Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges
A major global effort to enable cost-effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large-scale landscape restoration in tropical regions. Here, we focus on the conditions that fav...
Saved in:
Published in | Biotropica Vol. 48; no. 6; pp. 716 - 730 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Blackwell Publishing Ltd
01.11.2016
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A major global effort to enable cost-effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large-scale landscape restoration in tropical regions. Here, we focus on the conditions that favor natural regeneration within tropical forest landscapes. We illustrate cases where large-scale natural regeneration followed forest clearing and non-forest land use, and describe the social and ecological factors that drove these local forest transitions. The self-organizing processes that create naturally regenerating forests and natural regeneration in planted forests promote local genetic adaptation, foster native species with known traditional uses, create spatial and temporal heterogeneity, and sustain local biodiversity and biotic interactions. These features confer greater ecosystem resilience in the face of future shocks and disturbances. We discuss economic, social, and legal issues that challenge natural regeneration in tropical landscapes. We conclude by suggesting ways to enable natural regeneration to become an effective tool for implementing large-scale forest and landscape restoration. Major research and policy priorities include: identifying and modeling the ecological and economic conditions where natural regeneration is a viable and favorable land-use option, developing monitoring protocols for natural regeneration that can be carried out by local communities, and developing enabling incentives, governance structures, and regulatory conditions that promote the stewardship of naturally regenerating forests. Aligning restoration goals and practices with natural regeneration can achieve the best possible outcome for achieving multiple social and environmental benefits at minimal cost. |
---|---|
AbstractList | A major global effort to enable cost‐effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large‐scale landscape restoration in tropical regions. Here, we focus on the conditions that favor natural regeneration within tropical forest landscapes. We illustrate cases where large‐scale natural regeneration followed forest clearing and non‐forest land use, and describe the social and ecological factors that drove these local forest transitions. The self‐organizing processes that create naturally regenerating forests and natural regeneration in planted forests promote local genetic adaptation, foster native species with known traditional uses, create spatial and temporal heterogeneity, and sustain local biodiversity and biotic interactions. These features confer greater ecosystem resilience in the face of future shocks and disturbances. We discuss economic, social, and legal issues that challenge natural regeneration in tropical landscapes. We conclude by suggesting ways to enable natural regeneration to become an effective tool for implementing large‐scale forest and landscape restoration. Major research and policy priorities include: identifying and modeling the ecological and economic conditions where natural regeneration is a viable and favorable land‐use option, developing monitoring protocols for natural regeneration that can be carried out by local communities, and developing enabling incentives, governance structures, and regulatory conditions that promote the stewardship of naturally regenerating forests. Aligning restoration goals and practices with natural regeneration can achieve the best possible outcome for achieving multiple social and environmental benefits at minimal cost.
En el contexto de los ambiciosos objetivos a escala global de restauración forestal a escala de paisaje, es necesario implementar esfuerzos para que la regeneración natural del bosque se convierta en una opción costo‐eficiente. En este artículo discutimos los principales factores que favorecen los procesos de regeneración natural en paisajes tropicales deforestados. Ilustramos algunos casos en los que la regeneración natural sucedió a la deforestación a gran escala y describimos de igual forma alguno de los factores sociales y ecológicos que dieron pie a estas transiciones. Los procesos de auto‐organización ecológica que generan a los bosques regenerados naturalmente y los procesos de regeneración natural estimulados por los bosques plantados favorecen la adaptación genética local, la persistencia de especies nativas con usos tradicionales, generan heterogeneidad espacial y temporal, y mantienen la biodiversidad y las interacciones bióticas. Estas características en su conjunto le confieren a los ecosistemas regenerados naturalmente, resiliencia a futuras perturbaciones. También discutimos algunos aspectos de carácter económico, social y legal que impedirían que la regeneración natural pueda ser implementada de forma efectiva en un contexto tropical. Concluímos el artículo con una serie de sugerencias para promover la regeneración natural como una herramienta eficaz de restauración forestal a gran escala. Las principales prioridades de investigación y de aspectos de política incluyen: identificar y modelar las condiciones ecológicas y económicas donde la regeneración natural sería una opción viable y permanente de uso del suelo; el desarrollo de protocolos de monitoreo que puedan ser aplicados por comunidades locales; y el desarrollo de estructuras de incentivos y de gobernanza forestal que favorezca los procesos de regeneración natural como uso legítimo del suelo. El incluir y alinear a la regeneración natural con los objetivos y las prácticas de restauración forestal, en su sentido amplio, puede contribuir al logro de beneficios sociales y ambientales múltiples a un bajo costo.
Um esforço global para fomentar a regeneração natural de forma custo‐eficiente é necessário para alcançar objetivos ambiciosos de restauração florestal e da paisagem. Nós abordamos as condições que favorecem a regeneração florestal natural em paisagens tropicais, ilustrando casos de regeneração em larga escala após o desmatamento e usos do solo não‐florestais, e também descrevemos os fatores sociais e ecológicos que fomentaram estas transições florestais locais. Os processos de auto‐organização da regeneração natural que criam florestas e a regeneração em florestas plantadas promovem a adaptação genética local e o estabelecimento de espécies nativas utilizadas por populações tradicionais, criam heterogeneidade espacial e temporal e sustentam a biodiversidade e as interações bióticas locais. Estas características conferem maior resiliência ao ecossistema a distúrbios futuros. Discutimos os desafios econômicos, sociais e legais para a regeneração em larga escala nos trópicos. Concluímos com recomendações para que a regeneração seja uma ferramenta eficaz para implantar a restauração florestal em larga escala. As prioridades de pesquisa e políticas incluem: identificar e modelar as condições ecológicas e econômicas onde a regeneração natural é viável e favorável, desenvolver protocolos de monitoramento para a regeneração que podem ser executados por comunidades locais, desenvolver estruturas de incentivo e de governança e condições legais que promovam a gestão de florestas em regeneração. Alinhar os objetivos e as práticas de restauração com a regeneração natural permite maiores benefícios sociais e ambientais com o menor custo. A major global effort to enable cost‐effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large‐scale landscape restoration in tropical regions. Here, we focus on the conditions that favor natural regeneration within tropical forest landscapes. We illustrate cases where large‐scale natural regeneration followed forest clearing and non‐forest land use, and describe the social and ecological factors that drove these local forest transitions. The self‐organizing processes that create naturally regenerating forests and natural regeneration in planted forests promote local genetic adaptation, foster native species with known traditional uses, create spatial and temporal heterogeneity, and sustain local biodiversity and biotic interactions. These features confer greater ecosystem resilience in the face of future shocks and disturbances. We discuss economic, social, and legal issues that challenge natural regeneration in tropical landscapes. We conclude by suggesting ways to enable natural regeneration to become an effective tool for implementing large‐scale forest and landscape restoration. Major research and policy priorities include: identifying and modeling the ecological and economic conditions where natural regeneration is a viable and favorable land‐use option, developing monitoring protocols for natural regeneration that can be carried out by local communities, and developing enabling incentives, governance structures, and regulatory conditions that promote the stewardship of naturally regenerating forests. Aligning restoration goals and practices with natural regeneration can achieve the best possible outcome for achieving multiple social and environmental benefits at minimal cost. Resumen En el contexto de los ambiciosos objetivos a escala global de restauración forestal a escala de paisaje, es necesario implementar esfuerzos para que la regeneración natural del bosque se convierta en una opción costo‐eficiente. En este artículo discutimos los principales factores que favorecen los procesos de regeneración natural en paisajes tropicales deforestados. Ilustramos algunos casos en los que la regeneración natural sucedió a la deforestación a gran escala y describimos de igual forma alguno de los factores sociales y ecológicos que dieron pie a estas transiciones. Los procesos de auto‐organización ecológica que generan a los bosques regenerados naturalmente y los procesos de regeneración natural estimulados por los bosques plantados favorecen la adaptación genética local, la persistencia de especies nativas con usos tradicionales, generan heterogeneidad espacial y temporal, y mantienen la biodiversidad y las interacciones bióticas. Estas características en su conjunto le confieren a los ecosistemas regenerados naturalmente, resiliencia a futuras perturbaciones. También discutimos algunos aspectos de carácter económico, social y legal que impedirían que la regeneración natural pueda ser implementada de forma efectiva en un contexto tropical. Concluímos el artículo con una serie de sugerencias para promover la regeneración natural como una herramienta eficaz de restauración forestal a gran escala. Las principales prioridades de investigación y de aspectos de política incluyen: identificar y modelar las condiciones ecológicas y económicas donde la regeneración natural sería una opción viable y permanente de uso del suelo; el desarrollo de protocolos de monitoreo que puedan ser aplicados por comunidades locales; y el desarrollo de estructuras de incentivos y de gobernanza forestal que favorezca los procesos de regeneración natural como uso legítimo del suelo. El incluir y alinear a la regeneración natural con los objetivos y las prácticas de restauración forestal, en su sentido amplio, puede contribuir al logro de beneficios sociales y ambientales múltiples a un bajo costo. SUMÁRIO Um esforço global para fomentar a regeneração natural de forma custo‐eficiente é necessário para alcançar objetivos ambiciosos de restauração florestal e da paisagem. Nós abordamos as condições que favorecem a regeneração florestal natural em paisagens tropicais, ilustrando casos de regeneração em larga escala após o desmatamento e usos do solo não‐florestais, e também descrevemos os fatores sociais e ecológicos que fomentaram estas transições florestais locais. Os processos de auto‐organização da regeneração natural que criam florestas e a regeneração em florestas plantadas promovem a adaptação genética local e o estabelecimento de espécies nativas utilizadas por populações tradicionais, criam heterogeneidade espacial e temporal e sustentam a biodiversidade e as interações bióticas locais. Estas características conferem maior resiliência ao ecossistema a distúrbios futuros. Discutimos os desafios econômicos, sociais e legais para a regeneração em larga escala nos trópicos. Concluímos com recomendações para que a regeneração seja uma ferramenta eficaz para implantar a restauração florestal em larga escala. As prioridades de pesquisa e políticas incluem: identificar e modelar as condições ecológicas e econômicas onde a regeneração natural é viável e favorável, desenvolver protocolos de monitoramento para a regeneração que podem ser executados por comunidades locais, desenvolver estruturas de incentivo e de governança e condições legais que promovam a gestão de florestas em regeneração. Alinhar os objetivos e as práticas de restauração com a regeneração natural permite maiores benefícios sociais e ambientais com o menor custo. A major global effort to enable cost effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large scale landscape restoration in tropical regions. Here, we focus on the conditions that favor natural regeneration within tropical forest landscapes. We illustrate cases where large scale natural regeneration followed forest clearing and non forest land use, and describe the social and ecological factors that drove these local forest transitions. The self organizing processes that create naturally regenerating forests and natural regeneration in planted forests promote local genetic adaptation, foster native species with known traditional uses, create spatial and temporal heterogeneity, and sustain local biodiversity and biotic interactions. These features confer greater ecosystem resilience in the face of future shocks and disturbances. We discuss economic, social, and legal issues that challenge natural regeneration in tropical landscapes. We conclude by suggesting ways to enable natural regeneration to become an effective tool for implementing large scale forest and landscape restoration. Major research and policy priorities include: identifying and modeling the ecological and economic conditions where natural regeneration is a viable and favorable land use option, developing monitoring protocols for natural regeneration that can be carried out by local communities, and developing enabling incentives, governance structures, and regulatory conditions that promote the stewardship of naturally regenerating forests. Aligning restoration goals and practices with natural regeneration can achieve the best possible outcome for achieving multiple social and environmental benefits at minimal cost. Resumen En el contexto de los ambiciosos objetivos a escala global de restauracion forestal a escala de paisaje, es necesario implementar esfuerzos para que la regeneracion natural del bosque se convierta en una opcion costo eficiente. En este articulo discutimos los principales factores que favorecen los procesos de regeneracion natural en paisajes tropicales deforestados. Ilustramos algunos casos en los que la regeneracion natural sucedio a la deforestacion a gran escala y describimos de igual forma alguno de los factores sociales y ecologicos que dieron pie a estas transiciones. Los procesos de auto organizacion ecologica que generan a los bosques regenerados naturalmente y los procesos de regeneracion natural estimulados por los bosques plantados favorecen la adaptacion genetica local, la persistencia de especies nativas con usos tradicionales, generan heterogeneidad espacial y temporal, y mantienen la biodiversidad y las interacciones bioticas. Estas caracteristicas en su conjunto le confieren a los ecosistemas regenerados naturalmente, resiliencia a futuras perturbaciones. Tambien discutimos algunos aspectos de caracter economico, social y legal que impedirian que la regeneracion natural pueda ser implementada de forma efectiva en un contexto tropical. Concluimos el articulo con una serie de sugerencias para promover la regeneracion natural como una herramienta eficaz de restauracion forestal a gran escala. Las principales prioridades de investigacion y de aspectos de politica incluyen: identificar y modelar las condiciones ecologicas y economicas donde la regeneracion natural seria una opcion viable y permanente de uso del suelo; el desarrollo de protocolos de monitoreo que puedan ser aplicados por comunidades locales; y el desarrollo de estructuras de incentivos y de gobernanza forestal que favorezca los procesos de regeneracion natural como uso legitimo del suelo. El incluir y alinear a la regeneracion natural con los objetivos y las practicas de restauracion forestal, en su sentido amplio, puede contribuir al logro de beneficios sociales y ambientales multiples a un bajo costo. SUMÁRIO Um esforço global para fomentar a regeneração natural de forma custo eficiente e necessario para alcançar objetivos ambiciosos de restauração florestal e da paisagem. Nos abordamos as condições que favorecem a regeneração florestal natural em paisagens tropicais, ilustrando casos de regeneração em larga escala apos o desmatamento e usos do solo não florestais, e tambem descrevemos os fatores sociais e ecologicos que fomentaram estas transições florestais locais. Os processos de auto organização da regeneração natural que criam florestas e a regeneração em florestas plantadas promovem a adaptação genetica local e o estabelecimento de especies nativas utilizadas por populações tradicionais, criam heterogeneidade espacial e temporal e sustentam a biodiversidade e as interações bioticas locais. Estas caracteristicas conferem maior resiliência ao ecossistema a disturbios futuros. Discutimos os desafios econômicos, sociais e legais para a regeneração em larga escala nos tropicos. Concluimos com recomendações para que a regeneração seja uma ferramenta eficaz para implantar a restauração florestal em larga escala. As prioridades de pesquisa e politicas incluem: identificar e modelar as condições ecologicas e econômicas onde a regeneração natural e viavel e favoravel, desenvolver protocolos de monitoramento para a regeneração que podem ser executados por comunidades locais, desenvolver estruturas de incentivo e de governança e condições legais que promovam a gestão de florestas em regeneração. Alinhar os objetivos e as praticas de restauração com a regeneração natural permite maiores beneficios sociais e ambientais com o menor custo. A major global effort to enable cost‐effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large‐scale landscape restoration in tropical regions. Here, we focus on the conditions that favor natural regeneration within tropical forest landscapes. We illustrate cases where large‐scale natural regeneration followed forest clearing and non‐forest land use, and describe the social and ecological factors that drove these local forest transitions. The self‐organizing processes that create naturally regenerating forests and natural regeneration in planted forests promote local genetic adaptation, foster native species with known traditional uses, create spatial and temporal heterogeneity, and sustain local biodiversity and biotic interactions. These features confer greater ecosystem resilience in the face of future shocks and disturbances. We discuss economic, social, and legal issues that challenge natural regeneration in tropical landscapes. We conclude by suggesting ways to enable natural regeneration to become an effective tool for implementing large‐scale forest and landscape restoration. Major research and policy priorities include: identifying and modeling the ecological and economic conditions where natural regeneration is a viable and favorable land‐use option, developing monitoring protocols for natural regeneration that can be carried out by local communities, and developing enabling incentives, governance structures, and regulatory conditions that promote the stewardship of naturally regenerating forests. Aligning restoration goals and practices with natural regeneration can achieve the best possible outcome for achieving multiple social and environmental benefits at minimal cost. A major global effort to enable cost-effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large-scale landscape restoration in tropical regions. Here, we focus on the conditions that favor natural regeneration within tropical forest landscapes. We illustrate cases where large-scale natural regeneration followed forest clearing and non-forest land use, and describe the social and ecological factors that drove these local forest transitions. The self-organizing processes that create naturally regenerating forests and natural regeneration in planted forests promote local genetic adaptation, foster native species with known traditional uses, create spatial and temporal heterogeneity, and sustain local biodiversity and biotic interactions. These features confer greater ecosystem resilience in the face of future shocks and disturbances. We discuss economic, social, and legal issues that challenge natural regeneration in tropical landscapes. We conclude by suggesting ways to enable natural regeneration to become an effective tool for implementing large-scale forest and landscape restoration. Major research and policy priorities include: identifying and modeling the ecological and economic conditions where natural regeneration is a viable and favorable land-use option, developing monitoring protocols for natural regeneration that can be carried out by local communities, and developing enabling incentives, governance structures, and regulatory conditions that promote the stewardship of naturally regenerating forests. Aligning restoration goals and practices with natural regeneration can achieve the best possible outcome for achieving multiple social and environmental benefits at minimal cost.Original Abstract: Resumen En el contexto de los ambiciosos objetivos a escala global de restauracion forestal a escala de paisaje, es necesario implementar esfuerzos para que la regeneracion natural del bosque se convierta en una opcion costo-eficiente. En este articulo discutimos los principales factores que favorecen los procesos de regeneracion natural en paisajes tropicales deforestados. Ilustramos algunos casos en los que la regeneracion natural sucedio a la deforestacion a gran escala y describimos de igual forma alguno de los factores sociales y ecologicos que dieron pie a estas transiciones. Los procesos de auto-organizacion ecologica que generan a los bosques regenerados naturalmente y los procesos de regeneracion natural estimulados por los bosques plantados favorecen la adaptacion genetica local, la persistencia de especies nativas con usos tradicionales, generan heterogeneidad espacial y temporal, y mantienen la biodiversidad y las interacciones bioticas. Estas caracteristicas en su conjunto le confieren a los ecosistemas regenerados naturalmente, resiliencia a futuras perturbaciones. Tambien discutimos algunos aspectos de caracter economico, social y legal que impedirian que la regeneracion natural pueda ser implementada de forma efectiva en un contexto tropical. Concluimos el articulo con una serie de sugerencias para promover la regeneracion natural como una herramienta eficaz de restauracion forestal a gran escala. Las principales prioridades de investigacion y de aspectos de politica incluyen: identificar y modelar las condiciones ecologicas y economicas donde la regeneracion natural seria una opcion viable y permanente de uso del suelo; el desarrollo de protocolos de monitoreo que puedan ser aplicados por comunidades locales; y el desarrollo de estructuras de incentivos y de gobernanza forestal que favorezca los procesos de regeneracion natural como uso legitimo del suelo. El incluir y alinear a la regeneracion natural con los objetivos y las practicas de restauracion forestal, en su sentido amplio, puede contribuir al logro de beneficios sociales y ambientales multiples a un bajo costo. |
Author | Chazdon, Robin L. Guariguata, Manuel R. |
Author_xml | – sequence: 1 givenname: Robin L. surname: Chazdon fullname: Chazdon, Robin L. email: robin.chazdon@uconn.edu, robin.chazdon@uconn.edu organization: Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Unit 3043, 06269-3043, Storrs, CT, USA – sequence: 2 givenname: Manuel R. surname: Guariguata fullname: Guariguata, Manuel R. organization: Center for International Forestry Research (CIFOR), Av. La Molina 1895, La MolinaLima, Perú |
BookMark | eNqFkVFPFDEQxxuDiQf44AcwaeKLPCy0226765sQRANBIoc8NrPd7rFnaZe2F-Xb2707eSAa-zDNZH7_ycz8d9GO884g9IaSQ5rfUZvGQ1qymr5AMyo5LyQvmx00I4SIggkiXqHdGJc5bSrCZ2h5CWkVwOJgFsaZAGnwDkPEgJP3Fvc-YAthYYqowZopNzHhKfgtPDic7gxOwY-Djh_wGHwcjU65h-uwvgNrjVuYuI9e9mCjeb3999DNp9P5yefi4uvZl5OPF4XmdUOLjrasbaTo2wrACNrqTuRZqZbQsabtat5LEL3ooSxlnzWcMEal7LKgLFnH9tD7Td88yMMqD6ruh6iNteCMX0VV5uU5E4KQ_6K0rogUDV2j756hS78KLi-ypojkjNNMHW0onY8Qg-mVHtL6TCnAYBUlarJJZZvU2qasOHimGMNwD-Hxr-y2-8_Bmsd_g-p4fvVH8XajWE5-PSl4XUlRyalebOpDTObXUx3CDyUkk5W6vTxTV_Pv367Pb49VyX4DUV29EA |
CODEN | BTROAZ |
CitedBy_id | crossref_primary_10_1590_2179_8087_floram_2019_0110 crossref_primary_10_1111_rec_14290 crossref_primary_10_1111_cobi_13362 crossref_primary_10_3956_2022_98_1_28 crossref_primary_10_1007_s10980_023_01694_y crossref_primary_10_1007_s11258_022_01239_4 crossref_primary_10_1002_rse2_262 crossref_primary_10_1016_j_jag_2019_03_014 crossref_primary_10_1016_j_jaridenv_2019_103995 crossref_primary_10_1016_j_landusepol_2025_107499 crossref_primary_10_21829_abm129_2022_1917 crossref_primary_10_1002_ecs2_70157 crossref_primary_10_1007_s11027_018_9837_5 crossref_primary_10_1155_2024_2385142 crossref_primary_10_1007_s10531_017_1355_3 crossref_primary_10_1371_journal_pone_0250859 crossref_primary_10_1002_pan3_10248 crossref_primary_10_1111_brv_12694 crossref_primary_10_1111_ddi_13821 crossref_primary_10_3390_microorganisms13030554 crossref_primary_10_1002_eap_1653 crossref_primary_10_1016_j_ecolind_2021_107451 crossref_primary_10_1111_btp_13417 crossref_primary_10_1007_s12061_022_09449_z crossref_primary_10_1093_jmammal_gyac084 crossref_primary_10_1038_s43247_023_00737_1 crossref_primary_10_3390_su15086823 crossref_primary_10_1016_j_fecs_2023_100126 crossref_primary_10_1111_jvs_13281 crossref_primary_10_3390_agriculture11030189 crossref_primary_10_1111_rec_12559 crossref_primary_10_1111_rec_13406 crossref_primary_10_1016_j_biocon_2023_110071 crossref_primary_10_3390_rs12030430 crossref_primary_10_1371_journal_pone_0208523 crossref_primary_10_3389_ffgc_2021_576908 crossref_primary_10_1016_j_jenvman_2021_114303 crossref_primary_10_2993_0278_0771_42_4_432 crossref_primary_10_1126_sciadv_abm8999 crossref_primary_10_1371_journal_pone_0171368 crossref_primary_10_3389_ffgc_2023_1123248 crossref_primary_10_1038_s41586_024_08106_4 crossref_primary_10_3390_f14091870 crossref_primary_10_1111_rec_14181 crossref_primary_10_1111_avsc_70001 crossref_primary_10_1007_s42965_019_00027_y crossref_primary_10_1007_s11258_021_01131_7 crossref_primary_10_1111_btp_12678 crossref_primary_10_1016_j_ecoleng_2022_106639 crossref_primary_10_1016_j_foreco_2021_119861 crossref_primary_10_1038_s41598_018_21999_2 crossref_primary_10_1016_j_foreco_2022_120404 crossref_primary_10_1007_s00442_021_04920_z crossref_primary_10_1016_j_tfp_2024_100736 crossref_primary_10_1111_rec_14032 crossref_primary_10_1016_j_ecoleng_2020_106031 crossref_primary_10_1111_rec_14272 crossref_primary_10_1016_j_foreco_2022_120083 crossref_primary_10_3390_f15061062 crossref_primary_10_1002_fes3_165 crossref_primary_10_1126_sciadv_1701345 crossref_primary_10_1126_science_add2814 crossref_primary_10_3389_ffgc_2024_1372409 crossref_primary_10_3390_f10060510 crossref_primary_10_3389_frwa_2024_1462412 crossref_primary_10_46830_wrirpt_18_00140 crossref_primary_10_3390_f15091513 crossref_primary_10_1038_s43247_024_01977_5 crossref_primary_10_1016_j_oneear_2021_01_006 crossref_primary_10_1007_s10113_020_01744_0 crossref_primary_10_1038_s43247_022_00360_6 crossref_primary_10_1016_j_landusepol_2023_107022 crossref_primary_10_1016_j_foreco_2020_118236 crossref_primary_10_1016_j_ecolind_2021_107915 crossref_primary_10_1016_j_indic_2024_100496 crossref_primary_10_1186_s13750_023_00308_z crossref_primary_10_1007_s10457_019_00446_9 crossref_primary_10_1111_1365_2664_13501 crossref_primary_10_1111_rec_14161 crossref_primary_10_1016_j_foreco_2023_121221 crossref_primary_10_1111_1365_2664_14830 crossref_primary_10_1002_eap_3053 crossref_primary_10_1111_avsc_12394 crossref_primary_10_1007_s10342_022_01458_4 crossref_primary_10_1016_j_ecolind_2025_113238 crossref_primary_10_3390_f14050865 crossref_primary_10_1007_s42965_022_00282_6 crossref_primary_10_1111_btp_12533 crossref_primary_10_1016_j_ecolind_2024_112695 crossref_primary_10_1111_1365_2664_13836 crossref_primary_10_1038_s41558_024_02068_1 crossref_primary_10_1186_s40693_021_00102_6 crossref_primary_10_2478_ffp_2022_0011 crossref_primary_10_1007_s10980_019_00785_z crossref_primary_10_1016_j_foreco_2021_119088 crossref_primary_10_1038_s43247_024_01737_5 crossref_primary_10_1002_ldr_3373 crossref_primary_10_1016_j_tfp_2024_100755 crossref_primary_10_1016_j_pecon_2020_12_003 crossref_primary_10_1139_cjfr_2017_0412 crossref_primary_10_1002_ldr_3014 crossref_primary_10_3389_ffgc_2020_589982 crossref_primary_10_3390_land10010071 crossref_primary_10_3390_land9080251 crossref_primary_10_1111_rec_12473 crossref_primary_10_1016_j_ecoleng_2021_106535 crossref_primary_10_1098_rstb_2021_0090 crossref_primary_10_1016_j_foreco_2023_121311 crossref_primary_10_1111_cobi_13842 crossref_primary_10_1111_rec_13681 crossref_primary_10_17129_botsci_2878 crossref_primary_10_1007_s00468_020_01982_z crossref_primary_10_1111_gcb_70037 crossref_primary_10_3390_agriengineering6030148 crossref_primary_10_1021_acs_est_1c02546 crossref_primary_10_1111_rec_14094 crossref_primary_10_1038_s41598_020_70746_z crossref_primary_10_1111_conl_12768 crossref_primary_10_1016_j_foreco_2019_117696 crossref_primary_10_1016_j_ecolind_2021_107890 crossref_primary_10_1016_j_foreco_2021_119770 crossref_primary_10_2478_fsmu_2022_0012 crossref_primary_10_1016_j_scitotenv_2019_135262 crossref_primary_10_1111_1365_2745_14347 crossref_primary_10_1088_1748_9326_ac1701 crossref_primary_10_3934_mbe_2020201 crossref_primary_10_1016_j_foreco_2020_118810 crossref_primary_10_2984_75_1_5 crossref_primary_10_1016_j_rse_2023_113533 crossref_primary_10_1007_s11056_020_09787_1 crossref_primary_10_1038_d41586_019_01026_8 crossref_primary_10_1038_s41893_024_01452_1 crossref_primary_10_1371_journal_pone_0316472 crossref_primary_10_1016_j_foreco_2020_118818 crossref_primary_10_1016_j_landusepol_2023_106879 crossref_primary_10_1016_j_foreco_2020_118819 crossref_primary_10_1016_j_fecs_2024_100198 crossref_primary_10_17129_botsci_3149 crossref_primary_10_3390_rs14030707 crossref_primary_10_1016_j_sciaf_2024_e02448 crossref_primary_10_1016_j_fecs_2022_100030 crossref_primary_10_3390_su13116097 crossref_primary_10_1007_s11056_020_09777_3 crossref_primary_10_17129_botsci_2971 crossref_primary_10_1016_j_ecolmodel_2025_111073 crossref_primary_10_1016_j_foreco_2020_118294 crossref_primary_10_1080_26395916_2021_1892827 crossref_primary_10_1007_s13595_020_00993_7 crossref_primary_10_17129_botsci_3382 crossref_primary_10_3389_ffgc_2020_571679 crossref_primary_10_1038_s41558_019_0485_x crossref_primary_10_1016_j_ppees_2021_125631 crossref_primary_10_1098_rstb_2021_0073 crossref_primary_10_1017_S0959270922000235 crossref_primary_10_1016_j_foreco_2023_121414 crossref_primary_10_1111_rec_13421 crossref_primary_10_1002_2688_8319_70012 crossref_primary_10_1017_S0376892920000016 crossref_primary_10_3390_jzbg5040047 crossref_primary_10_1111_avsc_12741 crossref_primary_10_3390_f15071201 crossref_primary_10_1111_1365_2664_12976 crossref_primary_10_1016_j_rsase_2018_07_003 crossref_primary_10_1016_j_foreco_2020_117868 crossref_primary_10_1016_j_oneear_2024_05_002 crossref_primary_10_7744_kjoas_510412 crossref_primary_10_7744_kjoas_510410 crossref_primary_10_1111_1365_2664_13263 crossref_primary_10_1111_1365_2664_14232 crossref_primary_10_1111_rec_13558 crossref_primary_10_1007_s11056_021_09834_5 crossref_primary_10_3390_f9090570 crossref_primary_10_1016_j_foreco_2022_120279 crossref_primary_10_3390_f8090341 crossref_primary_10_1016_j_gecco_2021_e01573 crossref_primary_10_1016_j_geoforum_2025_104241 crossref_primary_10_1016_j_scitotenv_2018_09_016 crossref_primary_10_1007_s00468_023_02396_3 crossref_primary_10_1016_j_ecoleng_2022_106721 crossref_primary_10_1002_ecs2_2860 crossref_primary_10_1016_j_gecco_2021_e01696 crossref_primary_10_1111_btp_12627 crossref_primary_10_1007_s10457_022_00752_9 crossref_primary_10_1016_j_gloenvcha_2018_12_001 crossref_primary_10_3390_land10121286 crossref_primary_10_1007_s00267_025_02137_x crossref_primary_10_1371_journal_pone_0242020 crossref_primary_10_1016_j_biocon_2021_109224 crossref_primary_10_1371_journal_pbio_3002107 crossref_primary_10_3389_frwa_2022_998349 crossref_primary_10_1111_rec_12703 crossref_primary_10_1002_ece3_70069 crossref_primary_10_1002_ldr_4781 crossref_primary_10_3390_d17010039 crossref_primary_10_1111_rec_14332 crossref_primary_10_1038_s41598_021_83030_5 crossref_primary_10_1016_j_heliyon_2022_e11163 crossref_primary_10_1016_j_foreco_2022_120140 crossref_primary_10_3390_f15071182 crossref_primary_10_3389_fenvs_2023_989214 crossref_primary_10_1016_j_biocon_2024_110608 crossref_primary_10_1111_conl_12848 crossref_primary_10_1016_j_foreco_2020_118183 crossref_primary_10_1080_11956860_2021_1943931 crossref_primary_10_3390_su122410430 crossref_primary_10_1016_j_gecco_2017_e00371 crossref_primary_10_1088_2515_7620_ab2102 crossref_primary_10_1098_rstb_2021_0065 crossref_primary_10_1016_j_envdev_2018_07_001 crossref_primary_10_1016_j_foreco_2023_121649 crossref_primary_10_1111_rec_13810 crossref_primary_10_3389_fpls_2024_1410418 crossref_primary_10_1016_j_foreco_2020_118854 crossref_primary_10_1016_j_foreco_2022_120137 crossref_primary_10_1016_j_pedobi_2021_150730 crossref_primary_10_1016_j_foreco_2023_121402 crossref_primary_10_1016_j_foreco_2023_121403 crossref_primary_10_1111_jvs_13205 crossref_primary_10_1016_j_foreco_2022_120012 crossref_primary_10_1111_rec_13493 crossref_primary_10_1007_s11056_017_9586_4 crossref_primary_10_1111_rec_13250 crossref_primary_10_1007_s10764_018_0049_3 crossref_primary_10_1088_1748_9326_ad039e crossref_primary_10_3389_ffgc_2022_1005761 crossref_primary_10_3390_land10121340 crossref_primary_10_1016_j_agee_2019_06_003 crossref_primary_10_3390_su15032017 crossref_primary_10_1007_s42452_022_04951_y crossref_primary_10_1016_j_ecolind_2024_112029 crossref_primary_10_1016_j_tfp_2023_100386 crossref_primary_10_3390_ecologies3030026 crossref_primary_10_3390_f12081022 crossref_primary_10_1016_j_biocon_2018_03_034 crossref_primary_10_1002_pan3_10772 crossref_primary_10_3390_f14071306 crossref_primary_10_1007_s11104_023_06410_y crossref_primary_10_1111_emr_12397 crossref_primary_10_1371_journal_pone_0302192 crossref_primary_10_1007_s40333_022_0105_x crossref_primary_10_3417_2016036 crossref_primary_10_3417_2016035 crossref_primary_10_3417_2017003 crossref_primary_10_1111_rec_14309 crossref_primary_10_3390_f9030143 crossref_primary_10_1007_s11258_018_0804_8 crossref_primary_10_1016_j_gecco_2023_e02394 crossref_primary_10_1111_1365_2664_14780 crossref_primary_10_3390_f11050527 crossref_primary_10_1111_1365_2435_14471 crossref_primary_10_1111_rec_13345 crossref_primary_10_1088_1748_9326_ab0783 crossref_primary_10_1007_s12224_022_09408_z crossref_primary_10_1590_2179_8087_floram_2020_0082 crossref_primary_10_1080_21580103_2023_2237985 crossref_primary_10_1016_j_gecco_2021_e01788 crossref_primary_10_1111_1365_2664_13697 crossref_primary_10_1016_j_foreco_2022_120362 crossref_primary_10_3390_rs13132596 crossref_primary_10_5897_JHF2023_0707 crossref_primary_10_1038_s41598_019_46683_x crossref_primary_10_1111_avsc_12784 crossref_primary_10_3390_rs16122085 crossref_primary_10_1016_j_foreco_2021_119352 crossref_primary_10_3389_ffgc_2021_594627 crossref_primary_10_1016_j_foreco_2020_118881 crossref_primary_10_3390_su14148362 crossref_primary_10_1111_rec_13117 crossref_primary_10_3389_ffgc_2021_605925 crossref_primary_10_1016_j_foreco_2021_118932 crossref_primary_10_1038_s41467_023_43951_3 crossref_primary_10_1590_0001_3765202120200665 crossref_primary_10_1111_rec_13471 crossref_primary_10_1088_1748_9326_accfaf crossref_primary_10_3390_f10060468 crossref_primary_10_4103_cs_cs_19_147 crossref_primary_10_1016_j_regsus_2021_06_002 crossref_primary_10_7163_PrzG_2022_4_4 crossref_primary_10_3390_f16020250 crossref_primary_10_1016_j_jenvman_2024_122306 crossref_primary_10_1016_j_gecco_2020_e01443 crossref_primary_10_1016_j_foreco_2021_119240 crossref_primary_10_3389_ffgc_2020_569184 crossref_primary_10_1002_eap_2559 crossref_primary_10_1007_s10980_020_01023_7 crossref_primary_10_1111_rec_13955 crossref_primary_10_1126_sciadv_abc4547 crossref_primary_10_31413_nativa_v8i2_8583 crossref_primary_10_3389_ffgc_2021_735457 crossref_primary_10_1016_j_foreco_2019_02_024 crossref_primary_10_1111_cobi_12918 crossref_primary_10_1186_s40850_023_00187_4 crossref_primary_10_1016_j_biocon_2023_110387 crossref_primary_10_1177_1940082918773298 crossref_primary_10_1016_j_biocon_2019_108274 crossref_primary_10_1111_btp_12814 crossref_primary_10_1111_rec_14251 crossref_primary_10_1007_s10531_019_01791_y crossref_primary_10_3389_ffgc_2024_1412075 crossref_primary_10_1016_j_jenvman_2020_111805 crossref_primary_10_3390_f11090938 crossref_primary_10_17129_botsci_3576 crossref_primary_10_33494_nzjfs542024x301x crossref_primary_10_1111_rec_12519 crossref_primary_10_1016_j_scitotenv_2020_141934 crossref_primary_10_1016_j_scitotenv_2020_144647 crossref_primary_10_1111_rec_13847 crossref_primary_10_1016_j_forpol_2023_102980 crossref_primary_10_1111_aje_13255 crossref_primary_10_1111_rec_13852 crossref_primary_10_1002_ecs2_4780 crossref_primary_10_1038_s41558_020_0856_3 crossref_primary_10_1002_ldr_3764 crossref_primary_10_1080_10549811_2020_1841005 crossref_primary_10_1080_26395916_2021_1976838 crossref_primary_10_3390_f11080820 crossref_primary_10_1007_s40415_020_00585_9 crossref_primary_10_1002_pan3_10161 crossref_primary_10_1111_1365_2664_13684 crossref_primary_10_1016_j_cosust_2018_04_002 crossref_primary_10_1016_j_agee_2024_109413 crossref_primary_10_1016_j_foreco_2023_121140 crossref_primary_10_17129_botsci_2695 crossref_primary_10_36953_ECJ_2021_22338 crossref_primary_10_1016_j_cosust_2018_05_007 crossref_primary_10_1080_10549811_2022_2059517 crossref_primary_10_1038_s44264_023_00003_z crossref_primary_10_3390_rs16091643 crossref_primary_10_1016_j_foreco_2021_119265 crossref_primary_10_1016_j_jrurstud_2025_103582 crossref_primary_10_3389_fsufs_2020_549483 crossref_primary_10_1126_science_ado1629 crossref_primary_10_3389_ffgc_2022_887365 crossref_primary_10_1111_1365_2664_14065 crossref_primary_10_1111_rec_12850 crossref_primary_10_1016_j_ecoleng_2021_106392 crossref_primary_10_15446_caldasia_v44n2_82255 crossref_primary_10_1126_science_aam5432 crossref_primary_10_17129_botsci_3549 crossref_primary_10_1071_WR19138 crossref_primary_10_1038_s44358_025_00032_1 crossref_primary_10_35534_ecolciviliz_2024_10002 crossref_primary_10_1016_j_rse_2021_112829 crossref_primary_10_1088_1748_9326_ab79e6 crossref_primary_10_1007_s10980_023_01621_1 crossref_primary_10_1111_rec_13703 crossref_primary_10_1080_23766808_2021_1953893 crossref_primary_10_3390_f11091008 crossref_primary_10_1016_j_biocon_2023_110172 crossref_primary_10_1016_j_ecoleng_2023_107039 crossref_primary_10_1111_rec_13035 crossref_primary_10_5814_j_issn_1674_764x_2023_02_020 crossref_primary_10_1371_journal_pone_0249573 crossref_primary_10_1016_j_ecoinf_2023_102277 crossref_primary_10_1111_rec_13279 crossref_primary_10_1016_j_ecolind_2019_03_046 crossref_primary_10_1111_icad_12495 crossref_primary_10_1111_conl_12709 crossref_primary_10_1111_njb_03679 crossref_primary_10_1111_1365_2664_14754 crossref_primary_10_1016_j_biocon_2021_109154 crossref_primary_10_1007_s40823_020_00058_5 crossref_primary_10_1016_j_landusepol_2021_105804 |
Cites_doi | 10.1111/j.1526-100X.2012.00934.x 10.1016/j.ecolind.2013.05.010 10.1126/science.1201609 10.1111/j.1365-2486.2007.01344.x 10.3390/f5030482 10.4322/natcon.00801010 10.1016/j.ecoleng.2015.09.075 10.1007/s10113-013-0512-9 10.1088/1748-9326/11/3/035005 10.1038/nature10425 10.1111/ele.12322 10.1111/j.1744-7429.2012.00908.x 10.1111/rec.12290 10.1073/pnas.1500403112 10.1525/bio.2009.59.10.8 10.1016/j.tree.2011.06.011 10.1111/btp.12388 10.1016/j.foreco.2010.07.004 10.1016/j.foreco.2012.11.024 10.1111/btp.12390 10.1111/btp.12409 10.1007/s10980-015-0267-4 10.1007/BF01868377 10.1017/S0266467400008518 10.1016/j.envsci.2015.02.003 10.1111/btp.12386 10.1890/09-0714.1 10.1046/j.1526-100X.1998.00632.x 10.1126/sciadv.1501639 10.1111/btp.12389 10.1007/s10531-015-0980-y 10.1111/btp.12383 10.3390/f5050978 10.1111/btp.12384 10.1007/s00267-010-9590-3 10.1111/rec.12049 10.1016/j.scitotenv.2015.11.171 10.1016/B978-0-12-384719-5.00377-4 10.1641/B570806 10.1890/ES13-00182.1 10.1146/annurev.es.13.110182.001221 10.1016/j.envsoft.2011.07.008 10.2307/2937169 10.1038/nclimate2200 10.1016/j.foreco.2013.11.017 10.1111/1365-2745.12298 10.1016/j.foreco.2010.07.005 10.1093/biosci/biv108 10.1890/140052 10.1111/rec.12249 10.1371/journal.pone.0000402 10.1073/pnas.1210595110 10.1111/btp.12361 10.1111/1365-2745.12504 10.1016/j.ecoser.2015.09.002 10.1111/j.1526-100X.2009.00556.x 10.1016/j.biocon.2010.09.021 10.1111/rec.12098 10.1007/s12231-011-9175-y 10.1007/s00442-011-1984-2 10.5751/ES-02781-140131 10.7208/chicago/9780226024134.003.0011 10.1890/14-2188 10.5751/ES-05464-180341 10.1007/s10980-011-9623-1 10.1073/pnas.1602893113 10.5751/ES-02058-120201 10.1073/pnas.0703333104 10.1016/j.foreco.2010.08.027 10.1002/16-0108.1 10.1111/btp.12385 10.1111/j.1526-100X.2010.00674.x 10.1007/s13280-015-0694-0 10.1016/j.agee.2014.06.005 10.1080/14724040902953076 10.5751/ES-04275-160315 10.1890/0012-9658(1999)080[1908:SHOLAW]2.0.CO;2 10.1146/annurev.ecolsys.38.091206.095818 10.1016/S0378-1127(97)00202-8 10.1098/rstb.2006.1990 10.1038/srep22483 10.1111/btp.12380 10.1111/j.1523-1739.2008.01063.x 10.1093/biosci/biv008 10.2307/3113637 10.1111/rec.12228 10.4322/natcon.2013.022 10.1038/nature16512 10.1046/j.1523-1739.1999.98352.x 10.1371/journal.pone.0090573 10.1016/j.foreco.2014.01.024 10.1007/s10457-009-9225-y 10.1007/s12231-010-9138-8 10.1073/pnas.1003369107 10.1111/rec.12048 10.1007/s13280-016-0772-y 10.1016/j.foreco.2015.02.027 10.1890/14-0472.1 10.1016/S0378-1127(97)00193-X 10.1111/j.1523-1739.2004.00241.x 10.1371/journal.pone.0020543 10.1016/j.biocon.2012.05.002 10.1641/0006-3568(2003)053[1159:TECOSA]2.0.CO;2 10.1111/rec.12321 10.1111/gcb.12600 10.1111/btp.12382 10.1579/0044-7447-32.6.389 10.3390/f5071737 10.1126/science.aaa9932 10.1038/nclimate2869 10.1111/j.1526-100X.1995.tb00092.x 10.1016/j.gecco.2016.03.002 10.1111/btp.12387 10.1111/j.1523-1739.2007.00863.x 10.1007/s10113-014-0714-9 10.1111/j.1467-8306.2004.00439.x 10.1111/j.1523-1739.2009.01338.x 10.1890/1540-9295(2004)002[0354:APFASI]2.0.CO;2 10.1080/10549811.2013.817340 10.1111/j.1744-7429.2009.00528.x 10.1007/s10980-014-9988-z 10.1016/j.foreco.2005.10.043 10.3390/f5092212 10.1177/194008291500800116 10.1016/j.foreco.2014.02.030 10.1017/S0959270911000177 10.1126/science.1246663 10.1111/0033-0124.00233 10.1126/science.1155365 10.1111/btp.12181 10.1890/14-1399.1 10.1111/conl.12220 10.1111/1365-2664.12384 10.1007/s11842-012-9229-8 10.5751/ES-02426-130205 10.1016/j.ncon.2015.03.005 10.1016/S0378-1127(00)00535-1 10.1016/0167-8809(92)90105-K 10.1017/S0376892997000052 10.1016/S0378-1127(01)00581-3 10.1016/j.foreco.2005.03.057 10.1111/brv.12024 10.1046/j.1526-100X.1999.72001.x 10.1111/j.1744-7429.2008.00471.x 10.1007/s11056-015-9507-3 10.1890/14-0054.1 10.1016/j.foreco.2008.10.035 10.1111/conl.12199 10.2307/1310447 10.1111/j.1744-7429.2009.00583.x 10.1111/1365-2664.12405 10.1111/brv.12231 10.1007/s10661-014-4000-6 10.1016/j.landusepol.2007.06.001 10.1016/j.biocon.2009.02.021 10.1111/j.1526-100X.2007.00274.x 10.1111/j.1526-100X.2008.00459.x 10.4324/9780203071649 10.1111/cobi.12606 10.1016/j.foreco.2012.09.018 10.7208/chicago/9780226118109.001.0001 10.1073/pnas.1215567110 10.1111/conl.12161 |
ContentType | Journal Article |
Copyright | 2016 The Association for Tropical Biology and Conservation |
Copyright_xml | – notice: 2016 The Association for Tropical Biology and Conservation |
DBID | BSCLL AAYXX CITATION 7QG 7QR 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G P64 SOI 7S9 L.6 |
DOI | 10.1111/btp.12381 |
DatabaseName | Istex CrossRef Animal Behavior Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Chemoreception Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Entomology Abstracts AGRICOLA Ecology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Economics |
EISSN | 1744-7429 |
EndPage | 730 |
ExternalDocumentID | 4281698621 10_1111_btp_12381 BTP12381 48576571 ark_67375_WNG_PTVRSKWB_2 |
Genre | article |
GrantInformation_xml | – fundername: CGIAR Program on Forests, Trees and Agroforestry – fundername: UK Department for International Development (DFID) – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – fundername: U.S. National Science Foundation funderid: DEB‐1313788 |
GroupedDBID | -DZ -JH -~X .3N .GA .Y3 05W 0R~ 10A 1OC 23N 2AX 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AAPSS AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABPLY ABPPZ ABPVW ABTAH ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADACV ADBBV ADEOM ADHSS ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEPYG AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFIJ AFFPM AFGKR AFNWH AFPWT AFRAH AFZJQ AGUYK AHBTC AHXOZ AI. AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR AKPMI ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AQVQM ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DC7 DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 EBD EBS ECGQY EDH EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA GTFYD H.T H.X H13 HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG P2P P2W P2X P4D PQ0 Q.N Q11 Q5J QB0 R.K RBO ROL RX1 SA0 SUPJJ TN5 UB1 V8K VH1 VQA W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZCA ZXP ZY4 ZZTAW ~IA ~KM ~WT AAHQN AAMMB AAMNL AAYCA ABSQW ACHIC ACYXJ AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AANHP ACRPL ADNMO AAYXX ADXHL CITATION 7QG 7QR 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G P64 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c4891-d1b3b976fb5aae61bcd69501c7ad39bd84f7a6f6fa227fc484033177dfb5223d3 |
IEDL.DBID | DR2 |
ISSN | 0006-3606 |
IngestDate | Fri Jul 11 18:37:12 EDT 2025 Thu Jul 10 18:07:02 EDT 2025 Sun Jul 13 04:35:17 EDT 2025 Tue Jul 01 02:22:49 EDT 2025 Thu Apr 24 23:01:24 EDT 2025 Wed Jan 22 16:46:34 EST 2025 Thu Jul 03 22:16:30 EDT 2025 Wed Oct 30 10:01:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4891-d1b3b976fb5aae61bcd69501c7ad39bd84f7a6f6fa227fc484033177dfb5223d3 |
Notes | U.S. National Science Foundation - No. DEB-1313788 CGIAR Program on Forests, Trees and Agroforestry Coordenação de Aperfeiçoamento de Pessoal de Nível Superior UK Department for International Development (DFID) ark:/67375/WNG-PTVRSKWB-2 istex:933A90E99382CB3A4C8DE39D43AD673CDE636B9E ArticleID:BTP12381 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1850074341 |
PQPubID | 976347 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2000436600 proquest_miscellaneous_1850769100 proquest_journals_1850074341 crossref_citationtrail_10_1111_btp_12381 crossref_primary_10_1111_btp_12381 wiley_primary_10_1111_btp_12381_BTP12381 jstor_primary_48576571 istex_primary_ark_67375_WNG_PTVRSKWB_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11 20161101 November 2016 2016-11-00 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Biotropica |
PublicationTitleAlternate | Biotropica |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley – name: Wiley Subscription Services, Inc |
References | Lohbeck, M., L. Poorter, M. Martínez-Ramos, and F. Bongers. 2014. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96: 1242-1252. Lindell, C. A., R. J. Cole, K. D. Holl, and R. A. Zahawi. 2012. Migratory bird species in young tropical forest restoration sites: effects of vegetation height, planting design, and season. Bird Conserv. Int. 22: 94-105. Lamb, D. 2014. Large-scale forest restoration. Routledge, London. Voeks, R. A. 2004. Disturbance pharmacopoeias: Medicine and myth from the humid tropics. Ann. Assoc. Am. Geogr. 94: 868-888. Chazdon, R. L., and F. G. Coe. 1999. Ethnobotany of woody species in second-growth, old-growth, and selectively logged forests of northeastern Costa Rica. Conserv. Biol. 13: 1312-1322. De Souza, S. E. X. F., E. Vidal, G. D. F. Chagas, A. T. Elgar, and P. H. S. Brancalion. 2016. Ecological outcomes and livelihood benefits of community-managed agroforests and second-growth forests in Southeast Brazil. Biotropica 48: 868-881. Sears, R., P. Cronkleton, M. Perez-Ojeda del Arco, V. Robiglio, L. Putzel, and J. Cornelius. 2014. Timber production in smallholder agroforestry systems: justifications for pro-poor forest policy in Peru. Center for International Forestry Research, Bogor, Indonesia. Lee, E. W. S., B. C. H. Hau, and R. T. Corlett. 2005. Natural regeneration in exotic tree plantations in Hong Kong, China. For. Ecol. Manage. 212: 358-366. Danielsen, F., T. Adrian, S. Brofeldt, M. van Noordwijk, M. K. Poulsen, S. Rahayu, ... N. T. An. 2013. Community monitoring for REDD+: international promises and field realities. Ecol. Soc. 18: 41. Cordell, S., R. Ostertag, J. Michaud, and L. Warman. 2016. Quandaries of a decade-long restoration experiment trying to reduce invasive species: beat them, join them, give up, or start over? Restor. Ecol. 24: 139-144. Reid, J. L., C. D. Mendenhall, J. A. Rosales, R. A. Zahawi, and K. D. Holl. 2014. Landscape context mediates avian habitat choice in tropical forest restoration. PLoS ONE 9: e90573. Baptista, S. R. 2008. Metropolitanization and forest recovery in southern Brazil: a multiscale analysis of the Florianópolis city-region, Santa Catarina State, 1970 to 2005. Ecol. Soc. 13: 5. Strassburg, B. N., F. S. M. Barros, R. Couzeilles, A. Iribarrem, J. S. Santos, D. Silva, ... A. Latawiec. 2016. The role of natural regeneration to ecosystem services provision and habitat availability: a case study in the Brazilian Atlantic Forest. Biotrop. Spec. Issue 31: 601-618. Norden, N., H. A. Angarita, F. Bongers, B. Finegan, I. Granzow de la Cerda, E. Lebrija-Trejos, ... R. L. Chazdon. 2015. Successional dynamics in Neotropical forests are as uncertain as they are predictable. PNAS 112: 8013-8018. Chazdon, R. L., C. A. Peres, D. Dent, D. Sheil, A. E. Lugo, D. Lamb, ... S. E. Miller. 2009b. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23: 1406-1417. Fagan, M. E., R. S. Defriest, S. E. Sesnie, J. P. Arroyo, and R. L. Chazdon. 2016. Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor. Ecol. Appl. 26: 1456-1474. Stouffer, P. C., E. I. Johnson, R. O. Bierregaard, and T. E. Lovejoy. 2011. Understory bird communities in Amazonian rainforest fragments: species turnover through 25 years post-isolation in recovering landscapes. PLoS ONE 6: e20543. Grace, J., E. T. A. Mitchard, and E. Gloor. 2014. Perturbations in the carbon budget of the tropics. Glob. Change Biol. 20: 3238-3255. Carwardine, J., C. Hawkins, P. Polglase, H. P. Possingham, A. Reeson, A. R. Renwick, ... T. G. Martin. 2015. Spatial priorities for restoring biodiverse carbon forests. Bioscience 65: 372-382. Reid, J. L., K. D. Holl, and R. A. Zahawi. 2015. Seed dispersal limitations shift over time in tropical forest restoration. Ecol. Appl. 25: 1072-1082. Uriarte, M., M. Pinedo-Vasquez, R. S. DeFries, K. Fernandes, V. Gutierrez-Velez, W. E. Baethgen, and C. Padoch. 2012. Depopulation of rural landscapes exacerbates fire activity in the western Amazon. Proc. Natl Acad. Sci. USA 109: 21546-21550. Rappaport, D. I., L. R. Tambosi, and J. P. Metzger. 2015. A landscape triage approach: combining spatial and temporal dynamics to prioritize restoration and conservation. J. Appl. Ecol. 52: 590-601. Mello, M. A. R., F. M. D. Marquitti, P. R. Guimarães, E. K. V. Kalko, P. Jordano, and M. A. M. de Aguiar. 2011. The modularity of seed dispersal: differences in structure and robustness between bat- and bird-fruit networks. Oecologia 167: 131-140. Paquette, A., J. Hawryshyn, A. V. Senikas, and C. Potvin. 2009. Enrichment Planting in Secondary Forests: a Promising Clean Development Mechanism to Increase Terrestrial Carbon Sinks. Ecol. Soc. 14: 31 [http://www.ecologyandsociety.org/vol14/iss1/art31/]. Pistorius, T., and H. Freiberg. 2014. From target to implementation: perspectives for the international governance of forest landscape restoration. Forests 5: 482-497. Junqueira, A. B., G. H. Shepard, and C. R. Clement. 2011. Secondary forests on anthropogenic soils of the Middle Madeira River: valuation, local knowledge, and landscape domestication in Brazilian Amazonia. Econ. Bot. 65: 85-99. Zahawi, R. A., J. L. Reid, and K. D. Holl. 2015. Passive restoration can be an effective strategy: a reply to Prach and del Moral (2015). Restor. Ecol. 23: 347-348. Nghiem, L. T., H. T. Tan, and R. T. Corlett. 2015. Invasive trees in Singapore: are they a threat to native forests? Trop. Conserv. Sci. 8: 201-214. Parrotta, J. 1992. The role of plantation forests in rehabilitating degraded tropical ecosystems. Agric. Ecosyst. Environ. 41: 115-133. Rudel, T. K., M. Perez-Lugo, and H. Zichal. 2000. When fields revert to forest: development and spontaneous reforestation in post-war Puerto Rico. Prof. Geogr. 52: 386-397. Laestadius, L., S. Maginnis, S. Minnemeyer, P. Potapov, C. Saint-Laurent, and N. Sizer. 2012. Mapping opportunities for forest landscape restoration. Unasylva (FAO), 238: 47-48. Pinto, S. R., F. Melo, M. Tabarelli, A. Padovesi, C. A. Mesquita, C. A. de Mattos Scaramuzza, ... R. Rodrigues. 2014. Governing and delivering a biome-wide restoration initiative: The case of Atlantic Forest Restoration Pact in Brazil. Forests 5: 2212-2229. Latawiec, A. E., B. B. Strassburg, P. H. Brancalion, R. R. Rodrigues, and T. Gardner. 2015. Creating space for large-scale restoration in tropical agricultural landscapes. Front. Ecol. Environ. 13: 211-218. Michon, G., H. de Foresta, P. Levant, and F. Verdeaux. 2007. Domestic forests: a new paradigm for integrating local communities' forestry into tropical forest science. Ecol. Soc. 12: 1. García-Barrios, L., Y. M. Galván-Miyoshi, I. A. Valdivieso-Pérez, O. R. Masera, G. Bocco, and J. Vandermeer. 2009. Neotropical forest conservation, agricultural intensification, and rural out-migration: the Mexican experience. Bioscience 59: 863-873. Houghton, R., B. Byers, and A. A. Nassikas. 2015. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Chang. 5: 1022-1023. Pulido, M. T., and J. Caballero. 2006. The impact of shifting agriculture on the availability of non-timber forest products: the example of Sabal yapa in the Maya lowlands of Mexico. For. Ecol. Manage. 222: 399-409. Meli, P., M. Martínez-Ramos, and J. M. Rey-Benayas. 2013. Selecting species for passive and active riparian restoration in Southern Mexico. Restor. Ecol. 21: 163-165. Uriarte, M., N. B. Schwartz, J. S. Powers, E. Marin-Spiotta, W. Liao, and L. Werden. 2016. Impacts of climate variability on tree demography in second-growth tropical forests: the importance of regional context for predicting successional trajectoreis. Biotropica 48: 731-744. Suazo-Ortuño, I., L. Lopez-Toledo, J. Alvarado-Díaz, and M. Martínez-Ramos. 2015. Land-use change dynamics, soil type and species forming mono-dominant patches: the case of Pteridium aquilinum in a Neotropical rain forest region. Biotropica 47: 18-26. Bullock, J. M., J. Aronson, A. C. Newton, R. F. Pywell, and J. M. Rey-Benayas. 2011. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26: 541-549. Mukul, S. A., J. Herbohn, and J. Firn. 2016a. Co-benefits of biodiversity and carbon sequestration from regenerating secondary forests in the Philippine uplands: implications for forest landscape restoration. Biotropica 48: 882-889. Cumming, G. S. 2011. Spatial resilience: integrating landscape ecology, resilience, and sustainability. Landscape Ecol. 26: 899-909. Sabogal, C., C. Besacier, and D. McGuire. 2015. Forest and landscape restoration: concepts, approaches and challenges for implementation. Unasylva 245: 3-10. Barlow, J., T. A. Gardner, I. S. Araujo, T. C. Avila-Pires, A. B. Bonaldo, J. E. Costa, ... C. A. Peres. 2007. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104: 18555-18560. Helmer, E., O. Ramos, T. del. M. López, M. Quiñones, and W. Diaz. 2002. Mapping the forest type and land cover of Puerto Rico, a component of the Caribbean biodiversity hotspot. Carib. J. Sci. 38: 165-183. Resor, R. R. 1977. Rubber in Brazil: Dominance and collapse, 1876-1945. Bus. Hist. Rev. 51: 341-366. Bascompte, J., and P. Jordano. 2007. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38: 567-593. Lopez-Toledo, L., C. Horn, A. López-Cen, R. Collí-Díaz, and A. Padilla. 2011. Potential management of Chamaedorea seifrizii (Palmae), a non-timber forest product from the tropical forest of Calakmul, Southeast Mexico. Econ. Bot. 65: 371-380. Uriarte, M., L. Schneider, and T. K. Rudel. 2010. Synthesis: land transitions in the tropics. Biotropica 42: 59-62. Ewel, J. J., and F. E. Putz. 2004. A place for alien species in ecosystem restoration. Front. Ecol. Environ. 2: 336-354. Lamb, D. 1998. Large-scale ecological restoration of degraded tropical forest lands: The potential role of timber plantations. Restor. Ecol. 6: 271-279. Viani, R. A 2007; 104 2011; 478 2010; 107 2010; 18 2005; 212 2016; 31 2016; 30 2016; 544 2004; 2 2014; 29 2003; 53 2001; 148 2014; 22 2014; 20 2009; 14 2010; 20 2015; 85 2008; 25 2014; 14 2011; 65 2008; 22 1982 2007; 2 2013; 110 2014; 17 2014; 96 2016; 48 2012; 22 2016a; 113 2016; 45 2010; 9 2010; 8 1992; 41 2013a; 32 2008a; 320 2014; 319 2013; 88 2015; 50 2015; 245 2015; 52 1997; 24 1997 2013b 2008; 55 2016a; 48 2011; 6 2016a; 45 1995; 3 2007; 12 2007; 13 2016; 14 2003; 32 2007; 15 2012; 109 2016; 11 2009; 77 2016; 6 2010; 42 2015a 2015; 112 2015; 65 2007; 80 2015; 238 2013; 291 2011; 261 1998; 6 2016; 26 2012; 238 2006; 222 2016; 24 2011; 144 2016; 9 1982; 13 2009; 41 2013; 329 2015; 104 2013; 21 2015; 345 2008b 2009a; 41 2015; 103 2015; 31 1988; 38 2015; 349 2016; 104 2011; 16 1999; 80 2011; 19 2007; 38 2015; 46 2013; 18 2015; 47 2014; 5 2014; 4 2016b; 48 2014; 329 2016b; 2 1997; 99 2013; 11 2009; 50 2013; 12 1982; 6 2003; 7 2000; 52 1999; 13 2011b; 19 2011; 26 2014; 9 2016b; 6 2011; 167 2009; 59 2009; 23 2002; 38 2015; 13 2015; 15 2011; 333 2009b; 23 2015; 5 2015; 16 2010 2013; 45 1995; 11 2007; 362 2009 2013; 301 2007 2008; 13 2014; 195 2002 1999; 7 2015; 8 2007; 57 2009; 258 2015; 24 2015; 23 2012; 153 2015; 25 2004; 94 2004; 18 2002; 163 2013; 34 1977; 51 2016; 530 2016 2015 2011; 48 2014 2013 2009; 142 2014; 186 1992; 62 2014; 344 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 ITTO (e_1_2_9_89_1) 2002 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 Laestadius L. (e_1_2_9_99_1) 2012 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 Sears R. (e_1_2_9_167_1) 2014 e_1_2_9_129_1 e_1_2_9_144_1 Chazdon R. L. (e_1_2_9_35_1) 2013 e_1_2_9_106_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 Chazdon R. L. (e_1_2_9_43_1) e_1_2_9_5_1 Maginnis S. (e_1_2_9_114_1) 2007 Martins S. V. (e_1_2_9_117_1) 2014 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 Selwyn M. A. (e_1_2_9_168_1) 2009; 50 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 Laestadius L. (e_1_2_9_98_1) 2015; 245 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 Toledo V. M. (e_1_2_9_182_1) 2003; 7 e_1_2_9_124_1 e_1_2_9_147_1 Isernhagen I. (e_1_2_9_88_1) 2009 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_66_1 e_1_2_9_8_1 Vílchez Alvarado B. (e_1_2_9_191_1) 2008; 55 e_1_2_9_81_1 Kartawinata K. (e_1_2_9_97_1) 2015 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 Strassburg B. N. (e_1_2_9_176_1) 2016; 31 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_28_1 e_1_2_9_174_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 Pierro B. (e_1_2_9_140_1) 2015; 238 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 Kanowski J. (e_1_2_9_96_1) 2010 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_190_1 e_1_2_9_52_1 Hecht S. B. (e_1_2_9_77_1) 1982 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 Hecht S. (e_1_2_9_79_1) 2015 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_87_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 Reij C. (e_1_2_9_152_1) 2009 e_1_2_9_30_1 Chazdon R. L. (e_1_2_9_31_1) 2008 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_186_1 e_1_2_9_42_1 e_1_2_9_65_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_12_1 e_1_2_9_128_1 Carabias J. (e_1_2_9_25_1) 2007; 80 IUCN and WRI (e_1_2_9_90_1) 2014 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 Reij C. (e_1_2_9_153_1) 2015 e_1_2_9_62_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_4_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_13_1 Helmer E. (e_1_2_9_80_1) 2002; 38 Davies P. (e_1_2_9_53_1) 1997 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 Ford A. (e_1_2_9_64_1) 2015 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_86_1 Kanowski P. J. (e_1_2_9_95_1) 2010 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 Sabogal C. (e_1_2_9_163_1) 2015; 245 Wieland Fernandini P. (e_1_2_9_193_1) 2015 e_1_2_9_192_1 |
References_xml | – reference: Fagan, M. E., R. S. Defriest, S. E. Sesnie, J. P. Arroyo, and R. L. Chazdon. 2016. Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor. Ecol. Appl. 26: 1456-1474. – reference: Stouffer, P. C., E. I. Johnson, R. O. Bierregaard, and T. E. Lovejoy. 2011. Understory bird communities in Amazonian rainforest fragments: species turnover through 25 years post-isolation in recovering landscapes. PLoS ONE 6: e20543. – reference: Chazdon, R. L., C. A. Peres, D. Dent, D. Sheil, A. E. Lugo, D. Lamb, ... S. E. Miller. 2009b. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23: 1406-1417. – reference: Lamb, D. 1998. Large-scale ecological restoration of degraded tropical forest lands: The potential role of timber plantations. Restor. Ecol. 6: 271-279. – reference: McAlpine, C., C. P. Catterall, R. M. Nally, D. Lindenmayer, J. L. Reid, K. D. Holl, ... R. J. Hobbs. 2016. Integrating plant-and animal-based perspectives for more effective restoration of biodiversity. Front. Ecol. Environ. 14: 37-45. – reference: Pan, Y. D., R. A. Birdsey, J. Y. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, ... D. Hayes. 2011. A large and persistent carbon sink in the world's forests. Science 333: 988-993. – reference: Holl, K. D., R. A. Zahawi, R. J. Cole, R. Ostertag, and S. Cordell. 2011b. Planting seedlings in Tree Islands Versus Plantations as a large, ÄêScale tropical forest restoration strategy. Restor. Ecol. 19: 470-479. – reference: Chazdon, R. L., E. N. Broadbent, D. M. A. Rozendaal, F. Bongers, A. M. A. Zambrano, T. M. Aide, ... L. Poorter. 2016b. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2: e1501639. – reference: Howe, H. F.. 2016. Making dispersal syndromes and networks useful in tropical conservation and restoration. Glob. Ecol. Conserv. 6: 152-178. – reference: Lohbeck, M., L. Poorter, M. Martínez-Ramos, and F. Bongers. 2014. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96: 1242-1252. – reference: Mello, M. A. R., F. M. D. Marquitti, P. R. Guimarães, E. K. V. Kalko, P. Jordano, and M. A. M. de Aguiar. 2011. The modularity of seed dispersal: differences in structure and robustness between bat- and bird-fruit networks. Oecologia 167: 131-140. – reference: Viani, R. A. G., N. B. Vidas, M. M. Pardi, D. C. V. Castro, E. Gusson, and P. H. Brancalion. 2015. Animal-dispersed pioneer trees enhance the early regeneration in Atlantic Forest restoration plantations. Natureza & Conservação 13: 41-46. – reference: Lewis, S. L., D. P. Edwards, and D. Galbraith. 2015. Increasing human dominance of tropical forests. Science 349: 827-832. – reference: Aide, T. M., M. L. Clark, H. R. Grau, D. López-Carr, M. A. Levy, D. Redo, ... M. Muñiz. 2013. Deforestation and reforestation of Latin America and the Caribbean (2001-2010). Biotropica 45: 262-271. – reference: Ewel, J. J., and F. E. Putz. 2004. A place for alien species in ecosystem restoration. Front. Ecol. Environ. 2: 336-354. – reference: Murcia, C., M. R. Guariguata, Á. Andrade, G. I. Andrade, J. Aronson, E. M. Escobar, ... E. Montes. 2016. Challenges and prospects for scaling-up ecological restoration to meet international commitments: Colombia as a case study. Conserv. Lett. 9: 213-220. – reference: Guariguata, M. R., R. Rheingans, and F. Montagnini. 1995. Early woody invasion under tree plantations in Costa Rica: implications for forest restoration. Restor. Ecol. 3: 252-260. – reference: Nghiem, L. T., H. T. Tan, and R. T. Corlett. 2015. Invasive trees in Singapore: are they a threat to native forests? Trop. Conserv. Sci. 8: 201-214. – reference: Grace, J., E. T. A. Mitchard, and E. Gloor. 2014. Perturbations in the carbon budget of the tropics. Glob. Change Biol. 20: 3238-3255. – reference: Pereira, L., C. Oliveira, and J. M. D. Torezan. 2013. Woody species regeneration in Atlantic Forest restoration sites depends on surrounding landscape. Natureza & Conservação 11: 138-144. – reference: Zambrano, A. M. A., E. N. Broadbent, and W. H. Durham. 2010. Social and environmental effects of ecotourism in the Osa Peninsula of Costa Rica: the Lapa Rios case. J. Ecotourism 9: 62-83. – reference: Román-Dañobeytia, F., M. Huayllani, A. Michi, F. Ibarra, R. Loayza-Muro, T. Vázquez, ... M. García. 2015. Reforestation with four native tree species after abandoned gold mining in the Peruvian Amazon. Ecol. Eng. 85: 39-46. – reference: Wieland Fernandini, P., and R. Sousa. 2015. The distribution of powers and responsibilities affecting forests, land use, and REDD+ across levels and sectors in Peru: a legal study. Occasional Paper 129., 57 pp. CIFOR, Bogor, Indonesia. – reference: Rodrigues, R. R., S. Gandolfi, A. G. Nave, J. Aronson, T. E. Barreto, C. Y. Vidal, and P. H. S. Brancalion. 2011. Large-scale ecological restoration of high-diversity tropical forests in SE Brazil. For. Ecol. Manage. 261: 1605-1613. – reference: Toledo, V. M., B. Ortiz-Espejel, L. Cortes, P. Moguel, and M. J. Orodonez. 2003. The multiple use of tropical forests by indigenous peoples in Mexico: A case of adaptive management. Conserv. Ecol. 7. http://www.ecologyandsociety.org/vol7/iss3/art9/print.pdf. – reference: Resor, R. R. 1977. Rubber in Brazil: Dominance and collapse, 1876-1945. Bus. Hist. Rev. 51: 341-366. – reference: Poorter, L., F. Bongers, T. M. Aide, A. M. A. Zambrano, P. Balvanera, J. M. Becknell, ... R. L. Chazdon. 2016. Biomass resilience of Neotropical secondary forests. Nature 530: 211-214. – reference: De Souza, S. E. X. F., E. Vidal, G. D. F. Chagas, A. T. Elgar, and P. H. S. Brancalion. 2016. Ecological outcomes and livelihood benefits of community-managed agroforests and second-growth forests in Southeast Brazil. Biotropica 48: 868-881. – reference: Chazdon, R. L. 2008a. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320: 1458-1460. – reference: Howe, H. F., and J. Smallwood. 1982. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13: 201-228. – reference: Uriarte, M., N. B. Schwartz, J. S. Powers, E. Marin-Spiotta, W. Liao, and L. Werden. 2016. Impacts of climate variability on tree demography in second-growth tropical forests: the importance of regional context for predicting successional trajectoreis. Biotropica 48: 731-744. – reference: Cumming, G. S. 2011. Spatial resilience: integrating landscape ecology, resilience, and sustainability. Landscape Ecol. 26: 899-909. – reference: Tymen, B., M. Réjou-Méchain, J. W. Dalling, S. Fauset, T. R. Feldpausch, N. Norden, ... J. Chave. 2015. Evidence for arrested succession in a liana-infested Amazonian forest. J. Ecol. 104: 149-159. – reference: Vieira, I. C. G., T. Gardner, J. Ferreira, A. C. Lees, and J. Barlow. 2014. Challenges of governing second-growth forests: a case study from the Brazilian Amazonian State of Pará. Forests 5: 1737-1752. – reference: Chazdon, R. L., and M. Uriarte. 2016. Natural regeneration in the context of large-scale forest and landscape restoration in the tropics. Biotropica 48: 709-715. – reference: Sears, R., P. Cronkleton, M. Perez-Ojeda del Arco, V. Robiglio, L. Putzel, and J. Cornelius. 2014. Timber production in smallholder agroforestry systems: justifications for pro-poor forest policy in Peru. Center for International Forestry Research, Bogor, Indonesia. – reference: Sarmiento, F. O. 1997. Arrested succession in pastures hinders regeneration of Tropandean forests and shreds mountain landscapes. Environ. Conserv. 24: 14-23. – reference: Reid, J. L., C. D. Mendenhall, J. A. Rosales, R. A. Zahawi, and K. D. Holl. 2014. Landscape context mediates avian habitat choice in tropical forest restoration. PLoS ONE 9: e90573. – reference: Feldpausch, T. R., C. D. Prates-Clark, E. C. M. Fernandes, and S. J. Riha. 2007. Secondary forest growth deviation from chronosequence predictions in central Amazonia. Glob. Change Biol. 13: 967-979. – reference: García-Barrios, L., Y. M. Galván-Miyoshi, I. A. Valdivieso-Pérez, O. R. Masera, G. Bocco, and J. Vandermeer. 2009. Neotropical forest conservation, agricultural intensification, and rural out-migration: the Mexican experience. Bioscience 59: 863-873. – reference: Sabogal, C., C. Besacier, and D. McGuire. 2015. Forest and landscape restoration: concepts, approaches and challenges for implementation. Unasylva 245: 3-10. – reference: Michon, G., H. de Foresta, P. Levant, and F. Verdeaux. 2007. Domestic forests: a new paradigm for integrating local communities' forestry into tropical forest science. Ecol. Soc. 12: 1. – reference: Baptista, S. R. 2008. Metropolitanization and forest recovery in southern Brazil: a multiscale analysis of the Florianópolis city-region, Santa Catarina State, 1970 to 2005. Ecol. Soc. 13: 5. – reference: Carabias, J., V. Arriaga, and V. Cervantes Gutiérrez. 2007. Las políticas públicas de la restauración ambiental en México: Limitantes, avances, rezagos y retos. Boletín de la Sociedad Botánica de México 80: 85-100. – reference: Holl, K. D., and T. M. Aide. 2011. When and where to actively restore ecosystems? For. Ecol. Manage. 261: 1558-1563. – reference: Chazdon, R. L., P. H. Brancalion, L. Laestadius, A. Bennet-Curry, K. Buckingham, C. Kumar, ... S. J. Wilson. 2016a. When is a forest a forest? The new era of forest and landscape restoration calls for additional forest concepts and definitions Ambio 45: 538-550. – reference: Gavin, M. C. 2004. Changes in forest use value through ecological succession and their implications for land management in the Peruvian Amazon. Conserv. Biol. 18: 1562-1570. – reference: Sansevero, J. B. B., P. V. Prieto, L. F. D. de Moraes, and P. J. F. P. Rodrigues. 2011. Natural regeneration in plantations of native trees in lowland Brazilian Atlantic Forest: Community structure, diversity, and dispersal syndromes. Restor. Ecol. 19: 379-389. – reference: Román-Dañobeytia, F. J., S. I. Levy-Tacher, P. Macario-Mendoza, and J. Zúñiga-Morales. 2014. Redefining secondary forests in the Mexican Forest Code: Implications for management, restoration, and conservation. Forests 5: 978-991. – reference: Lopez-Toledo, L., C. Horn, A. López-Cen, R. Collí-Díaz, and A. Padilla. 2011. Potential management of Chamaedorea seifrizii (Palmae), a non-timber forest product from the tropical forest of Calakmul, Southeast Mexico. Econ. Bot. 65: 371-380. – reference: Bascompte, J., and P. Jordano. 2007. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38: 567-593. – reference: Latawiec, A. E., B. B. Strassburg, P. H. Brancalion, R. R. Rodrigues, and T. Gardner. 2015. Creating space for large-scale restoration in tropical agricultural landscapes. Front. Ecol. Environ. 13: 211-218. – reference: Zhai, D.-L., J.-C. Xu, Z.-C. Dai, C. H. Cannon, and R. Grumbine. 2014. Increasing tree cover while losing diverse natural forests in tropical Hainan, China. Reg. Environ. Change 14: 611-621. – reference: Chazdon, R. L. 2013a. Making tropical succession and landscape reforestation successful. J. Sustain. For. 32: 649-658. – reference: Styger, E., E. Fernandes, H. Rakotondramasy, and E. Rajaobelinirina. 2009. Degrading uplands in the rainforest region of Madagascar: Fallow biomass, nutrient stocks, and soil nutrient availability. Agrofor. Syst. 77: 107-122. – reference: Laurance, W. F., J. L. C. Camargo, R. C. C. Luizao, S. G. Laurance, S. L. Pimm, E. M. Bruna, ... T. E. Lovejoy. 2011. The fate of Amazonian forest fragments: A 32-year investigation. Biol. Conserv. 144: 56-67. – reference: Helmer, E., O. Ramos, T. del. M. López, M. Quiñones, and W. Diaz. 2002. Mapping the forest type and land cover of Puerto Rico, a component of the Caribbean biodiversity hotspot. Carib. J. Sci. 38: 165-183. – reference: Abbas, S., J. E. Nichol, and G. A. Fischer. 2016. A 70-year perspective on tropical forest regeneration. Sci. Total Environ. 544: 544-552. – reference: Cheung, K. C., D. Liebsch, and M. C. M. Marques. 2010. Forest recovery in newly Abandoned Pastures in Southern Brazil: implications for the Atlantic Rain Forest Resilience. Natureza & Conservacao 8: 66-70. – reference: Ferraz, S. F., K. M. Ferraz, C. C. Cassiano, P. H. S. Brancalion, D. T. da Luz, T. N. Azevedo, ... J. P. Metzger. 2014. How good are tropical forest patches for ecosystem services provisioning? Landscape Ecol. 29: 187-200. – reference: Harvey, C. A., O. Komar, R. Chazdon, B. G. Ferguson, B. Finegan, D. M. Griffith, and M. Wishnie. 2008. Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conserv. Biol. 22: 8-15. – reference: Holl, K. D., and R. A. Zahawi. 2014. Factors explaining variability in woody above-ground biomass accumulation in restored tropical forest. For. Ecol. Manage. 319: 36-43. – reference: Martins, S. V., M. Sartori, F. L. Raposo Filho, M. Simoneli, G. Dadalto, M. L. Pereira, and A. E. Souza da Silva. 2014. Potencial de regeneração natural de florestas nativas nas diferentes regiões do estado do Espírito Santo. CEDAGRO, Vitória, ES, Brazil. – reference: Uriarte, M., L. Schneider, and T. K. Rudel. 2010. Synthesis: land transitions in the tropics. Biotropica 42: 59-62. – reference: Adams, C., S. Rodrigues, M. Calmon, and C. Kumar. 2016. Impacts of large-scale forest restoration on socioeconomic status and local livelihoods: what we know and do not know. Biotropica 48: 731-744. – reference: Nicotra, A. B., R. L. Chazdon, and S. Iriarte. 1999. Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests. Ecology 80: 1908-1926. – reference: Reid, J. L., K. D. Holl, and R. A. Zahawi. 2015. Seed dispersal limitations shift over time in tropical forest restoration. Ecol. Appl. 25: 1072-1082. – reference: Pistorius, T., and H. Freiberg. 2014. From target to implementation: perspectives for the international governance of forest landscape restoration. Forests 5: 482-497. – reference: Danielsen, F., N. D. Burgess, A. Balmford, P. F. Donald, M. Funder, J. P. Jones, ... J. Brashares. 2009. Local participation in natural resource monitoring: a characterization of approaches. Conserv. Biol. 23: 31-42. – reference: Murcia, C. 1997. Evaluation of Andean alder as a catalyst for the recovery of tropical cloud forests in Colombia. For. Ecol. Manage. 99: 163-170. – reference: Reij, C., and D. Garrity. 2016. Scaling up farmer-managed natural regeneration in Africa to restore degraded landscapes. Biotropica 48: 834-843. – reference: Brown, D. R., P. Dettmann, T. Rinaudo, H. Tefera, and A. Tofu. 2011. Poverty alleviation and environmental restoration using the clean development mechanism: a case study from Humbo, Ethiopia. Environ. Manage. 48: 322-333. – reference: Martínez-Ramos, M., A. Pingarroni, J. Rodríguez-Velázquez, L. Toledo Chelala, I. Zermeño-Hernández, and F. Bongers. 2016b. Natural forest regeneration and ecological restoration in human modified tropical landscapes. Biotropica 48: 747-757. – reference: Shono, K., E. A. Cadaweng, and P. B. Durst. 2007. Application of assisted natural regeneration to restore degraded tropical forestlands. Restor. Ecol. 15: 620-626. – reference: Evans, M. C., J. Carwardine, R. J. Fensham, D. W. Butler, K. A. Wilson, H. P. Possingham, and T. G. Martin. 2015. Carbon farming via assisted natural regeneration as a cost-effective mechanism for restoring biodiversity in agricultural landscapes. Environ. Sci. Policy 50: 114-129. – reference: Pinto, S. R., F. Melo, M. Tabarelli, A. Padovesi, C. A. Mesquita, C. A. de Mattos Scaramuzza, ... R. Rodrigues. 2014. Governing and delivering a biome-wide restoration initiative: The case of Atlantic Forest Restoration Pact in Brazil. Forests 5: 2212-2229. – reference: Tambosi, L. R., A. C. Martensen, M. C. Ribeiro, and J. P. Metzger. 2014. A framework to optimize biodiversity restoration efforts based on habitat amount and landscape connectivity. Restor. Ecol. 22: 169-177. – reference: Piiroinen, T., P. Nyeko, and H. Roininen. 2015. Natural establishment of indigenous trees under planted nuclei: A study from a clear-felled pine plantation in an afrotropical rain forest. For. Ecol. Manage. 345: 21-28. – reference: Chazdon, R. L., C. A. Harvey, O. Komar, D. M. Griffith, B. G. Ferguson, M. Martínez-Ramos, ... S. M. Philpott. 2009a. Beyond reserves: a research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica 41: 142-153. – reference: Junqueira, A. B., G. H. Shepard, and C. R. Clement. 2011. Secondary forests on anthropogenic soils of the Middle Madeira River: valuation, local knowledge, and landscape domestication in Brazilian Amazonia. Econ. Bot. 65: 85-99. – reference: Friday, J. B., S. Cordell, C. P. Giardina, F. Inman-Narahari, N. Koch, J. J. Leary, ... C. Trauernicht. 2015. Future directions for forest restoration in Hawai 'i. New Forest. 46: 733-746. – reference: Hernández-Barrios, J. C., N. P. Anten, and M. Martínez-Ramos. 2015. Sustainable harvesting of non-timber forest products based on ecological and economic criteria. J. Appl. Ecol. 52: 389-401. – reference: Carnevale, N. J., and F. Montagnini. 2002. Facilitating regeneration of secondary forests with the use of mixed and pure plantations of indigenous tree species. For. Ecol. Manage. 163: 217-227. – reference: Voeks, R. A. 2004. Disturbance pharmacopoeias: Medicine and myth from the humid tropics. Ann. Assoc. Am. Geogr. 94: 868-888. – reference: Sun, Z., H. Ren, V. Schaefer, Q. Guo, and J. Wang. 2014. Using ecological memory as an indicator to monitor the ecological restoration of four forest plantations in subtropical China. Environ. Monit. Assess. 186: 8229-8247. – reference: Vílchez Alvarado, B., R. Chazdon, and V. Milla Quesada. 2008. Dinámica de la regeneración en cuatro bosques secundarios tropicales de la región Huetar Norte, Costa Rica. Su valor para la conservación o uso comercial. Recursos Naturales y Ambiente (Costa Rica) 55: 118-128. – reference: Reij, C., G. Tappan, and M. Smale. 2009. Agroenvironmental transformation in the Sahel: Another kind of" Green Revolution". Intl Food Policy Res Inst, Washington, D. C. – reference: Lasky, J. R., M. Uriarte, V. K. Boukili, D. L. Erickson, W. J. Kress, and R. L. Chazdon. 2014. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol. Lett. 17: 1158-1167. – reference: Grau, H. R., T. M. Aide, J. K. Zimmerman, J. R. Thomlinson, E. Helmer, and X. M. Zou. 2003. The ecological consequences of socioeconomic and land-use changes in postagriculture Puerto Rico. Bioscience 53: 1159-1168. – reference: de Rezende, C. L., A. Uezu, F. R. Scarano, and D. S. D. Araujo. 2015. Atlantic forest spontaneous regeneration at landscape scale. Biodivers. Conserv. 24: 2255-2272. – reference: Shoo, L. P., K. Freebody, J. Kanowski, and C. P. Catterall. 2016. Slow recovery of tropical old-field rainforest regrowth and the value and limitations of active restoration. Conserv. Biol. 30: 121-132. – reference: Sloan, S., M. Goosem, and S. G. Laurance. 2015. Tropical forest regeneration following land abandonment is driven by primary rainforest distribution in an old pastoral region. Landsc. Ecol. 31: 601-618. – reference: Bhagwat, S. A., N. Sandra, and K. J. Willis. 2012. Resilience of an ancient tropical forest landscape to 7500 years of environmental change. Biol. Conserv. 153: 108-117. – reference: IUCN and WRI. 2014. A guide to the restoration opportunities assessment methodology (ROAM): assessing forest landscape restoration opportunities at the national or sub-national level. Working Paper (Road-test edition). IUCN, Gland, Switzerland. – reference: Sayer, J., T. Sunderland, J. Ghazoul, J.-L. Pfund, D. Sheil, E. Meijaard, ... C. Garcia. 2013. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110: 8349-8356. – reference: Jakovac, C. C., M. Peña-Claros, T. W. Kuyper, and F. Bongers. 2015. Loss of secondary-forest resilience by land-use intensification in the Amazon. J. Ecol. 103: 67-77. – reference: Paquette, A., J. Hawryshyn, A. V. Senikas, and C. Potvin. 2009. Enrichment Planting in Secondary Forests: a Promising Clean Development Mechanism to Increase Terrestrial Carbon Sinks. Ecol. Soc. 14: 31 [http://www.ecologyandsociety.org/vol14/iss1/art31/]. – reference: Algeet-Abarquero, N., A. Sánchez-Azofeifa, J. Bonatti, and M. Marchamalo. 2015. Land cover dynamics in Osa Region, Costa Rica: secondary forest is here to stay. Reg. Environ. Change 15: 1461-1472. – reference: Parrotta, J. 1992. The role of plantation forests in rehabilitating degraded tropical ecosystems. Agric. Ecosyst. Environ. 41: 115-133. – reference: Lee, E. W. S., B. C. H. Hau, and R. T. Corlett. 2005. Natural regeneration in exotic tree plantations in Hong Kong, China. For. Ecol. Manage. 212: 358-366. – reference: McGuire, L. P., and W. A. Boyle. 2013. Altitudinal migration in bats: evidence, patterns, and drivers. Biol. Rev. 88: 767-786. – reference: Zahawi, R. A., J. L. Reid, and K. D. Holl. 2014. Hidden costs of passive restoration. Restor. Ecol. 22: 284-287. – reference: Reij, C., and R. Winterbottom. 2015. Scaling up regreening: six steps to success; a practical approach to forest and landscape restoration. World Resources Institute, Washington, DC. – reference: Powers, J. S., J. P. Haggar, and R. F. Fisher. 1997. The effect of overstory composition on understory woody regeneration and species richness in 7-year-old plantations in Costa Rica. For. Ecol. Manage. 99: 43-54. – reference: Douterlungne, D., S. Levy-Tacher, D. Golicher, and F. Dañobeytia. 2010. Applying indigenous knowledge to the restoration of degraded tropical rain forest clearings dominated by bracken fern. Restor. Ecol. 18: 322-329. – reference: Latawiec, A. E., R. Crouzeilles, P. H. S. Brancalion, R. R. Rodrigues, J. B. B. Sansevero, J. S. Dos Santos, ... B. B. N. Strassburg. 2016. Natural regeneration and biodiversity: a global meta-analysis and implications for spatial planning. Biotropica 48: 844-855. – reference: Cordell, S., R. Ostertag, J. Michaud, and L. Warman. 2016. Quandaries of a decade-long restoration experiment trying to reduce invasive species: beat them, join them, give up, or start over? Restor. Ecol. 24: 139-144. – reference: Bullock, J. M., J. Aronson, A. C. Newton, R. F. Pywell, and J. M. Rey-Benayas. 2011. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26: 541-549. – reference: Elliott, S.. 2016. The potential for automating assisted natural regeneration (ANR) of tropical forest ecosystems. Biotropica 48: 825-833. – reference: Chazdon, R. L., P. H. Brancalion, D. Lamb, L. Laestadius, M. Calmon, and C. Kumar. 2015a. A policy-driven knowledge agenda for global forest and landscape restoration. Conserv. Lett.. doi:10.1111/conl.12220. – reference: Filotas, E., L. Parrott, P. J. Burton, R. L. Chazdon, K. D. Coates, L. Coll, ... C. Messier. 2014. Viewing forests through the lens of complex systems science. Ecosphere 5: art1. – reference: Parrotta, J. A., and O. H. Knowles. 1999. Restoration of tropical moist forests on bauxite-mined lands in the Brazilian Amazon. Restor. Ecol. 7: 103-116. – reference: Rozendaal, D. A., and R. L. Chazdon. 2015. Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica. Ecol. Appl. 25: 506-516. – reference: Bhagwat, S. A., S. Nogué, and K. J. Willis. 2013. Cultural drivers of reforestation in tropical forest groves of the Western Ghats of India. For. Ecol. Manage. 329: 393-400. – reference: Brockerhoff, E. G., H. Jactel, J. A. Parrotta, and S. F. Ferraz. 2013. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For. Ecol. Manage. 301: 43-50. – reference: Mesquita, R. d. C. G., P. E. dos Santos Massoca, C. C. Jakovac, T. V. Bentos, and G. B. Williamson. 2015. Amazon rain forest succession: stochasticity or land-use legacy? Bioscience 65: 849-861. – reference: Birch, J. C., A. C. Newton, C. A. Aquino, E. Cantarello, C. Echeverría, T. Kitzberger, ... N. T. Garavito. 2010. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services. Proc. Natl Acad. Sci. USA 107: 21925-21930. – reference: Kanowski, J., C. P. Catterall, K. Freebody, A. N. D. Freeman, and D. A. Harrison. 2010. Monitoring revegetation projects in rainforest landscapes. Toolkit Version3. Reef and Rainforest Research Cente Limited, Cairns, Australia. – reference: Tymen, B., M. Réjou-Méchain, J. W. Dalling, S. Fauset, T. R. Feldpausch, N. Norden, ... J. Chave. 2016. Evidence for arrested succession in a liana-infested Amazonian forest. J. Ecol. 104: 149-159. – reference: Chazdon, R. L. 2014. Second growth: the promise of tropical forest regeneration in an age of deforestation. University of Chicago Press, Chicago, IL. – reference: Davies, P. 1997. La visibilidad de los bosques secundarios. Memorias del taller internacional sobre el estado actual y potencial de manejo y desarrollo del bosque secundario tropical en América Latina, pp. 120-126. Amazon Cooperation Treaty, Lima, Perú. – reference: Bonner, M. T., S. Schmidt, and L. P. Shoo. 2013. A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. For. Ecol. Manage. 291: 73-86. – reference: Ceccon, E., J. I. Barrera-Cataño, J. Aronson, and C. Martínez-Garza. 2015. The socioecological complexity of ecological restoration in Mexico. Restor. Ecol. 23: 331-336. – reference: Sun, Z., H. Ren, V. Schaefer, H. Lu, J. Wang, L. Li, and N. Liu. 2013. Quantifying ecological memory during forest succession: a case study from lower subtropical forest ecosystems in South China. Ecol. Ind. 34: 192-203. – reference: Aryal, D. R., B. H. J. De Jong, S. Ochoa-Gaona, L. Esparza-Olguin, and J. Mendoza-Vega. 2014. Carbon stocks and changes in tropical secondary forests of southern Mexico. Agric. Ecosyst. Environ. 195: 220-230. – reference: Selwyn, M. A., and R. Ganesan. 2009. Evaluating the potential role of Eucalyptus plantations in the regeneration of native trees in southern Western Ghats, India. Trop. Ecol. 50: 173-189. – reference: Ribeiro, M. C., J. P. Metzger, A. C. Martensen, F. J. Ponzoni, and M. M. Hirota. 2009. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142: 1141-1153. – reference: Hecht, S. B. 1982. Agroforestry in the Amazon Basin: practice, theory and limits of a promising land use, 331 pp. Intl Labour Organisation, Cali, Colombia. – reference: Lugo, A. E. 1992. Comparison of tropical tree plantations with secondary forests of similar age. Ecol. Monogr. 62: 1-41. – reference: Griscom, H. P., and M. S. Ashton. 2011. Restoration of dry tropical forests in Central America: a review of pattern and process. For. Ecol. Manage. 261: 1564-1579. – reference: Yackulic, C. B., M. Fagan, M. Jain, A. Jina, Y. Lim, M. Marlier, ... M. Uriarte. 2011. Biophysical and socioeconomic factors associated with forest transitions at multiple spatial and temporal scales. Ecol. Soc. 16: 15. – reference: Norden, N., H. A. Angarita, F. Bongers, B. Finegan, I. Granzow de la Cerda, E. Lebrija-Trejos, ... R. L. Chazdon. 2015. Successional dynamics in Neotropical forests are as uncertain as they are predictable. PNAS 112: 8013-8018. – reference: Orsi, F., R. L. Church, and D. Geneletti. 2011. Restoring forest landscapes for biodiversity conservation and rural livelihoods: A spatial optimisation model. Environ. Model. Softw. 26: 1622-1638. – reference: Zahawi, R. A., J. L. Reid, and K. D. Holl. 2015. Passive restoration can be an effective strategy: a reply to Prach and del Moral (2015). Restor. Ecol. 23: 347-348. – reference: Raymond, C. M., C. Bieling, N. Fagerholm, B. Martin-Lopez, and T. Plieninger. 2016. The farmer as a landscape steward: comparing local understandings of landscape stewardship, landscape values, and land management actions. Ambio 45: 173-184. – reference: Hecht, S., A. L. Yang, B. S. Basnett, C. Padoch, and N. L. Peluso. 2015. People in motion, forests in transition: trends in migration, urbanization, and remittances and their effects on tropical forests. Occasional Paper 142, Bogor, Indonesia CIFOR. – reference: Meyfroidt, P., and E. Lambin. 2008. The causes of reforestation in Vietnam. Land Use Policy 25: 182-197. – reference: Rappaport, D. I., L. R. Tambosi, and J. P. Metzger. 2015. A landscape triage approach: combining spatial and temporal dynamics to prioritize restoration and conservation. J. Appl. Ecol. 52: 590-601. – reference: Bertacchi, M. I. F., N. T. Amazonas, P. H. Brancalion, G. E. Brondani, A. Oliveira, M. A. Pascoa, and R. R. Rodrigues. 2016. Establishment of tree seedlings in the understory of restoration plantations: natural regeneration and enrichment plantings. Restor. Ecol. 24: 100-108. – reference: Cole, R. J., K. D. Holl, and R. A. Zahawi. 2010. Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape. Ecol. Appl. 20: 1255-1269. – reference: Hecht, S. B., and S. S. Saatchi. 2007. Globalization and forest resurgence: changes in forest cover in El Salvador. Bioscience 57: 663-672. – reference: Pulido, M. T., and J. Caballero. 2006. The impact of shifting agriculture on the availability of non-timber forest products: the example of Sabal yapa in the Maya lowlands of Mexico. For. Ecol. Manage. 222: 399-409. – reference: Catterall, C. P.. 2016. Roles of non-native species in large-scale regeneration of moist tropical forests on anthropogenic grassland. Biotropica 48: 809-824. – reference: Jadin, I., P. Meyfroidt, and E. Lambin. 2016. International trade, and land use intensification and spatial reorganization explain Costa Rica's forest transition. Environ. Res. Lett. 11: 035005. – reference: Chazdon, R. L., and F. G. Coe. 1999. Ethnobotany of woody species in second-growth, old-growth, and selectively logged forests of northeastern Costa Rica. Conserv. Biol. 13: 1312-1322. – reference: Elmqvist, T., M. Pyykönen, M. Tengö, F. Rakotondrasoa, E. Rabakonandrianina, and C. Radimilahy. 2007. Patterns of loss and regeneration of tropical dry forest in Madagascar: the social institutional context. PLoS ONE 2: e402. – reference: Barlow, J., T. A. Gardner, I. S. Araujo, T. C. Avila-Pires, A. B. Bonaldo, J. E. Costa, ... C. A. Peres. 2007. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104: 18555-18560. – reference: Richards, R. C., J. Rerolle, J. Aronson, P. H. Pereira, H. Gonçalves, and P. H. Brancalion. 2015. Governing a pioneer program on payment for watershed services: Stakeholder involvement, legal frameworks and early lessons from the Atlantic forest of Brazil. Ecosystem Services 16: 23-32. – reference: Houghton, R., B. Byers, and A. A. Nassikas. 2015. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Chang. 5: 1022-1023. – reference: Vergara-Asenjo, G., D. Sharma, and C. Potvin. 2015. Engaging stakeholders: assessing accuracy of participatory mapping of land cover in Panama. Conserv. Lett. 8: 432-439. – reference: Brancalion, P., D. Schweizer, U. Gaudare, J. Mangueira, F. Lamonato, F. Farah, ... R. Rodrigues. 2016. Balancing economic costs and ecological outcomes of passive and active restoration in agricultural landscapes: the case of Brazil. Biotropica 48: 856-867. – reference: Mukul, S. A., J. Herbohn, and J. Firn. 2016a. Co-benefits of biodiversity and carbon sequestration from regenerating secondary forests in the Philippine uplands: implications for forest landscape restoration. Biotropica 48: 882-889. – reference: de Pierro, B. 2015. Modos de restaurar as florestas. Pesquiza FAPESP 238: 32-35. – reference: Laestadius, L., K. Buckingham, S. Maginnis, and C. Saint-Laurent. 2015. Back to Bonn and beyond: a history of forest landscape restoration and an outlook for the future. Unasylva 245: 11-18. – reference: Arroyo-Rodriguez, V., F. Melo, M. Martinez-Ramos, F. Bongers, R. Chazdon, J. Meave, N. Norden, B. A. Santos, I. R. Leal, ... M. Tabarelli. 2016. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. doi: 10.1111/brv.12231. – reference: Suazo-Ortuño, I., L. Lopez-Toledo, J. Alvarado-Díaz, and M. Martínez-Ramos. 2015. Land-use change dynamics, soil type and species forming mono-dominant patches: the case of Pteridium aquilinum in a Neotropical rain forest region. Biotropica 47: 18-26. – reference: Gilroy, J. J., P. Woodcock, F. A. Edwards, C. Wheeler, B. L. Baptiste, C. A. M. Uribe, ... D. P. Edwards. 2014. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Chang. 4: 503-507. – reference: Meli, P., M. Martínez-Ramos, and J. M. Rey-Benayas. 2013. Selecting species for passive and active riparian restoration in Southern Mexico. Restor. Ecol. 21: 163-165. – reference: Strassburg, B. N., F. S. M. Barros, R. Couzeilles, A. Iribarrem, J. S. Santos, D. Silva, ... A. Latawiec. 2016. The role of natural regeneration to ecosystem services provision and habitat availability: a case study in the Brazilian Atlantic Forest. Biotrop. Spec. Issue 31: 601-618. – reference: Allen, W. H. 1988. Biocultural restoration of a tropical forest: architects of Costa Rica's emerging Guanacaste National Park plan to make it an integral part of local culture. Bioscience 38: 156-161. – reference: Uriarte, M., M. Pinedo-Vasquez, R. S. DeFries, K. Fernandes, V. Gutierrez-Velez, W. E. Baethgen, and C. Padoch. 2012. Depopulation of rural landscapes exacerbates fire activity in the western Amazon. Proc. Natl Acad. Sci. USA 109: 21546-21550. – reference: Chazdon, R. L., S. G. Letcher, M. van Breugel, M. Martinez-Ramos, F. Bongers, and B. Finegan. 2007. Rates of change in tree communities of secondary Neotropical forests following major disturbances. Phils. Trans. R. Soc. B Biol. Sci. 362: 273-289. – reference: Martínez-Ramos, M., I. A. Ortiz-Rodríguez, D. Piñero, R. Dirzo, and J. Sarukhán. 2016a. Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves. Proc. Natl Acad. Sci. USA 113: 5323-5328. – reference: Guariguata, M., and R. Ostertag. 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. For. Ecol. Manage. 148: 185-206. – reference: Gilman, A., S. Letcher, R. M. Fincher, A. Perez, T. Madell, A. Finkelstein, and F. Corrales-Araya. 2016. Recovery of floristic diversity and basal area in natural forest regeneration and planted plots in a Costa Rican wet forest. Biotropica 48: 798-808. – reference: Silva Junior, M. C., F. R. Scarano, and F. Souza Cardel. 1995. Regeneration of an Atlantic forest formation in the understorey of a Eucalyptus grandis plantation in south-eastern Brazil. J. Trop. Ecol. 11: 147-152. – reference: Gibson, L., T. M. Lee, L. P. Koh, B. W. Brook, T. A. Gardner, J. Barlow, ... N. S. Sodhi. 2011. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478: 378. – reference: Laestadius, L., S. Maginnis, S. Minnemeyer, P. Potapov, C. Saint-Laurent, and N. Sizer. 2012. Mapping opportunities for forest landscape restoration. Unasylva (FAO), 238: 47-48. – reference: Carwardine, J., C. Hawkins, P. Polglase, H. P. Possingham, A. Reeson, A. R. Renwick, ... T. G. Martin. 2015. Spatial priorities for restoring biodiverse carbon forests. Bioscience 65: 372-382. – reference: Calvo-Alvarado, J., B. McLennan, A. Sanchez-Azofeifa, and T. Garvin. 2009. Deforestation and forest restoration in Guanacaste, Costa Rica: putting conservation policies in context. For. Ecol. Manage. 258: 931-940. – reference: Rudel, T. K., M. Perez-Lugo, and H. Zichal. 2000. When fields revert to forest: development and spontaneous reforestation in post-war Puerto Rico. Prof. Geogr. 52: 386-397. – reference: Bengtsson, J., P. Angelstam, and T. Elmqvist. 2003. Reserves, resilience, and dynamic landscapes. Ambio 32: 389-396. – reference: Lindell, C. A., R. J. Cole, K. D. Holl, and R. A. Zahawi. 2012. Migratory bird species in young tropical forest restoration sites: effects of vegetation height, planting design, and season. Bird Conserv. Int. 22: 94-105. – reference: Ford, A., and R. Nigh. 2015. Maya forest garden: eight millennia of sustainable cultivation of the tropical woodlands. Left Coast Press, Walnut Creek, CA. – reference: Lamb, D. 2014. Large-scale forest restoration. Routledge, London. – reference: Danielsen, F., T. Adrian, S. Brofeldt, M. van Noordwijk, M. K. Poulsen, S. Rahayu, ... N. T. An. 2013. Community monitoring for REDD+: international promises and field realities. Ecol. Soc. 18: 41. – reference: Melo, F. P. L., B. Rodriguez-Herrera, R. L. Chazdon, R. A. Medellin, and G. G. Ceballos. 2009. Small tent-roosting bats promote dispersal of large-seeded plants in a Neotropical forest. Biotropica 41: 737-743. – reference: Jordan, C. F., and E. G. Farnworth. 1982. Natural vs. plantation forests: a case study of land reclamation strategies for the humid tropics. Environ. Manage. 6: 485-492. – reference: Soares-Filho, B., R. Rajão, M. Macedo, A. Carneiro, W. Costa, M. Coe, ... A. Alencar. 2014. Cracking Brazil's forest code. Science 344: 363-364. – reference: Mukul, S. A., J. Herbohn, and J. Firn. 2016b. Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks. Sci. Rep. 6: 22483. – reference: Shoo, L. P., and C. P. Catterall. 2013. Stimulating natural regeneration of tropical forest on degraded land: approaches, outcomes, and information gaps. Restor. Ecol. 21: 670-677. – reference: ITTO. 2002. ITTO guidelines for the restoration, management and rehabilitation of degraded and secondary tropical forests. International Tropical Timber Organization, Yokohama, Japan. – reference: Ashton, M., I. Gunatilleke, C. Gunatilleke, K. Tennakoon, and P. Ashton. 2014. Use and cultivation of plants that yield products other than timber from South Asian tropical forests, and their potential in forest restoration. For. Ecol. Manage. 329: 360-374. – reference: Cronkleton, P., A. M. Larson, L. Feintrenie, C. Garcia, and P. Levang. 2013. Reframing community forestry to manage the forest-farm interface. Small-scale For. 12: 5-13. – volume: 21 start-page: 163 year: 2013 end-page: 165 article-title: Selecting species for passive and active riparian restoration in Southern Mexico publication-title: Restor. Ecol. – start-page: 129 year: 2014 end-page: 139 – volume: 57 start-page: 663 year: 2007 end-page: 672 article-title: Globalization and forest resurgence: changes in forest cover in El Salvador publication-title: Bioscience – volume: 544 start-page: 544 year: 2016 end-page: 552 article-title: A 70‐year perspective on tropical forest regeneration publication-title: Sci. Total Environ. – volume: 88 start-page: 767 year: 2013 end-page: 786 article-title: Altitudinal migration in bats: evidence, patterns, and drivers publication-title: Biol. Rev. – volume: 45 start-page: 173 year: 2016 end-page: 184 article-title: The farmer as a landscape steward: comparing local understandings of landscape stewardship, landscape values, and land management actions publication-title: Ambio – volume: 261 start-page: 1558 year: 2011 end-page: 1563 article-title: When and where to actively restore ecosystems? publication-title: For. Ecol. Manage. – volume: 9 start-page: 213 year: 2016 end-page: 220 article-title: Challenges and prospects for scaling‐up ecological restoration to meet international commitments: Colombia as a case study publication-title: Conserv. Lett. – volume: 26 start-page: 1622 year: 2011 end-page: 1638 article-title: Restoring forest landscapes for biodiversity conservation and rural livelihoods: A spatial optimisation model publication-title: Environ. Model. Softw. – volume: 153 start-page: 108 year: 2012 end-page: 117 article-title: Resilience of an ancient tropical forest landscape to 7500 years of environmental change publication-title: Biol. Conserv. – volume: 12 start-page: 1 year: 2007 article-title: Domestic forests: a new paradigm for integrating local communities’ forestry into tropical forest science publication-title: Ecol. Soc. – volume: 24 start-page: 2255 year: 2015 end-page: 2272 article-title: Atlantic forest spontaneous regeneration at landscape scale publication-title: Biodivers. Conserv. – volume: 48 start-page: 322 year: 2011 end-page: 333 article-title: Poverty alleviation and environmental restoration using the clean development mechanism: a case study from Humbo, Ethiopia publication-title: Environ. Manage. – volume: 38 start-page: 567 year: 2007 end-page: 593 article-title: Plant‐animal mutualistic networks: the architecture of biodiversity publication-title: Annu. Rev. Ecol. Evol. Syst. – start-page: 277 year: 2013b end-page: 286 – volume: 6 start-page: 152 year: 2016 end-page: 178 article-title: Making dispersal syndromes and networks useful in tropical conservation and restoration publication-title: Glob. Ecol. Conserv. – volume: 14 start-page: 37 year: 2016 end-page: 45 article-title: Integrating plant‐and animal‐based perspectives for more effective restoration of biodiversity publication-title: Front. Ecol. Environ. – volume: 80 start-page: 1908 year: 1999 end-page: 1926 article-title: Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests publication-title: Ecology – volume: 5 start-page: 2212 year: 2014 end-page: 2229 article-title: Governing and delivering a biome‐wide restoration initiative: The case of Atlantic Forest Restoration Pact in Brazil publication-title: Forests – volume: 94 start-page: 868 year: 2004 end-page: 888 article-title: Disturbance pharmacopoeias: Medicine and myth from the humid tropics publication-title: Ann. Assoc. Am. Geogr. – volume: 478 start-page: 378 year: 2011 article-title: Primary forests are irreplaceable for sustaining tropical biodiversity publication-title: Nature – volume: 320 start-page: 1458 year: 2008a end-page: 1460 article-title: Beyond deforestation: restoring forests and ecosystem services on degraded lands publication-title: Science – volume: 30 start-page: 121 year: 2016 end-page: 132 article-title: Slow recovery of tropical old‐field rainforest regrowth and the value and limitations of active restoration publication-title: Conserv. Biol. – volume: 104 start-page: 18555 year: 2007 end-page: 18560 article-title: Quantifying the biodiversity value of tropical primary, secondary, and plantation forests publication-title: Proc. Natl Acad. Sci. USA – year: 2014 – volume: 13 start-page: 967 year: 2007 end-page: 979 article-title: Secondary forest growth deviation from chronosequence predictions in central Amazonia publication-title: Glob. Change Biol. – start-page: 662 year: 2015 end-page: 681 – volume: 238 start-page: 47 year: 2012 end-page: 48 – volume: 29 start-page: 187 year: 2014 end-page: 200 article-title: How good are tropical forest patches for ecosystem services provisioning? publication-title: Landscape Ecol. – volume: 99 start-page: 163 year: 1997 end-page: 170 article-title: Evaluation of Andean alder as a catalyst for the recovery of tropical cloud forests in Colombia publication-title: For. Ecol. Manage. – volume: 47 start-page: 18 year: 2015 end-page: 26 article-title: Land‐use change dynamics, soil type and species forming mono‐dominant patches: the case of in a Neotropical rain forest region publication-title: Biotropica – volume: 22 start-page: 284 year: 2014 end-page: 287 article-title: Hidden costs of passive restoration publication-title: Restor. Ecol. – volume: 80 start-page: 85 year: 2007 end-page: 100 article-title: Las políticas públicas de la restauración ambiental en México: Limitantes, avances, rezagos y retos publication-title: Boletín de la Sociedad Botánica de México – volume: 26 start-page: 1456 year: 2016 end-page: 1474 article-title: Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor publication-title: Ecol. Appl. – volume: 3 start-page: 252 year: 1995 end-page: 260 article-title: Early woody invasion under tree plantations in Costa Rica: implications for forest restoration publication-title: Restor. Ecol. – volume: 104 start-page: 149 year: 2015 end-page: 159 article-title: Evidence for arrested succession in a liana‐infested Amazonian forest publication-title: J. Ecol. – volume: 22 start-page: 94 year: 2012 end-page: 105 article-title: Migratory bird species in young tropical forest restoration sites: effects of vegetation height, planting design, and season publication-title: Bird Conserv. Int. – volume: 65 start-page: 849 year: 2015 end-page: 861 article-title: Amazon rain forest succession: stochasticity or land‐use legacy? publication-title: Bioscience – volume: 142 start-page: 1141 year: 2009 end-page: 1153 article-title: The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation publication-title: Biol. Conserv. – start-page: 92 year: 2015 – volume: 15 start-page: 620 year: 2007 end-page: 626 article-title: Application of assisted natural regeneration to restore degraded tropical forestlands publication-title: Restor. Ecol. – start-page: 57 year: 2015 – start-page: 331 year: 1982 – volume: 25 start-page: 182 year: 2008 end-page: 197 article-title: The causes of reforestation in Vietnam publication-title: Land Use Policy – volume: 25 start-page: 506 year: 2015 end-page: 516 article-title: Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica publication-title: Ecol. Appl. – volume: 48 start-page: 868 year: 2016 end-page: 881 article-title: Ecological outcomes and livelihood benefits of community‐managed agroforests and second‐growth forests in Southeast Brazil publication-title: Biotropica – volume: 5 start-page: 482 year: 2014 end-page: 497 article-title: From target to implementation: perspectives for the international governance of forest landscape restoration publication-title: Forests – volume: 195 start-page: 220 year: 2014 end-page: 230 article-title: Carbon stocks and changes in tropical secondary forests of southern Mexico publication-title: Agric. Ecosyst. Environ. – volume: 48 start-page: 731 year: 2016 end-page: 744 article-title: Impacts of climate variability on tree demography in second‐growth tropical forests: the importance of regional context for predicting successional trajectoreis publication-title: Biotropica – volume: 48 start-page: 856 year: 2016 end-page: 867 article-title: Balancing economic costs and ecological outcomes of passive and active restoration in agricultural landscapes: the case of Brazil publication-title: Biotropica – volume: 13 start-page: 41 year: 2015 end-page: 46 article-title: Animal‐dispersed pioneer trees enhance the early regeneration in Atlantic Forest restoration plantations publication-title: Natureza & Conservação – volume: 41 start-page: 737 year: 2009 end-page: 743 article-title: Small tent‐roosting bats promote dispersal of large‐seeded plants in a Neotropical forest publication-title: Biotropica – volume: 38 start-page: 165 year: 2002 end-page: 183 article-title: Mapping the forest type and land cover of Puerto Rico, a component of the Caribbean biodiversity hotspot publication-title: Carib. J. Sci. – year: 2015a article-title: A policy‐driven knowledge agenda for global forest and landscape restoration publication-title: Conserv. Lett. – volume: 186 start-page: 8229 year: 2014 end-page: 8247 article-title: Using ecological memory as an indicator to monitor the ecological restoration of four forest plantations in subtropical China publication-title: Environ. Monit. Assess. – volume: 26 start-page: 899 year: 2011 end-page: 909 article-title: Spatial resilience: integrating landscape ecology, resilience, and sustainability publication-title: Landscape Ecol. – volume: 41 start-page: 115 year: 1992 end-page: 133 article-title: The role of plantation forests in rehabilitating degraded tropical ecosystems publication-title: Agric. Ecosyst. Environ. – volume: 50 start-page: 114 year: 2015 end-page: 129 article-title: Carbon farming via assisted natural regeneration as a cost‐effective mechanism for restoring biodiversity in agricultural landscapes publication-title: Environ. Sci. Policy – volume: 144 start-page: 56 year: 2011 end-page: 67 article-title: The fate of Amazonian forest fragments: A 32‐year investigation publication-title: Biol. Conserv. – volume: 48 start-page: 834 year: 2016 end-page: 843 article-title: Scaling up farmer‐managed natural regeneration in Africa to restore degraded landscapes publication-title: Biotropica – start-page: 384 year: 2008b end-page: 408 – volume: 530 start-page: 211 year: 2016 end-page: 214 article-title: Biomass resilience of Neotropical secondary forests publication-title: Nature – volume: 107 start-page: 21925 year: 2010 end-page: 21930 article-title: Cost‐effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services publication-title: Proc. Natl Acad. Sci. USA – volume: 2 start-page: e1501639 year: 2016b article-title: Carbon sequestration potential of second‐growth forest regeneration in the Latin American tropics publication-title: Sci. Adv. – volume: 42 start-page: 59 year: 2010 end-page: 62 article-title: Synthesis: land transitions in the tropics publication-title: Biotropica – volume: 65 start-page: 372 year: 2015 end-page: 382 article-title: Spatial priorities for restoring biodiverse carbon forests publication-title: Bioscience – volume: 45 start-page: 262 year: 2013 end-page: 271 article-title: Deforestation and reforestation of Latin America and the Caribbean (2001–2010) publication-title: Biotropica – volume: 16 start-page: 15 year: 2011 article-title: Biophysical and socioeconomic factors associated with forest transitions at multiple spatial and temporal scales publication-title: Ecol. Soc. – volume: 18 start-page: 41 year: 2013 article-title: Community monitoring for REDD+: international promises and field realities publication-title: Ecol. Soc. – volume: 25 start-page: 1072 year: 2015 end-page: 1082 article-title: Seed dispersal limitations shift over time in tropical forest restoration publication-title: Ecol. Appl. – volume: 20 start-page: 3238 year: 2014 end-page: 3255 article-title: Perturbations in the carbon budget of the tropics publication-title: Glob. Change Biol. – volume: 55 start-page: 118 year: 2008 end-page: 128 article-title: Dinámica de la regeneración en cuatro bosques secundarios tropicales de la región Huetar Norte, Costa Rica. Su valor para la conservación o uso comercial publication-title: Recursos Naturales y Ambiente (Costa Rica) – volume: 329 start-page: 393 year: 2013 end-page: 400 article-title: Cultural drivers of reforestation in tropical forest groves of the Western Ghats of India publication-title: For. Ecol. Manage. – year: 2016 – volume: 65 start-page: 371 year: 2011 end-page: 380 article-title: Potential management of Chamaedorea seifrizii (Palmae), a non‐timber forest product from the tropical forest of Calakmul, Southeast Mexico publication-title: Econ. Bot. – year: 2010 – volume: 51 start-page: 341 year: 1977 end-page: 366 article-title: Rubber in Brazil: Dominance and collapse, 1876‐1945 publication-title: Bus. Hist. Rev. – volume: 52 start-page: 386 year: 2000 end-page: 397 article-title: When fields revert to forest: development and spontaneous reforestation in post‐war Puerto Rico publication-title: Prof. Geogr. – volume: 8 start-page: 201 year: 2015 end-page: 214 article-title: Invasive trees in Singapore: are they a threat to native forests? publication-title: Trop. Conserv. Sci. – volume: 362 start-page: 273 year: 2007 end-page: 289 article-title: Rates of change in tree communities of secondary Neotropical forests following major disturbances publication-title: Phils. Trans. R. Soc. B Biol. Sci. – volume: 8 start-page: 66 year: 2010 end-page: 70 article-title: Forest recovery in newly Abandoned Pastures in Southern Brazil: implications for the Atlantic Rain Forest Resilience publication-title: Natureza & Conservacao – volume: 18 start-page: 322 year: 2010 end-page: 329 article-title: Applying indigenous knowledge to the restoration of degraded tropical rain forest clearings dominated by bracken fern publication-title: Restor. Ecol. – volume: 24 start-page: 139 year: 2016 end-page: 144 article-title: Quandaries of a decade‐long restoration experiment trying to reduce invasive species: beat them, join them, give up, or start over? publication-title: Restor. Ecol. – volume: 238 start-page: 32 year: 2015 end-page: 35 article-title: Modos de restaurar as florestas publication-title: Pesquiza FAPESP – year: 2002 – volume: 319 start-page: 36 year: 2014 end-page: 43 article-title: Factors explaining variability in woody above‐ground biomass accumulation in restored tropical forest publication-title: For. Ecol. Manage. – volume: 222 start-page: 399 year: 2006 end-page: 409 article-title: The impact of shifting agriculture on the availability of non‐timber forest products: the example of Sabal yapa in the Maya lowlands of Mexico publication-title: For. Ecol. Manage. – volume: 32 start-page: 649 year: 2013a end-page: 658 article-title: Making tropical succession and landscape reforestation successful publication-title: J. Sustain. For. – volume: 48 start-page: 825 year: 2016 end-page: 833 article-title: The potential for automating assisted natural regeneration (ANR) of tropical forest ecosystems publication-title: Biotropica – volume: 48 start-page: 844 year: 2016 end-page: 855 article-title: Natural regeneration and biodiversity: a global meta‐analysis and implications for spatial planning publication-title: Biotropica – volume: 333 start-page: 988 year: 2011 end-page: 993 article-title: A large and persistent carbon sink in the world's forests publication-title: Science – volume: 344 start-page: 363 year: 2014 end-page: 364 article-title: Cracking Brazil's forest code publication-title: Science – volume: 261 start-page: 1605 year: 2011 end-page: 1613 article-title: Large‐scale ecological restoration of high‐diversity tropical forests in SE Brazil publication-title: For. Ecol. Manage. – volume: 23 start-page: 331 year: 2015 end-page: 336 article-title: The socioecological complexity of ecological restoration in Mexico publication-title: Restor. Ecol. – volume: 291 start-page: 73 year: 2013 end-page: 86 article-title: A meta‐analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations publication-title: For. Ecol. Manage. – volume: 26 start-page: 541 year: 2011 end-page: 549 article-title: Restoration of ecosystem services and biodiversity: conflicts and opportunities publication-title: Trends Ecol. Evol. – volume: 59 start-page: 863 year: 2009 end-page: 873 article-title: Neotropical forest conservation, agricultural intensification, and rural out‐migration: the Mexican experience publication-title: Bioscience – year: 2009 – volume: 45 start-page: 538 year: 2016a end-page: 550 article-title: When is a forest a forest? The new era of forest and landscape restoration calls for additional forest concepts and definitions publication-title: Ambio – volume: 23 start-page: 347 year: 2015 end-page: 348 article-title: Passive restoration can be an effective strategy: a reply to Prach and del Moral (2015) publication-title: Restor. Ecol. – volume: 2 start-page: e402 year: 2007 article-title: Patterns of loss and regeneration of tropical dry forest in Madagascar: the social institutional context publication-title: PLoS ONE – volume: 48 start-page: 747 year: 2016b end-page: 757 article-title: Natural forest regeneration and ecological restoration in human modified tropical landscapes publication-title: Biotropica – volume: 329 start-page: 360 year: 2014 end-page: 374 article-title: Use and cultivation of plants that yield products other than timber from South Asian tropical forests, and their potential in forest restoration publication-title: For. Ecol. Manage. – volume: 167 start-page: 131 year: 2011 end-page: 140 article-title: The modularity of seed dispersal: differences in structure and robustness between bat‐ and bird‐fruit networks publication-title: Oecologia – start-page: 35 year: 2013 end-page: 59 – volume: 7 start-page: 103 year: 1999 end-page: 116 article-title: Restoration of tropical moist forests on bauxite‐mined lands in the Brazilian Amazon publication-title: Restor. Ecol. – volume: 77 start-page: 107 year: 2009 end-page: 122 article-title: Degrading uplands in the rainforest region of Madagascar: Fallow biomass, nutrient stocks, and soil nutrient availability publication-title: Agrofor. Syst. – year: 2015 article-title: People in motion, forests in transition: trends in migration, urbanization, and remittances and their effects on tropical forests publication-title: Occasional Paper 142 – volume: 110 start-page: 8349 year: 2013 end-page: 8356 article-title: Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses publication-title: Proc. Natl Acad. Sci. USA – volume: 109 start-page: 21546 year: 2012 end-page: 21550 article-title: Depopulation of rural landscapes exacerbates fire activity in the western Amazon publication-title: Proc. Natl Acad. Sci. USA – volume: 258 start-page: 931 year: 2009 end-page: 940 article-title: Deforestation and forest restoration in Guanacaste, Costa Rica: putting conservation policies in context publication-title: For. Ecol. Manage. – volume: 34 start-page: 192 year: 2013 end-page: 203 article-title: Quantifying ecological memory during forest succession: a case study from lower subtropical forest ecosystems in South China publication-title: Ecol. Ind. – volume: 12 start-page: 5 year: 2013 end-page: 13 article-title: Reframing community forestry to manage the forest–farm interface publication-title: Small‐scale For. – volume: 19 start-page: 379 year: 2011 end-page: 389 article-title: Natural regeneration in plantations of native trees in lowland Brazilian Atlantic Forest: Community structure, diversity, and dispersal syndromes publication-title: Restor. Ecol. – volume: 19 start-page: 470 year: 2011b end-page: 479 article-title: Planting seedlings in Tree Islands Versus Plantations as a large, ÄêScale tropical forest restoration strategy publication-title: Restor. Ecol. – volume: 13 start-page: 201 year: 1982 end-page: 228 article-title: Ecology of seed dispersal publication-title: Annu. Rev. Ecol. Syst. – volume: 301 start-page: 43 year: 2013 end-page: 50 article-title: Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity‐related ecosystem services publication-title: For. Ecol. Manage. – volume: 96 start-page: 1242 year: 2014 end-page: 1252 article-title: Biomass is the main driver of changes in ecosystem process rates during tropical forest succession publication-title: Ecology – volume: 32 start-page: 389 year: 2003 end-page: 396 article-title: Reserves, resilience, and dynamic landscapes publication-title: Ambio – volume: 65 start-page: 85 year: 2011 end-page: 99 article-title: Secondary forests on anthropogenic soils of the Middle Madeira River: valuation, local knowledge, and landscape domestication in Brazilian Amazonia publication-title: Econ. Bot. – volume: 23 start-page: 31 year: 2009 end-page: 42 article-title: Local participation in natural resource monitoring: a characterization of approaches publication-title: Conserv. Biol. – volume: 22 start-page: 169 year: 2014 end-page: 177 article-title: A framework to optimize biodiversity restoration efforts based on habitat amount and landscape connectivity publication-title: Restor. Ecol. – volume: 6 start-page: 485 year: 1982 end-page: 492 article-title: Natural vs. plantation forests: a case study of land reclamation strategies for the humid tropics publication-title: Environ. Manage. – volume: 5 start-page: 978 year: 2014 end-page: 991 article-title: Redefining secondary forests in the Mexican Forest Code: Implications for management, restoration, and conservation publication-title: Forests – volume: 2 start-page: 336 year: 2004 end-page: 354 article-title: A place for alien species in ecosystem restoration publication-title: Front. Ecol. Environ. – volume: 31 start-page: 601 year: 2016 end-page: 618 article-title: The role of natural regeneration to ecosystem services provision and habitat availability: a case study in the Brazilian Atlantic Forest publication-title: Biotrop. Spec. Issue – volume: 5 start-page: art1 year: 2014 article-title: Viewing forests through the lens of complex systems science publication-title: Ecosphere – volume: 9 start-page: e90573 year: 2014 article-title: Landscape context mediates avian habitat choice in tropical forest restoration publication-title: PLoS ONE – volume: 261 start-page: 1564 year: 2011 end-page: 1579 article-title: Restoration of dry tropical forests in Central America: a review of pattern and process publication-title: For. Ecol. Manage. – volume: 48 start-page: 709 year: 2016 end-page: 715 article-title: Natural regeneration in the context of large‐scale forest and landscape restoration in the tropics publication-title: Biotropica – volume: 13 start-page: 211 year: 2015 end-page: 218 article-title: Creating space for large‐scale restoration in tropical agricultural landscapes publication-title: Front. Ecol. Environ. – volume: 17 start-page: 1158 year: 2014 end-page: 1167 article-title: The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession publication-title: Ecol. Lett. – volume: 48 start-page: 882 year: 2016a end-page: 889 article-title: Co‐benefits of biodiversity and carbon sequestration from regenerating secondary forests in the Philippine uplands: implications for forest landscape restoration publication-title: Biotropica – volume: 24 start-page: 100 year: 2016 end-page: 108 article-title: Establishment of tree seedlings in the understory of restoration plantations: natural regeneration and enrichment plantings publication-title: Restor. Ecol. – volume: 104 start-page: 149 year: 2016 end-page: 159 article-title: Evidence for arrested succession in a liana‐infested Amazonian forest publication-title: J. Ecol. – volume: 6 start-page: e20543 year: 2011 article-title: Understory bird communities in Amazonian rainforest fragments: species turnover through 25 years post‐isolation in recovering landscapes publication-title: PLoS ONE – volume: 113 start-page: 5323 year: 2016a end-page: 5328 article-title: Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves publication-title: Proc. Natl Acad. Sci. USA – volume: 245 start-page: 3 year: 2015 end-page: 10 article-title: Forest and landscape restoration: concepts, approaches and challenges for implementation publication-title: Unasylva – volume: 345 start-page: 21 year: 2015 end-page: 28 article-title: Natural establishment of indigenous trees under planted nuclei: A study from a clear‐felled pine plantation in an afrotropical rain forest publication-title: For. Ecol. Manage. – volume: 112 start-page: 8013 year: 2015 end-page: 8018 article-title: Successional dynamics in Neotropical forests are as uncertain as they are predictable publication-title: PNAS – volume: 38 start-page: 156 year: 1988 end-page: 161 article-title: Biocultural restoration of a tropical forest: architects of Costa Rica's emerging Guanacaste National Park plan to make it an integral part of local culture publication-title: Bioscience – year: 2015 – volume: 11 start-page: 138 year: 2013 end-page: 144 article-title: Woody species regeneration in Atlantic Forest restoration sites depends on surrounding landscape publication-title: Natureza & Conservação – volume: 6 start-page: 271 year: 1998 end-page: 279 article-title: Large‐scale ecological restoration of degraded tropical forest lands: The potential role of timber plantations publication-title: Restor. Ecol. – volume: 349 start-page: 827 year: 2015 end-page: 832 article-title: Increasing human dominance of tropical forests publication-title: Science – volume: 24 start-page: 14 year: 1997 end-page: 23 article-title: Arrested succession in pastures hinders regeneration of Tropandean forests and shreds mountain landscapes publication-title: Environ. Conserv. – volume: 245 start-page: 11 year: 2015 end-page: 18 article-title: Back to Bonn and beyond: a history of forest landscape restoration and an outlook for the future publication-title: Unasylva – volume: 13 start-page: 1312 year: 1999 end-page: 1322 article-title: Ethnobotany of woody species in second‐growth, old‐growth, and selectively logged forests of northeastern Costa Rica publication-title: Conserv. Biol. – volume: 46 start-page: 733 year: 2015 end-page: 746 article-title: Future directions for forest restoration in Hawai ‘i publication-title: New Forest. – start-page: 91 year: 2009 end-page: 130 – volume: 103 start-page: 67 year: 2015 end-page: 77 article-title: Loss of secondary‐forest resilience by land‐use intensification in the Amazon publication-title: J. Ecol. – volume: 14 year: 2009 article-title: Enrichment Planting in Secondary Forests: a Promising Clean Development Mechanism to Increase Terrestrial Carbon Sinks publication-title: Ecol. Soc. – volume: 14 start-page: 611 year: 2014 end-page: 621 article-title: Increasing tree cover while losing diverse natural forests in tropical Hainan, China publication-title: Reg. Environ. Change – volume: 9 start-page: 62 year: 2010 end-page: 83 article-title: Social and environmental effects of ecotourism in the Osa Peninsula of Costa Rica: the Lapa Rios case publication-title: J. Ecotourism – volume: 41 start-page: 142 year: 2009a end-page: 153 article-title: Beyond reserves: a research agenda for conserving biodiversity in human‐modified tropical landscapes publication-title: Biotropica – start-page: 120 year: 1997 end-page: 126 – volume: 7 year: 2003 article-title: The multiple use of tropical forests by indigenous peoples in Mexico: A case of adaptive management publication-title: Conserv. Ecol. – volume: 48 start-page: 731 year: 2016 end-page: 744 article-title: Impacts of large‐scale forest restoration on socioeconomic status and local livelihoods: what we know and do not know publication-title: Biotropica – volume: 212 start-page: 358 year: 2005 end-page: 366 article-title: Natural regeneration in exotic tree plantations in Hong Kong, China publication-title: For. Ecol. Manage. – volume: 20 start-page: 1255 year: 2010 end-page: 1269 article-title: Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape publication-title: Ecol. Appl. – volume: 148 start-page: 185 year: 2001 end-page: 206 article-title: Neotropical secondary forest succession: changes in structural and functional characteristics publication-title: For. Ecol. Manage. – volume: 13 start-page: 5 year: 2008 article-title: Metropolitanization and forest recovery in southern Brazil: a multiscale analysis of the Florianópolis city‐region, Santa Catarina State, 1970 to 2005 publication-title: Ecol. Soc. – volume: 53 start-page: 1159 year: 2003 end-page: 1168 article-title: The ecological consequences of socioeconomic and land‐use changes in postagriculture Puerto Rico publication-title: Bioscience – volume: 5 start-page: 1022 year: 2015 end-page: 1023 article-title: A role for tropical forests in stabilizing atmospheric CO2 publication-title: Nat. Clim. Chang. – volume: 163 start-page: 217 year: 2002 end-page: 227 article-title: Facilitating regeneration of secondary forests with the use of mixed and pure plantations of indigenous tree species publication-title: For. Ecol. Manage. – volume: 52 start-page: 389 year: 2015 end-page: 401 article-title: Sustainable harvesting of non‐timber forest products based on ecological and economic criteria publication-title: J. Appl. Ecol. – volume: 52 start-page: 590 year: 2015 end-page: 601 article-title: A landscape triage approach: combining spatial and temporal dynamics to prioritize restoration and conservation publication-title: J. Appl. Ecol. – volume: 50 start-page: 173 year: 2009 end-page: 189 article-title: Evaluating the potential role of Eucalyptus plantations in the regeneration of native trees in southern Western Ghats, India publication-title: Trop. Ecol. – volume: 21 start-page: 670 year: 2013 end-page: 677 article-title: Stimulating natural regeneration of tropical forest on degraded land: approaches, outcomes, and information gaps publication-title: Restor. Ecol. – start-page: 5 year: 2007 end-page: 20 – volume: 4 start-page: 503 year: 2014 end-page: 507 article-title: Cheap carbon and biodiversity co‐benefits from forest regeneration in a hotspot of endemism publication-title: Nat. Clim. Chang. – volume: 31 start-page: 601 year: 2015 end-page: 618 article-title: Tropical forest regeneration following land abandonment is driven by primary rainforest distribution in an old pastoral region publication-title: Landsc. Ecol. – volume: 18 start-page: 1562 year: 2004 end-page: 1570 article-title: Changes in forest use value through ecological succession and their implications for land management in the Peruvian Amazon publication-title: Conserv. Biol. – volume: 11 start-page: 035005 year: 2016 article-title: International trade, and land use intensification and spatial reorganization explain Costa Rica's forest transition publication-title: Environ. Res. Lett. – volume: 15 start-page: 1461 year: 2015 end-page: 1472 article-title: Land cover dynamics in Osa Region, Costa Rica: secondary forest is here to stay publication-title: Reg. Environ. Change – volume: 99 start-page: 43 year: 1997 end-page: 54 article-title: The effect of overstory composition on understory woody regeneration and species richness in 7‐year‐old plantations in Costa Rica publication-title: For. Ecol. Manage. – volume: 48 start-page: 809 year: 2016 end-page: 824 article-title: Roles of non‐native species in large‐scale regeneration of moist tropical forests on anthropogenic grassland publication-title: Biotropica – volume: 5 start-page: 1737 year: 2014 end-page: 1752 article-title: Challenges of governing second‐growth forests: a case study from the Brazilian Amazonian State of Pará publication-title: Forests – volume: 48 start-page: 798 year: 2016 end-page: 808 article-title: Recovery of floristic diversity and basal area in natural forest regeneration and planted plots in a Costa Rican wet forest publication-title: Biotropica – volume: 8 start-page: 432 year: 2015 end-page: 439 article-title: Engaging stakeholders: assessing accuracy of participatory mapping of land cover in Panama publication-title: Conserv. Lett. – volume: 11 start-page: 147 year: 1995 end-page: 152 article-title: Regeneration of an Atlantic forest formation in the understorey of a plantation in south‐eastern Brazil publication-title: J. Trop. Ecol. – volume: 62 start-page: 1 year: 1992 end-page: 41 article-title: Comparison of tropical tree plantations with secondary forests of similar age publication-title: Ecol. Monogr. – volume: 16 start-page: 23 year: 2015 end-page: 32 article-title: Governing a pioneer program on payment for watershed services: Stakeholder involvement, legal frameworks and early lessons from the Atlantic forest of Brazil publication-title: Ecosystem Services – year: 2016 article-title: Multiple successional pathways in human‐modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research publication-title: Biol. Rev. – volume: 6 start-page: 22483 year: 2016b article-title: Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks publication-title: Sci. Rep. – volume: 22 start-page: 8 year: 2008 end-page: 15 article-title: Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot publication-title: Conserv. Biol. – volume: 23 start-page: 1406 year: 2009b end-page: 1417 article-title: The potential for species conservation in tropical secondary forests publication-title: Conserv. Biol. – volume: 85 start-page: 39 year: 2015 end-page: 46 article-title: Reforestation with four native tree species after abandoned gold mining in the Peruvian Amazon publication-title: Ecol. Eng. – start-page: 171 year: 2010 end-page: 204 – ident: e_1_2_9_120_1 doi: 10.1111/j.1526-100X.2012.00934.x – ident: e_1_2_9_180_1 doi: 10.1016/j.ecolind.2013.05.010 – ident: e_1_2_9_135_1 doi: 10.1126/science.1201609 – ident: e_1_2_9_61_1 doi: 10.1111/j.1365-2486.2007.01344.x – ident: e_1_2_9_143_1 doi: 10.3390/f5030482 – ident: e_1_2_9_46_1 doi: 10.4322/natcon.00801010 – ident: e_1_2_9_159_1 doi: 10.1016/j.ecoleng.2015.09.075 – ident: e_1_2_9_198_1 doi: 10.1007/s10113-013-0512-9 – ident: e_1_2_9_91_1 doi: 10.1088/1748-9326/11/3/035005 – ident: e_1_2_9_68_1 doi: 10.1038/nature10425 – ident: e_1_2_9_102_1 doi: 10.1111/ele.12322 – ident: e_1_2_9_4_1 doi: 10.1111/j.1744-7429.2012.00908.x – volume-title: Monitoring revegetation projects in rainforest landscapes year: 2010 ident: e_1_2_9_96_1 – ident: e_1_2_9_14_1 doi: 10.1111/rec.12290 – ident: e_1_2_9_133_1 doi: 10.1073/pnas.1500403112 – ident: e_1_2_9_66_1 doi: 10.1525/bio.2009.59.10.8 – ident: e_1_2_9_23_1 doi: 10.1016/j.tree.2011.06.011 – ident: e_1_2_9_54_1 doi: 10.1111/btp.12388 – ident: e_1_2_9_82_1 doi: 10.1016/j.foreco.2010.07.004 – ident: e_1_2_9_19_1 doi: 10.1016/j.foreco.2012.11.024 – ident: e_1_2_9_151_1 doi: 10.1111/btp.12390 – ident: e_1_2_9_44_1 doi: 10.1111/btp.12409 – ident: e_1_2_9_126_1 – ident: e_1_2_9_173_1 doi: 10.1007/s10980-015-0267-4 – ident: e_1_2_9_93_1 doi: 10.1007/BF01868377 – ident: e_1_2_9_172_1 doi: 10.1017/S0266467400008518 – ident: e_1_2_9_58_1 doi: 10.1016/j.envsci.2015.02.003 – ident: e_1_2_9_103_1 doi: 10.1111/btp.12386 – volume: 7 year: 2003 ident: e_1_2_9_182_1 article-title: The multiple use of tropical forests by indigenous peoples in Mexico: A case of adaptive management publication-title: Conserv. Ecol. – ident: e_1_2_9_47_1 doi: 10.1890/09-0714.1 – ident: e_1_2_9_100_1 doi: 10.1046/j.1526-100X.1998.00632.x – start-page: 35 volume-title: Managing world forests as complex adaptive systems in the face of global change year: 2013 ident: e_1_2_9_35_1 – ident: e_1_2_9_38_1 doi: 10.1126/sciadv.1501639 – year: 2015 ident: e_1_2_9_79_1 article-title: People in motion, forests in transition: trends in migration, urbanization, and remittances and their effects on tropical forests publication-title: Occasional Paper 142 – ident: e_1_2_9_112_1 – ident: e_1_2_9_127_1 doi: 10.1111/btp.12389 – ident: e_1_2_9_155_1 doi: 10.1007/s10531-015-0980-y – ident: e_1_2_9_20_1 doi: 10.1111/btp.12383 – ident: e_1_2_9_160_1 doi: 10.3390/f5050978 – volume: 245 start-page: 11 year: 2015 ident: e_1_2_9_98_1 article-title: Back to Bonn and beyond: a history of forest landscape restoration and an outlook for the future publication-title: Unasylva – ident: e_1_2_9_28_1 doi: 10.1111/btp.12384 – ident: e_1_2_9_22_1 doi: 10.1007/s00267-010-9590-3 – ident: e_1_2_9_181_1 doi: 10.1111/rec.12049 – ident: e_1_2_9_2_1 doi: 10.1016/j.scitotenv.2015.11.171 – ident: e_1_2_9_33_1 doi: 10.1016/B978-0-12-384719-5.00377-4 – ident: e_1_2_9_78_1 doi: 10.1641/B570806 – ident: e_1_2_9_63_1 doi: 10.1890/ES13-00182.1 – ident: e_1_2_9_87_1 doi: 10.1146/annurev.es.13.110182.001221 – ident: e_1_2_9_18_1 – ident: e_1_2_9_134_1 doi: 10.1016/j.envsoft.2011.07.008 – ident: e_1_2_9_111_1 doi: 10.2307/2937169 – ident: e_1_2_9_70_1 doi: 10.1038/nclimate2200 – ident: e_1_2_9_15_1 doi: 10.1016/j.foreco.2013.11.017 – ident: e_1_2_9_92_1 doi: 10.1111/1365-2745.12298 – ident: e_1_2_9_158_1 doi: 10.1016/j.foreco.2010.07.005 – ident: e_1_2_9_123_1 doi: 10.1093/biosci/biv108 – ident: e_1_2_9_104_1 doi: 10.1890/140052 – ident: e_1_2_9_196_1 doi: 10.1111/rec.12249 – ident: e_1_2_9_57_1 doi: 10.1371/journal.pone.0000402 – ident: e_1_2_9_166_1 doi: 10.1073/pnas.1210595110 – ident: e_1_2_9_69_1 doi: 10.1111/btp.12361 – ident: e_1_2_9_183_1 doi: 10.1111/1365-2745.12504 – ident: e_1_2_9_157_1 doi: 10.1016/j.ecoser.2015.09.002 – ident: e_1_2_9_164_1 doi: 10.1111/j.1526-100X.2009.00556.x – volume-title: Potencial de regeneração natural de florestas nativas nas diferentes regiões do estado do Espírito Santo year: 2014 ident: e_1_2_9_117_1 – ident: e_1_2_9_105_1 doi: 10.1016/j.biocon.2010.09.021 – ident: e_1_2_9_195_1 doi: 10.1111/rec.12098 – ident: e_1_2_9_110_1 doi: 10.1007/s12231-011-9175-y – ident: e_1_2_9_121_1 doi: 10.1007/s00442-011-1984-2 – start-page: 662 volume-title: Shifting cultivation and environmental change year: 2015 ident: e_1_2_9_97_1 – ident: e_1_2_9_136_1 doi: 10.5751/ES-02781-140131 – volume-title: Scaling up regreening: six steps to success; a practical approach to forest and landscape restoration year: 2015 ident: e_1_2_9_153_1 – ident: e_1_2_9_45_1 doi: 10.7208/chicago/9780226024134.003.0011 – ident: e_1_2_9_60_1 doi: 10.1890/14-2188 – ident: e_1_2_9_51_1 doi: 10.5751/ES-05464-180341 – ident: e_1_2_9_50_1 doi: 10.1007/s10980-011-9623-1 – volume-title: Timber production in smallholder agroforestry systems: justifications for pro‐poor forest policy in Peru year: 2014 ident: e_1_2_9_167_1 – ident: e_1_2_9_115_1 doi: 10.1073/pnas.1602893113 – ident: e_1_2_9_125_1 doi: 10.5751/ES-02058-120201 – ident: e_1_2_9_11_1 doi: 10.1073/pnas.0703333104 – ident: e_1_2_9_73_1 doi: 10.1016/j.foreco.2010.08.027 – ident: e_1_2_9_118_1 doi: 10.1002/16-0108.1 – ident: e_1_2_9_3_1 doi: 10.1111/btp.12385 – volume: 55 start-page: 118 year: 2008 ident: e_1_2_9_191_1 article-title: Dinámica de la regeneración en cuatro bosques secundarios tropicales de la región Huetar Norte, Costa Rica. Su valor para la conservación o uso comercial publication-title: Recursos Naturales y Ambiente (Costa Rica) – ident: e_1_2_9_84_1 doi: 10.1111/j.1526-100X.2010.00674.x – ident: e_1_2_9_148_1 doi: 10.1007/s13280-015-0694-0 – ident: e_1_2_9_8_1 doi: 10.1016/j.agee.2014.06.005 – ident: e_1_2_9_197_1 doi: 10.1080/14724040902953076 – ident: e_1_2_9_194_1 doi: 10.5751/ES-04275-160315 – ident: e_1_2_9_132_1 doi: 10.1890/0012-9658(1999)080[1908:SHOLAW]2.0.CO;2 – ident: e_1_2_9_12_1 doi: 10.1146/annurev.ecolsys.38.091206.095818 – ident: e_1_2_9_129_1 doi: 10.1016/S0378-1127(97)00202-8 – ident: e_1_2_9_41_1 doi: 10.1098/rstb.2006.1990 – ident: e_1_2_9_128_1 doi: 10.1038/srep22483 – start-page: 91 volume-title: Pacto pela restauração da Mata Atlantica year: 2009 ident: e_1_2_9_88_1 – volume: 238 start-page: 32 year: 2015 ident: e_1_2_9_140_1 article-title: Modos de restaurar as florestas publication-title: Pesquiza FAPESP – volume-title: ITTO guidelines for the restoration, management and rehabilitation of degraded and secondary tropical forests year: 2002 ident: e_1_2_9_89_1 – ident: e_1_2_9_187_1 doi: 10.1111/btp.12380 – ident: e_1_2_9_52_1 doi: 10.1111/j.1523-1739.2008.01063.x – ident: e_1_2_9_27_1 doi: 10.1093/biosci/biv008 – ident: e_1_2_9_154_1 doi: 10.2307/3113637 – ident: e_1_2_9_29_1 doi: 10.1111/rec.12228 – ident: e_1_2_9_139_1 doi: 10.4322/natcon.2013.022 – ident: e_1_2_9_144_1 doi: 10.1038/nature16512 – ident: e_1_2_9_39_1 doi: 10.1046/j.1523-1739.1999.98352.x – ident: e_1_2_9_150_1 doi: 10.1371/journal.pone.0090573 – ident: e_1_2_9_83_1 doi: 10.1016/j.foreco.2014.01.024 – volume: 31 start-page: 601 year: 2016 ident: e_1_2_9_176_1 article-title: The role of natural regeneration to ecosystem services provision and habitat availability: a case study in the Brazilian Atlantic Forest publication-title: Biotrop. Spec. Issue – ident: e_1_2_9_177_1 doi: 10.1007/s10457-009-9225-y – ident: e_1_2_9_94_1 doi: 10.1007/s12231-010-9138-8 – ident: e_1_2_9_17_1 doi: 10.1073/pnas.1003369107 – ident: e_1_2_9_170_1 doi: 10.1111/rec.12048 – ident: e_1_2_9_36_1 doi: 10.1007/s13280-016-0772-y – ident: e_1_2_9_141_1 doi: 10.1016/j.foreco.2015.02.027 – volume-title: Agroenvironmental transformation in the Sahel: Another kind of” Green Revolution” year: 2009 ident: e_1_2_9_152_1 – ident: e_1_2_9_109_1 doi: 10.1890/14-0472.1 – ident: e_1_2_9_145_1 doi: 10.1016/S0378-1127(97)00193-X – ident: e_1_2_9_67_1 doi: 10.1111/j.1523-1739.2004.00241.x – start-page: 331 volume-title: Agroforestry in the Amazon Basin: practice, theory and limits of a promising land use year: 1982 ident: e_1_2_9_77_1 – ident: e_1_2_9_175_1 doi: 10.1371/journal.pone.0020543 – volume: 245 start-page: 3 year: 2015 ident: e_1_2_9_163_1 article-title: Forest and landscape restoration: concepts, approaches and challenges for implementation publication-title: Unasylva – ident: e_1_2_9_16_1 doi: 10.1016/j.biocon.2012.05.002 – ident: e_1_2_9_72_1 doi: 10.1641/0006-3568(2003)053[1159:TECOSA]2.0.CO;2 – ident: e_1_2_9_48_1 doi: 10.1111/rec.12321 – ident: e_1_2_9_71_1 doi: 10.1111/gcb.12600 – start-page: 57 volume-title: The distribution of powers and responsibilities affecting forests, land use, and REDD+ across levels and sectors in Peru: a legal study year: 2015 ident: e_1_2_9_193_1 – ident: e_1_2_9_116_1 doi: 10.1111/btp.12382 – ident: e_1_2_9_13_1 doi: 10.1579/0044-7447-32.6.389 – ident: e_1_2_9_190_1 doi: 10.3390/f5071737 – ident: e_1_2_9_107_1 doi: 10.1126/science.aaa9932 – ident: e_1_2_9_85_1 doi: 10.1038/nclimate2869 – ident: e_1_2_9_75_1 doi: 10.1111/j.1526-100X.1995.tb00092.x – ident: e_1_2_9_113_1 – volume-title: Routledge handbook of ecological and environmental restoration ident: e_1_2_9_43_1 – ident: e_1_2_9_86_1 doi: 10.1016/j.gecco.2016.03.002 – ident: e_1_2_9_56_1 doi: 10.1111/btp.12387 – ident: e_1_2_9_76_1 doi: 10.1111/j.1523-1739.2007.00863.x – ident: e_1_2_9_5_1 doi: 10.1007/s10113-014-0714-9 – ident: e_1_2_9_192_1 doi: 10.1111/j.1467-8306.2004.00439.x – ident: e_1_2_9_42_1 doi: 10.1111/j.1523-1739.2009.01338.x – ident: e_1_2_9_59_1 doi: 10.1890/1540-9295(2004)002[0354:APFASI]2.0.CO;2 – ident: e_1_2_9_32_1 doi: 10.1080/10549811.2013.817340 – ident: e_1_2_9_122_1 doi: 10.1111/j.1744-7429.2009.00528.x – ident: e_1_2_9_62_1 doi: 10.1007/s10980-014-9988-z – ident: e_1_2_9_146_1 doi: 10.1016/j.foreco.2005.10.043 – ident: e_1_2_9_142_1 doi: 10.3390/f5092212 – ident: e_1_2_9_131_1 doi: 10.1177/194008291500800116 – ident: e_1_2_9_9_1 doi: 10.1016/j.foreco.2014.02.030 – ident: e_1_2_9_108_1 doi: 10.1017/S0959270911000177 – volume-title: A guide to the restoration opportunities assessment methodology (ROAM): assessing forest landscape restoration opportunities at the national or sub‐national level year: 2014 ident: e_1_2_9_90_1 – ident: e_1_2_9_174_1 doi: 10.1126/science.1246663 – ident: e_1_2_9_162_1 doi: 10.1111/0033-0124.00233 – ident: e_1_2_9_30_1 doi: 10.1126/science.1155365 – start-page: 47 volume-title: Mapping opportunities for forest landscape restoration year: 2012 ident: e_1_2_9_99_1 – ident: e_1_2_9_178_1 doi: 10.1111/btp.12181 – ident: e_1_2_9_149_1 doi: 10.1890/14-1399.1 – ident: e_1_2_9_37_1 doi: 10.1111/conl.12220 – start-page: 5 volume-title: The forest landscape restoration handook year: 2007 ident: e_1_2_9_114_1 – volume: 38 start-page: 165 year: 2002 ident: e_1_2_9_80_1 article-title: Mapping the forest type and land cover of Puerto Rico, a component of the Caribbean biodiversity hotspot publication-title: Carib. J. Sci. – ident: e_1_2_9_81_1 doi: 10.1111/1365-2664.12384 – ident: e_1_2_9_49_1 doi: 10.1007/s11842-012-9229-8 – volume-title: Maya forest garden: eight millennia of sustainable cultivation of the tropical woodlands year: 2015 ident: e_1_2_9_64_1 – ident: e_1_2_9_184_1 doi: 10.1111/1365-2745.12504 – start-page: 171 volume-title: Ecosystem goods and services from plantation forests year: 2010 ident: e_1_2_9_95_1 – ident: e_1_2_9_10_1 doi: 10.5751/ES-02426-130205 – ident: e_1_2_9_189_1 doi: 10.1016/j.ncon.2015.03.005 – ident: e_1_2_9_74_1 doi: 10.1016/S0378-1127(00)00535-1 – ident: e_1_2_9_137_1 doi: 10.1016/0167-8809(92)90105-K – ident: e_1_2_9_165_1 doi: 10.1017/S0376892997000052 – ident: e_1_2_9_26_1 doi: 10.1016/S0378-1127(01)00581-3 – ident: e_1_2_9_106_1 doi: 10.1016/j.foreco.2005.03.057 – ident: e_1_2_9_119_1 doi: 10.1111/brv.12024 – ident: e_1_2_9_138_1 doi: 10.1046/j.1526-100X.1999.72001.x – volume: 80 start-page: 85 year: 2007 ident: e_1_2_9_25_1 article-title: Las políticas públicas de la restauración ambiental en México: Limitantes, avances, rezagos y retos publication-title: Boletín de la Sociedad Botánica de México – ident: e_1_2_9_40_1 doi: 10.1111/j.1744-7429.2008.00471.x – ident: e_1_2_9_65_1 doi: 10.1007/s11056-015-9507-3 – ident: e_1_2_9_161_1 doi: 10.1890/14-0054.1 – ident: e_1_2_9_24_1 doi: 10.1016/j.foreco.2008.10.035 – ident: e_1_2_9_130_1 doi: 10.1111/conl.12199 – ident: e_1_2_9_6_1 doi: 10.2307/1310447 – start-page: 120 volume-title: La visibilidad de los bosques secundarios. Memorias del taller internacional sobre el estado actual y potencial de manejo y desarrollo del bosque secundario tropical en América Latina year: 1997 ident: e_1_2_9_53_1 – ident: e_1_2_9_186_1 doi: 10.1111/j.1744-7429.2009.00583.x – ident: e_1_2_9_147_1 doi: 10.1111/1365-2664.12405 – ident: e_1_2_9_7_1 doi: 10.1111/brv.12231 – ident: e_1_2_9_179_1 doi: 10.1007/s10661-014-4000-6 – start-page: 384 volume-title: Tropical forest community ecology year: 2008 ident: e_1_2_9_31_1 – ident: e_1_2_9_124_1 doi: 10.1016/j.landusepol.2007.06.001 – ident: e_1_2_9_156_1 doi: 10.1016/j.biocon.2009.02.021 – ident: e_1_2_9_169_1 doi: 10.1111/j.1526-100X.2007.00274.x – ident: e_1_2_9_55_1 doi: 10.1111/j.1526-100X.2008.00459.x – volume: 50 start-page: 173 year: 2009 ident: e_1_2_9_168_1 article-title: Evaluating the potential role of Eucalyptus plantations in the regeneration of native trees in southern Western Ghats, India publication-title: Trop. Ecol. – ident: e_1_2_9_101_1 doi: 10.4324/9780203071649 – ident: e_1_2_9_171_1 doi: 10.1111/cobi.12606 – ident: e_1_2_9_21_1 doi: 10.1016/j.foreco.2012.09.018 – ident: e_1_2_9_34_1 doi: 10.7208/chicago/9780226118109.001.0001 – ident: e_1_2_9_185_1 doi: 10.1073/pnas.1215567110 – ident: e_1_2_9_188_1 doi: 10.1111/conl.12161 |
SSID | ssj0009504 |
Score | 2.611259 |
Snippet | A major global effort to enable cost-effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest... A major global effort to enable cost‐effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest... A major global effort to enable cost effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest... |
SourceID | proquest crossref wiley jstor istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 716 |
SubjectTerms | biocenosis biodiversity cost effectiveness cost-effective restoration Deforestation dispersión de semillas dispersão de sementes ecological resilience Economic conditions Economics Ecosystem resilience ecosystem services environmental factors Environmental restoration forest clearing forest restoration governance Heterogeneity Indigenous species issues and policy Land use landscape management landscape restoration landscapes Local communities monitoring natural regeneration resilience resiliencia resiliência restauración costo-eficiente restauración del paisaje restauração custo-efetiva restauração de paisagem secondary succession SECTION I. WHY REFOREST? THE SCALE OF THE CHALLENGE AND OPPORTUNITY seed dispersal servicios ecosistémicos serviços ecossistêmicos sucesión secundaria sucessão secundária Tropical environments Tropical forests tropics |
Title | Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges |
URI | https://api.istex.fr/ark:/67375/WNG-PTVRSKWB-2/fulltext.pdf https://www.jstor.org/stable/48576571 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbtp.12381 https://www.proquest.com/docview/1850074341 https://www.proquest.com/docview/1850769100 https://www.proquest.com/docview/2000436600 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFA5jMvBF3XR4dUoUkb30ctvmpo0-bWNzTLyMeef2IIT8HGOX9tL2gvPJP8G_cX-JJ0lb7mQD8a20X0qTk5N8aU6-g9A7ZhIGRFxFeS6ziDBLopwwGaW5IkbCeoBat6P7ZUIPT8nR-fh8BX3szsIEfYj-h5vzDD9eOwcXsl5yctnMh7GbcGD8dbFajhCdJEuCu6OgwOxiu4Clt6pCLoqnL3lrLnrgmvVHF5Z4i3Au01Y_7xw8Rt-7Lw7hJlfDRSOH6udfYo7_WaUn6FHLR_FO6EDraMUUG2gtZKi8hqt9r2p9_RTNJsJLdODKXHipamdRLGoscFOWMwzkF89cWPnNr981GN64O1AvXPncNQF-WWAgnLipyvmlqj9gqJU_6glvKTRWXWKX-hk6Pdif7h1GbaqGSJGcxZGOZSqB2Vg5FsLQWCpNwQKxyoROmdQ5sZmgllqRJJmFMmSUAnPJNBQAgqLTTbRalIV5jrBiVMZEWQVkiGipmGZWAkI7rT-WyAHa7ozGVatj7tJpzHi3noFm5L4ZB-htD50H8Y67QO-95XuEqK5ctFs25meTT_x4-u3k6-ezXZ4M0KbvGj2Q5LBYG2fwhq2ur_B2BKg58CBPzwg8ftM_Bt91GzKiMOUiYDIKhG10Pybxm7WUOsy27zz3V4XvTo_9xYt_h75ED4ED0nC8cgutNtXCvAKe1cjX3qH-ADdmJDM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVKKwSbllfFlAIGIdRNRpPE48SoG4paBtqOqjKl3SDLjxhVHSWjJCNRVv2EfiNfwrWdRFNEJcQuSo6j2Nc3Pravz0XoDcsiBkRcBWkqk4AwQ4KUMBnEqSKZhPkANXZH93BMRyfk89nwbAltt2dhvD5Et-BmPcP9r62D2wXpBS-X9awf2hHnDlqxGb3dhOo4WpDcHXgNZhvdBTy90RWycTxd0Ruj0Ypt2B9tYOINyrlIXN3Is7eGvrXf7ANOLvrzWvbVzz_kHP-3Ug_QakNJ8Xvfhx6ipSx_hO76JJWXcLXrhK0vH6PpWDiVDlxm351atTUqFhUWuC6KKQb-i6c2svzX1XUFts_sHagYLl36Gg8_zzFwTlyXxexcVe8wVMud9oS35BqrNrdL9QSd7O1OPoyCJltDoEjKwkCHMpZAbowcCpHRUCpNwQShSoSOmdQpMYmghhoRRYmBMmQQA3lJNBQAjqLjdbScF3n2FGHFqAyJMgr4ENFSMc2MBIS2cn8skj201VqNq0bK3GbUmPJ2SgPNyF0z9tDrDjrz-h1_A711pu8QorywAW_JkJ-OP_KjydfjL_unOzzqoXXXNzogSWG-NkzgDZttZ-HNT6DiQIUcQyPw-FX3GNzX7smIPCvmHpNQ4GyD2zGR26-l1GK2XO-5vSp8Z3LkLjb-HfoS3RtNDg_4wafx_jN0Hygh9actN9FyXc6z50C7avnCeddvWu8oTg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJtBeGLdphQEGIbSXVE3iOjE8MbYyGFTV6NgekCxf0bQqqZJUYnviJ_Ab-SUcOxd1iEmIt6j5HNU-58Sf4-PvIPSCmYgBEVdBmsokIMySICVMBnGqiJGwHqDW7eh-GtODY_LhdHi6gl63Z2FqfYjug5uLDP--dgE-13YpyGU174duwrmB1ggdpM6l946iJcXdQS3B7JK7gKY3skIujadremUyWnPj-r3NS7zCOJd5q594Rhvoa_uX63yT8_6ikn11-Yea43_26Q663RBS_Kb2oLtoxWT30M26ROUFXO17WeuL-2g2Fl6jAxfmm9eqdibFosQCV3k-w8B-8czllf_68bMEyxv3C_QLF754TQ0_yzAwTlwV-fxMla8w9Mqf9YSnZBqrtrJL-QAdj_anbw-CplZDoEjKwkCHMpZAbawcCmFoKJWmYIFQJULHTOqU2ERQS62IosRCGzKIgbokGhoAQ9HxJlrN8sxsIawYlSFRVgEbIloqppmVgNBO7I9Fsod2WqNx1QiZu3oaM94uaGAYuR_GHnreQee1esffQC-95TuEKM5dulsy5Cfjd3wy_XL0-fBkl0c9tOldowOSFFZrwwSesN36Cm9eASUHIuT5GYHbz7rbELxuR0ZkJl_UmIQCYxtcj4n8bi2lDrPjnef6rvDd6cRfPPx36FN0a7I34h_fjw8foXXgg7Q-armNVqtiYR4D56rkEx9bvwHnTycG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+regeneration+as+a+tool+for+large%E2%80%90scale+forest+restoration+in+the+tropics%3A+prospects+and+challenges&rft.jtitle=Biotropica&rft.au=Chazdon%2C+Robin+L.&rft.au=Guariguata%2C+Manuel+R.&rft.date=2016-11-01&rft.issn=0006-3606&rft.eissn=1744-7429&rft.volume=48&rft.issue=6&rft.spage=716&rft.epage=730&rft_id=info:doi/10.1111%2Fbtp.12381&rft.externalDBID=10.1111%252Fbtp.12381&rft.externalDocID=BTP12381 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3606&client=summon |