Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges

A major global effort to enable cost-effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large-scale landscape restoration in tropical regions. Here, we focus on the conditions that fav...

Full description

Saved in:
Bibliographic Details
Published inBiotropica Vol. 48; no. 6; pp. 716 - 730
Main Authors Chazdon, Robin L., Guariguata, Manuel R.
Format Journal Article
LanguageEnglish
Published Hoboken Blackwell Publishing Ltd 01.11.2016
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A major global effort to enable cost-effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large-scale landscape restoration in tropical regions. Here, we focus on the conditions that favor natural regeneration within tropical forest landscapes. We illustrate cases where large-scale natural regeneration followed forest clearing and non-forest land use, and describe the social and ecological factors that drove these local forest transitions. The self-organizing processes that create naturally regenerating forests and natural regeneration in planted forests promote local genetic adaptation, foster native species with known traditional uses, create spatial and temporal heterogeneity, and sustain local biodiversity and biotic interactions. These features confer greater ecosystem resilience in the face of future shocks and disturbances. We discuss economic, social, and legal issues that challenge natural regeneration in tropical landscapes. We conclude by suggesting ways to enable natural regeneration to become an effective tool for implementing large-scale forest and landscape restoration. Major research and policy priorities include: identifying and modeling the ecological and economic conditions where natural regeneration is a viable and favorable land-use option, developing monitoring protocols for natural regeneration that can be carried out by local communities, and developing enabling incentives, governance structures, and regulatory conditions that promote the stewardship of naturally regenerating forests. Aligning restoration goals and practices with natural regeneration can achieve the best possible outcome for achieving multiple social and environmental benefits at minimal cost.
AbstractList A major global effort to enable cost‐effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large‐scale landscape restoration in tropical regions. Here, we focus on the conditions that favor natural regeneration within tropical forest landscapes. We illustrate cases where large‐scale natural regeneration followed forest clearing and non‐forest land use, and describe the social and ecological factors that drove these local forest transitions. The self‐organizing processes that create naturally regenerating forests and natural regeneration in planted forests promote local genetic adaptation, foster native species with known traditional uses, create spatial and temporal heterogeneity, and sustain local biodiversity and biotic interactions. These features confer greater ecosystem resilience in the face of future shocks and disturbances. We discuss economic, social, and legal issues that challenge natural regeneration in tropical landscapes. We conclude by suggesting ways to enable natural regeneration to become an effective tool for implementing large‐scale forest and landscape restoration. Major research and policy priorities include: identifying and modeling the ecological and economic conditions where natural regeneration is a viable and favorable land‐use option, developing monitoring protocols for natural regeneration that can be carried out by local communities, and developing enabling incentives, governance structures, and regulatory conditions that promote the stewardship of naturally regenerating forests. Aligning restoration goals and practices with natural regeneration can achieve the best possible outcome for achieving multiple social and environmental benefits at minimal cost. En el contexto de los ambiciosos objetivos a escala global de restauración forestal a escala de paisaje, es necesario implementar esfuerzos para que la regeneración natural del bosque se convierta en una opción costo‐eficiente. En este artículo discutimos los principales factores que favorecen los procesos de regeneración natural en paisajes tropicales deforestados. Ilustramos algunos casos en los que la regeneración natural sucedió a la deforestación a gran escala y describimos de igual forma alguno de los factores sociales y ecológicos que dieron pie a estas transiciones. Los procesos de auto‐organización ecológica que generan a los bosques regenerados naturalmente y los procesos de regeneración natural estimulados por los bosques plantados favorecen la adaptación genética local, la persistencia de especies nativas con usos tradicionales, generan heterogeneidad espacial y temporal, y mantienen la biodiversidad y las interacciones bióticas. Estas características en su conjunto le confieren a los ecosistemas regenerados naturalmente, resiliencia a futuras perturbaciones. También discutimos algunos aspectos de carácter económico, social y legal que impedirían que la regeneración natural pueda ser implementada de forma efectiva en un contexto tropical. Concluímos el artículo con una serie de sugerencias para promover la regeneración natural como una herramienta eficaz de restauración forestal a gran escala. Las principales prioridades de investigación y de aspectos de política incluyen: identificar y modelar las condiciones ecológicas y económicas donde la regeneración natural sería una opción viable y permanente de uso del suelo; el desarrollo de protocolos de monitoreo que puedan ser aplicados por comunidades locales; y el desarrollo de estructuras de incentivos y de gobernanza forestal que favorezca los procesos de regeneración natural como uso legítimo del suelo. El incluir y alinear a la regeneración natural con los objetivos y las prácticas de restauración forestal, en su sentido amplio, puede contribuir al logro de beneficios sociales y ambientales múltiples a un bajo costo. Um esforço global para fomentar a regeneração natural de forma custo‐eficiente é necessário para alcançar objetivos ambiciosos de restauração florestal e da paisagem. Nós abordamos as condições que favorecem a regeneração florestal natural em paisagens tropicais, ilustrando casos de regeneração em larga escala após o desmatamento e usos do solo não‐florestais, e também descrevemos os fatores sociais e ecológicos que fomentaram estas transições florestais locais. Os processos de auto‐organização da regeneração natural que criam florestas e a regeneração em florestas plantadas promovem a adaptação genética local e o estabelecimento de espécies nativas utilizadas por populações tradicionais, criam heterogeneidade espacial e temporal e sustentam a biodiversidade e as interações bióticas locais. Estas características conferem maior resiliência ao ecossistema a distúrbios futuros. Discutimos os desafios econômicos, sociais e legais para a regeneração em larga escala nos trópicos. Concluímos com recomendações para que a regeneração seja uma ferramenta eficaz para implantar a restauração florestal em larga escala. As prioridades de pesquisa e políticas incluem: identificar e modelar as condições ecológicas e econômicas onde a regeneração natural é viável e favorável, desenvolver protocolos de monitoramento para a regeneração que podem ser executados por comunidades locais, desenvolver estruturas de incentivo e de governança e condições legais que promovam a gestão de florestas em regeneração. Alinhar os objetivos e as práticas de restauração com a regeneração natural permite maiores benefícios sociais e ambientais com o menor custo.
A major global effort to enable cost‐effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large‐scale landscape restoration in tropical regions. Here, we focus on the conditions that favor natural regeneration within tropical forest landscapes. We illustrate cases where large‐scale natural regeneration followed forest clearing and non‐forest land use, and describe the social and ecological factors that drove these local forest transitions. The self‐organizing processes that create naturally regenerating forests and natural regeneration in planted forests promote local genetic adaptation, foster native species with known traditional uses, create spatial and temporal heterogeneity, and sustain local biodiversity and biotic interactions. These features confer greater ecosystem resilience in the face of future shocks and disturbances. We discuss economic, social, and legal issues that challenge natural regeneration in tropical landscapes. We conclude by suggesting ways to enable natural regeneration to become an effective tool for implementing large‐scale forest and landscape restoration. Major research and policy priorities include: identifying and modeling the ecological and economic conditions where natural regeneration is a viable and favorable land‐use option, developing monitoring protocols for natural regeneration that can be carried out by local communities, and developing enabling incentives, governance structures, and regulatory conditions that promote the stewardship of naturally regenerating forests. Aligning restoration goals and practices with natural regeneration can achieve the best possible outcome for achieving multiple social and environmental benefits at minimal cost. Resumen En el contexto de los ambiciosos objetivos a escala global de restauración forestal a escala de paisaje, es necesario implementar esfuerzos para que la regeneración natural del bosque se convierta en una opción costo‐eficiente. En este artículo discutimos los principales factores que favorecen los procesos de regeneración natural en paisajes tropicales deforestados. Ilustramos algunos casos en los que la regeneración natural sucedió a la deforestación a gran escala y describimos de igual forma alguno de los factores sociales y ecológicos que dieron pie a estas transiciones. Los procesos de auto‐organización ecológica que generan a los bosques regenerados naturalmente y los procesos de regeneración natural estimulados por los bosques plantados favorecen la adaptación genética local, la persistencia de especies nativas con usos tradicionales, generan heterogeneidad espacial y temporal, y mantienen la biodiversidad y las interacciones bióticas. Estas características en su conjunto le confieren a los ecosistemas regenerados naturalmente, resiliencia a futuras perturbaciones. También discutimos algunos aspectos de carácter económico, social y legal que impedirían que la regeneración natural pueda ser implementada de forma efectiva en un contexto tropical. Concluímos el artículo con una serie de sugerencias para promover la regeneración natural como una herramienta eficaz de restauración forestal a gran escala. Las principales prioridades de investigación y de aspectos de política incluyen: identificar y modelar las condiciones ecológicas y económicas donde la regeneración natural sería una opción viable y permanente de uso del suelo; el desarrollo de protocolos de monitoreo que puedan ser aplicados por comunidades locales; y el desarrollo de estructuras de incentivos y de gobernanza forestal que favorezca los procesos de regeneración natural como uso legítimo del suelo. El incluir y alinear a la regeneración natural con los objetivos y las prácticas de restauración forestal, en su sentido amplio, puede contribuir al logro de beneficios sociales y ambientales múltiples a un bajo costo. SUMÁRIO Um esforço global para fomentar a regeneração natural de forma custo‐eficiente é necessário para alcançar objetivos ambiciosos de restauração florestal e da paisagem. Nós abordamos as condições que favorecem a regeneração florestal natural em paisagens tropicais, ilustrando casos de regeneração em larga escala após o desmatamento e usos do solo não‐florestais, e também descrevemos os fatores sociais e ecológicos que fomentaram estas transições florestais locais. Os processos de auto‐organização da regeneração natural que criam florestas e a regeneração em florestas plantadas promovem a adaptação genética local e o estabelecimento de espécies nativas utilizadas por populações tradicionais, criam heterogeneidade espacial e temporal e sustentam a biodiversidade e as interações bióticas locais. Estas características conferem maior resiliência ao ecossistema a distúrbios futuros. Discutimos os desafios econômicos, sociais e legais para a regeneração em larga escala nos trópicos. Concluímos com recomendações para que a regeneração seja uma ferramenta eficaz para implantar a restauração florestal em larga escala. As prioridades de pesquisa e políticas incluem: identificar e modelar as condições ecológicas e econômicas onde a regeneração natural é viável e favorável, desenvolver protocolos de monitoramento para a regeneração que podem ser executados por comunidades locais, desenvolver estruturas de incentivo e de governança e condições legais que promovam a gestão de florestas em regeneração. Alinhar os objetivos e as práticas de restauração com a regeneração natural permite maiores benefícios sociais e ambientais com o menor custo.
A major global effort to enable cost effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large scale landscape restoration in tropical regions. Here, we focus on the conditions that favor natural regeneration within tropical forest landscapes. We illustrate cases where large scale natural regeneration followed forest clearing and non forest land use, and describe the social and ecological factors that drove these local forest transitions. The self organizing processes that create naturally regenerating forests and natural regeneration in planted forests promote local genetic adaptation, foster native species with known traditional uses, create spatial and temporal heterogeneity, and sustain local biodiversity and biotic interactions. These features confer greater ecosystem resilience in the face of future shocks and disturbances. We discuss economic, social, and legal issues that challenge natural regeneration in tropical landscapes. We conclude by suggesting ways to enable natural regeneration to become an effective tool for implementing large scale forest and landscape restoration. Major research and policy priorities include: identifying and modeling the ecological and economic conditions where natural regeneration is a viable and favorable land use option, developing monitoring protocols for natural regeneration that can be carried out by local communities, and developing enabling incentives, governance structures, and regulatory conditions that promote the stewardship of naturally regenerating forests. Aligning restoration goals and practices with natural regeneration can achieve the best possible outcome for achieving multiple social and environmental benefits at minimal cost. Resumen En el contexto de los ambiciosos objetivos a escala global de restauracion forestal a escala de paisaje, es necesario implementar esfuerzos para que la regeneracion natural del bosque se convierta en una opcion costo eficiente. En este articulo discutimos los principales factores que favorecen los procesos de regeneracion natural en paisajes tropicales deforestados. Ilustramos algunos casos en los que la regeneracion natural sucedio a la deforestacion a gran escala y describimos de igual forma alguno de los factores sociales y ecologicos que dieron pie a estas transiciones. Los procesos de auto organizacion ecologica que generan a los bosques regenerados naturalmente y los procesos de regeneracion natural estimulados por los bosques plantados favorecen la adaptacion genetica local, la persistencia de especies nativas con usos tradicionales, generan heterogeneidad espacial y temporal, y mantienen la biodiversidad y las interacciones bioticas. Estas caracteristicas en su conjunto le confieren a los ecosistemas regenerados naturalmente, resiliencia a futuras perturbaciones. Tambien discutimos algunos aspectos de caracter economico, social y legal que impedirian que la regeneracion natural pueda ser implementada de forma efectiva en un contexto tropical. Concluimos el articulo con una serie de sugerencias para promover la regeneracion natural como una herramienta eficaz de restauracion forestal a gran escala. Las principales prioridades de investigacion y de aspectos de politica incluyen: identificar y modelar las condiciones ecologicas y economicas donde la regeneracion natural seria una opcion viable y permanente de uso del suelo; el desarrollo de protocolos de monitoreo que puedan ser aplicados por comunidades locales; y el desarrollo de estructuras de incentivos y de gobernanza forestal que favorezca los procesos de regeneracion natural como uso legitimo del suelo. El incluir y alinear a la regeneracion natural con los objetivos y las practicas de restauracion forestal, en su sentido amplio, puede contribuir al logro de beneficios sociales y ambientales multiples a un bajo costo. SUMÁRIO Um esforço global para fomentar a regeneração natural de forma custo eficiente e necessario para alcançar objetivos ambiciosos de restauração florestal e da paisagem. Nos abordamos as condições que favorecem a regeneração florestal natural em paisagens tropicais, ilustrando casos de regeneração em larga escala apos o desmatamento e usos do solo não florestais, e tambem descrevemos os fatores sociais e ecologicos que fomentaram estas transições florestais locais. Os processos de auto organização da regeneração natural que criam florestas e a regeneração em florestas plantadas promovem a adaptação genetica local e o estabelecimento de especies nativas utilizadas por populações tradicionais, criam heterogeneidade espacial e temporal e sustentam a biodiversidade e as interações bioticas locais. Estas caracteristicas conferem maior resiliência ao ecossistema a disturbios futuros. Discutimos os desafios econômicos, sociais e legais para a regeneração em larga escala nos tropicos. Concluimos com recomendações para que a regeneração seja uma ferramenta eficaz para implantar a restauração florestal em larga escala. As prioridades de pesquisa e politicas incluem: identificar e modelar as condições ecologicas e econômicas onde a regeneração natural e viavel e favoravel, desenvolver protocolos de monitoramento para a regeneração que podem ser executados por comunidades locais, desenvolver estruturas de incentivo e de governança e condições legais que promovam a gestão de florestas em regeneração. Alinhar os objetivos e as praticas de restauração com a regeneração natural permite maiores beneficios sociais e ambientais com o menor custo.
A major global effort to enable cost‐effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large‐scale landscape restoration in tropical regions. Here, we focus on the conditions that favor natural regeneration within tropical forest landscapes. We illustrate cases where large‐scale natural regeneration followed forest clearing and non‐forest land use, and describe the social and ecological factors that drove these local forest transitions. The self‐organizing processes that create naturally regenerating forests and natural regeneration in planted forests promote local genetic adaptation, foster native species with known traditional uses, create spatial and temporal heterogeneity, and sustain local biodiversity and biotic interactions. These features confer greater ecosystem resilience in the face of future shocks and disturbances. We discuss economic, social, and legal issues that challenge natural regeneration in tropical landscapes. We conclude by suggesting ways to enable natural regeneration to become an effective tool for implementing large‐scale forest and landscape restoration. Major research and policy priorities include: identifying and modeling the ecological and economic conditions where natural regeneration is a viable and favorable land‐use option, developing monitoring protocols for natural regeneration that can be carried out by local communities, and developing enabling incentives, governance structures, and regulatory conditions that promote the stewardship of naturally regenerating forests. Aligning restoration goals and practices with natural regeneration can achieve the best possible outcome for achieving multiple social and environmental benefits at minimal cost.
A major global effort to enable cost-effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large-scale landscape restoration in tropical regions. Here, we focus on the conditions that favor natural regeneration within tropical forest landscapes. We illustrate cases where large-scale natural regeneration followed forest clearing and non-forest land use, and describe the social and ecological factors that drove these local forest transitions. The self-organizing processes that create naturally regenerating forests and natural regeneration in planted forests promote local genetic adaptation, foster native species with known traditional uses, create spatial and temporal heterogeneity, and sustain local biodiversity and biotic interactions. These features confer greater ecosystem resilience in the face of future shocks and disturbances. We discuss economic, social, and legal issues that challenge natural regeneration in tropical landscapes. We conclude by suggesting ways to enable natural regeneration to become an effective tool for implementing large-scale forest and landscape restoration. Major research and policy priorities include: identifying and modeling the ecological and economic conditions where natural regeneration is a viable and favorable land-use option, developing monitoring protocols for natural regeneration that can be carried out by local communities, and developing enabling incentives, governance structures, and regulatory conditions that promote the stewardship of naturally regenerating forests. Aligning restoration goals and practices with natural regeneration can achieve the best possible outcome for achieving multiple social and environmental benefits at minimal cost.Original Abstract: Resumen En el contexto de los ambiciosos objetivos a escala global de restauracion forestal a escala de paisaje, es necesario implementar esfuerzos para que la regeneracion natural del bosque se convierta en una opcion costo-eficiente. En este articulo discutimos los principales factores que favorecen los procesos de regeneracion natural en paisajes tropicales deforestados. Ilustramos algunos casos en los que la regeneracion natural sucedio a la deforestacion a gran escala y describimos de igual forma alguno de los factores sociales y ecologicos que dieron pie a estas transiciones. Los procesos de auto-organizacion ecologica que generan a los bosques regenerados naturalmente y los procesos de regeneracion natural estimulados por los bosques plantados favorecen la adaptacion genetica local, la persistencia de especies nativas con usos tradicionales, generan heterogeneidad espacial y temporal, y mantienen la biodiversidad y las interacciones bioticas. Estas caracteristicas en su conjunto le confieren a los ecosistemas regenerados naturalmente, resiliencia a futuras perturbaciones. Tambien discutimos algunos aspectos de caracter economico, social y legal que impedirian que la regeneracion natural pueda ser implementada de forma efectiva en un contexto tropical. Concluimos el articulo con una serie de sugerencias para promover la regeneracion natural como una herramienta eficaz de restauracion forestal a gran escala. Las principales prioridades de investigacion y de aspectos de politica incluyen: identificar y modelar las condiciones ecologicas y economicas donde la regeneracion natural seria una opcion viable y permanente de uso del suelo; el desarrollo de protocolos de monitoreo que puedan ser aplicados por comunidades locales; y el desarrollo de estructuras de incentivos y de gobernanza forestal que favorezca los procesos de regeneracion natural como uso legitimo del suelo. El incluir y alinear a la regeneracion natural con los objetivos y las practicas de restauracion forestal, en su sentido amplio, puede contribuir al logro de beneficios sociales y ambientales multiples a un bajo costo.
Author Chazdon, Robin L.
Guariguata, Manuel R.
Author_xml – sequence: 1
  givenname: Robin L.
  surname: Chazdon
  fullname: Chazdon, Robin L.
  email: robin.chazdon@uconn.edu, robin.chazdon@uconn.edu
  organization: Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Unit 3043, 06269-3043, Storrs, CT, USA
– sequence: 2
  givenname: Manuel R.
  surname: Guariguata
  fullname: Guariguata, Manuel R.
  organization: Center for International Forestry Research (CIFOR), Av. La Molina 1895, La MolinaLima, Perú
BookMark eNqFkVFPFDEQxxuDiQf44AcwaeKLPCy0226765sQRANBIoc8NrPd7rFnaZe2F-Xb2707eSAa-zDNZH7_ycz8d9GO884g9IaSQ5rfUZvGQ1qymr5AMyo5LyQvmx00I4SIggkiXqHdGJc5bSrCZ2h5CWkVwOJgFsaZAGnwDkPEgJP3Fvc-YAthYYqowZopNzHhKfgtPDic7gxOwY-Djh_wGHwcjU65h-uwvgNrjVuYuI9e9mCjeb3999DNp9P5yefi4uvZl5OPF4XmdUOLjrasbaTo2wrACNrqTuRZqZbQsabtat5LEL3ooSxlnzWcMEal7LKgLFnH9tD7Td88yMMqD6ruh6iNteCMX0VV5uU5E4KQ_6K0rogUDV2j756hS78KLi-ypojkjNNMHW0onY8Qg-mVHtL6TCnAYBUlarJJZZvU2qasOHimGMNwD-Hxr-y2-8_Bmsd_g-p4fvVH8XajWE5-PSl4XUlRyalebOpDTObXUx3CDyUkk5W6vTxTV_Pv367Pb49VyX4DUV29EA
CODEN BTROAZ
CitedBy_id crossref_primary_10_1590_2179_8087_floram_2019_0110
crossref_primary_10_1111_rec_14290
crossref_primary_10_1111_cobi_13362
crossref_primary_10_3956_2022_98_1_28
crossref_primary_10_1007_s10980_023_01694_y
crossref_primary_10_1007_s11258_022_01239_4
crossref_primary_10_1002_rse2_262
crossref_primary_10_1016_j_jag_2019_03_014
crossref_primary_10_1016_j_jaridenv_2019_103995
crossref_primary_10_1016_j_landusepol_2025_107499
crossref_primary_10_21829_abm129_2022_1917
crossref_primary_10_1002_ecs2_70157
crossref_primary_10_1007_s11027_018_9837_5
crossref_primary_10_1155_2024_2385142
crossref_primary_10_1007_s10531_017_1355_3
crossref_primary_10_1371_journal_pone_0250859
crossref_primary_10_1002_pan3_10248
crossref_primary_10_1111_brv_12694
crossref_primary_10_1111_ddi_13821
crossref_primary_10_3390_microorganisms13030554
crossref_primary_10_1002_eap_1653
crossref_primary_10_1016_j_ecolind_2021_107451
crossref_primary_10_1111_btp_13417
crossref_primary_10_1007_s12061_022_09449_z
crossref_primary_10_1093_jmammal_gyac084
crossref_primary_10_1038_s43247_023_00737_1
crossref_primary_10_3390_su15086823
crossref_primary_10_1016_j_fecs_2023_100126
crossref_primary_10_1111_jvs_13281
crossref_primary_10_3390_agriculture11030189
crossref_primary_10_1111_rec_12559
crossref_primary_10_1111_rec_13406
crossref_primary_10_1016_j_biocon_2023_110071
crossref_primary_10_3390_rs12030430
crossref_primary_10_1371_journal_pone_0208523
crossref_primary_10_3389_ffgc_2021_576908
crossref_primary_10_1016_j_jenvman_2021_114303
crossref_primary_10_2993_0278_0771_42_4_432
crossref_primary_10_1126_sciadv_abm8999
crossref_primary_10_1371_journal_pone_0171368
crossref_primary_10_3389_ffgc_2023_1123248
crossref_primary_10_1038_s41586_024_08106_4
crossref_primary_10_3390_f14091870
crossref_primary_10_1111_rec_14181
crossref_primary_10_1111_avsc_70001
crossref_primary_10_1007_s42965_019_00027_y
crossref_primary_10_1007_s11258_021_01131_7
crossref_primary_10_1111_btp_12678
crossref_primary_10_1016_j_ecoleng_2022_106639
crossref_primary_10_1016_j_foreco_2021_119861
crossref_primary_10_1038_s41598_018_21999_2
crossref_primary_10_1016_j_foreco_2022_120404
crossref_primary_10_1007_s00442_021_04920_z
crossref_primary_10_1016_j_tfp_2024_100736
crossref_primary_10_1111_rec_14032
crossref_primary_10_1016_j_ecoleng_2020_106031
crossref_primary_10_1111_rec_14272
crossref_primary_10_1016_j_foreco_2022_120083
crossref_primary_10_3390_f15061062
crossref_primary_10_1002_fes3_165
crossref_primary_10_1126_sciadv_1701345
crossref_primary_10_1126_science_add2814
crossref_primary_10_3389_ffgc_2024_1372409
crossref_primary_10_3390_f10060510
crossref_primary_10_3389_frwa_2024_1462412
crossref_primary_10_46830_wrirpt_18_00140
crossref_primary_10_3390_f15091513
crossref_primary_10_1038_s43247_024_01977_5
crossref_primary_10_1016_j_oneear_2021_01_006
crossref_primary_10_1007_s10113_020_01744_0
crossref_primary_10_1038_s43247_022_00360_6
crossref_primary_10_1016_j_landusepol_2023_107022
crossref_primary_10_1016_j_foreco_2020_118236
crossref_primary_10_1016_j_ecolind_2021_107915
crossref_primary_10_1016_j_indic_2024_100496
crossref_primary_10_1186_s13750_023_00308_z
crossref_primary_10_1007_s10457_019_00446_9
crossref_primary_10_1111_1365_2664_13501
crossref_primary_10_1111_rec_14161
crossref_primary_10_1016_j_foreco_2023_121221
crossref_primary_10_1111_1365_2664_14830
crossref_primary_10_1002_eap_3053
crossref_primary_10_1111_avsc_12394
crossref_primary_10_1007_s10342_022_01458_4
crossref_primary_10_1016_j_ecolind_2025_113238
crossref_primary_10_3390_f14050865
crossref_primary_10_1007_s42965_022_00282_6
crossref_primary_10_1111_btp_12533
crossref_primary_10_1016_j_ecolind_2024_112695
crossref_primary_10_1111_1365_2664_13836
crossref_primary_10_1038_s41558_024_02068_1
crossref_primary_10_1186_s40693_021_00102_6
crossref_primary_10_2478_ffp_2022_0011
crossref_primary_10_1007_s10980_019_00785_z
crossref_primary_10_1016_j_foreco_2021_119088
crossref_primary_10_1038_s43247_024_01737_5
crossref_primary_10_1002_ldr_3373
crossref_primary_10_1016_j_tfp_2024_100755
crossref_primary_10_1016_j_pecon_2020_12_003
crossref_primary_10_1139_cjfr_2017_0412
crossref_primary_10_1002_ldr_3014
crossref_primary_10_3389_ffgc_2020_589982
crossref_primary_10_3390_land10010071
crossref_primary_10_3390_land9080251
crossref_primary_10_1111_rec_12473
crossref_primary_10_1016_j_ecoleng_2021_106535
crossref_primary_10_1098_rstb_2021_0090
crossref_primary_10_1016_j_foreco_2023_121311
crossref_primary_10_1111_cobi_13842
crossref_primary_10_1111_rec_13681
crossref_primary_10_17129_botsci_2878
crossref_primary_10_1007_s00468_020_01982_z
crossref_primary_10_1111_gcb_70037
crossref_primary_10_3390_agriengineering6030148
crossref_primary_10_1021_acs_est_1c02546
crossref_primary_10_1111_rec_14094
crossref_primary_10_1038_s41598_020_70746_z
crossref_primary_10_1111_conl_12768
crossref_primary_10_1016_j_foreco_2019_117696
crossref_primary_10_1016_j_ecolind_2021_107890
crossref_primary_10_1016_j_foreco_2021_119770
crossref_primary_10_2478_fsmu_2022_0012
crossref_primary_10_1016_j_scitotenv_2019_135262
crossref_primary_10_1111_1365_2745_14347
crossref_primary_10_1088_1748_9326_ac1701
crossref_primary_10_3934_mbe_2020201
crossref_primary_10_1016_j_foreco_2020_118810
crossref_primary_10_2984_75_1_5
crossref_primary_10_1016_j_rse_2023_113533
crossref_primary_10_1007_s11056_020_09787_1
crossref_primary_10_1038_d41586_019_01026_8
crossref_primary_10_1038_s41893_024_01452_1
crossref_primary_10_1371_journal_pone_0316472
crossref_primary_10_1016_j_foreco_2020_118818
crossref_primary_10_1016_j_landusepol_2023_106879
crossref_primary_10_1016_j_foreco_2020_118819
crossref_primary_10_1016_j_fecs_2024_100198
crossref_primary_10_17129_botsci_3149
crossref_primary_10_3390_rs14030707
crossref_primary_10_1016_j_sciaf_2024_e02448
crossref_primary_10_1016_j_fecs_2022_100030
crossref_primary_10_3390_su13116097
crossref_primary_10_1007_s11056_020_09777_3
crossref_primary_10_17129_botsci_2971
crossref_primary_10_1016_j_ecolmodel_2025_111073
crossref_primary_10_1016_j_foreco_2020_118294
crossref_primary_10_1080_26395916_2021_1892827
crossref_primary_10_1007_s13595_020_00993_7
crossref_primary_10_17129_botsci_3382
crossref_primary_10_3389_ffgc_2020_571679
crossref_primary_10_1038_s41558_019_0485_x
crossref_primary_10_1016_j_ppees_2021_125631
crossref_primary_10_1098_rstb_2021_0073
crossref_primary_10_1017_S0959270922000235
crossref_primary_10_1016_j_foreco_2023_121414
crossref_primary_10_1111_rec_13421
crossref_primary_10_1002_2688_8319_70012
crossref_primary_10_1017_S0376892920000016
crossref_primary_10_3390_jzbg5040047
crossref_primary_10_1111_avsc_12741
crossref_primary_10_3390_f15071201
crossref_primary_10_1111_1365_2664_12976
crossref_primary_10_1016_j_rsase_2018_07_003
crossref_primary_10_1016_j_foreco_2020_117868
crossref_primary_10_1016_j_oneear_2024_05_002
crossref_primary_10_7744_kjoas_510412
crossref_primary_10_7744_kjoas_510410
crossref_primary_10_1111_1365_2664_13263
crossref_primary_10_1111_1365_2664_14232
crossref_primary_10_1111_rec_13558
crossref_primary_10_1007_s11056_021_09834_5
crossref_primary_10_3390_f9090570
crossref_primary_10_1016_j_foreco_2022_120279
crossref_primary_10_3390_f8090341
crossref_primary_10_1016_j_gecco_2021_e01573
crossref_primary_10_1016_j_geoforum_2025_104241
crossref_primary_10_1016_j_scitotenv_2018_09_016
crossref_primary_10_1007_s00468_023_02396_3
crossref_primary_10_1016_j_ecoleng_2022_106721
crossref_primary_10_1002_ecs2_2860
crossref_primary_10_1016_j_gecco_2021_e01696
crossref_primary_10_1111_btp_12627
crossref_primary_10_1007_s10457_022_00752_9
crossref_primary_10_1016_j_gloenvcha_2018_12_001
crossref_primary_10_3390_land10121286
crossref_primary_10_1007_s00267_025_02137_x
crossref_primary_10_1371_journal_pone_0242020
crossref_primary_10_1016_j_biocon_2021_109224
crossref_primary_10_1371_journal_pbio_3002107
crossref_primary_10_3389_frwa_2022_998349
crossref_primary_10_1111_rec_12703
crossref_primary_10_1002_ece3_70069
crossref_primary_10_1002_ldr_4781
crossref_primary_10_3390_d17010039
crossref_primary_10_1111_rec_14332
crossref_primary_10_1038_s41598_021_83030_5
crossref_primary_10_1016_j_heliyon_2022_e11163
crossref_primary_10_1016_j_foreco_2022_120140
crossref_primary_10_3390_f15071182
crossref_primary_10_3389_fenvs_2023_989214
crossref_primary_10_1016_j_biocon_2024_110608
crossref_primary_10_1111_conl_12848
crossref_primary_10_1016_j_foreco_2020_118183
crossref_primary_10_1080_11956860_2021_1943931
crossref_primary_10_3390_su122410430
crossref_primary_10_1016_j_gecco_2017_e00371
crossref_primary_10_1088_2515_7620_ab2102
crossref_primary_10_1098_rstb_2021_0065
crossref_primary_10_1016_j_envdev_2018_07_001
crossref_primary_10_1016_j_foreco_2023_121649
crossref_primary_10_1111_rec_13810
crossref_primary_10_3389_fpls_2024_1410418
crossref_primary_10_1016_j_foreco_2020_118854
crossref_primary_10_1016_j_foreco_2022_120137
crossref_primary_10_1016_j_pedobi_2021_150730
crossref_primary_10_1016_j_foreco_2023_121402
crossref_primary_10_1016_j_foreco_2023_121403
crossref_primary_10_1111_jvs_13205
crossref_primary_10_1016_j_foreco_2022_120012
crossref_primary_10_1111_rec_13493
crossref_primary_10_1007_s11056_017_9586_4
crossref_primary_10_1111_rec_13250
crossref_primary_10_1007_s10764_018_0049_3
crossref_primary_10_1088_1748_9326_ad039e
crossref_primary_10_3389_ffgc_2022_1005761
crossref_primary_10_3390_land10121340
crossref_primary_10_1016_j_agee_2019_06_003
crossref_primary_10_3390_su15032017
crossref_primary_10_1007_s42452_022_04951_y
crossref_primary_10_1016_j_ecolind_2024_112029
crossref_primary_10_1016_j_tfp_2023_100386
crossref_primary_10_3390_ecologies3030026
crossref_primary_10_3390_f12081022
crossref_primary_10_1016_j_biocon_2018_03_034
crossref_primary_10_1002_pan3_10772
crossref_primary_10_3390_f14071306
crossref_primary_10_1007_s11104_023_06410_y
crossref_primary_10_1111_emr_12397
crossref_primary_10_1371_journal_pone_0302192
crossref_primary_10_1007_s40333_022_0105_x
crossref_primary_10_3417_2016036
crossref_primary_10_3417_2016035
crossref_primary_10_3417_2017003
crossref_primary_10_1111_rec_14309
crossref_primary_10_3390_f9030143
crossref_primary_10_1007_s11258_018_0804_8
crossref_primary_10_1016_j_gecco_2023_e02394
crossref_primary_10_1111_1365_2664_14780
crossref_primary_10_3390_f11050527
crossref_primary_10_1111_1365_2435_14471
crossref_primary_10_1111_rec_13345
crossref_primary_10_1088_1748_9326_ab0783
crossref_primary_10_1007_s12224_022_09408_z
crossref_primary_10_1590_2179_8087_floram_2020_0082
crossref_primary_10_1080_21580103_2023_2237985
crossref_primary_10_1016_j_gecco_2021_e01788
crossref_primary_10_1111_1365_2664_13697
crossref_primary_10_1016_j_foreco_2022_120362
crossref_primary_10_3390_rs13132596
crossref_primary_10_5897_JHF2023_0707
crossref_primary_10_1038_s41598_019_46683_x
crossref_primary_10_1111_avsc_12784
crossref_primary_10_3390_rs16122085
crossref_primary_10_1016_j_foreco_2021_119352
crossref_primary_10_3389_ffgc_2021_594627
crossref_primary_10_1016_j_foreco_2020_118881
crossref_primary_10_3390_su14148362
crossref_primary_10_1111_rec_13117
crossref_primary_10_3389_ffgc_2021_605925
crossref_primary_10_1016_j_foreco_2021_118932
crossref_primary_10_1038_s41467_023_43951_3
crossref_primary_10_1590_0001_3765202120200665
crossref_primary_10_1111_rec_13471
crossref_primary_10_1088_1748_9326_accfaf
crossref_primary_10_3390_f10060468
crossref_primary_10_4103_cs_cs_19_147
crossref_primary_10_1016_j_regsus_2021_06_002
crossref_primary_10_7163_PrzG_2022_4_4
crossref_primary_10_3390_f16020250
crossref_primary_10_1016_j_jenvman_2024_122306
crossref_primary_10_1016_j_gecco_2020_e01443
crossref_primary_10_1016_j_foreco_2021_119240
crossref_primary_10_3389_ffgc_2020_569184
crossref_primary_10_1002_eap_2559
crossref_primary_10_1007_s10980_020_01023_7
crossref_primary_10_1111_rec_13955
crossref_primary_10_1126_sciadv_abc4547
crossref_primary_10_31413_nativa_v8i2_8583
crossref_primary_10_3389_ffgc_2021_735457
crossref_primary_10_1016_j_foreco_2019_02_024
crossref_primary_10_1111_cobi_12918
crossref_primary_10_1186_s40850_023_00187_4
crossref_primary_10_1016_j_biocon_2023_110387
crossref_primary_10_1177_1940082918773298
crossref_primary_10_1016_j_biocon_2019_108274
crossref_primary_10_1111_btp_12814
crossref_primary_10_1111_rec_14251
crossref_primary_10_1007_s10531_019_01791_y
crossref_primary_10_3389_ffgc_2024_1412075
crossref_primary_10_1016_j_jenvman_2020_111805
crossref_primary_10_3390_f11090938
crossref_primary_10_17129_botsci_3576
crossref_primary_10_33494_nzjfs542024x301x
crossref_primary_10_1111_rec_12519
crossref_primary_10_1016_j_scitotenv_2020_141934
crossref_primary_10_1016_j_scitotenv_2020_144647
crossref_primary_10_1111_rec_13847
crossref_primary_10_1016_j_forpol_2023_102980
crossref_primary_10_1111_aje_13255
crossref_primary_10_1111_rec_13852
crossref_primary_10_1002_ecs2_4780
crossref_primary_10_1038_s41558_020_0856_3
crossref_primary_10_1002_ldr_3764
crossref_primary_10_1080_10549811_2020_1841005
crossref_primary_10_1080_26395916_2021_1976838
crossref_primary_10_3390_f11080820
crossref_primary_10_1007_s40415_020_00585_9
crossref_primary_10_1002_pan3_10161
crossref_primary_10_1111_1365_2664_13684
crossref_primary_10_1016_j_cosust_2018_04_002
crossref_primary_10_1016_j_agee_2024_109413
crossref_primary_10_1016_j_foreco_2023_121140
crossref_primary_10_17129_botsci_2695
crossref_primary_10_36953_ECJ_2021_22338
crossref_primary_10_1016_j_cosust_2018_05_007
crossref_primary_10_1080_10549811_2022_2059517
crossref_primary_10_1038_s44264_023_00003_z
crossref_primary_10_3390_rs16091643
crossref_primary_10_1016_j_foreco_2021_119265
crossref_primary_10_1016_j_jrurstud_2025_103582
crossref_primary_10_3389_fsufs_2020_549483
crossref_primary_10_1126_science_ado1629
crossref_primary_10_3389_ffgc_2022_887365
crossref_primary_10_1111_1365_2664_14065
crossref_primary_10_1111_rec_12850
crossref_primary_10_1016_j_ecoleng_2021_106392
crossref_primary_10_15446_caldasia_v44n2_82255
crossref_primary_10_1126_science_aam5432
crossref_primary_10_17129_botsci_3549
crossref_primary_10_1071_WR19138
crossref_primary_10_1038_s44358_025_00032_1
crossref_primary_10_35534_ecolciviliz_2024_10002
crossref_primary_10_1016_j_rse_2021_112829
crossref_primary_10_1088_1748_9326_ab79e6
crossref_primary_10_1007_s10980_023_01621_1
crossref_primary_10_1111_rec_13703
crossref_primary_10_1080_23766808_2021_1953893
crossref_primary_10_3390_f11091008
crossref_primary_10_1016_j_biocon_2023_110172
crossref_primary_10_1016_j_ecoleng_2023_107039
crossref_primary_10_1111_rec_13035
crossref_primary_10_5814_j_issn_1674_764x_2023_02_020
crossref_primary_10_1371_journal_pone_0249573
crossref_primary_10_1016_j_ecoinf_2023_102277
crossref_primary_10_1111_rec_13279
crossref_primary_10_1016_j_ecolind_2019_03_046
crossref_primary_10_1111_icad_12495
crossref_primary_10_1111_conl_12709
crossref_primary_10_1111_njb_03679
crossref_primary_10_1111_1365_2664_14754
crossref_primary_10_1016_j_biocon_2021_109154
crossref_primary_10_1007_s40823_020_00058_5
crossref_primary_10_1016_j_landusepol_2021_105804
Cites_doi 10.1111/j.1526-100X.2012.00934.x
10.1016/j.ecolind.2013.05.010
10.1126/science.1201609
10.1111/j.1365-2486.2007.01344.x
10.3390/f5030482
10.4322/natcon.00801010
10.1016/j.ecoleng.2015.09.075
10.1007/s10113-013-0512-9
10.1088/1748-9326/11/3/035005
10.1038/nature10425
10.1111/ele.12322
10.1111/j.1744-7429.2012.00908.x
10.1111/rec.12290
10.1073/pnas.1500403112
10.1525/bio.2009.59.10.8
10.1016/j.tree.2011.06.011
10.1111/btp.12388
10.1016/j.foreco.2010.07.004
10.1016/j.foreco.2012.11.024
10.1111/btp.12390
10.1111/btp.12409
10.1007/s10980-015-0267-4
10.1007/BF01868377
10.1017/S0266467400008518
10.1016/j.envsci.2015.02.003
10.1111/btp.12386
10.1890/09-0714.1
10.1046/j.1526-100X.1998.00632.x
10.1126/sciadv.1501639
10.1111/btp.12389
10.1007/s10531-015-0980-y
10.1111/btp.12383
10.3390/f5050978
10.1111/btp.12384
10.1007/s00267-010-9590-3
10.1111/rec.12049
10.1016/j.scitotenv.2015.11.171
10.1016/B978-0-12-384719-5.00377-4
10.1641/B570806
10.1890/ES13-00182.1
10.1146/annurev.es.13.110182.001221
10.1016/j.envsoft.2011.07.008
10.2307/2937169
10.1038/nclimate2200
10.1016/j.foreco.2013.11.017
10.1111/1365-2745.12298
10.1016/j.foreco.2010.07.005
10.1093/biosci/biv108
10.1890/140052
10.1111/rec.12249
10.1371/journal.pone.0000402
10.1073/pnas.1210595110
10.1111/btp.12361
10.1111/1365-2745.12504
10.1016/j.ecoser.2015.09.002
10.1111/j.1526-100X.2009.00556.x
10.1016/j.biocon.2010.09.021
10.1111/rec.12098
10.1007/s12231-011-9175-y
10.1007/s00442-011-1984-2
10.5751/ES-02781-140131
10.7208/chicago/9780226024134.003.0011
10.1890/14-2188
10.5751/ES-05464-180341
10.1007/s10980-011-9623-1
10.1073/pnas.1602893113
10.5751/ES-02058-120201
10.1073/pnas.0703333104
10.1016/j.foreco.2010.08.027
10.1002/16-0108.1
10.1111/btp.12385
10.1111/j.1526-100X.2010.00674.x
10.1007/s13280-015-0694-0
10.1016/j.agee.2014.06.005
10.1080/14724040902953076
10.5751/ES-04275-160315
10.1890/0012-9658(1999)080[1908:SHOLAW]2.0.CO;2
10.1146/annurev.ecolsys.38.091206.095818
10.1016/S0378-1127(97)00202-8
10.1098/rstb.2006.1990
10.1038/srep22483
10.1111/btp.12380
10.1111/j.1523-1739.2008.01063.x
10.1093/biosci/biv008
10.2307/3113637
10.1111/rec.12228
10.4322/natcon.2013.022
10.1038/nature16512
10.1046/j.1523-1739.1999.98352.x
10.1371/journal.pone.0090573
10.1016/j.foreco.2014.01.024
10.1007/s10457-009-9225-y
10.1007/s12231-010-9138-8
10.1073/pnas.1003369107
10.1111/rec.12048
10.1007/s13280-016-0772-y
10.1016/j.foreco.2015.02.027
10.1890/14-0472.1
10.1016/S0378-1127(97)00193-X
10.1111/j.1523-1739.2004.00241.x
10.1371/journal.pone.0020543
10.1016/j.biocon.2012.05.002
10.1641/0006-3568(2003)053[1159:TECOSA]2.0.CO;2
10.1111/rec.12321
10.1111/gcb.12600
10.1111/btp.12382
10.1579/0044-7447-32.6.389
10.3390/f5071737
10.1126/science.aaa9932
10.1038/nclimate2869
10.1111/j.1526-100X.1995.tb00092.x
10.1016/j.gecco.2016.03.002
10.1111/btp.12387
10.1111/j.1523-1739.2007.00863.x
10.1007/s10113-014-0714-9
10.1111/j.1467-8306.2004.00439.x
10.1111/j.1523-1739.2009.01338.x
10.1890/1540-9295(2004)002[0354:APFASI]2.0.CO;2
10.1080/10549811.2013.817340
10.1111/j.1744-7429.2009.00528.x
10.1007/s10980-014-9988-z
10.1016/j.foreco.2005.10.043
10.3390/f5092212
10.1177/194008291500800116
10.1016/j.foreco.2014.02.030
10.1017/S0959270911000177
10.1126/science.1246663
10.1111/0033-0124.00233
10.1126/science.1155365
10.1111/btp.12181
10.1890/14-1399.1
10.1111/conl.12220
10.1111/1365-2664.12384
10.1007/s11842-012-9229-8
10.5751/ES-02426-130205
10.1016/j.ncon.2015.03.005
10.1016/S0378-1127(00)00535-1
10.1016/0167-8809(92)90105-K
10.1017/S0376892997000052
10.1016/S0378-1127(01)00581-3
10.1016/j.foreco.2005.03.057
10.1111/brv.12024
10.1046/j.1526-100X.1999.72001.x
10.1111/j.1744-7429.2008.00471.x
10.1007/s11056-015-9507-3
10.1890/14-0054.1
10.1016/j.foreco.2008.10.035
10.1111/conl.12199
10.2307/1310447
10.1111/j.1744-7429.2009.00583.x
10.1111/1365-2664.12405
10.1111/brv.12231
10.1007/s10661-014-4000-6
10.1016/j.landusepol.2007.06.001
10.1016/j.biocon.2009.02.021
10.1111/j.1526-100X.2007.00274.x
10.1111/j.1526-100X.2008.00459.x
10.4324/9780203071649
10.1111/cobi.12606
10.1016/j.foreco.2012.09.018
10.7208/chicago/9780226118109.001.0001
10.1073/pnas.1215567110
10.1111/conl.12161
ContentType Journal Article
Copyright 2016 The Association for Tropical Biology and Conservation
Copyright_xml – notice: 2016 The Association for Tropical Biology and Conservation
DBID BSCLL
AAYXX
CITATION
7QG
7QR
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
P64
SOI
7S9
L.6
DOI 10.1111/btp.12381
DatabaseName Istex
CrossRef
Animal Behavior Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Chemoreception Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

Entomology Abstracts
AGRICOLA

Ecology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Economics
EISSN 1744-7429
EndPage 730
ExternalDocumentID 4281698621
10_1111_btp_12381
BTP12381
48576571
ark_67375_WNG_PTVRSKWB_2
Genre article
GrantInformation_xml – fundername: CGIAR Program on Forests, Trees and Agroforestry
– fundername: UK Department for International Development (DFID)
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
– fundername: U.S. National Science Foundation
  funderid: DEB‐1313788
GroupedDBID -DZ
-JH
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
23N
2AX
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AAPSS
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABPLY
ABPPZ
ABPVW
ABTAH
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADHSS
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEPYG
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFIJ
AFFPM
AFGKR
AFNWH
AFPWT
AFRAH
AFZJQ
AGUYK
AHBTC
AHXOZ
AI.
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKPMI
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQVQM
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DC7
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
ECGQY
EDH
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
H13
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQ0
Q.N
Q11
Q5J
QB0
R.K
RBO
ROL
RX1
SA0
SUPJJ
TN5
UB1
V8K
VH1
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZCA
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AAYCA
ABSQW
ACHIC
ACYXJ
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AANHP
ACRPL
ADNMO
AAYXX
ADXHL
CITATION
7QG
7QR
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
P64
SOI
7S9
L.6
ID FETCH-LOGICAL-c4891-d1b3b976fb5aae61bcd69501c7ad39bd84f7a6f6fa227fc484033177dfb5223d3
IEDL.DBID DR2
ISSN 0006-3606
IngestDate Fri Jul 11 18:37:12 EDT 2025
Thu Jul 10 18:07:02 EDT 2025
Sun Jul 13 04:35:17 EDT 2025
Tue Jul 01 02:22:49 EDT 2025
Thu Apr 24 23:01:24 EDT 2025
Wed Jan 22 16:46:34 EST 2025
Thu Jul 03 22:16:30 EDT 2025
Wed Oct 30 10:01:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4891-d1b3b976fb5aae61bcd69501c7ad39bd84f7a6f6fa227fc484033177dfb5223d3
Notes U.S. National Science Foundation - No. DEB-1313788
CGIAR Program on Forests, Trees and Agroforestry
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
UK Department for International Development (DFID)
ark:/67375/WNG-PTVRSKWB-2
istex:933A90E99382CB3A4C8DE39D43AD673CDE636B9E
ArticleID:BTP12381
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1850074341
PQPubID 976347
PageCount 15
ParticipantIDs proquest_miscellaneous_2000436600
proquest_miscellaneous_1850769100
proquest_journals_1850074341
crossref_citationtrail_10_1111_btp_12381
crossref_primary_10_1111_btp_12381
wiley_primary_10_1111_btp_12381_BTP12381
jstor_primary_48576571
istex_primary_ark_67375_WNG_PTVRSKWB_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11
20161101
November 2016
2016-11-00
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Biotropica
PublicationTitleAlternate Biotropica
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Lohbeck, M., L. Poorter, M. Martínez-Ramos, and F. Bongers. 2014. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96: 1242-1252.
Lindell, C. A., R. J. Cole, K. D. Holl, and R. A. Zahawi. 2012. Migratory bird species in young tropical forest restoration sites: effects of vegetation height, planting design, and season. Bird Conserv. Int. 22: 94-105.
Lamb, D. 2014. Large-scale forest restoration. Routledge, London.
Voeks, R. A. 2004. Disturbance pharmacopoeias: Medicine and myth from the humid tropics. Ann. Assoc. Am. Geogr. 94: 868-888.
Chazdon, R. L., and F. G. Coe. 1999. Ethnobotany of woody species in second-growth, old-growth, and selectively logged forests of northeastern Costa Rica. Conserv. Biol. 13: 1312-1322.
De Souza, S. E. X. F., E. Vidal, G. D. F. Chagas, A. T. Elgar, and P. H. S. Brancalion. 2016. Ecological outcomes and livelihood benefits of community-managed agroforests and second-growth forests in Southeast Brazil. Biotropica 48: 868-881.
Sears, R., P. Cronkleton, M. Perez-Ojeda del Arco, V. Robiglio, L. Putzel, and J. Cornelius. 2014. Timber production in smallholder agroforestry systems: justifications for pro-poor forest policy in Peru. Center for International Forestry Research, Bogor, Indonesia.
Lee, E. W. S., B. C. H. Hau, and R. T. Corlett. 2005. Natural regeneration in exotic tree plantations in Hong Kong, China. For. Ecol. Manage. 212: 358-366.
Danielsen, F., T. Adrian, S. Brofeldt, M. van Noordwijk, M. K. Poulsen, S. Rahayu, ... N. T. An. 2013. Community monitoring for REDD+: international promises and field realities. Ecol. Soc. 18: 41.
Cordell, S., R. Ostertag, J. Michaud, and L. Warman. 2016. Quandaries of a decade-long restoration experiment trying to reduce invasive species: beat them, join them, give up, or start over? Restor. Ecol. 24: 139-144.
Reid, J. L., C. D. Mendenhall, J. A. Rosales, R. A. Zahawi, and K. D. Holl. 2014. Landscape context mediates avian habitat choice in tropical forest restoration. PLoS ONE 9: e90573.
Baptista, S. R. 2008. Metropolitanization and forest recovery in southern Brazil: a multiscale analysis of the Florianópolis city-region, Santa Catarina State, 1970 to 2005. Ecol. Soc. 13: 5.
Strassburg, B. N., F. S. M. Barros, R. Couzeilles, A. Iribarrem, J. S. Santos, D. Silva, ... A. Latawiec. 2016. The role of natural regeneration to ecosystem services provision and habitat availability: a case study in the Brazilian Atlantic Forest. Biotrop. Spec. Issue 31: 601-618.
Norden, N., H. A. Angarita, F. Bongers, B. Finegan, I. Granzow de la Cerda, E. Lebrija-Trejos, ... R. L. Chazdon. 2015. Successional dynamics in Neotropical forests are as uncertain as they are predictable. PNAS 112: 8013-8018.
Chazdon, R. L., C. A. Peres, D. Dent, D. Sheil, A. E. Lugo, D. Lamb, ... S. E. Miller. 2009b. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23: 1406-1417.
Fagan, M. E., R. S. Defriest, S. E. Sesnie, J. P. Arroyo, and R. L. Chazdon. 2016. Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor. Ecol. Appl. 26: 1456-1474.
Stouffer, P. C., E. I. Johnson, R. O. Bierregaard, and T. E. Lovejoy. 2011. Understory bird communities in Amazonian rainforest fragments: species turnover through 25 years post-isolation in recovering landscapes. PLoS ONE 6: e20543.
Grace, J., E. T. A. Mitchard, and E. Gloor. 2014. Perturbations in the carbon budget of the tropics. Glob. Change Biol. 20: 3238-3255.
Carwardine, J., C. Hawkins, P. Polglase, H. P. Possingham, A. Reeson, A. R. Renwick, ... T. G. Martin. 2015. Spatial priorities for restoring biodiverse carbon forests. Bioscience 65: 372-382.
Reid, J. L., K. D. Holl, and R. A. Zahawi. 2015. Seed dispersal limitations shift over time in tropical forest restoration. Ecol. Appl. 25: 1072-1082.
Uriarte, M., M. Pinedo-Vasquez, R. S. DeFries, K. Fernandes, V. Gutierrez-Velez, W. E. Baethgen, and C. Padoch. 2012. Depopulation of rural landscapes exacerbates fire activity in the western Amazon. Proc. Natl Acad. Sci. USA 109: 21546-21550.
Rappaport, D. I., L. R. Tambosi, and J. P. Metzger. 2015. A landscape triage approach: combining spatial and temporal dynamics to prioritize restoration and conservation. J. Appl. Ecol. 52: 590-601.
Mello, M. A. R., F. M. D. Marquitti, P. R. Guimarães, E. K. V. Kalko, P. Jordano, and M. A. M. de Aguiar. 2011. The modularity of seed dispersal: differences in structure and robustness between bat- and bird-fruit networks. Oecologia 167: 131-140.
Paquette, A., J. Hawryshyn, A. V. Senikas, and C. Potvin. 2009. Enrichment Planting in Secondary Forests: a Promising Clean Development Mechanism to Increase Terrestrial Carbon Sinks. Ecol. Soc. 14: 31 [http://www.ecologyandsociety.org/vol14/iss1/art31/].
Pistorius, T., and H. Freiberg. 2014. From target to implementation: perspectives for the international governance of forest landscape restoration. Forests 5: 482-497.
Junqueira, A. B., G. H. Shepard, and C. R. Clement. 2011. Secondary forests on anthropogenic soils of the Middle Madeira River: valuation, local knowledge, and landscape domestication in Brazilian Amazonia. Econ. Bot. 65: 85-99.
Zahawi, R. A., J. L. Reid, and K. D. Holl. 2015. Passive restoration can be an effective strategy: a reply to Prach and del Moral (2015). Restor. Ecol. 23: 347-348.
Nghiem, L. T., H. T. Tan, and R. T. Corlett. 2015. Invasive trees in Singapore: are they a threat to native forests? Trop. Conserv. Sci. 8: 201-214.
Parrotta, J. 1992. The role of plantation forests in rehabilitating degraded tropical ecosystems. Agric. Ecosyst. Environ. 41: 115-133.
Rudel, T. K., M. Perez-Lugo, and H. Zichal. 2000. When fields revert to forest: development and spontaneous reforestation in post-war Puerto Rico. Prof. Geogr. 52: 386-397.
Laestadius, L., S. Maginnis, S. Minnemeyer, P. Potapov, C. Saint-Laurent, and N. Sizer. 2012. Mapping opportunities for forest landscape restoration. Unasylva (FAO), 238: 47-48.
Pinto, S. R., F. Melo, M. Tabarelli, A. Padovesi, C. A. Mesquita, C. A. de Mattos Scaramuzza, ... R. Rodrigues. 2014. Governing and delivering a biome-wide restoration initiative: The case of Atlantic Forest Restoration Pact in Brazil. Forests 5: 2212-2229.
Latawiec, A. E., B. B. Strassburg, P. H. Brancalion, R. R. Rodrigues, and T. Gardner. 2015. Creating space for large-scale restoration in tropical agricultural landscapes. Front. Ecol. Environ. 13: 211-218.
Michon, G., H. de Foresta, P. Levant, and F. Verdeaux. 2007. Domestic forests: a new paradigm for integrating local communities' forestry into tropical forest science. Ecol. Soc. 12: 1.
García-Barrios, L., Y. M. Galván-Miyoshi, I. A. Valdivieso-Pérez, O. R. Masera, G. Bocco, and J. Vandermeer. 2009. Neotropical forest conservation, agricultural intensification, and rural out-migration: the Mexican experience. Bioscience 59: 863-873.
Houghton, R., B. Byers, and A. A. Nassikas. 2015. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Chang. 5: 1022-1023.
Pulido, M. T., and J. Caballero. 2006. The impact of shifting agriculture on the availability of non-timber forest products: the example of Sabal yapa in the Maya lowlands of Mexico. For. Ecol. Manage. 222: 399-409.
Meli, P., M. Martínez-Ramos, and J. M. Rey-Benayas. 2013. Selecting species for passive and active riparian restoration in Southern Mexico. Restor. Ecol. 21: 163-165.
Uriarte, M., N. B. Schwartz, J. S. Powers, E. Marin-Spiotta, W. Liao, and L. Werden. 2016. Impacts of climate variability on tree demography in second-growth tropical forests: the importance of regional context for predicting successional trajectoreis. Biotropica 48: 731-744.
Suazo-Ortuño, I., L. Lopez-Toledo, J. Alvarado-Díaz, and M. Martínez-Ramos. 2015. Land-use change dynamics, soil type and species forming mono-dominant patches: the case of Pteridium aquilinum in a Neotropical rain forest region. Biotropica 47: 18-26.
Bullock, J. M., J. Aronson, A. C. Newton, R. F. Pywell, and J. M. Rey-Benayas. 2011. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26: 541-549.
Mukul, S. A., J. Herbohn, and J. Firn. 2016a. Co-benefits of biodiversity and carbon sequestration from regenerating secondary forests in the Philippine uplands: implications for forest landscape restoration. Biotropica 48: 882-889.
Cumming, G. S. 2011. Spatial resilience: integrating landscape ecology, resilience, and sustainability. Landscape Ecol. 26: 899-909.
Sabogal, C., C. Besacier, and D. McGuire. 2015. Forest and landscape restoration: concepts, approaches and challenges for implementation. Unasylva 245: 3-10.
Barlow, J., T. A. Gardner, I. S. Araujo, T. C. Avila-Pires, A. B. Bonaldo, J. E. Costa, ... C. A. Peres. 2007. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104: 18555-18560.
Helmer, E., O. Ramos, T. del. M. López, M. Quiñones, and W. Diaz. 2002. Mapping the forest type and land cover of Puerto Rico, a component of the Caribbean biodiversity hotspot. Carib. J. Sci. 38: 165-183.
Resor, R. R. 1977. Rubber in Brazil: Dominance and collapse, 1876-1945. Bus. Hist. Rev. 51: 341-366.
Bascompte, J., and P. Jordano. 2007. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38: 567-593.
Lopez-Toledo, L., C. Horn, A. López-Cen, R. Collí-Díaz, and A. Padilla. 2011. Potential management of Chamaedorea seifrizii (Palmae), a non-timber forest product from the tropical forest of Calakmul, Southeast Mexico. Econ. Bot. 65: 371-380.
Uriarte, M., L. Schneider, and T. K. Rudel. 2010. Synthesis: land transitions in the tropics. Biotropica 42: 59-62.
Ewel, J. J., and F. E. Putz. 2004. A place for alien species in ecosystem restoration. Front. Ecol. Environ. 2: 336-354.
Lamb, D. 1998. Large-scale ecological restoration of degraded tropical forest lands: The potential role of timber plantations. Restor. Ecol. 6: 271-279.
Viani, R. A
2007; 104
2011; 478
2010; 107
2010; 18
2005; 212
2016; 31
2016; 30
2016; 544
2004; 2
2014; 29
2003; 53
2001; 148
2014; 22
2014; 20
2009; 14
2010; 20
2015; 85
2008; 25
2014; 14
2011; 65
2008; 22
1982
2007; 2
2013; 110
2014; 17
2014; 96
2016; 48
2012; 22
2016a; 113
2016; 45
2010; 9
2010; 8
1992; 41
2013a; 32
2008a; 320
2014; 319
2013; 88
2015; 50
2015; 245
2015; 52
1997; 24
1997
2013b
2008; 55
2016a; 48
2011; 6
2016a; 45
1995; 3
2007; 12
2007; 13
2016; 14
2003; 32
2007; 15
2012; 109
2016; 11
2009; 77
2016; 6
2010; 42
2015a
2015; 112
2015; 65
2007; 80
2015; 238
2013; 291
2011; 261
1998; 6
2016; 26
2012; 238
2006; 222
2016; 24
2011; 144
2016; 9
1982; 13
2009; 41
2013; 329
2015; 104
2013; 21
2015; 345
2008b
2009a; 41
2015; 103
2015; 31
1988; 38
2015; 349
2016; 104
2011; 16
1999; 80
2011; 19
2007; 38
2015; 46
2013; 18
2015; 47
2014; 5
2014; 4
2016b; 48
2014; 329
2016b; 2
1997; 99
2013; 11
2009; 50
2013; 12
1982; 6
2003; 7
2000; 52
1999; 13
2011b; 19
2011; 26
2014; 9
2016b; 6
2011; 167
2009; 59
2009; 23
2002; 38
2015; 13
2015; 15
2011; 333
2009b; 23
2015; 5
2015; 16
2010
2013; 45
1995; 11
2007; 362
2009
2013; 301
2007
2008; 13
2014; 195
2002
1999; 7
2015; 8
2007; 57
2009; 258
2015; 24
2015; 23
2012; 153
2015; 25
2004; 94
2004; 18
2002; 163
2013; 34
1977; 51
2016; 530
2016
2015
2011; 48
2014
2013
2009; 142
2014; 186
1992; 62
2014; 344
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
ITTO (e_1_2_9_89_1) 2002
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
Laestadius L. (e_1_2_9_99_1) 2012
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
Sears R. (e_1_2_9_167_1) 2014
e_1_2_9_129_1
e_1_2_9_144_1
Chazdon R. L. (e_1_2_9_35_1) 2013
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
Chazdon R. L. (e_1_2_9_43_1)
e_1_2_9_5_1
Maginnis S. (e_1_2_9_114_1) 2007
Martins S. V. (e_1_2_9_117_1) 2014
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
Selwyn M. A. (e_1_2_9_168_1) 2009; 50
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
Laestadius L. (e_1_2_9_98_1) 2015; 245
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
Toledo V. M. (e_1_2_9_182_1) 2003; 7
e_1_2_9_124_1
e_1_2_9_147_1
Isernhagen I. (e_1_2_9_88_1) 2009
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_66_1
e_1_2_9_8_1
Vílchez Alvarado B. (e_1_2_9_191_1) 2008; 55
e_1_2_9_81_1
Kartawinata K. (e_1_2_9_97_1) 2015
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
Strassburg B. N. (e_1_2_9_176_1) 2016; 31
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_28_1
e_1_2_9_174_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
Pierro B. (e_1_2_9_140_1) 2015; 238
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
Kanowski J. (e_1_2_9_96_1) 2010
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_190_1
e_1_2_9_52_1
Hecht S. B. (e_1_2_9_77_1) 1982
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
Hecht S. (e_1_2_9_79_1) 2015
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_87_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
Reij C. (e_1_2_9_152_1) 2009
e_1_2_9_30_1
Chazdon R. L. (e_1_2_9_31_1) 2008
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_186_1
e_1_2_9_42_1
e_1_2_9_65_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_12_1
e_1_2_9_128_1
Carabias J. (e_1_2_9_25_1) 2007; 80
IUCN and WRI (e_1_2_9_90_1) 2014
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
Reij C. (e_1_2_9_153_1) 2015
e_1_2_9_62_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_4_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_13_1
Helmer E. (e_1_2_9_80_1) 2002; 38
Davies P. (e_1_2_9_53_1) 1997
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
Ford A. (e_1_2_9_64_1) 2015
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_86_1
Kanowski P. J. (e_1_2_9_95_1) 2010
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
Sabogal C. (e_1_2_9_163_1) 2015; 245
Wieland Fernandini P. (e_1_2_9_193_1) 2015
e_1_2_9_192_1
References_xml – reference: Fagan, M. E., R. S. Defriest, S. E. Sesnie, J. P. Arroyo, and R. L. Chazdon. 2016. Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor. Ecol. Appl. 26: 1456-1474.
– reference: Stouffer, P. C., E. I. Johnson, R. O. Bierregaard, and T. E. Lovejoy. 2011. Understory bird communities in Amazonian rainforest fragments: species turnover through 25 years post-isolation in recovering landscapes. PLoS ONE 6: e20543.
– reference: Chazdon, R. L., C. A. Peres, D. Dent, D. Sheil, A. E. Lugo, D. Lamb, ... S. E. Miller. 2009b. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23: 1406-1417.
– reference: Lamb, D. 1998. Large-scale ecological restoration of degraded tropical forest lands: The potential role of timber plantations. Restor. Ecol. 6: 271-279.
– reference: McAlpine, C., C. P. Catterall, R. M. Nally, D. Lindenmayer, J. L. Reid, K. D. Holl, ... R. J. Hobbs. 2016. Integrating plant-and animal-based perspectives for more effective restoration of biodiversity. Front. Ecol. Environ. 14: 37-45.
– reference: Pan, Y. D., R. A. Birdsey, J. Y. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, ... D. Hayes. 2011. A large and persistent carbon sink in the world's forests. Science 333: 988-993.
– reference: Holl, K. D., R. A. Zahawi, R. J. Cole, R. Ostertag, and S. Cordell. 2011b. Planting seedlings in Tree Islands Versus Plantations as a large, ÄêScale tropical forest restoration strategy. Restor. Ecol. 19: 470-479.
– reference: Chazdon, R. L., E. N. Broadbent, D. M. A. Rozendaal, F. Bongers, A. M. A. Zambrano, T. M. Aide, ... L. Poorter. 2016b. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2: e1501639.
– reference: Howe, H. F.. 2016. Making dispersal syndromes and networks useful in tropical conservation and restoration. Glob. Ecol. Conserv. 6: 152-178.
– reference: Lohbeck, M., L. Poorter, M. Martínez-Ramos, and F. Bongers. 2014. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96: 1242-1252.
– reference: Mello, M. A. R., F. M. D. Marquitti, P. R. Guimarães, E. K. V. Kalko, P. Jordano, and M. A. M. de Aguiar. 2011. The modularity of seed dispersal: differences in structure and robustness between bat- and bird-fruit networks. Oecologia 167: 131-140.
– reference: Viani, R. A. G., N. B. Vidas, M. M. Pardi, D. C. V. Castro, E. Gusson, and P. H. Brancalion. 2015. Animal-dispersed pioneer trees enhance the early regeneration in Atlantic Forest restoration plantations. Natureza & Conservação 13: 41-46.
– reference: Lewis, S. L., D. P. Edwards, and D. Galbraith. 2015. Increasing human dominance of tropical forests. Science 349: 827-832.
– reference: Aide, T. M., M. L. Clark, H. R. Grau, D. López-Carr, M. A. Levy, D. Redo, ... M. Muñiz. 2013. Deforestation and reforestation of Latin America and the Caribbean (2001-2010). Biotropica 45: 262-271.
– reference: Ewel, J. J., and F. E. Putz. 2004. A place for alien species in ecosystem restoration. Front. Ecol. Environ. 2: 336-354.
– reference: Murcia, C., M. R. Guariguata, Á. Andrade, G. I. Andrade, J. Aronson, E. M. Escobar, ... E. Montes. 2016. Challenges and prospects for scaling-up ecological restoration to meet international commitments: Colombia as a case study. Conserv. Lett. 9: 213-220.
– reference: Guariguata, M. R., R. Rheingans, and F. Montagnini. 1995. Early woody invasion under tree plantations in Costa Rica: implications for forest restoration. Restor. Ecol. 3: 252-260.
– reference: Nghiem, L. T., H. T. Tan, and R. T. Corlett. 2015. Invasive trees in Singapore: are they a threat to native forests? Trop. Conserv. Sci. 8: 201-214.
– reference: Grace, J., E. T. A. Mitchard, and E. Gloor. 2014. Perturbations in the carbon budget of the tropics. Glob. Change Biol. 20: 3238-3255.
– reference: Pereira, L., C. Oliveira, and J. M. D. Torezan. 2013. Woody species regeneration in Atlantic Forest restoration sites depends on surrounding landscape. Natureza & Conservação 11: 138-144.
– reference: Zambrano, A. M. A., E. N. Broadbent, and W. H. Durham. 2010. Social and environmental effects of ecotourism in the Osa Peninsula of Costa Rica: the Lapa Rios case. J. Ecotourism 9: 62-83.
– reference: Román-Dañobeytia, F., M. Huayllani, A. Michi, F. Ibarra, R. Loayza-Muro, T. Vázquez, ... M. García. 2015. Reforestation with four native tree species after abandoned gold mining in the Peruvian Amazon. Ecol. Eng. 85: 39-46.
– reference: Wieland Fernandini, P., and R. Sousa. 2015. The distribution of powers and responsibilities affecting forests, land use, and REDD+ across levels and sectors in Peru: a legal study. Occasional Paper 129., 57 pp. CIFOR, Bogor, Indonesia.
– reference: Rodrigues, R. R., S. Gandolfi, A. G. Nave, J. Aronson, T. E. Barreto, C. Y. Vidal, and P. H. S. Brancalion. 2011. Large-scale ecological restoration of high-diversity tropical forests in SE Brazil. For. Ecol. Manage. 261: 1605-1613.
– reference: Toledo, V. M., B. Ortiz-Espejel, L. Cortes, P. Moguel, and M. J. Orodonez. 2003. The multiple use of tropical forests by indigenous peoples in Mexico: A case of adaptive management. Conserv. Ecol. 7. http://www.ecologyandsociety.org/vol7/iss3/art9/print.pdf.
– reference: Resor, R. R. 1977. Rubber in Brazil: Dominance and collapse, 1876-1945. Bus. Hist. Rev. 51: 341-366.
– reference: Poorter, L., F. Bongers, T. M. Aide, A. M. A. Zambrano, P. Balvanera, J. M. Becknell, ... R. L. Chazdon. 2016. Biomass resilience of Neotropical secondary forests. Nature 530: 211-214.
– reference: De Souza, S. E. X. F., E. Vidal, G. D. F. Chagas, A. T. Elgar, and P. H. S. Brancalion. 2016. Ecological outcomes and livelihood benefits of community-managed agroforests and second-growth forests in Southeast Brazil. Biotropica 48: 868-881.
– reference: Chazdon, R. L. 2008a. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320: 1458-1460.
– reference: Howe, H. F., and J. Smallwood. 1982. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13: 201-228.
– reference: Uriarte, M., N. B. Schwartz, J. S. Powers, E. Marin-Spiotta, W. Liao, and L. Werden. 2016. Impacts of climate variability on tree demography in second-growth tropical forests: the importance of regional context for predicting successional trajectoreis. Biotropica 48: 731-744.
– reference: Cumming, G. S. 2011. Spatial resilience: integrating landscape ecology, resilience, and sustainability. Landscape Ecol. 26: 899-909.
– reference: Tymen, B., M. Réjou-Méchain, J. W. Dalling, S. Fauset, T. R. Feldpausch, N. Norden, ... J. Chave. 2015. Evidence for arrested succession in a liana-infested Amazonian forest. J. Ecol. 104: 149-159.
– reference: Vieira, I. C. G., T. Gardner, J. Ferreira, A. C. Lees, and J. Barlow. 2014. Challenges of governing second-growth forests: a case study from the Brazilian Amazonian State of Pará. Forests 5: 1737-1752.
– reference: Chazdon, R. L., and M. Uriarte. 2016. Natural regeneration in the context of large-scale forest and landscape restoration in the tropics. Biotropica 48: 709-715.
– reference: Sears, R., P. Cronkleton, M. Perez-Ojeda del Arco, V. Robiglio, L. Putzel, and J. Cornelius. 2014. Timber production in smallholder agroforestry systems: justifications for pro-poor forest policy in Peru. Center for International Forestry Research, Bogor, Indonesia.
– reference: Sarmiento, F. O. 1997. Arrested succession in pastures hinders regeneration of Tropandean forests and shreds mountain landscapes. Environ. Conserv. 24: 14-23.
– reference: Reid, J. L., C. D. Mendenhall, J. A. Rosales, R. A. Zahawi, and K. D. Holl. 2014. Landscape context mediates avian habitat choice in tropical forest restoration. PLoS ONE 9: e90573.
– reference: Feldpausch, T. R., C. D. Prates-Clark, E. C. M. Fernandes, and S. J. Riha. 2007. Secondary forest growth deviation from chronosequence predictions in central Amazonia. Glob. Change Biol. 13: 967-979.
– reference: García-Barrios, L., Y. M. Galván-Miyoshi, I. A. Valdivieso-Pérez, O. R. Masera, G. Bocco, and J. Vandermeer. 2009. Neotropical forest conservation, agricultural intensification, and rural out-migration: the Mexican experience. Bioscience 59: 863-873.
– reference: Sabogal, C., C. Besacier, and D. McGuire. 2015. Forest and landscape restoration: concepts, approaches and challenges for implementation. Unasylva 245: 3-10.
– reference: Michon, G., H. de Foresta, P. Levant, and F. Verdeaux. 2007. Domestic forests: a new paradigm for integrating local communities' forestry into tropical forest science. Ecol. Soc. 12: 1.
– reference: Baptista, S. R. 2008. Metropolitanization and forest recovery in southern Brazil: a multiscale analysis of the Florianópolis city-region, Santa Catarina State, 1970 to 2005. Ecol. Soc. 13: 5.
– reference: Carabias, J., V. Arriaga, and V. Cervantes Gutiérrez. 2007. Las políticas públicas de la restauración ambiental en México: Limitantes, avances, rezagos y retos. Boletín de la Sociedad Botánica de México 80: 85-100.
– reference: Holl, K. D., and T. M. Aide. 2011. When and where to actively restore ecosystems? For. Ecol. Manage. 261: 1558-1563.
– reference: Chazdon, R. L., P. H. Brancalion, L. Laestadius, A. Bennet-Curry, K. Buckingham, C. Kumar, ... S. J. Wilson. 2016a. When is a forest a forest? The new era of forest and landscape restoration calls for additional forest concepts and definitions Ambio 45: 538-550.
– reference: Gavin, M. C. 2004. Changes in forest use value through ecological succession and their implications for land management in the Peruvian Amazon. Conserv. Biol. 18: 1562-1570.
– reference: Sansevero, J. B. B., P. V. Prieto, L. F. D. de Moraes, and P. J. F. P. Rodrigues. 2011. Natural regeneration in plantations of native trees in lowland Brazilian Atlantic Forest: Community structure, diversity, and dispersal syndromes. Restor. Ecol. 19: 379-389.
– reference: Román-Dañobeytia, F. J., S. I. Levy-Tacher, P. Macario-Mendoza, and J. Zúñiga-Morales. 2014. Redefining secondary forests in the Mexican Forest Code: Implications for management, restoration, and conservation. Forests 5: 978-991.
– reference: Lopez-Toledo, L., C. Horn, A. López-Cen, R. Collí-Díaz, and A. Padilla. 2011. Potential management of Chamaedorea seifrizii (Palmae), a non-timber forest product from the tropical forest of Calakmul, Southeast Mexico. Econ. Bot. 65: 371-380.
– reference: Bascompte, J., and P. Jordano. 2007. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38: 567-593.
– reference: Latawiec, A. E., B. B. Strassburg, P. H. Brancalion, R. R. Rodrigues, and T. Gardner. 2015. Creating space for large-scale restoration in tropical agricultural landscapes. Front. Ecol. Environ. 13: 211-218.
– reference: Zhai, D.-L., J.-C. Xu, Z.-C. Dai, C. H. Cannon, and R. Grumbine. 2014. Increasing tree cover while losing diverse natural forests in tropical Hainan, China. Reg. Environ. Change 14: 611-621.
– reference: Chazdon, R. L. 2013a. Making tropical succession and landscape reforestation successful. J. Sustain. For. 32: 649-658.
– reference: Styger, E., E. Fernandes, H. Rakotondramasy, and E. Rajaobelinirina. 2009. Degrading uplands in the rainforest region of Madagascar: Fallow biomass, nutrient stocks, and soil nutrient availability. Agrofor. Syst. 77: 107-122.
– reference: Laurance, W. F., J. L. C. Camargo, R. C. C. Luizao, S. G. Laurance, S. L. Pimm, E. M. Bruna, ... T. E. Lovejoy. 2011. The fate of Amazonian forest fragments: A 32-year investigation. Biol. Conserv. 144: 56-67.
– reference: Helmer, E., O. Ramos, T. del. M. López, M. Quiñones, and W. Diaz. 2002. Mapping the forest type and land cover of Puerto Rico, a component of the Caribbean biodiversity hotspot. Carib. J. Sci. 38: 165-183.
– reference: Abbas, S., J. E. Nichol, and G. A. Fischer. 2016. A 70-year perspective on tropical forest regeneration. Sci. Total Environ. 544: 544-552.
– reference: Cheung, K. C., D. Liebsch, and M. C. M. Marques. 2010. Forest recovery in newly Abandoned Pastures in Southern Brazil: implications for the Atlantic Rain Forest Resilience. Natureza & Conservacao 8: 66-70.
– reference: Ferraz, S. F., K. M. Ferraz, C. C. Cassiano, P. H. S. Brancalion, D. T. da Luz, T. N. Azevedo, ... J. P. Metzger. 2014. How good are tropical forest patches for ecosystem services provisioning? Landscape Ecol. 29: 187-200.
– reference: Harvey, C. A., O. Komar, R. Chazdon, B. G. Ferguson, B. Finegan, D. M. Griffith, and M. Wishnie. 2008. Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conserv. Biol. 22: 8-15.
– reference: Holl, K. D., and R. A. Zahawi. 2014. Factors explaining variability in woody above-ground biomass accumulation in restored tropical forest. For. Ecol. Manage. 319: 36-43.
– reference: Martins, S. V., M. Sartori, F. L. Raposo Filho, M. Simoneli, G. Dadalto, M. L. Pereira, and A. E. Souza da Silva. 2014. Potencial de regeneração natural de florestas nativas nas diferentes regiões do estado do Espírito Santo. CEDAGRO, Vitória, ES, Brazil.
– reference: Uriarte, M., L. Schneider, and T. K. Rudel. 2010. Synthesis: land transitions in the tropics. Biotropica 42: 59-62.
– reference: Adams, C., S. Rodrigues, M. Calmon, and C. Kumar. 2016. Impacts of large-scale forest restoration on socioeconomic status and local livelihoods: what we know and do not know. Biotropica 48: 731-744.
– reference: Nicotra, A. B., R. L. Chazdon, and S. Iriarte. 1999. Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests. Ecology 80: 1908-1926.
– reference: Reid, J. L., K. D. Holl, and R. A. Zahawi. 2015. Seed dispersal limitations shift over time in tropical forest restoration. Ecol. Appl. 25: 1072-1082.
– reference: Pistorius, T., and H. Freiberg. 2014. From target to implementation: perspectives for the international governance of forest landscape restoration. Forests 5: 482-497.
– reference: Danielsen, F., N. D. Burgess, A. Balmford, P. F. Donald, M. Funder, J. P. Jones, ... J. Brashares. 2009. Local participation in natural resource monitoring: a characterization of approaches. Conserv. Biol. 23: 31-42.
– reference: Murcia, C. 1997. Evaluation of Andean alder as a catalyst for the recovery of tropical cloud forests in Colombia. For. Ecol. Manage. 99: 163-170.
– reference: Reij, C., and D. Garrity. 2016. Scaling up farmer-managed natural regeneration in Africa to restore degraded landscapes. Biotropica 48: 834-843.
– reference: Brown, D. R., P. Dettmann, T. Rinaudo, H. Tefera, and A. Tofu. 2011. Poverty alleviation and environmental restoration using the clean development mechanism: a case study from Humbo, Ethiopia. Environ. Manage. 48: 322-333.
– reference: Martínez-Ramos, M., A. Pingarroni, J. Rodríguez-Velázquez, L. Toledo Chelala, I. Zermeño-Hernández, and F. Bongers. 2016b. Natural forest regeneration and ecological restoration in human modified tropical landscapes. Biotropica 48: 747-757.
– reference: Shono, K., E. A. Cadaweng, and P. B. Durst. 2007. Application of assisted natural regeneration to restore degraded tropical forestlands. Restor. Ecol. 15: 620-626.
– reference: Evans, M. C., J. Carwardine, R. J. Fensham, D. W. Butler, K. A. Wilson, H. P. Possingham, and T. G. Martin. 2015. Carbon farming via assisted natural regeneration as a cost-effective mechanism for restoring biodiversity in agricultural landscapes. Environ. Sci. Policy 50: 114-129.
– reference: Pinto, S. R., F. Melo, M. Tabarelli, A. Padovesi, C. A. Mesquita, C. A. de Mattos Scaramuzza, ... R. Rodrigues. 2014. Governing and delivering a biome-wide restoration initiative: The case of Atlantic Forest Restoration Pact in Brazil. Forests 5: 2212-2229.
– reference: Tambosi, L. R., A. C. Martensen, M. C. Ribeiro, and J. P. Metzger. 2014. A framework to optimize biodiversity restoration efforts based on habitat amount and landscape connectivity. Restor. Ecol. 22: 169-177.
– reference: Piiroinen, T., P. Nyeko, and H. Roininen. 2015. Natural establishment of indigenous trees under planted nuclei: A study from a clear-felled pine plantation in an afrotropical rain forest. For. Ecol. Manage. 345: 21-28.
– reference: Chazdon, R. L., C. A. Harvey, O. Komar, D. M. Griffith, B. G. Ferguson, M. Martínez-Ramos, ... S. M. Philpott. 2009a. Beyond reserves: a research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica 41: 142-153.
– reference: Junqueira, A. B., G. H. Shepard, and C. R. Clement. 2011. Secondary forests on anthropogenic soils of the Middle Madeira River: valuation, local knowledge, and landscape domestication in Brazilian Amazonia. Econ. Bot. 65: 85-99.
– reference: Friday, J. B., S. Cordell, C. P. Giardina, F. Inman-Narahari, N. Koch, J. J. Leary, ... C. Trauernicht. 2015. Future directions for forest restoration in Hawai 'i. New Forest. 46: 733-746.
– reference: Hernández-Barrios, J. C., N. P. Anten, and M. Martínez-Ramos. 2015. Sustainable harvesting of non-timber forest products based on ecological and economic criteria. J. Appl. Ecol. 52: 389-401.
– reference: Carnevale, N. J., and F. Montagnini. 2002. Facilitating regeneration of secondary forests with the use of mixed and pure plantations of indigenous tree species. For. Ecol. Manage. 163: 217-227.
– reference: Voeks, R. A. 2004. Disturbance pharmacopoeias: Medicine and myth from the humid tropics. Ann. Assoc. Am. Geogr. 94: 868-888.
– reference: Sun, Z., H. Ren, V. Schaefer, Q. Guo, and J. Wang. 2014. Using ecological memory as an indicator to monitor the ecological restoration of four forest plantations in subtropical China. Environ. Monit. Assess. 186: 8229-8247.
– reference: Vílchez Alvarado, B., R. Chazdon, and V. Milla Quesada. 2008. Dinámica de la regeneración en cuatro bosques secundarios tropicales de la región Huetar Norte, Costa Rica. Su valor para la conservación o uso comercial. Recursos Naturales y Ambiente (Costa Rica) 55: 118-128.
– reference: Reij, C., G. Tappan, and M. Smale. 2009. Agroenvironmental transformation in the Sahel: Another kind of" Green Revolution". Intl Food Policy Res Inst, Washington, D. C.
– reference: Lasky, J. R., M. Uriarte, V. K. Boukili, D. L. Erickson, W. J. Kress, and R. L. Chazdon. 2014. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol. Lett. 17: 1158-1167.
– reference: Grau, H. R., T. M. Aide, J. K. Zimmerman, J. R. Thomlinson, E. Helmer, and X. M. Zou. 2003. The ecological consequences of socioeconomic and land-use changes in postagriculture Puerto Rico. Bioscience 53: 1159-1168.
– reference: de Rezende, C. L., A. Uezu, F. R. Scarano, and D. S. D. Araujo. 2015. Atlantic forest spontaneous regeneration at landscape scale. Biodivers. Conserv. 24: 2255-2272.
– reference: Shoo, L. P., K. Freebody, J. Kanowski, and C. P. Catterall. 2016. Slow recovery of tropical old-field rainforest regrowth and the value and limitations of active restoration. Conserv. Biol. 30: 121-132.
– reference: Sloan, S., M. Goosem, and S. G. Laurance. 2015. Tropical forest regeneration following land abandonment is driven by primary rainforest distribution in an old pastoral region. Landsc. Ecol. 31: 601-618.
– reference: Bhagwat, S. A., N. Sandra, and K. J. Willis. 2012. Resilience of an ancient tropical forest landscape to 7500 years of environmental change. Biol. Conserv. 153: 108-117.
– reference: IUCN and WRI. 2014. A guide to the restoration opportunities assessment methodology (ROAM): assessing forest landscape restoration opportunities at the national or sub-national level. Working Paper (Road-test edition). IUCN, Gland, Switzerland.
– reference: Sayer, J., T. Sunderland, J. Ghazoul, J.-L. Pfund, D. Sheil, E. Meijaard, ... C. Garcia. 2013. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110: 8349-8356.
– reference: Jakovac, C. C., M. Peña-Claros, T. W. Kuyper, and F. Bongers. 2015. Loss of secondary-forest resilience by land-use intensification in the Amazon. J. Ecol. 103: 67-77.
– reference: Paquette, A., J. Hawryshyn, A. V. Senikas, and C. Potvin. 2009. Enrichment Planting in Secondary Forests: a Promising Clean Development Mechanism to Increase Terrestrial Carbon Sinks. Ecol. Soc. 14: 31 [http://www.ecologyandsociety.org/vol14/iss1/art31/].
– reference: Algeet-Abarquero, N., A. Sánchez-Azofeifa, J. Bonatti, and M. Marchamalo. 2015. Land cover dynamics in Osa Region, Costa Rica: secondary forest is here to stay. Reg. Environ. Change 15: 1461-1472.
– reference: Parrotta, J. 1992. The role of plantation forests in rehabilitating degraded tropical ecosystems. Agric. Ecosyst. Environ. 41: 115-133.
– reference: Lee, E. W. S., B. C. H. Hau, and R. T. Corlett. 2005. Natural regeneration in exotic tree plantations in Hong Kong, China. For. Ecol. Manage. 212: 358-366.
– reference: McGuire, L. P., and W. A. Boyle. 2013. Altitudinal migration in bats: evidence, patterns, and drivers. Biol. Rev. 88: 767-786.
– reference: Zahawi, R. A., J. L. Reid, and K. D. Holl. 2014. Hidden costs of passive restoration. Restor. Ecol. 22: 284-287.
– reference: Reij, C., and R. Winterbottom. 2015. Scaling up regreening: six steps to success; a practical approach to forest and landscape restoration. World Resources Institute, Washington, DC.
– reference: Powers, J. S., J. P. Haggar, and R. F. Fisher. 1997. The effect of overstory composition on understory woody regeneration and species richness in 7-year-old plantations in Costa Rica. For. Ecol. Manage. 99: 43-54.
– reference: Douterlungne, D., S. Levy-Tacher, D. Golicher, and F. Dañobeytia. 2010. Applying indigenous knowledge to the restoration of degraded tropical rain forest clearings dominated by bracken fern. Restor. Ecol. 18: 322-329.
– reference: Latawiec, A. E., R. Crouzeilles, P. H. S. Brancalion, R. R. Rodrigues, J. B. B. Sansevero, J. S. Dos Santos, ... B. B. N. Strassburg. 2016. Natural regeneration and biodiversity: a global meta-analysis and implications for spatial planning. Biotropica 48: 844-855.
– reference: Cordell, S., R. Ostertag, J. Michaud, and L. Warman. 2016. Quandaries of a decade-long restoration experiment trying to reduce invasive species: beat them, join them, give up, or start over? Restor. Ecol. 24: 139-144.
– reference: Bullock, J. M., J. Aronson, A. C. Newton, R. F. Pywell, and J. M. Rey-Benayas. 2011. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26: 541-549.
– reference: Elliott, S.. 2016. The potential for automating assisted natural regeneration (ANR) of tropical forest ecosystems. Biotropica 48: 825-833.
– reference: Chazdon, R. L., P. H. Brancalion, D. Lamb, L. Laestadius, M. Calmon, and C. Kumar. 2015a. A policy-driven knowledge agenda for global forest and landscape restoration. Conserv. Lett.. doi:10.1111/conl.12220.
– reference: Filotas, E., L. Parrott, P. J. Burton, R. L. Chazdon, K. D. Coates, L. Coll, ... C. Messier. 2014. Viewing forests through the lens of complex systems science. Ecosphere 5: art1.
– reference: Parrotta, J. A., and O. H. Knowles. 1999. Restoration of tropical moist forests on bauxite-mined lands in the Brazilian Amazon. Restor. Ecol. 7: 103-116.
– reference: Rozendaal, D. A., and R. L. Chazdon. 2015. Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica. Ecol. Appl. 25: 506-516.
– reference: Bhagwat, S. A., S. Nogué, and K. J. Willis. 2013. Cultural drivers of reforestation in tropical forest groves of the Western Ghats of India. For. Ecol. Manage. 329: 393-400.
– reference: Brockerhoff, E. G., H. Jactel, J. A. Parrotta, and S. F. Ferraz. 2013. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For. Ecol. Manage. 301: 43-50.
– reference: Mesquita, R. d. C. G., P. E. dos Santos Massoca, C. C. Jakovac, T. V. Bentos, and G. B. Williamson. 2015. Amazon rain forest succession: stochasticity or land-use legacy? Bioscience 65: 849-861.
– reference: Birch, J. C., A. C. Newton, C. A. Aquino, E. Cantarello, C. Echeverría, T. Kitzberger, ... N. T. Garavito. 2010. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services. Proc. Natl Acad. Sci. USA 107: 21925-21930.
– reference: Kanowski, J., C. P. Catterall, K. Freebody, A. N. D. Freeman, and D. A. Harrison. 2010. Monitoring revegetation projects in rainforest landscapes. Toolkit Version3. Reef and Rainforest Research Cente Limited, Cairns, Australia.
– reference: Tymen, B., M. Réjou-Méchain, J. W. Dalling, S. Fauset, T. R. Feldpausch, N. Norden, ... J. Chave. 2016. Evidence for arrested succession in a liana-infested Amazonian forest. J. Ecol. 104: 149-159.
– reference: Chazdon, R. L. 2014. Second growth: the promise of tropical forest regeneration in an age of deforestation. University of Chicago Press, Chicago, IL.
– reference: Davies, P. 1997. La visibilidad de los bosques secundarios. Memorias del taller internacional sobre el estado actual y potencial de manejo y desarrollo del bosque secundario tropical en América Latina, pp. 120-126. Amazon Cooperation Treaty, Lima, Perú.
– reference: Bonner, M. T., S. Schmidt, and L. P. Shoo. 2013. A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. For. Ecol. Manage. 291: 73-86.
– reference: Ceccon, E., J. I. Barrera-Cataño, J. Aronson, and C. Martínez-Garza. 2015. The socioecological complexity of ecological restoration in Mexico. Restor. Ecol. 23: 331-336.
– reference: Sun, Z., H. Ren, V. Schaefer, H. Lu, J. Wang, L. Li, and N. Liu. 2013. Quantifying ecological memory during forest succession: a case study from lower subtropical forest ecosystems in South China. Ecol. Ind. 34: 192-203.
– reference: Aryal, D. R., B. H. J. De Jong, S. Ochoa-Gaona, L. Esparza-Olguin, and J. Mendoza-Vega. 2014. Carbon stocks and changes in tropical secondary forests of southern Mexico. Agric. Ecosyst. Environ. 195: 220-230.
– reference: Selwyn, M. A., and R. Ganesan. 2009. Evaluating the potential role of Eucalyptus plantations in the regeneration of native trees in southern Western Ghats, India. Trop. Ecol. 50: 173-189.
– reference: Ribeiro, M. C., J. P. Metzger, A. C. Martensen, F. J. Ponzoni, and M. M. Hirota. 2009. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142: 1141-1153.
– reference: Hecht, S. B. 1982. Agroforestry in the Amazon Basin: practice, theory and limits of a promising land use, 331 pp. Intl Labour Organisation, Cali, Colombia.
– reference: Lugo, A. E. 1992. Comparison of tropical tree plantations with secondary forests of similar age. Ecol. Monogr. 62: 1-41.
– reference: Griscom, H. P., and M. S. Ashton. 2011. Restoration of dry tropical forests in Central America: a review of pattern and process. For. Ecol. Manage. 261: 1564-1579.
– reference: Yackulic, C. B., M. Fagan, M. Jain, A. Jina, Y. Lim, M. Marlier, ... M. Uriarte. 2011. Biophysical and socioeconomic factors associated with forest transitions at multiple spatial and temporal scales. Ecol. Soc. 16: 15.
– reference: Norden, N., H. A. Angarita, F. Bongers, B. Finegan, I. Granzow de la Cerda, E. Lebrija-Trejos, ... R. L. Chazdon. 2015. Successional dynamics in Neotropical forests are as uncertain as they are predictable. PNAS 112: 8013-8018.
– reference: Orsi, F., R. L. Church, and D. Geneletti. 2011. Restoring forest landscapes for biodiversity conservation and rural livelihoods: A spatial optimisation model. Environ. Model. Softw. 26: 1622-1638.
– reference: Zahawi, R. A., J. L. Reid, and K. D. Holl. 2015. Passive restoration can be an effective strategy: a reply to Prach and del Moral (2015). Restor. Ecol. 23: 347-348.
– reference: Raymond, C. M., C. Bieling, N. Fagerholm, B. Martin-Lopez, and T. Plieninger. 2016. The farmer as a landscape steward: comparing local understandings of landscape stewardship, landscape values, and land management actions. Ambio 45: 173-184.
– reference: Hecht, S., A. L. Yang, B. S. Basnett, C. Padoch, and N. L. Peluso. 2015. People in motion, forests in transition: trends in migration, urbanization, and remittances and their effects on tropical forests. Occasional Paper 142, Bogor, Indonesia CIFOR.
– reference: Meyfroidt, P., and E. Lambin. 2008. The causes of reforestation in Vietnam. Land Use Policy 25: 182-197.
– reference: Rappaport, D. I., L. R. Tambosi, and J. P. Metzger. 2015. A landscape triage approach: combining spatial and temporal dynamics to prioritize restoration and conservation. J. Appl. Ecol. 52: 590-601.
– reference: Bertacchi, M. I. F., N. T. Amazonas, P. H. Brancalion, G. E. Brondani, A. Oliveira, M. A. Pascoa, and R. R. Rodrigues. 2016. Establishment of tree seedlings in the understory of restoration plantations: natural regeneration and enrichment plantings. Restor. Ecol. 24: 100-108.
– reference: Cole, R. J., K. D. Holl, and R. A. Zahawi. 2010. Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape. Ecol. Appl. 20: 1255-1269.
– reference: Hecht, S. B., and S. S. Saatchi. 2007. Globalization and forest resurgence: changes in forest cover in El Salvador. Bioscience 57: 663-672.
– reference: Pulido, M. T., and J. Caballero. 2006. The impact of shifting agriculture on the availability of non-timber forest products: the example of Sabal yapa in the Maya lowlands of Mexico. For. Ecol. Manage. 222: 399-409.
– reference: Catterall, C. P.. 2016. Roles of non-native species in large-scale regeneration of moist tropical forests on anthropogenic grassland. Biotropica 48: 809-824.
– reference: Jadin, I., P. Meyfroidt, and E. Lambin. 2016. International trade, and land use intensification and spatial reorganization explain Costa Rica's forest transition. Environ. Res. Lett. 11: 035005.
– reference: Chazdon, R. L., and F. G. Coe. 1999. Ethnobotany of woody species in second-growth, old-growth, and selectively logged forests of northeastern Costa Rica. Conserv. Biol. 13: 1312-1322.
– reference: Elmqvist, T., M. Pyykönen, M. Tengö, F. Rakotondrasoa, E. Rabakonandrianina, and C. Radimilahy. 2007. Patterns of loss and regeneration of tropical dry forest in Madagascar: the social institutional context. PLoS ONE 2: e402.
– reference: Barlow, J., T. A. Gardner, I. S. Araujo, T. C. Avila-Pires, A. B. Bonaldo, J. E. Costa, ... C. A. Peres. 2007. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104: 18555-18560.
– reference: Richards, R. C., J. Rerolle, J. Aronson, P. H. Pereira, H. Gonçalves, and P. H. Brancalion. 2015. Governing a pioneer program on payment for watershed services: Stakeholder involvement, legal frameworks and early lessons from the Atlantic forest of Brazil. Ecosystem Services 16: 23-32.
– reference: Houghton, R., B. Byers, and A. A. Nassikas. 2015. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Chang. 5: 1022-1023.
– reference: Vergara-Asenjo, G., D. Sharma, and C. Potvin. 2015. Engaging stakeholders: assessing accuracy of participatory mapping of land cover in Panama. Conserv. Lett. 8: 432-439.
– reference: Brancalion, P., D. Schweizer, U. Gaudare, J. Mangueira, F. Lamonato, F. Farah, ... R. Rodrigues. 2016. Balancing economic costs and ecological outcomes of passive and active restoration in agricultural landscapes: the case of Brazil. Biotropica 48: 856-867.
– reference: Mukul, S. A., J. Herbohn, and J. Firn. 2016a. Co-benefits of biodiversity and carbon sequestration from regenerating secondary forests in the Philippine uplands: implications for forest landscape restoration. Biotropica 48: 882-889.
– reference: de Pierro, B. 2015. Modos de restaurar as florestas. Pesquiza FAPESP 238: 32-35.
– reference: Laestadius, L., K. Buckingham, S. Maginnis, and C. Saint-Laurent. 2015. Back to Bonn and beyond: a history of forest landscape restoration and an outlook for the future. Unasylva 245: 11-18.
– reference: Arroyo-Rodriguez, V., F. Melo, M. Martinez-Ramos, F. Bongers, R. Chazdon, J. Meave, N. Norden, B. A. Santos, I. R. Leal, ... M. Tabarelli. 2016. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. doi: 10.1111/brv.12231.
– reference: Suazo-Ortuño, I., L. Lopez-Toledo, J. Alvarado-Díaz, and M. Martínez-Ramos. 2015. Land-use change dynamics, soil type and species forming mono-dominant patches: the case of Pteridium aquilinum in a Neotropical rain forest region. Biotropica 47: 18-26.
– reference: Gilroy, J. J., P. Woodcock, F. A. Edwards, C. Wheeler, B. L. Baptiste, C. A. M. Uribe, ... D. P. Edwards. 2014. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Chang. 4: 503-507.
– reference: Meli, P., M. Martínez-Ramos, and J. M. Rey-Benayas. 2013. Selecting species for passive and active riparian restoration in Southern Mexico. Restor. Ecol. 21: 163-165.
– reference: Strassburg, B. N., F. S. M. Barros, R. Couzeilles, A. Iribarrem, J. S. Santos, D. Silva, ... A. Latawiec. 2016. The role of natural regeneration to ecosystem services provision and habitat availability: a case study in the Brazilian Atlantic Forest. Biotrop. Spec. Issue 31: 601-618.
– reference: Allen, W. H. 1988. Biocultural restoration of a tropical forest: architects of Costa Rica's emerging Guanacaste National Park plan to make it an integral part of local culture. Bioscience 38: 156-161.
– reference: Uriarte, M., M. Pinedo-Vasquez, R. S. DeFries, K. Fernandes, V. Gutierrez-Velez, W. E. Baethgen, and C. Padoch. 2012. Depopulation of rural landscapes exacerbates fire activity in the western Amazon. Proc. Natl Acad. Sci. USA 109: 21546-21550.
– reference: Chazdon, R. L., S. G. Letcher, M. van Breugel, M. Martinez-Ramos, F. Bongers, and B. Finegan. 2007. Rates of change in tree communities of secondary Neotropical forests following major disturbances. Phils. Trans. R. Soc. B Biol. Sci. 362: 273-289.
– reference: Martínez-Ramos, M., I. A. Ortiz-Rodríguez, D. Piñero, R. Dirzo, and J. Sarukhán. 2016a. Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves. Proc. Natl Acad. Sci. USA 113: 5323-5328.
– reference: Guariguata, M., and R. Ostertag. 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. For. Ecol. Manage. 148: 185-206.
– reference: Gilman, A., S. Letcher, R. M. Fincher, A. Perez, T. Madell, A. Finkelstein, and F. Corrales-Araya. 2016. Recovery of floristic diversity and basal area in natural forest regeneration and planted plots in a Costa Rican wet forest. Biotropica 48: 798-808.
– reference: Silva Junior, M. C., F. R. Scarano, and F. Souza Cardel. 1995. Regeneration of an Atlantic forest formation in the understorey of a Eucalyptus grandis plantation in south-eastern Brazil. J. Trop. Ecol. 11: 147-152.
– reference: Gibson, L., T. M. Lee, L. P. Koh, B. W. Brook, T. A. Gardner, J. Barlow, ... N. S. Sodhi. 2011. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478: 378.
– reference: Laestadius, L., S. Maginnis, S. Minnemeyer, P. Potapov, C. Saint-Laurent, and N. Sizer. 2012. Mapping opportunities for forest landscape restoration. Unasylva (FAO), 238: 47-48.
– reference: Carwardine, J., C. Hawkins, P. Polglase, H. P. Possingham, A. Reeson, A. R. Renwick, ... T. G. Martin. 2015. Spatial priorities for restoring biodiverse carbon forests. Bioscience 65: 372-382.
– reference: Calvo-Alvarado, J., B. McLennan, A. Sanchez-Azofeifa, and T. Garvin. 2009. Deforestation and forest restoration in Guanacaste, Costa Rica: putting conservation policies in context. For. Ecol. Manage. 258: 931-940.
– reference: Rudel, T. K., M. Perez-Lugo, and H. Zichal. 2000. When fields revert to forest: development and spontaneous reforestation in post-war Puerto Rico. Prof. Geogr. 52: 386-397.
– reference: Bengtsson, J., P. Angelstam, and T. Elmqvist. 2003. Reserves, resilience, and dynamic landscapes. Ambio 32: 389-396.
– reference: Lindell, C. A., R. J. Cole, K. D. Holl, and R. A. Zahawi. 2012. Migratory bird species in young tropical forest restoration sites: effects of vegetation height, planting design, and season. Bird Conserv. Int. 22: 94-105.
– reference: Ford, A., and R. Nigh. 2015. Maya forest garden: eight millennia of sustainable cultivation of the tropical woodlands. Left Coast Press, Walnut Creek, CA.
– reference: Lamb, D. 2014. Large-scale forest restoration. Routledge, London.
– reference: Danielsen, F., T. Adrian, S. Brofeldt, M. van Noordwijk, M. K. Poulsen, S. Rahayu, ... N. T. An. 2013. Community monitoring for REDD+: international promises and field realities. Ecol. Soc. 18: 41.
– reference: Melo, F. P. L., B. Rodriguez-Herrera, R. L. Chazdon, R. A. Medellin, and G. G. Ceballos. 2009. Small tent-roosting bats promote dispersal of large-seeded plants in a Neotropical forest. Biotropica 41: 737-743.
– reference: Jordan, C. F., and E. G. Farnworth. 1982. Natural vs. plantation forests: a case study of land reclamation strategies for the humid tropics. Environ. Manage. 6: 485-492.
– reference: Soares-Filho, B., R. Rajão, M. Macedo, A. Carneiro, W. Costa, M. Coe, ... A. Alencar. 2014. Cracking Brazil's forest code. Science 344: 363-364.
– reference: Mukul, S. A., J. Herbohn, and J. Firn. 2016b. Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks. Sci. Rep. 6: 22483.
– reference: Shoo, L. P., and C. P. Catterall. 2013. Stimulating natural regeneration of tropical forest on degraded land: approaches, outcomes, and information gaps. Restor. Ecol. 21: 670-677.
– reference: ITTO. 2002. ITTO guidelines for the restoration, management and rehabilitation of degraded and secondary tropical forests. International Tropical Timber Organization, Yokohama, Japan.
– reference: Ashton, M., I. Gunatilleke, C. Gunatilleke, K. Tennakoon, and P. Ashton. 2014. Use and cultivation of plants that yield products other than timber from South Asian tropical forests, and their potential in forest restoration. For. Ecol. Manage. 329: 360-374.
– reference: Cronkleton, P., A. M. Larson, L. Feintrenie, C. Garcia, and P. Levang. 2013. Reframing community forestry to manage the forest-farm interface. Small-scale For. 12: 5-13.
– volume: 21
  start-page: 163
  year: 2013
  end-page: 165
  article-title: Selecting species for passive and active riparian restoration in Southern Mexico
  publication-title: Restor. Ecol.
– start-page: 129
  year: 2014
  end-page: 139
– volume: 57
  start-page: 663
  year: 2007
  end-page: 672
  article-title: Globalization and forest resurgence: changes in forest cover in El Salvador
  publication-title: Bioscience
– volume: 544
  start-page: 544
  year: 2016
  end-page: 552
  article-title: A 70‐year perspective on tropical forest regeneration
  publication-title: Sci. Total Environ.
– volume: 88
  start-page: 767
  year: 2013
  end-page: 786
  article-title: Altitudinal migration in bats: evidence, patterns, and drivers
  publication-title: Biol. Rev.
– volume: 45
  start-page: 173
  year: 2016
  end-page: 184
  article-title: The farmer as a landscape steward: comparing local understandings of landscape stewardship, landscape values, and land management actions
  publication-title: Ambio
– volume: 261
  start-page: 1558
  year: 2011
  end-page: 1563
  article-title: When and where to actively restore ecosystems?
  publication-title: For. Ecol. Manage.
– volume: 9
  start-page: 213
  year: 2016
  end-page: 220
  article-title: Challenges and prospects for scaling‐up ecological restoration to meet international commitments: Colombia as a case study
  publication-title: Conserv. Lett.
– volume: 26
  start-page: 1622
  year: 2011
  end-page: 1638
  article-title: Restoring forest landscapes for biodiversity conservation and rural livelihoods: A spatial optimisation model
  publication-title: Environ. Model. Softw.
– volume: 153
  start-page: 108
  year: 2012
  end-page: 117
  article-title: Resilience of an ancient tropical forest landscape to 7500 years of environmental change
  publication-title: Biol. Conserv.
– volume: 12
  start-page: 1
  year: 2007
  article-title: Domestic forests: a new paradigm for integrating local communities’ forestry into tropical forest science
  publication-title: Ecol. Soc.
– volume: 24
  start-page: 2255
  year: 2015
  end-page: 2272
  article-title: Atlantic forest spontaneous regeneration at landscape scale
  publication-title: Biodivers. Conserv.
– volume: 48
  start-page: 322
  year: 2011
  end-page: 333
  article-title: Poverty alleviation and environmental restoration using the clean development mechanism: a case study from Humbo, Ethiopia
  publication-title: Environ. Manage.
– volume: 38
  start-page: 567
  year: 2007
  end-page: 593
  article-title: Plant‐animal mutualistic networks: the architecture of biodiversity
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– start-page: 277
  year: 2013b
  end-page: 286
– volume: 6
  start-page: 152
  year: 2016
  end-page: 178
  article-title: Making dispersal syndromes and networks useful in tropical conservation and restoration
  publication-title: Glob. Ecol. Conserv.
– volume: 14
  start-page: 37
  year: 2016
  end-page: 45
  article-title: Integrating plant‐and animal‐based perspectives for more effective restoration of biodiversity
  publication-title: Front. Ecol. Environ.
– volume: 80
  start-page: 1908
  year: 1999
  end-page: 1926
  article-title: Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests
  publication-title: Ecology
– volume: 5
  start-page: 2212
  year: 2014
  end-page: 2229
  article-title: Governing and delivering a biome‐wide restoration initiative: The case of Atlantic Forest Restoration Pact in Brazil
  publication-title: Forests
– volume: 94
  start-page: 868
  year: 2004
  end-page: 888
  article-title: Disturbance pharmacopoeias: Medicine and myth from the humid tropics
  publication-title: Ann. Assoc. Am. Geogr.
– volume: 478
  start-page: 378
  year: 2011
  article-title: Primary forests are irreplaceable for sustaining tropical biodiversity
  publication-title: Nature
– volume: 320
  start-page: 1458
  year: 2008a
  end-page: 1460
  article-title: Beyond deforestation: restoring forests and ecosystem services on degraded lands
  publication-title: Science
– volume: 30
  start-page: 121
  year: 2016
  end-page: 132
  article-title: Slow recovery of tropical old‐field rainforest regrowth and the value and limitations of active restoration
  publication-title: Conserv. Biol.
– volume: 104
  start-page: 18555
  year: 2007
  end-page: 18560
  article-title: Quantifying the biodiversity value of tropical primary, secondary, and plantation forests
  publication-title: Proc. Natl Acad. Sci. USA
– year: 2014
– volume: 13
  start-page: 967
  year: 2007
  end-page: 979
  article-title: Secondary forest growth deviation from chronosequence predictions in central Amazonia
  publication-title: Glob. Change Biol.
– start-page: 662
  year: 2015
  end-page: 681
– volume: 238
  start-page: 47
  year: 2012
  end-page: 48
– volume: 29
  start-page: 187
  year: 2014
  end-page: 200
  article-title: How good are tropical forest patches for ecosystem services provisioning?
  publication-title: Landscape Ecol.
– volume: 99
  start-page: 163
  year: 1997
  end-page: 170
  article-title: Evaluation of Andean alder as a catalyst for the recovery of tropical cloud forests in Colombia
  publication-title: For. Ecol. Manage.
– volume: 47
  start-page: 18
  year: 2015
  end-page: 26
  article-title: Land‐use change dynamics, soil type and species forming mono‐dominant patches: the case of in a Neotropical rain forest region
  publication-title: Biotropica
– volume: 22
  start-page: 284
  year: 2014
  end-page: 287
  article-title: Hidden costs of passive restoration
  publication-title: Restor. Ecol.
– volume: 80
  start-page: 85
  year: 2007
  end-page: 100
  article-title: Las políticas públicas de la restauración ambiental en México: Limitantes, avances, rezagos y retos
  publication-title: Boletín de la Sociedad Botánica de México
– volume: 26
  start-page: 1456
  year: 2016
  end-page: 1474
  article-title: Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor
  publication-title: Ecol. Appl.
– volume: 3
  start-page: 252
  year: 1995
  end-page: 260
  article-title: Early woody invasion under tree plantations in Costa Rica: implications for forest restoration
  publication-title: Restor. Ecol.
– volume: 104
  start-page: 149
  year: 2015
  end-page: 159
  article-title: Evidence for arrested succession in a liana‐infested Amazonian forest
  publication-title: J. Ecol.
– volume: 22
  start-page: 94
  year: 2012
  end-page: 105
  article-title: Migratory bird species in young tropical forest restoration sites: effects of vegetation height, planting design, and season
  publication-title: Bird Conserv. Int.
– volume: 65
  start-page: 849
  year: 2015
  end-page: 861
  article-title: Amazon rain forest succession: stochasticity or land‐use legacy?
  publication-title: Bioscience
– volume: 142
  start-page: 1141
  year: 2009
  end-page: 1153
  article-title: The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation
  publication-title: Biol. Conserv.
– start-page: 92
  year: 2015
– volume: 15
  start-page: 620
  year: 2007
  end-page: 626
  article-title: Application of assisted natural regeneration to restore degraded tropical forestlands
  publication-title: Restor. Ecol.
– start-page: 57
  year: 2015
– start-page: 331
  year: 1982
– volume: 25
  start-page: 182
  year: 2008
  end-page: 197
  article-title: The causes of reforestation in Vietnam
  publication-title: Land Use Policy
– volume: 25
  start-page: 506
  year: 2015
  end-page: 516
  article-title: Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica
  publication-title: Ecol. Appl.
– volume: 48
  start-page: 868
  year: 2016
  end-page: 881
  article-title: Ecological outcomes and livelihood benefits of community‐managed agroforests and second‐growth forests in Southeast Brazil
  publication-title: Biotropica
– volume: 5
  start-page: 482
  year: 2014
  end-page: 497
  article-title: From target to implementation: perspectives for the international governance of forest landscape restoration
  publication-title: Forests
– volume: 195
  start-page: 220
  year: 2014
  end-page: 230
  article-title: Carbon stocks and changes in tropical secondary forests of southern Mexico
  publication-title: Agric. Ecosyst. Environ.
– volume: 48
  start-page: 731
  year: 2016
  end-page: 744
  article-title: Impacts of climate variability on tree demography in second‐growth tropical forests: the importance of regional context for predicting successional trajectoreis
  publication-title: Biotropica
– volume: 48
  start-page: 856
  year: 2016
  end-page: 867
  article-title: Balancing economic costs and ecological outcomes of passive and active restoration in agricultural landscapes: the case of Brazil
  publication-title: Biotropica
– volume: 13
  start-page: 41
  year: 2015
  end-page: 46
  article-title: Animal‐dispersed pioneer trees enhance the early regeneration in Atlantic Forest restoration plantations
  publication-title: Natureza & Conservação
– volume: 41
  start-page: 737
  year: 2009
  end-page: 743
  article-title: Small tent‐roosting bats promote dispersal of large‐seeded plants in a Neotropical forest
  publication-title: Biotropica
– volume: 38
  start-page: 165
  year: 2002
  end-page: 183
  article-title: Mapping the forest type and land cover of Puerto Rico, a component of the Caribbean biodiversity hotspot
  publication-title: Carib. J. Sci.
– year: 2015a
  article-title: A policy‐driven knowledge agenda for global forest and landscape restoration
  publication-title: Conserv. Lett.
– volume: 186
  start-page: 8229
  year: 2014
  end-page: 8247
  article-title: Using ecological memory as an indicator to monitor the ecological restoration of four forest plantations in subtropical China
  publication-title: Environ. Monit. Assess.
– volume: 26
  start-page: 899
  year: 2011
  end-page: 909
  article-title: Spatial resilience: integrating landscape ecology, resilience, and sustainability
  publication-title: Landscape Ecol.
– volume: 41
  start-page: 115
  year: 1992
  end-page: 133
  article-title: The role of plantation forests in rehabilitating degraded tropical ecosystems
  publication-title: Agric. Ecosyst. Environ.
– volume: 50
  start-page: 114
  year: 2015
  end-page: 129
  article-title: Carbon farming via assisted natural regeneration as a cost‐effective mechanism for restoring biodiversity in agricultural landscapes
  publication-title: Environ. Sci. Policy
– volume: 144
  start-page: 56
  year: 2011
  end-page: 67
  article-title: The fate of Amazonian forest fragments: A 32‐year investigation
  publication-title: Biol. Conserv.
– volume: 48
  start-page: 834
  year: 2016
  end-page: 843
  article-title: Scaling up farmer‐managed natural regeneration in Africa to restore degraded landscapes
  publication-title: Biotropica
– start-page: 384
  year: 2008b
  end-page: 408
– volume: 530
  start-page: 211
  year: 2016
  end-page: 214
  article-title: Biomass resilience of Neotropical secondary forests
  publication-title: Nature
– volume: 107
  start-page: 21925
  year: 2010
  end-page: 21930
  article-title: Cost‐effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 2
  start-page: e1501639
  year: 2016b
  article-title: Carbon sequestration potential of second‐growth forest regeneration in the Latin American tropics
  publication-title: Sci. Adv.
– volume: 42
  start-page: 59
  year: 2010
  end-page: 62
  article-title: Synthesis: land transitions in the tropics
  publication-title: Biotropica
– volume: 65
  start-page: 372
  year: 2015
  end-page: 382
  article-title: Spatial priorities for restoring biodiverse carbon forests
  publication-title: Bioscience
– volume: 45
  start-page: 262
  year: 2013
  end-page: 271
  article-title: Deforestation and reforestation of Latin America and the Caribbean (2001–2010)
  publication-title: Biotropica
– volume: 16
  start-page: 15
  year: 2011
  article-title: Biophysical and socioeconomic factors associated with forest transitions at multiple spatial and temporal scales
  publication-title: Ecol. Soc.
– volume: 18
  start-page: 41
  year: 2013
  article-title: Community monitoring for REDD+: international promises and field realities
  publication-title: Ecol. Soc.
– volume: 25
  start-page: 1072
  year: 2015
  end-page: 1082
  article-title: Seed dispersal limitations shift over time in tropical forest restoration
  publication-title: Ecol. Appl.
– volume: 20
  start-page: 3238
  year: 2014
  end-page: 3255
  article-title: Perturbations in the carbon budget of the tropics
  publication-title: Glob. Change Biol.
– volume: 55
  start-page: 118
  year: 2008
  end-page: 128
  article-title: Dinámica de la regeneración en cuatro bosques secundarios tropicales de la región Huetar Norte, Costa Rica. Su valor para la conservación o uso comercial
  publication-title: Recursos Naturales y Ambiente (Costa Rica)
– volume: 329
  start-page: 393
  year: 2013
  end-page: 400
  article-title: Cultural drivers of reforestation in tropical forest groves of the Western Ghats of India
  publication-title: For. Ecol. Manage.
– year: 2016
– volume: 65
  start-page: 371
  year: 2011
  end-page: 380
  article-title: Potential management of Chamaedorea seifrizii (Palmae), a non‐timber forest product from the tropical forest of Calakmul, Southeast Mexico
  publication-title: Econ. Bot.
– year: 2010
– volume: 51
  start-page: 341
  year: 1977
  end-page: 366
  article-title: Rubber in Brazil: Dominance and collapse, 1876‐1945
  publication-title: Bus. Hist. Rev.
– volume: 52
  start-page: 386
  year: 2000
  end-page: 397
  article-title: When fields revert to forest: development and spontaneous reforestation in post‐war Puerto Rico
  publication-title: Prof. Geogr.
– volume: 8
  start-page: 201
  year: 2015
  end-page: 214
  article-title: Invasive trees in Singapore: are they a threat to native forests?
  publication-title: Trop. Conserv. Sci.
– volume: 362
  start-page: 273
  year: 2007
  end-page: 289
  article-title: Rates of change in tree communities of secondary Neotropical forests following major disturbances
  publication-title: Phils. Trans. R. Soc. B Biol. Sci.
– volume: 8
  start-page: 66
  year: 2010
  end-page: 70
  article-title: Forest recovery in newly Abandoned Pastures in Southern Brazil: implications for the Atlantic Rain Forest Resilience
  publication-title: Natureza & Conservacao
– volume: 18
  start-page: 322
  year: 2010
  end-page: 329
  article-title: Applying indigenous knowledge to the restoration of degraded tropical rain forest clearings dominated by bracken fern
  publication-title: Restor. Ecol.
– volume: 24
  start-page: 139
  year: 2016
  end-page: 144
  article-title: Quandaries of a decade‐long restoration experiment trying to reduce invasive species: beat them, join them, give up, or start over?
  publication-title: Restor. Ecol.
– volume: 238
  start-page: 32
  year: 2015
  end-page: 35
  article-title: Modos de restaurar as florestas
  publication-title: Pesquiza FAPESP
– year: 2002
– volume: 319
  start-page: 36
  year: 2014
  end-page: 43
  article-title: Factors explaining variability in woody above‐ground biomass accumulation in restored tropical forest
  publication-title: For. Ecol. Manage.
– volume: 222
  start-page: 399
  year: 2006
  end-page: 409
  article-title: The impact of shifting agriculture on the availability of non‐timber forest products: the example of Sabal yapa in the Maya lowlands of Mexico
  publication-title: For. Ecol. Manage.
– volume: 32
  start-page: 649
  year: 2013a
  end-page: 658
  article-title: Making tropical succession and landscape reforestation successful
  publication-title: J. Sustain. For.
– volume: 48
  start-page: 825
  year: 2016
  end-page: 833
  article-title: The potential for automating assisted natural regeneration (ANR) of tropical forest ecosystems
  publication-title: Biotropica
– volume: 48
  start-page: 844
  year: 2016
  end-page: 855
  article-title: Natural regeneration and biodiversity: a global meta‐analysis and implications for spatial planning
  publication-title: Biotropica
– volume: 333
  start-page: 988
  year: 2011
  end-page: 993
  article-title: A large and persistent carbon sink in the world's forests
  publication-title: Science
– volume: 344
  start-page: 363
  year: 2014
  end-page: 364
  article-title: Cracking Brazil's forest code
  publication-title: Science
– volume: 261
  start-page: 1605
  year: 2011
  end-page: 1613
  article-title: Large‐scale ecological restoration of high‐diversity tropical forests in SE Brazil
  publication-title: For. Ecol. Manage.
– volume: 23
  start-page: 331
  year: 2015
  end-page: 336
  article-title: The socioecological complexity of ecological restoration in Mexico
  publication-title: Restor. Ecol.
– volume: 291
  start-page: 73
  year: 2013
  end-page: 86
  article-title: A meta‐analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations
  publication-title: For. Ecol. Manage.
– volume: 26
  start-page: 541
  year: 2011
  end-page: 549
  article-title: Restoration of ecosystem services and biodiversity: conflicts and opportunities
  publication-title: Trends Ecol. Evol.
– volume: 59
  start-page: 863
  year: 2009
  end-page: 873
  article-title: Neotropical forest conservation, agricultural intensification, and rural out‐migration: the Mexican experience
  publication-title: Bioscience
– year: 2009
– volume: 45
  start-page: 538
  year: 2016a
  end-page: 550
  article-title: When is a forest a forest? The new era of forest and landscape restoration calls for additional forest concepts and definitions
  publication-title: Ambio
– volume: 23
  start-page: 347
  year: 2015
  end-page: 348
  article-title: Passive restoration can be an effective strategy: a reply to Prach and del Moral (2015)
  publication-title: Restor. Ecol.
– volume: 2
  start-page: e402
  year: 2007
  article-title: Patterns of loss and regeneration of tropical dry forest in Madagascar: the social institutional context
  publication-title: PLoS ONE
– volume: 48
  start-page: 747
  year: 2016b
  end-page: 757
  article-title: Natural forest regeneration and ecological restoration in human modified tropical landscapes
  publication-title: Biotropica
– volume: 329
  start-page: 360
  year: 2014
  end-page: 374
  article-title: Use and cultivation of plants that yield products other than timber from South Asian tropical forests, and their potential in forest restoration
  publication-title: For. Ecol. Manage.
– volume: 167
  start-page: 131
  year: 2011
  end-page: 140
  article-title: The modularity of seed dispersal: differences in structure and robustness between bat‐ and bird‐fruit networks
  publication-title: Oecologia
– start-page: 35
  year: 2013
  end-page: 59
– volume: 7
  start-page: 103
  year: 1999
  end-page: 116
  article-title: Restoration of tropical moist forests on bauxite‐mined lands in the Brazilian Amazon
  publication-title: Restor. Ecol.
– volume: 77
  start-page: 107
  year: 2009
  end-page: 122
  article-title: Degrading uplands in the rainforest region of Madagascar: Fallow biomass, nutrient stocks, and soil nutrient availability
  publication-title: Agrofor. Syst.
– year: 2015
  article-title: People in motion, forests in transition: trends in migration, urbanization, and remittances and their effects on tropical forests
  publication-title: Occasional Paper 142
– volume: 110
  start-page: 8349
  year: 2013
  end-page: 8356
  article-title: Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 109
  start-page: 21546
  year: 2012
  end-page: 21550
  article-title: Depopulation of rural landscapes exacerbates fire activity in the western Amazon
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 258
  start-page: 931
  year: 2009
  end-page: 940
  article-title: Deforestation and forest restoration in Guanacaste, Costa Rica: putting conservation policies in context
  publication-title: For. Ecol. Manage.
– volume: 34
  start-page: 192
  year: 2013
  end-page: 203
  article-title: Quantifying ecological memory during forest succession: a case study from lower subtropical forest ecosystems in South China
  publication-title: Ecol. Ind.
– volume: 12
  start-page: 5
  year: 2013
  end-page: 13
  article-title: Reframing community forestry to manage the forest–farm interface
  publication-title: Small‐scale For.
– volume: 19
  start-page: 379
  year: 2011
  end-page: 389
  article-title: Natural regeneration in plantations of native trees in lowland Brazilian Atlantic Forest: Community structure, diversity, and dispersal syndromes
  publication-title: Restor. Ecol.
– volume: 19
  start-page: 470
  year: 2011b
  end-page: 479
  article-title: Planting seedlings in Tree Islands Versus Plantations as a large, ÄêScale tropical forest restoration strategy
  publication-title: Restor. Ecol.
– volume: 13
  start-page: 201
  year: 1982
  end-page: 228
  article-title: Ecology of seed dispersal
  publication-title: Annu. Rev. Ecol. Syst.
– volume: 301
  start-page: 43
  year: 2013
  end-page: 50
  article-title: Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity‐related ecosystem services
  publication-title: For. Ecol. Manage.
– volume: 96
  start-page: 1242
  year: 2014
  end-page: 1252
  article-title: Biomass is the main driver of changes in ecosystem process rates during tropical forest succession
  publication-title: Ecology
– volume: 32
  start-page: 389
  year: 2003
  end-page: 396
  article-title: Reserves, resilience, and dynamic landscapes
  publication-title: Ambio
– volume: 65
  start-page: 85
  year: 2011
  end-page: 99
  article-title: Secondary forests on anthropogenic soils of the Middle Madeira River: valuation, local knowledge, and landscape domestication in Brazilian Amazonia
  publication-title: Econ. Bot.
– volume: 23
  start-page: 31
  year: 2009
  end-page: 42
  article-title: Local participation in natural resource monitoring: a characterization of approaches
  publication-title: Conserv. Biol.
– volume: 22
  start-page: 169
  year: 2014
  end-page: 177
  article-title: A framework to optimize biodiversity restoration efforts based on habitat amount and landscape connectivity
  publication-title: Restor. Ecol.
– volume: 6
  start-page: 485
  year: 1982
  end-page: 492
  article-title: Natural vs. plantation forests: a case study of land reclamation strategies for the humid tropics
  publication-title: Environ. Manage.
– volume: 5
  start-page: 978
  year: 2014
  end-page: 991
  article-title: Redefining secondary forests in the Mexican Forest Code: Implications for management, restoration, and conservation
  publication-title: Forests
– volume: 2
  start-page: 336
  year: 2004
  end-page: 354
  article-title: A place for alien species in ecosystem restoration
  publication-title: Front. Ecol. Environ.
– volume: 31
  start-page: 601
  year: 2016
  end-page: 618
  article-title: The role of natural regeneration to ecosystem services provision and habitat availability: a case study in the Brazilian Atlantic Forest
  publication-title: Biotrop. Spec. Issue
– volume: 5
  start-page: art1
  year: 2014
  article-title: Viewing forests through the lens of complex systems science
  publication-title: Ecosphere
– volume: 9
  start-page: e90573
  year: 2014
  article-title: Landscape context mediates avian habitat choice in tropical forest restoration
  publication-title: PLoS ONE
– volume: 261
  start-page: 1564
  year: 2011
  end-page: 1579
  article-title: Restoration of dry tropical forests in Central America: a review of pattern and process
  publication-title: For. Ecol. Manage.
– volume: 48
  start-page: 709
  year: 2016
  end-page: 715
  article-title: Natural regeneration in the context of large‐scale forest and landscape restoration in the tropics
  publication-title: Biotropica
– volume: 13
  start-page: 211
  year: 2015
  end-page: 218
  article-title: Creating space for large‐scale restoration in tropical agricultural landscapes
  publication-title: Front. Ecol. Environ.
– volume: 17
  start-page: 1158
  year: 2014
  end-page: 1167
  article-title: The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession
  publication-title: Ecol. Lett.
– volume: 48
  start-page: 882
  year: 2016a
  end-page: 889
  article-title: Co‐benefits of biodiversity and carbon sequestration from regenerating secondary forests in the Philippine uplands: implications for forest landscape restoration
  publication-title: Biotropica
– volume: 24
  start-page: 100
  year: 2016
  end-page: 108
  article-title: Establishment of tree seedlings in the understory of restoration plantations: natural regeneration and enrichment plantings
  publication-title: Restor. Ecol.
– volume: 104
  start-page: 149
  year: 2016
  end-page: 159
  article-title: Evidence for arrested succession in a liana‐infested Amazonian forest
  publication-title: J. Ecol.
– volume: 6
  start-page: e20543
  year: 2011
  article-title: Understory bird communities in Amazonian rainforest fragments: species turnover through 25 years post‐isolation in recovering landscapes
  publication-title: PLoS ONE
– volume: 113
  start-page: 5323
  year: 2016a
  end-page: 5328
  article-title: Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 245
  start-page: 3
  year: 2015
  end-page: 10
  article-title: Forest and landscape restoration: concepts, approaches and challenges for implementation
  publication-title: Unasylva
– volume: 345
  start-page: 21
  year: 2015
  end-page: 28
  article-title: Natural establishment of indigenous trees under planted nuclei: A study from a clear‐felled pine plantation in an afrotropical rain forest
  publication-title: For. Ecol. Manage.
– volume: 112
  start-page: 8013
  year: 2015
  end-page: 8018
  article-title: Successional dynamics in Neotropical forests are as uncertain as they are predictable
  publication-title: PNAS
– volume: 38
  start-page: 156
  year: 1988
  end-page: 161
  article-title: Biocultural restoration of a tropical forest: architects of Costa Rica's emerging Guanacaste National Park plan to make it an integral part of local culture
  publication-title: Bioscience
– year: 2015
– volume: 11
  start-page: 138
  year: 2013
  end-page: 144
  article-title: Woody species regeneration in Atlantic Forest restoration sites depends on surrounding landscape
  publication-title: Natureza & Conservação
– volume: 6
  start-page: 271
  year: 1998
  end-page: 279
  article-title: Large‐scale ecological restoration of degraded tropical forest lands: The potential role of timber plantations
  publication-title: Restor. Ecol.
– volume: 349
  start-page: 827
  year: 2015
  end-page: 832
  article-title: Increasing human dominance of tropical forests
  publication-title: Science
– volume: 24
  start-page: 14
  year: 1997
  end-page: 23
  article-title: Arrested succession in pastures hinders regeneration of Tropandean forests and shreds mountain landscapes
  publication-title: Environ. Conserv.
– volume: 245
  start-page: 11
  year: 2015
  end-page: 18
  article-title: Back to Bonn and beyond: a history of forest landscape restoration and an outlook for the future
  publication-title: Unasylva
– volume: 13
  start-page: 1312
  year: 1999
  end-page: 1322
  article-title: Ethnobotany of woody species in second‐growth, old‐growth, and selectively logged forests of northeastern Costa Rica
  publication-title: Conserv. Biol.
– volume: 46
  start-page: 733
  year: 2015
  end-page: 746
  article-title: Future directions for forest restoration in Hawai ‘i
  publication-title: New Forest.
– start-page: 91
  year: 2009
  end-page: 130
– volume: 103
  start-page: 67
  year: 2015
  end-page: 77
  article-title: Loss of secondary‐forest resilience by land‐use intensification in the Amazon
  publication-title: J. Ecol.
– volume: 14
  year: 2009
  article-title: Enrichment Planting in Secondary Forests: a Promising Clean Development Mechanism to Increase Terrestrial Carbon Sinks
  publication-title: Ecol. Soc.
– volume: 14
  start-page: 611
  year: 2014
  end-page: 621
  article-title: Increasing tree cover while losing diverse natural forests in tropical Hainan, China
  publication-title: Reg. Environ. Change
– volume: 9
  start-page: 62
  year: 2010
  end-page: 83
  article-title: Social and environmental effects of ecotourism in the Osa Peninsula of Costa Rica: the Lapa Rios case
  publication-title: J. Ecotourism
– volume: 41
  start-page: 142
  year: 2009a
  end-page: 153
  article-title: Beyond reserves: a research agenda for conserving biodiversity in human‐modified tropical landscapes
  publication-title: Biotropica
– start-page: 120
  year: 1997
  end-page: 126
– volume: 7
  year: 2003
  article-title: The multiple use of tropical forests by indigenous peoples in Mexico: A case of adaptive management
  publication-title: Conserv. Ecol.
– volume: 48
  start-page: 731
  year: 2016
  end-page: 744
  article-title: Impacts of large‐scale forest restoration on socioeconomic status and local livelihoods: what we know and do not know
  publication-title: Biotropica
– volume: 212
  start-page: 358
  year: 2005
  end-page: 366
  article-title: Natural regeneration in exotic tree plantations in Hong Kong, China
  publication-title: For. Ecol. Manage.
– volume: 20
  start-page: 1255
  year: 2010
  end-page: 1269
  article-title: Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape
  publication-title: Ecol. Appl.
– volume: 148
  start-page: 185
  year: 2001
  end-page: 206
  article-title: Neotropical secondary forest succession: changes in structural and functional characteristics
  publication-title: For. Ecol. Manage.
– volume: 13
  start-page: 5
  year: 2008
  article-title: Metropolitanization and forest recovery in southern Brazil: a multiscale analysis of the Florianópolis city‐region, Santa Catarina State, 1970 to 2005
  publication-title: Ecol. Soc.
– volume: 53
  start-page: 1159
  year: 2003
  end-page: 1168
  article-title: The ecological consequences of socioeconomic and land‐use changes in postagriculture Puerto Rico
  publication-title: Bioscience
– volume: 5
  start-page: 1022
  year: 2015
  end-page: 1023
  article-title: A role for tropical forests in stabilizing atmospheric CO2
  publication-title: Nat. Clim. Chang.
– volume: 163
  start-page: 217
  year: 2002
  end-page: 227
  article-title: Facilitating regeneration of secondary forests with the use of mixed and pure plantations of indigenous tree species
  publication-title: For. Ecol. Manage.
– volume: 52
  start-page: 389
  year: 2015
  end-page: 401
  article-title: Sustainable harvesting of non‐timber forest products based on ecological and economic criteria
  publication-title: J. Appl. Ecol.
– volume: 52
  start-page: 590
  year: 2015
  end-page: 601
  article-title: A landscape triage approach: combining spatial and temporal dynamics to prioritize restoration and conservation
  publication-title: J. Appl. Ecol.
– volume: 50
  start-page: 173
  year: 2009
  end-page: 189
  article-title: Evaluating the potential role of Eucalyptus plantations in the regeneration of native trees in southern Western Ghats, India
  publication-title: Trop. Ecol.
– volume: 21
  start-page: 670
  year: 2013
  end-page: 677
  article-title: Stimulating natural regeneration of tropical forest on degraded land: approaches, outcomes, and information gaps
  publication-title: Restor. Ecol.
– start-page: 5
  year: 2007
  end-page: 20
– volume: 4
  start-page: 503
  year: 2014
  end-page: 507
  article-title: Cheap carbon and biodiversity co‐benefits from forest regeneration in a hotspot of endemism
  publication-title: Nat. Clim. Chang.
– volume: 31
  start-page: 601
  year: 2015
  end-page: 618
  article-title: Tropical forest regeneration following land abandonment is driven by primary rainforest distribution in an old pastoral region
  publication-title: Landsc. Ecol.
– volume: 18
  start-page: 1562
  year: 2004
  end-page: 1570
  article-title: Changes in forest use value through ecological succession and their implications for land management in the Peruvian Amazon
  publication-title: Conserv. Biol.
– volume: 11
  start-page: 035005
  year: 2016
  article-title: International trade, and land use intensification and spatial reorganization explain Costa Rica's forest transition
  publication-title: Environ. Res. Lett.
– volume: 15
  start-page: 1461
  year: 2015
  end-page: 1472
  article-title: Land cover dynamics in Osa Region, Costa Rica: secondary forest is here to stay
  publication-title: Reg. Environ. Change
– volume: 99
  start-page: 43
  year: 1997
  end-page: 54
  article-title: The effect of overstory composition on understory woody regeneration and species richness in 7‐year‐old plantations in Costa Rica
  publication-title: For. Ecol. Manage.
– volume: 48
  start-page: 809
  year: 2016
  end-page: 824
  article-title: Roles of non‐native species in large‐scale regeneration of moist tropical forests on anthropogenic grassland
  publication-title: Biotropica
– volume: 5
  start-page: 1737
  year: 2014
  end-page: 1752
  article-title: Challenges of governing second‐growth forests: a case study from the Brazilian Amazonian State of Pará
  publication-title: Forests
– volume: 48
  start-page: 798
  year: 2016
  end-page: 808
  article-title: Recovery of floristic diversity and basal area in natural forest regeneration and planted plots in a Costa Rican wet forest
  publication-title: Biotropica
– volume: 8
  start-page: 432
  year: 2015
  end-page: 439
  article-title: Engaging stakeholders: assessing accuracy of participatory mapping of land cover in Panama
  publication-title: Conserv. Lett.
– volume: 11
  start-page: 147
  year: 1995
  end-page: 152
  article-title: Regeneration of an Atlantic forest formation in the understorey of a plantation in south‐eastern Brazil
  publication-title: J. Trop. Ecol.
– volume: 62
  start-page: 1
  year: 1992
  end-page: 41
  article-title: Comparison of tropical tree plantations with secondary forests of similar age
  publication-title: Ecol. Monogr.
– volume: 16
  start-page: 23
  year: 2015
  end-page: 32
  article-title: Governing a pioneer program on payment for watershed services: Stakeholder involvement, legal frameworks and early lessons from the Atlantic forest of Brazil
  publication-title: Ecosystem Services
– year: 2016
  article-title: Multiple successional pathways in human‐modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research
  publication-title: Biol. Rev.
– volume: 6
  start-page: 22483
  year: 2016b
  article-title: Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks
  publication-title: Sci. Rep.
– volume: 22
  start-page: 8
  year: 2008
  end-page: 15
  article-title: Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot
  publication-title: Conserv. Biol.
– volume: 23
  start-page: 1406
  year: 2009b
  end-page: 1417
  article-title: The potential for species conservation in tropical secondary forests
  publication-title: Conserv. Biol.
– volume: 85
  start-page: 39
  year: 2015
  end-page: 46
  article-title: Reforestation with four native tree species after abandoned gold mining in the Peruvian Amazon
  publication-title: Ecol. Eng.
– start-page: 171
  year: 2010
  end-page: 204
– ident: e_1_2_9_120_1
  doi: 10.1111/j.1526-100X.2012.00934.x
– ident: e_1_2_9_180_1
  doi: 10.1016/j.ecolind.2013.05.010
– ident: e_1_2_9_135_1
  doi: 10.1126/science.1201609
– ident: e_1_2_9_61_1
  doi: 10.1111/j.1365-2486.2007.01344.x
– ident: e_1_2_9_143_1
  doi: 10.3390/f5030482
– ident: e_1_2_9_46_1
  doi: 10.4322/natcon.00801010
– ident: e_1_2_9_159_1
  doi: 10.1016/j.ecoleng.2015.09.075
– ident: e_1_2_9_198_1
  doi: 10.1007/s10113-013-0512-9
– ident: e_1_2_9_91_1
  doi: 10.1088/1748-9326/11/3/035005
– ident: e_1_2_9_68_1
  doi: 10.1038/nature10425
– ident: e_1_2_9_102_1
  doi: 10.1111/ele.12322
– ident: e_1_2_9_4_1
  doi: 10.1111/j.1744-7429.2012.00908.x
– volume-title: Monitoring revegetation projects in rainforest landscapes
  year: 2010
  ident: e_1_2_9_96_1
– ident: e_1_2_9_14_1
  doi: 10.1111/rec.12290
– ident: e_1_2_9_133_1
  doi: 10.1073/pnas.1500403112
– ident: e_1_2_9_66_1
  doi: 10.1525/bio.2009.59.10.8
– ident: e_1_2_9_23_1
  doi: 10.1016/j.tree.2011.06.011
– ident: e_1_2_9_54_1
  doi: 10.1111/btp.12388
– ident: e_1_2_9_82_1
  doi: 10.1016/j.foreco.2010.07.004
– ident: e_1_2_9_19_1
  doi: 10.1016/j.foreco.2012.11.024
– ident: e_1_2_9_151_1
  doi: 10.1111/btp.12390
– ident: e_1_2_9_44_1
  doi: 10.1111/btp.12409
– ident: e_1_2_9_126_1
– ident: e_1_2_9_173_1
  doi: 10.1007/s10980-015-0267-4
– ident: e_1_2_9_93_1
  doi: 10.1007/BF01868377
– ident: e_1_2_9_172_1
  doi: 10.1017/S0266467400008518
– ident: e_1_2_9_58_1
  doi: 10.1016/j.envsci.2015.02.003
– ident: e_1_2_9_103_1
  doi: 10.1111/btp.12386
– volume: 7
  year: 2003
  ident: e_1_2_9_182_1
  article-title: The multiple use of tropical forests by indigenous peoples in Mexico: A case of adaptive management
  publication-title: Conserv. Ecol.
– ident: e_1_2_9_47_1
  doi: 10.1890/09-0714.1
– ident: e_1_2_9_100_1
  doi: 10.1046/j.1526-100X.1998.00632.x
– start-page: 35
  volume-title: Managing world forests as complex adaptive systems in the face of global change
  year: 2013
  ident: e_1_2_9_35_1
– ident: e_1_2_9_38_1
  doi: 10.1126/sciadv.1501639
– year: 2015
  ident: e_1_2_9_79_1
  article-title: People in motion, forests in transition: trends in migration, urbanization, and remittances and their effects on tropical forests
  publication-title: Occasional Paper 142
– ident: e_1_2_9_112_1
– ident: e_1_2_9_127_1
  doi: 10.1111/btp.12389
– ident: e_1_2_9_155_1
  doi: 10.1007/s10531-015-0980-y
– ident: e_1_2_9_20_1
  doi: 10.1111/btp.12383
– ident: e_1_2_9_160_1
  doi: 10.3390/f5050978
– volume: 245
  start-page: 11
  year: 2015
  ident: e_1_2_9_98_1
  article-title: Back to Bonn and beyond: a history of forest landscape restoration and an outlook for the future
  publication-title: Unasylva
– ident: e_1_2_9_28_1
  doi: 10.1111/btp.12384
– ident: e_1_2_9_22_1
  doi: 10.1007/s00267-010-9590-3
– ident: e_1_2_9_181_1
  doi: 10.1111/rec.12049
– ident: e_1_2_9_2_1
  doi: 10.1016/j.scitotenv.2015.11.171
– ident: e_1_2_9_33_1
  doi: 10.1016/B978-0-12-384719-5.00377-4
– ident: e_1_2_9_78_1
  doi: 10.1641/B570806
– ident: e_1_2_9_63_1
  doi: 10.1890/ES13-00182.1
– ident: e_1_2_9_87_1
  doi: 10.1146/annurev.es.13.110182.001221
– ident: e_1_2_9_18_1
– ident: e_1_2_9_134_1
  doi: 10.1016/j.envsoft.2011.07.008
– ident: e_1_2_9_111_1
  doi: 10.2307/2937169
– ident: e_1_2_9_70_1
  doi: 10.1038/nclimate2200
– ident: e_1_2_9_15_1
  doi: 10.1016/j.foreco.2013.11.017
– ident: e_1_2_9_92_1
  doi: 10.1111/1365-2745.12298
– ident: e_1_2_9_158_1
  doi: 10.1016/j.foreco.2010.07.005
– ident: e_1_2_9_123_1
  doi: 10.1093/biosci/biv108
– ident: e_1_2_9_104_1
  doi: 10.1890/140052
– ident: e_1_2_9_196_1
  doi: 10.1111/rec.12249
– ident: e_1_2_9_57_1
  doi: 10.1371/journal.pone.0000402
– ident: e_1_2_9_166_1
  doi: 10.1073/pnas.1210595110
– ident: e_1_2_9_69_1
  doi: 10.1111/btp.12361
– ident: e_1_2_9_183_1
  doi: 10.1111/1365-2745.12504
– ident: e_1_2_9_157_1
  doi: 10.1016/j.ecoser.2015.09.002
– ident: e_1_2_9_164_1
  doi: 10.1111/j.1526-100X.2009.00556.x
– volume-title: Potencial de regeneração natural de florestas nativas nas diferentes regiões do estado do Espírito Santo
  year: 2014
  ident: e_1_2_9_117_1
– ident: e_1_2_9_105_1
  doi: 10.1016/j.biocon.2010.09.021
– ident: e_1_2_9_195_1
  doi: 10.1111/rec.12098
– ident: e_1_2_9_110_1
  doi: 10.1007/s12231-011-9175-y
– ident: e_1_2_9_121_1
  doi: 10.1007/s00442-011-1984-2
– start-page: 662
  volume-title: Shifting cultivation and environmental change
  year: 2015
  ident: e_1_2_9_97_1
– ident: e_1_2_9_136_1
  doi: 10.5751/ES-02781-140131
– volume-title: Scaling up regreening: six steps to success; a practical approach to forest and landscape restoration
  year: 2015
  ident: e_1_2_9_153_1
– ident: e_1_2_9_45_1
  doi: 10.7208/chicago/9780226024134.003.0011
– ident: e_1_2_9_60_1
  doi: 10.1890/14-2188
– ident: e_1_2_9_51_1
  doi: 10.5751/ES-05464-180341
– ident: e_1_2_9_50_1
  doi: 10.1007/s10980-011-9623-1
– volume-title: Timber production in smallholder agroforestry systems: justifications for pro‐poor forest policy in Peru
  year: 2014
  ident: e_1_2_9_167_1
– ident: e_1_2_9_115_1
  doi: 10.1073/pnas.1602893113
– ident: e_1_2_9_125_1
  doi: 10.5751/ES-02058-120201
– ident: e_1_2_9_11_1
  doi: 10.1073/pnas.0703333104
– ident: e_1_2_9_73_1
  doi: 10.1016/j.foreco.2010.08.027
– ident: e_1_2_9_118_1
  doi: 10.1002/16-0108.1
– ident: e_1_2_9_3_1
  doi: 10.1111/btp.12385
– volume: 55
  start-page: 118
  year: 2008
  ident: e_1_2_9_191_1
  article-title: Dinámica de la regeneración en cuatro bosques secundarios tropicales de la región Huetar Norte, Costa Rica. Su valor para la conservación o uso comercial
  publication-title: Recursos Naturales y Ambiente (Costa Rica)
– ident: e_1_2_9_84_1
  doi: 10.1111/j.1526-100X.2010.00674.x
– ident: e_1_2_9_148_1
  doi: 10.1007/s13280-015-0694-0
– ident: e_1_2_9_8_1
  doi: 10.1016/j.agee.2014.06.005
– ident: e_1_2_9_197_1
  doi: 10.1080/14724040902953076
– ident: e_1_2_9_194_1
  doi: 10.5751/ES-04275-160315
– ident: e_1_2_9_132_1
  doi: 10.1890/0012-9658(1999)080[1908:SHOLAW]2.0.CO;2
– ident: e_1_2_9_12_1
  doi: 10.1146/annurev.ecolsys.38.091206.095818
– ident: e_1_2_9_129_1
  doi: 10.1016/S0378-1127(97)00202-8
– ident: e_1_2_9_41_1
  doi: 10.1098/rstb.2006.1990
– ident: e_1_2_9_128_1
  doi: 10.1038/srep22483
– start-page: 91
  volume-title: Pacto pela restauração da Mata Atlantica
  year: 2009
  ident: e_1_2_9_88_1
– volume: 238
  start-page: 32
  year: 2015
  ident: e_1_2_9_140_1
  article-title: Modos de restaurar as florestas
  publication-title: Pesquiza FAPESP
– volume-title: ITTO guidelines for the restoration, management and rehabilitation of degraded and secondary tropical forests
  year: 2002
  ident: e_1_2_9_89_1
– ident: e_1_2_9_187_1
  doi: 10.1111/btp.12380
– ident: e_1_2_9_52_1
  doi: 10.1111/j.1523-1739.2008.01063.x
– ident: e_1_2_9_27_1
  doi: 10.1093/biosci/biv008
– ident: e_1_2_9_154_1
  doi: 10.2307/3113637
– ident: e_1_2_9_29_1
  doi: 10.1111/rec.12228
– ident: e_1_2_9_139_1
  doi: 10.4322/natcon.2013.022
– ident: e_1_2_9_144_1
  doi: 10.1038/nature16512
– ident: e_1_2_9_39_1
  doi: 10.1046/j.1523-1739.1999.98352.x
– ident: e_1_2_9_150_1
  doi: 10.1371/journal.pone.0090573
– ident: e_1_2_9_83_1
  doi: 10.1016/j.foreco.2014.01.024
– volume: 31
  start-page: 601
  year: 2016
  ident: e_1_2_9_176_1
  article-title: The role of natural regeneration to ecosystem services provision and habitat availability: a case study in the Brazilian Atlantic Forest
  publication-title: Biotrop. Spec. Issue
– ident: e_1_2_9_177_1
  doi: 10.1007/s10457-009-9225-y
– ident: e_1_2_9_94_1
  doi: 10.1007/s12231-010-9138-8
– ident: e_1_2_9_17_1
  doi: 10.1073/pnas.1003369107
– ident: e_1_2_9_170_1
  doi: 10.1111/rec.12048
– ident: e_1_2_9_36_1
  doi: 10.1007/s13280-016-0772-y
– ident: e_1_2_9_141_1
  doi: 10.1016/j.foreco.2015.02.027
– volume-title: Agroenvironmental transformation in the Sahel: Another kind of” Green Revolution”
  year: 2009
  ident: e_1_2_9_152_1
– ident: e_1_2_9_109_1
  doi: 10.1890/14-0472.1
– ident: e_1_2_9_145_1
  doi: 10.1016/S0378-1127(97)00193-X
– ident: e_1_2_9_67_1
  doi: 10.1111/j.1523-1739.2004.00241.x
– start-page: 331
  volume-title: Agroforestry in the Amazon Basin: practice, theory and limits of a promising land use
  year: 1982
  ident: e_1_2_9_77_1
– ident: e_1_2_9_175_1
  doi: 10.1371/journal.pone.0020543
– volume: 245
  start-page: 3
  year: 2015
  ident: e_1_2_9_163_1
  article-title: Forest and landscape restoration: concepts, approaches and challenges for implementation
  publication-title: Unasylva
– ident: e_1_2_9_16_1
  doi: 10.1016/j.biocon.2012.05.002
– ident: e_1_2_9_72_1
  doi: 10.1641/0006-3568(2003)053[1159:TECOSA]2.0.CO;2
– ident: e_1_2_9_48_1
  doi: 10.1111/rec.12321
– ident: e_1_2_9_71_1
  doi: 10.1111/gcb.12600
– start-page: 57
  volume-title: The distribution of powers and responsibilities affecting forests, land use, and REDD+ across levels and sectors in Peru: a legal study
  year: 2015
  ident: e_1_2_9_193_1
– ident: e_1_2_9_116_1
  doi: 10.1111/btp.12382
– ident: e_1_2_9_13_1
  doi: 10.1579/0044-7447-32.6.389
– ident: e_1_2_9_190_1
  doi: 10.3390/f5071737
– ident: e_1_2_9_107_1
  doi: 10.1126/science.aaa9932
– ident: e_1_2_9_85_1
  doi: 10.1038/nclimate2869
– ident: e_1_2_9_75_1
  doi: 10.1111/j.1526-100X.1995.tb00092.x
– ident: e_1_2_9_113_1
– volume-title: Routledge handbook of ecological and environmental restoration
  ident: e_1_2_9_43_1
– ident: e_1_2_9_86_1
  doi: 10.1016/j.gecco.2016.03.002
– ident: e_1_2_9_56_1
  doi: 10.1111/btp.12387
– ident: e_1_2_9_76_1
  doi: 10.1111/j.1523-1739.2007.00863.x
– ident: e_1_2_9_5_1
  doi: 10.1007/s10113-014-0714-9
– ident: e_1_2_9_192_1
  doi: 10.1111/j.1467-8306.2004.00439.x
– ident: e_1_2_9_42_1
  doi: 10.1111/j.1523-1739.2009.01338.x
– ident: e_1_2_9_59_1
  doi: 10.1890/1540-9295(2004)002[0354:APFASI]2.0.CO;2
– ident: e_1_2_9_32_1
  doi: 10.1080/10549811.2013.817340
– ident: e_1_2_9_122_1
  doi: 10.1111/j.1744-7429.2009.00528.x
– ident: e_1_2_9_62_1
  doi: 10.1007/s10980-014-9988-z
– ident: e_1_2_9_146_1
  doi: 10.1016/j.foreco.2005.10.043
– ident: e_1_2_9_142_1
  doi: 10.3390/f5092212
– ident: e_1_2_9_131_1
  doi: 10.1177/194008291500800116
– ident: e_1_2_9_9_1
  doi: 10.1016/j.foreco.2014.02.030
– ident: e_1_2_9_108_1
  doi: 10.1017/S0959270911000177
– volume-title: A guide to the restoration opportunities assessment methodology (ROAM): assessing forest landscape restoration opportunities at the national or sub‐national level
  year: 2014
  ident: e_1_2_9_90_1
– ident: e_1_2_9_174_1
  doi: 10.1126/science.1246663
– ident: e_1_2_9_162_1
  doi: 10.1111/0033-0124.00233
– ident: e_1_2_9_30_1
  doi: 10.1126/science.1155365
– start-page: 47
  volume-title: Mapping opportunities for forest landscape restoration
  year: 2012
  ident: e_1_2_9_99_1
– ident: e_1_2_9_178_1
  doi: 10.1111/btp.12181
– ident: e_1_2_9_149_1
  doi: 10.1890/14-1399.1
– ident: e_1_2_9_37_1
  doi: 10.1111/conl.12220
– start-page: 5
  volume-title: The forest landscape restoration handook
  year: 2007
  ident: e_1_2_9_114_1
– volume: 38
  start-page: 165
  year: 2002
  ident: e_1_2_9_80_1
  article-title: Mapping the forest type and land cover of Puerto Rico, a component of the Caribbean biodiversity hotspot
  publication-title: Carib. J. Sci.
– ident: e_1_2_9_81_1
  doi: 10.1111/1365-2664.12384
– ident: e_1_2_9_49_1
  doi: 10.1007/s11842-012-9229-8
– volume-title: Maya forest garden: eight millennia of sustainable cultivation of the tropical woodlands
  year: 2015
  ident: e_1_2_9_64_1
– ident: e_1_2_9_184_1
  doi: 10.1111/1365-2745.12504
– start-page: 171
  volume-title: Ecosystem goods and services from plantation forests
  year: 2010
  ident: e_1_2_9_95_1
– ident: e_1_2_9_10_1
  doi: 10.5751/ES-02426-130205
– ident: e_1_2_9_189_1
  doi: 10.1016/j.ncon.2015.03.005
– ident: e_1_2_9_74_1
  doi: 10.1016/S0378-1127(00)00535-1
– ident: e_1_2_9_137_1
  doi: 10.1016/0167-8809(92)90105-K
– ident: e_1_2_9_165_1
  doi: 10.1017/S0376892997000052
– ident: e_1_2_9_26_1
  doi: 10.1016/S0378-1127(01)00581-3
– ident: e_1_2_9_106_1
  doi: 10.1016/j.foreco.2005.03.057
– ident: e_1_2_9_119_1
  doi: 10.1111/brv.12024
– ident: e_1_2_9_138_1
  doi: 10.1046/j.1526-100X.1999.72001.x
– volume: 80
  start-page: 85
  year: 2007
  ident: e_1_2_9_25_1
  article-title: Las políticas públicas de la restauración ambiental en México: Limitantes, avances, rezagos y retos
  publication-title: Boletín de la Sociedad Botánica de México
– ident: e_1_2_9_40_1
  doi: 10.1111/j.1744-7429.2008.00471.x
– ident: e_1_2_9_65_1
  doi: 10.1007/s11056-015-9507-3
– ident: e_1_2_9_161_1
  doi: 10.1890/14-0054.1
– ident: e_1_2_9_24_1
  doi: 10.1016/j.foreco.2008.10.035
– ident: e_1_2_9_130_1
  doi: 10.1111/conl.12199
– ident: e_1_2_9_6_1
  doi: 10.2307/1310447
– start-page: 120
  volume-title: La visibilidad de los bosques secundarios. Memorias del taller internacional sobre el estado actual y potencial de manejo y desarrollo del bosque secundario tropical en América Latina
  year: 1997
  ident: e_1_2_9_53_1
– ident: e_1_2_9_186_1
  doi: 10.1111/j.1744-7429.2009.00583.x
– ident: e_1_2_9_147_1
  doi: 10.1111/1365-2664.12405
– ident: e_1_2_9_7_1
  doi: 10.1111/brv.12231
– ident: e_1_2_9_179_1
  doi: 10.1007/s10661-014-4000-6
– start-page: 384
  volume-title: Tropical forest community ecology
  year: 2008
  ident: e_1_2_9_31_1
– ident: e_1_2_9_124_1
  doi: 10.1016/j.landusepol.2007.06.001
– ident: e_1_2_9_156_1
  doi: 10.1016/j.biocon.2009.02.021
– ident: e_1_2_9_169_1
  doi: 10.1111/j.1526-100X.2007.00274.x
– ident: e_1_2_9_55_1
  doi: 10.1111/j.1526-100X.2008.00459.x
– volume: 50
  start-page: 173
  year: 2009
  ident: e_1_2_9_168_1
  article-title: Evaluating the potential role of Eucalyptus plantations in the regeneration of native trees in southern Western Ghats, India
  publication-title: Trop. Ecol.
– ident: e_1_2_9_101_1
  doi: 10.4324/9780203071649
– ident: e_1_2_9_171_1
  doi: 10.1111/cobi.12606
– ident: e_1_2_9_21_1
  doi: 10.1016/j.foreco.2012.09.018
– ident: e_1_2_9_34_1
  doi: 10.7208/chicago/9780226118109.001.0001
– ident: e_1_2_9_185_1
  doi: 10.1073/pnas.1215567110
– ident: e_1_2_9_188_1
  doi: 10.1111/conl.12161
SSID ssj0009504
Score 2.611259
Snippet A major global effort to enable cost-effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest...
A major global effort to enable cost‐effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest...
A major global effort to enable cost effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest...
SourceID proquest
crossref
wiley
jstor
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 716
SubjectTerms biocenosis
biodiversity
cost effectiveness
cost-effective restoration
Deforestation
dispersión de semillas
dispersão de sementes
ecological resilience
Economic conditions
Economics
Ecosystem resilience
ecosystem services
environmental factors
Environmental restoration
forest clearing
forest restoration
governance
Heterogeneity
Indigenous species
issues and policy
Land use
landscape management
landscape restoration
landscapes
Local communities
monitoring
natural regeneration
resilience
resiliencia
resiliência
restauración costo-eficiente
restauración del paisaje
restauração custo-efetiva
restauração de paisagem
secondary succession
SECTION I. WHY REFOREST? THE SCALE OF THE CHALLENGE AND OPPORTUNITY
seed dispersal
servicios ecosistémicos
serviços ecossistêmicos
sucesión secundaria
sucessão secundária
Tropical environments
Tropical forests
tropics
Title Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges
URI https://api.istex.fr/ark:/67375/WNG-PTVRSKWB-2/fulltext.pdf
https://www.jstor.org/stable/48576571
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbtp.12381
https://www.proquest.com/docview/1850074341
https://www.proquest.com/docview/1850769100
https://www.proquest.com/docview/2000436600
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFA5jMvBF3XR4dUoUkb30ctvmpo0-bWNzTLyMeef2IIT8HGOX9tL2gvPJP8G_cX-JJ0lb7mQD8a20X0qTk5N8aU6-g9A7ZhIGRFxFeS6ziDBLopwwGaW5IkbCeoBat6P7ZUIPT8nR-fh8BX3szsIEfYj-h5vzDD9eOwcXsl5yctnMh7GbcGD8dbFajhCdJEuCu6OgwOxiu4Clt6pCLoqnL3lrLnrgmvVHF5Z4i3Au01Y_7xw8Rt-7Lw7hJlfDRSOH6udfYo7_WaUn6FHLR_FO6EDraMUUG2gtZKi8hqt9r2p9_RTNJsJLdODKXHipamdRLGoscFOWMwzkF89cWPnNr981GN64O1AvXPncNQF-WWAgnLipyvmlqj9gqJU_6glvKTRWXWKX-hk6Pdif7h1GbaqGSJGcxZGOZSqB2Vg5FsLQWCpNwQKxyoROmdQ5sZmgllqRJJmFMmSUAnPJNBQAgqLTTbRalIV5jrBiVMZEWQVkiGipmGZWAkI7rT-WyAHa7ozGVatj7tJpzHi3noFm5L4ZB-htD50H8Y67QO-95XuEqK5ctFs25meTT_x4-u3k6-ezXZ4M0KbvGj2Q5LBYG2fwhq2ur_B2BKg58CBPzwg8ftM_Bt91GzKiMOUiYDIKhG10Pybxm7WUOsy27zz3V4XvTo_9xYt_h75ED4ED0nC8cgutNtXCvAKe1cjX3qH-ADdmJDM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVKKwSbllfFlAIGIdRNRpPE48SoG4paBtqOqjKl3SDLjxhVHSWjJCNRVv2EfiNfwrWdRFNEJcQuSo6j2Nc3Pravz0XoDcsiBkRcBWkqk4AwQ4KUMBnEqSKZhPkANXZH93BMRyfk89nwbAltt2dhvD5Et-BmPcP9r62D2wXpBS-X9awf2hHnDlqxGb3dhOo4WpDcHXgNZhvdBTy90RWycTxd0Ruj0Ypt2B9tYOINyrlIXN3Is7eGvrXf7ANOLvrzWvbVzz_kHP-3Ug_QakNJ8Xvfhx6ipSx_hO76JJWXcLXrhK0vH6PpWDiVDlxm351atTUqFhUWuC6KKQb-i6c2svzX1XUFts_sHagYLl36Gg8_zzFwTlyXxexcVe8wVMud9oS35BqrNrdL9QSd7O1OPoyCJltDoEjKwkCHMpZAbowcCpHRUCpNwQShSoSOmdQpMYmghhoRRYmBMmQQA3lJNBQAjqLjdbScF3n2FGHFqAyJMgr4ENFSMc2MBIS2cn8skj201VqNq0bK3GbUmPJ2SgPNyF0z9tDrDjrz-h1_A711pu8QorywAW_JkJ-OP_KjydfjL_unOzzqoXXXNzogSWG-NkzgDZttZ-HNT6DiQIUcQyPw-FX3GNzX7smIPCvmHpNQ4GyD2zGR26-l1GK2XO-5vSp8Z3LkLjb-HfoS3RtNDg_4wafx_jN0Hygh9actN9FyXc6z50C7avnCeddvWu8oTg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJtBeGLdphQEGIbSXVE3iOjE8MbYyGFTV6NgekCxf0bQqqZJUYnviJ_Ab-SUcOxd1iEmIt6j5HNU-58Sf4-PvIPSCmYgBEVdBmsokIMySICVMBnGqiJGwHqDW7eh-GtODY_LhdHi6gl63Z2FqfYjug5uLDP--dgE-13YpyGU174duwrmB1ggdpM6l946iJcXdQS3B7JK7gKY3skIujadremUyWnPj-r3NS7zCOJd5q594Rhvoa_uX63yT8_6ikn11-Yea43_26Q663RBS_Kb2oLtoxWT30M26ROUFXO17WeuL-2g2Fl6jAxfmm9eqdibFosQCV3k-w8B-8czllf_68bMEyxv3C_QLF754TQ0_yzAwTlwV-fxMla8w9Mqf9YSnZBqrtrJL-QAdj_anbw-CplZDoEjKwkCHMpZAbawcCmFoKJWmYIFQJULHTOqU2ERQS62IosRCGzKIgbokGhoAQ9HxJlrN8sxsIawYlSFRVgEbIloqppmVgNBO7I9Fsod2WqNx1QiZu3oaM94uaGAYuR_GHnreQee1esffQC-95TuEKM5dulsy5Cfjd3wy_XL0-fBkl0c9tOldowOSFFZrwwSesN36Cm9eASUHIuT5GYHbz7rbELxuR0ZkJl_UmIQCYxtcj4n8bi2lDrPjnef6rvDd6cRfPPx36FN0a7I34h_fjw8foXXgg7Q-armNVqtiYR4D56rkEx9bvwHnTycG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+regeneration+as+a+tool+for+large%E2%80%90scale+forest+restoration+in+the+tropics%3A+prospects+and+challenges&rft.jtitle=Biotropica&rft.au=Chazdon%2C+Robin+L.&rft.au=Guariguata%2C+Manuel+R.&rft.date=2016-11-01&rft.issn=0006-3606&rft.eissn=1744-7429&rft.volume=48&rft.issue=6&rft.spage=716&rft.epage=730&rft_id=info:doi/10.1111%2Fbtp.12381&rft.externalDBID=10.1111%252Fbtp.12381&rft.externalDocID=BTP12381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3606&client=summon