesion. In an...
Although gross insertions (>20 bp) comprise <1% of disease-causing mutations, they nevertheless represent an important category of pathological lesion. In an...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 207
SubjectTerms Base Sequence
Cell Nucleus - genetics
DNA Mutational Analysis
DNA Repeat Expansion
DNA Replication
duplication
Genes, Mitochondrial
Genetic Diseases, Inborn - genetics
Genetic disorders
gross insertion
Humans
LINE-1
mechanism
meta-analysis
mitochondrial-nuclear transfer
Models, Genetic
Molecular Sequence Data
Mutagenesis, Insertional
Mutation
Oligodeoxyribonucleotides - metabolism
Recombination, Genetic
repeat expansion
Retroelements
slipped strand mispairing
trans-replication slippage
unequal crossover
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEB70DsUX0fNXvTsNKIJCubZp0-29yCGuy0EXH1xdfAlpk5yHt-26uxV99D93Js1WDs57K3Ro084k-ZL58g3Ay6QudFbXVVilRYQLlFiHhFpDkVghbKKsSOm8czkVk1l6Os_mnpuz9rTK7ZjoBmrd1rRHfkTlsXKcT6K3yx8hFY2i5KqvoHETdkm5jII6nw_rLWJg9fz6rEAQWaSDOmly9K1bdMTr4vzSfLRLv_bXVWDzMnZ1k8_4Htz1qJGd9G6-DzdMswe3-jqSv_fgdukz5A_gT2k2KtxKjbDWsjN6LztvKO1OMcZqRWT3M-bK8zEMIDrHyHym5phN25_mgi26jd8mZAtDp4PP14s1U41miBgZcRLp2SszpL8ZAtYljU4PYTZ-_-ndJPRlFsKalGfCFOcnjR03or49ik0S8VxnVsUjg_DPKiFGqYltYmxFN1VEEms5ncnlOuM24o9gp2kb8wSYFbEdIQK2Jqc8cVFpq3mhMQLyOrKcB_B6-7Nl7TXIqRTGhezVkxNJjpHOMQG8GGyXvfLGlVavnM8GE7X6Tly1PJNfph9k-fWj-DxOhTwNYH_rVOm76VoOQRXA8-Eu9i9KmqjGtB2aID4mEc3_WxAzDlFlEcDjPlb-NTdDvIcQMYA3Lniu-Q45mZUzd_X02obuwx0nHut44wews1l15hBh0aZ65oL_L8KBCwE
  priority: 102
  providerName: ProQuest
Title Meta-Analysis of gross insertions causing human genetic disease: Novel mutational mechanisms and the role of replication slippage
URI https://api.istex.fr/ark:/67375/WNG-MZP6VF46-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhumu.20133
https://www.ncbi.nlm.nih.gov/pubmed/15643617
https://www.proquest.com/docview/197272420
https://www.proquest.com/docview/17741766
https://www.proquest.com/docview/67366449
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qi-IXX-pLY_VcUASFtHndJOIXLT2Pwh2leHoUZNkku21pL1fuElE_Cf4Bf6O_xJnNy1Gpgn45DjJ3ZDezs092nnkG4KmXJXmYZamdBomDLyhubhNqtbmnOdee1DygeufhiA_Gwd4knKzAq7YWptaH6A7caGWYeE0LXKaL7aVo6HE1rYia5ZPUJ5G1CBEdLLWj4jCs2fVhghAyCTptUm97-dMLu9EaTezny6DmReRqtp7-TfjY3nTNODndqsp0K_v6m57j_47qFtxoMCl7XTvRbVhRxTpcrbtUflmHa8Mm_34Hvg9VKX9--9FKmbCZZkc0MnZSUFqffJhlksj0R8y0_2PooFQnyZpM0Es2mn1SZ2xalc0xJJsqqj4-WUwXTBY5Q0TKiPNI_z1XXXqdISA-p-h3F8b93Xc7A7tp42BnpGxjB7j_5RgYHIodsas8x4_yUEs3VggvteQ8DpSrPaVTuigdknCLqObXz0NfO_49WC1mhdoAprmrY0TYWkWUh07SXOd-kqOHRZmjfd-C5-3jFFmjcU6tNs5Erc7sCZpfYebXgied7Xmt7HGp1TPjFZ2JnJ8SFy4KxYfRWzE83Ofv-wEXexZstm4jmjCwENTTLUIQ5FjwuLuK65eSMrJQswpNEH-TSOefLYh5h6g1seB-7Y3L2w0RTyIEteCF8am_jEMMxsOx-fbgX4w34brRqjU09YewWs4r9QhRWJn24Eo0ifAz3nF7sPZmd7R_0DMr8Bc6GDJU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FRCwXBGEzAdISiwSSFdvtFQkhFBgmi0ccMiHi0tju7hCRsYeZMZAjH8Q_UtVeokght9wsueSxp15XP7teVQE884pEBkWR27mfOPiC4kqbWKsdejoMtZfp0Kd653QUDsf-9kFwsAR_u1oYklV2MdEEalkV9I18g8ZjRbifOG-nP2waGkXJ1W6CRoOKHXXyC9_Y5m-23qN7n3ve4MPe5tBuhwrYBfVZsX2MxhJh6hCSY1d5Do9koDM3Vkh2dBaGsa9c7Smd08nMoYZiEVWgchlw7XC87hVY8TmuTCpM3zxVlMRB0Oj5gwRJa-L33VC9jW_1pCYdGedn9r8VcuXv88jtWa5sNrvBLbjZslT2roHVbVhS5SpcbeZWnqzCtbTNyN-BP6laZHbX2oRVmh3S77KjktL8hGlWZCSuP2RmHCBDwFLdJGszQ6_ZqPqpjtmkXrSfJdlEUTXy0XwyZ1kpGTJURhpIuvZM9el2hgR5StHwLowvxQP3YLmsSvUAmA5dHSPj1iqivHSSSy15IhFxUeFozi142f3Zomh7ntPojWPRdGv2BDlGGMdY8LS3nTadPs61emF81ptks--kjYsC8Xn0UaRfPoX7Az8U2xasdU4VbViYix7EFqz3Z3E9U5ImK1VVownycWra-X8LUuIhi00suN9g5fR2A-SXSEkteGXAc8FziOE4HZujhxfe6DpcH-6lu2J3a7SzBjdM41qjWX8Ey4tZrR4jJVvkT8xCYPD1slfePzT2RFg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVlS9ICgvU6Ar8ZBAsmJ77bWNhBBqCWlLoh4Irbgsfuy2FY0dkhjokZ_Fv2Nm_agqld56s-SVY2e-mf3s-WYG4LmXxXmQZamd-rGDLyhubhNrtYWnhdBeooVP9c7DkRiM_d3D4HAJ_ra1MCSrbGOiCdR5mdE38h6NxwpxP3F6ulFF7G_3301_2DRAihKt7TSNGiF76uwXvr3N3-5so6lfeF7_w-etgd0MGLAz6rli-xiZc4SsQ6iOXOU5PMwDnbiRQuKjEyEiX7naUzqlk4lDzcVCqkblecC1w_G6N2Al5GFELhZtnatLoiCotf1BjAQ29rvOqF7vuJpUpCnj_MJeuEJm_X0Z0b3Im83G178NtxrGyt7XELsDS6pYh5v1DMuzdVgdNtn5u_BnqBaJ3bY5YaVmR_S77KSglD_hm2UJCe2PmBkNyBC8VEPJmizRGzYqf6pTNqkWzSdKNlFUmXwyn8xZUuQM2SojPSRde6a61DtDsjylyHgPxtdigfuwXJSFeghMC1dHyL61CilHHae5znmcI_rCzNGcW_Cq_bNl1vQ_pzEcp7Lu3OxJMow0hrHgWbd2Wnf9uHTVS2Ozbkky-046uTCQB6OPcvh1X3zp-0LuWrDRGlU2IWIuO0BbsNmdRd-mhE1SqLLCJcjNqYHn_1eQKg8ZbWzBgxor57cbINdEemrBawOeK55DDsbDsTl6dOWNbsIq-pz8tDPa24A108PWyNcfw_JiVqknyM4W6VPjBwy-Xbfj_QN_ekiO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-analysis+of+gross+insertions+causing+human+genetic+disease%3A+novel+mutational+mechanisms+and+the+role+of+replication+slippage&rft.jtitle=Human+mutation&rft.au=Chen%2C+Jian-Min&rft.au=Chuzhanova%2C+Nadia&rft.au=Stenson%2C+Peter+D&rft.au=F%C3%A9rec%2C+Claude&rft.date=2005-02-01&rft.issn=1098-1004&rft.eissn=1098-1004&rft.volume=25&rft.issue=2&rft.spage=207&rft_id=info:doi/10.1002%2Fhumu.20133&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-7794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-7794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-7794&client=summon