Magnetic Field–Suppressed Lithium Dendrite Growth for Stable Lithium‐Metal Batteries
Lithium metal is the most attractive anode material due to its extremely high specific capacity, minimum potential, and low density. However, uncontrollable growth of lithium dendrite results in severe safety and cycling stability concerns, which hinders the application in next generation secondary...
Saved in:
Published in | Advanced energy materials Vol. 9; no. 20 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
23.05.2019
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium metal is the most attractive anode material due to its extremely high specific capacity, minimum potential, and low density. However, uncontrollable growth of lithium dendrite results in severe safety and cycling stability concerns, which hinders the application in next generation secondary batteries. In this paper, a new and facile method imposing a magnetic field to lithium metal anodes is proposed. That is, the lithium ions suffering Lorentz force due to the electromagnetic fields are put into spiral motion causing magnetohydrodynamics (MHD) effect. This MHD effect can effectively promote mass transfer and uniform distribution of lithium ions to suppress the dendrite growth as well as obtain uniform and compact lithium deposition. The results show that the lithium metal electrodes within the magnetic field exhibit excellent cycling and rate performance in a symmetrical battery. Additionally, full batteries using limited lithium metal as anodes and commercial LiFePO4 as cathodes show improved performance within the magnetic field. In summary, a new and facile strategy of suppressing lithium dendrites using the MHD effect by imposing a magnetic field is proposed, which may be generalized to other advanced alkali metal batteries.
An novel external strategy of imposing a magnetic field to lithium metal anodes is presented. The generated Lorentz force due to the electromagnetic fields is used to promote mass transfer and uniform distribution of lithium ions. This magnetohydrodynamics effect can effectively suppress the dendrite growth as well as obtain uniform and compact lithium deposition with the remarkable performance. |
---|---|
AbstractList | Lithium metal is the most attractive anode material due to its extremely high specific capacity, minimum potential, and low density. However, uncontrollable growth of lithium dendrite results in severe safety and cycling stability concerns, which hinders the application in next generation secondary batteries. In this paper, a new and facile method imposing a magnetic field to lithium metal anodes is proposed. That is, the lithium ions suffering Lorentz force due to the electromagnetic fields are put into spiral motion causing magnetohydrodynamics (MHD) effect. This MHD effect can effectively promote mass transfer and uniform distribution of lithium ions to suppress the dendrite growth as well as obtain uniform and compact lithium deposition. The results show that the lithium metal electrodes within the magnetic field exhibit excellent cycling and rate performance in a symmetrical battery. Additionally, full batteries using limited lithium metal as anodes and commercial LiFePO4 as cathodes show improved performance within the magnetic field. In summary, a new and facile strategy of suppressing lithium dendrites using the MHD effect by imposing a magnetic field is proposed, which may be generalized to other advanced alkali metal batteries. Lithium metal is the most attractive anode material due to its extremely high specific capacity, minimum potential, and low density. However, uncontrollable growth of lithium dendrite results in severe safety and cycling stability concerns, which hinders the application in next generation secondary batteries. In this paper, a new and facile method imposing a magnetic field to lithium metal anodes is proposed. That is, the lithium ions suffering Lorentz force due to the electromagnetic fields are put into spiral motion causing magnetohydrodynamics (MHD) effect. This MHD effect can effectively promote mass transfer and uniform distribution of lithium ions to suppress the dendrite growth as well as obtain uniform and compact lithium deposition. The results show that the lithium metal electrodes within the magnetic field exhibit excellent cycling and rate performance in a symmetrical battery. Additionally, full batteries using limited lithium metal as anodes and commercial LiFePO4 as cathodes show improved performance within the magnetic field. In summary, a new and facile strategy of suppressing lithium dendrites using the MHD effect by imposing a magnetic field is proposed, which may be generalized to other advanced alkali metal batteries. An novel external strategy of imposing a magnetic field to lithium metal anodes is presented. The generated Lorentz force due to the electromagnetic fields is used to promote mass transfer and uniform distribution of lithium ions. This magnetohydrodynamics effect can effectively suppress the dendrite growth as well as obtain uniform and compact lithium deposition with the remarkable performance. Lithium metal is the most attractive anode material due to its extremely high specific capacity, minimum potential, and low density. However, uncontrollable growth of lithium dendrite results in severe safety and cycling stability concerns, which hinders the application in next generation secondary batteries. In this paper, a new and facile method imposing a magnetic field to lithium metal anodes is proposed. That is, the lithium ions suffering Lorentz force due to the electromagnetic fields are put into spiral motion causing magnetohydrodynamics (MHD) effect. This MHD effect can effectively promote mass transfer and uniform distribution of lithium ions to suppress the dendrite growth as well as obtain uniform and compact lithium deposition. The results show that the lithium metal electrodes within the magnetic field exhibit excellent cycling and rate performance in a symmetrical battery. Additionally, full batteries using limited lithium metal as anodes and commercial LiFePO 4 as cathodes show improved performance within the magnetic field. In summary, a new and facile strategy of suppressing lithium dendrites using the MHD effect by imposing a magnetic field is proposed, which may be generalized to other advanced alkali metal batteries. |
Author | Wu, Liankui Zheng, Guoqu Zhang, Duo Tang, Yiping Jin, Chengbin Wang, Zeng Hou, Guangya Ying, Yao Cao, Huazhen Lu, Jun Bi, Xuanxuan Tao, Xinyong Shen, Kang |
Author_xml | – sequence: 1 givenname: Kang surname: Shen fullname: Shen, Kang organization: Zhejiang University of Technology – sequence: 2 givenname: Zeng surname: Wang fullname: Wang, Zeng organization: Zhejiang University of Technology – sequence: 3 givenname: Xuanxuan surname: Bi fullname: Bi, Xuanxuan organization: Argonne National Laboratory – sequence: 4 givenname: Yao surname: Ying fullname: Ying, Yao organization: Zhejiang University of Technology – sequence: 5 givenname: Duo surname: Zhang fullname: Zhang, Duo organization: Zhejiang University of Technology – sequence: 6 givenname: Chengbin surname: Jin fullname: Jin, Chengbin organization: Zhejiang University of Technology – sequence: 7 givenname: Guangya surname: Hou fullname: Hou, Guangya organization: Zhejiang University of Technology – sequence: 8 givenname: Huazhen surname: Cao fullname: Cao, Huazhen organization: Zhejiang University of Technology – sequence: 9 givenname: Liankui surname: Wu fullname: Wu, Liankui organization: Zhejiang University of Technology – sequence: 10 givenname: Guoqu surname: Zheng fullname: Zheng, Guoqu organization: Zhejiang University of Technology – sequence: 11 givenname: Yiping surname: Tang fullname: Tang, Yiping email: tangyiping@zjut.edu.cn organization: Zhejiang University of Technology – sequence: 12 givenname: Xinyong surname: Tao fullname: Tao, Xinyong email: tao@zjut.edu.cn organization: Zhejiang University of Technology – sequence: 13 givenname: Jun orcidid: 0000-0003-0858-8577 surname: Lu fullname: Lu, Jun email: junlu@anl.gov organization: Argonne National Laboratory |
BackLink | https://www.osti.gov/biblio/1504790$$D View this record in Osti.gov |
BookMark | eNqFkMtKAzEUhoMoqLVb14OuW5NMOjNZeqkXaHVRBXchkzljI9OkJinSnY8g-IZ9ElNGKwji2eQEvu_w8--jbWMNIHRIcJ9gTE8kmFmfYsLjJ8NbaI9khPWyguHtzZ7SXdT1_hnHYZzgNN1Dj2P5ZCBolVxqaKrV28dkMZ878B6qZKTDVC9myQWYyukAyZWzr2Ga1NYlkyDLBr6R1dv7GIJskjMZAjgN_gDt1LLx0P16O-jhcnh_ft0b3V3dnJ-OeooVHPdoicuiqopsUJesriWtCsYI5VmZFXnOaY6pojF-BjktgHOoc0IzmWMJnFSqSDvoqL1rfdDCqxhTTZU1BlQQZIBZznGEjlto7uzLAnwQz3bhTMwlKKU8QikdRIq1lHLWewe1iNdk0NYEJ3UjCBbrrsW6a7HpOmr9X9rc6Zl0y78F3gqvuoHlP7Q4Hd6Of9xPbm2UZQ |
CitedBy_id | crossref_primary_10_1002_ange_202203564 crossref_primary_10_1016_j_jechem_2024_11_041 crossref_primary_10_1021_acsmacrolett_3c00666 crossref_primary_10_1016_j_cej_2023_141900 crossref_primary_10_1007_s12274_021_3506_9 crossref_primary_10_1007_s12598_022_01994_3 crossref_primary_10_1021_acsenergylett_0c01517 crossref_primary_10_1002_admi_202100368 crossref_primary_10_1016_j_surfin_2021_101106 crossref_primary_10_1016_j_nanoen_2022_106937 crossref_primary_10_1063_5_0068465 crossref_primary_10_1021_acsami_2c19895 crossref_primary_10_1016_j_nanoen_2020_105282 crossref_primary_10_1016_j_ssi_2019_115033 crossref_primary_10_1021_acs_nanolett_1c03207 crossref_primary_10_1002_smll_202106718 crossref_primary_10_1016_j_ensm_2020_02_030 crossref_primary_10_3390_batteries9030188 crossref_primary_10_1002_ange_202010531 crossref_primary_10_1002_adfm_202210127 crossref_primary_10_1016_j_ensm_2021_03_008 crossref_primary_10_1016_j_ensm_2021_03_006 crossref_primary_10_1002_adfm_202421952 crossref_primary_10_1021_acsenergylett_1c02489 crossref_primary_10_1039_D0MA00260G crossref_primary_10_1002_anie_202105831 crossref_primary_10_1016_j_cclet_2022_05_008 crossref_primary_10_1103_PhysRevFluids_8_113701 crossref_primary_10_1002_smll_202300734 crossref_primary_10_1021_acs_jpcc_3c03096 crossref_primary_10_34133_energymatadv_0053 crossref_primary_10_1002_adfm_202207969 crossref_primary_10_1002_aenm_202102259 crossref_primary_10_1016_j_jechem_2020_11_034 crossref_primary_10_1016_j_jechem_2020_11_031 crossref_primary_10_3390_en17235930 crossref_primary_10_1177_09544070231207915 crossref_primary_10_1016_j_mtener_2024_101557 crossref_primary_10_1002_aenm_202304229 crossref_primary_10_1021_acsaem_2c02890 crossref_primary_10_1021_acscentsci_0c00899 crossref_primary_10_1016_j_cej_2020_126808 crossref_primary_10_1021_acs_chemrev_0c01100 crossref_primary_10_1016_j_ensm_2021_07_035 crossref_primary_10_1021_acsaem_1c01420 crossref_primary_10_1021_acsaem_1c01662 crossref_primary_10_1016_j_apcatb_2023_123579 crossref_primary_10_1016_j_gee_2019_10_003 crossref_primary_10_1002_smll_202307598 crossref_primary_10_1002_sus2_119 crossref_primary_10_1021_acsenergylett_3c01689 crossref_primary_10_1016_j_ssi_2019_115171 crossref_primary_10_1002_adma_201907516 crossref_primary_10_1088_1402_4896_ad8a99 crossref_primary_10_1016_j_surfin_2022_101972 crossref_primary_10_1002_cphc_202000897 crossref_primary_10_1021_acsenergylett_9b01987 crossref_primary_10_1016_j_jcis_2024_07_007 crossref_primary_10_1002_adfm_202005417 crossref_primary_10_1002_anie_202213606 crossref_primary_10_1007_s12598_024_02645_5 crossref_primary_10_1063_5_0107386 crossref_primary_10_1002_adma_202301892 crossref_primary_10_1063_5_0246646 crossref_primary_10_1002_anie_202010531 crossref_primary_10_1016_j_ensm_2022_05_043 crossref_primary_10_1039_C9CS00883G crossref_primary_10_1016_j_anucene_2024_110639 crossref_primary_10_1103_PhysRevE_108_014801 crossref_primary_10_1039_D4CS00474D crossref_primary_10_1007_s10570_022_04931_w crossref_primary_10_1021_acsami_0c09503 crossref_primary_10_1016_j_jmst_2022_05_044 crossref_primary_10_1016_j_est_2024_110907 crossref_primary_10_1016_j_mattod_2024_11_009 crossref_primary_10_1021_acs_chemrev_2c00022 crossref_primary_10_1021_acs_nanolett_0c00797 crossref_primary_10_1007_s41918_022_00158_2 crossref_primary_10_1021_acsami_1c12576 crossref_primary_10_1016_j_mtener_2024_101509 crossref_primary_10_1016_j_surfin_2023_102867 crossref_primary_10_1007_s12598_020_01432_2 crossref_primary_10_1093_nsr_nwaa075 crossref_primary_10_31613_ceramist_2024_27_2_04 crossref_primary_10_1016_j_apenergy_2025_125347 crossref_primary_10_1039_D0TA00448K crossref_primary_10_1002_ange_202320259 crossref_primary_10_1016_j_nanoen_2022_107655 crossref_primary_10_1016_j_ensm_2021_08_012 crossref_primary_10_1016_j_nanoen_2020_105233 crossref_primary_10_1002_cssc_202400675 crossref_primary_10_1016_j_jechem_2019_09_028 crossref_primary_10_1021_acsanm_4c00999 crossref_primary_10_1002_adfm_202204052 crossref_primary_10_1021_acsami_4c15492 crossref_primary_10_1016_j_ensm_2024_103751 crossref_primary_10_1016_j_ces_2024_120033 crossref_primary_10_1016_j_carbon_2021_09_001 crossref_primary_10_1016_j_ensm_2021_03_010 crossref_primary_10_1039_D2TA09824E crossref_primary_10_1016_j_electacta_2020_137374 crossref_primary_10_1002_anie_202320259 crossref_primary_10_1002_ange_202105831 crossref_primary_10_1007_s40820_020_00522_1 crossref_primary_10_1002_anie_202211570 crossref_primary_10_1016_j_jechem_2019_09_031 crossref_primary_10_1002_ceat_202300320 crossref_primary_10_1016_j_ensm_2019_09_020 crossref_primary_10_1016_j_matdes_2022_110860 crossref_primary_10_1002_adfm_202305908 crossref_primary_10_1088_0256_307X_39_2_028202 crossref_primary_10_1016_j_jechem_2022_10_023 crossref_primary_10_1002_adma_202004793 crossref_primary_10_1021_acs_iecr_2c00897 crossref_primary_10_1002_chem_202302867 crossref_primary_10_1073_pnas_2413739121 crossref_primary_10_1016_j_ensm_2020_01_001 crossref_primary_10_1002_aesr_202300165 crossref_primary_10_1039_D1SE01739J crossref_primary_10_1002_adfm_202007598 crossref_primary_10_1002_adma_202414047 crossref_primary_10_1142_S1793292020500332 crossref_primary_10_1016_j_joule_2022_05_020 crossref_primary_10_1002_aenm_201902254 crossref_primary_10_1016_j_ensm_2019_12_028 crossref_primary_10_1016_j_enconman_2024_119069 crossref_primary_10_1016_j_est_2025_116004 crossref_primary_10_1038_s41598_020_67042_1 crossref_primary_10_1002_aenm_201902932 crossref_primary_10_1002_aenm_202200999 crossref_primary_10_1021_acs_energyfuels_4c02106 crossref_primary_10_1039_C9TA06170C crossref_primary_10_1063_5_0015099 crossref_primary_10_1016_j_jpowsour_2023_233683 crossref_primary_10_1007_s12274_022_5363_6 crossref_primary_10_1039_D3MH00303E crossref_primary_10_1002_adfm_202004613 crossref_primary_10_1016_j_cej_2021_133689 crossref_primary_10_3866_PKU_WHXB202305053 crossref_primary_10_1021_acsami_0c12541 crossref_primary_10_1021_acsenergylett_1c00583 crossref_primary_10_1007_s40820_023_01234_y crossref_primary_10_1007_s11771_020_4304_3 crossref_primary_10_1016_j_jallcom_2024_173706 crossref_primary_10_1039_D0NR03833D crossref_primary_10_1002_ange_202211570 crossref_primary_10_1038_s41467_023_43138_w crossref_primary_10_1002_adfm_202110110 crossref_primary_10_20517_energymater_2023_24 crossref_primary_10_1016_j_nanoen_2021_106703 crossref_primary_10_1002_inf2_12189 crossref_primary_10_1016_j_ijbiomac_2024_137407 crossref_primary_10_1016_j_jpowsour_2025_236721 crossref_primary_10_1016_j_isci_2021_102691 crossref_primary_10_1021_acsami_2c15347 crossref_primary_10_1016_j_xcrp_2022_101080 crossref_primary_10_1016_j_ensm_2020_11_015 crossref_primary_10_1016_j_ensm_2020_07_037 crossref_primary_10_1002_adsu_202400205 crossref_primary_10_1002_advs_202203321 crossref_primary_10_1016_j_nanoen_2021_106119 crossref_primary_10_1002_adfm_202416527 crossref_primary_10_1016_j_apsusc_2024_161690 crossref_primary_10_1016_j_jechem_2021_03_023 crossref_primary_10_1002_adfm_201905940 crossref_primary_10_1016_j_nanoen_2020_105308 crossref_primary_10_3390_magnetochemistry8110140 crossref_primary_10_1016_j_cej_2025_161452 crossref_primary_10_1007_s00170_023_11424_y crossref_primary_10_1016_j_ensm_2024_103783 crossref_primary_10_1016_j_isci_2019_100781 crossref_primary_10_1016_j_gee_2020_12_014 crossref_primary_10_1002_adma_202304511 crossref_primary_10_1002_celc_202101564 crossref_primary_10_1021_acsnano_1c05497 crossref_primary_10_1021_acsenergylett_0c02314 crossref_primary_10_1016_j_electacta_2022_140422 crossref_primary_10_1007_s42114_023_00769_3 crossref_primary_10_1021_acs_accounts_9b00437 crossref_primary_10_1149_1945_7111_abec98 crossref_primary_10_1246_cl_220254 crossref_primary_10_1016_j_est_2023_109904 crossref_primary_10_1016_j_carbon_2024_118999 crossref_primary_10_1021_acsami_1c10788 crossref_primary_10_1016_j_jechem_2020_07_019 crossref_primary_10_1016_j_est_2024_110976 crossref_primary_10_1016_j_ensm_2022_03_036 crossref_primary_10_1016_j_ijhydene_2023_12_154 crossref_primary_10_1016_j_ensm_2021_06_015 crossref_primary_10_1063_5_0086130 crossref_primary_10_1021_acs_energyfuels_1c03757 crossref_primary_10_1016_j_egyr_2022_02_095 crossref_primary_10_1016_j_energy_2024_132161 crossref_primary_10_1002_ange_202213606 crossref_primary_10_1002_sstr_202000043 crossref_primary_10_1016_j_pnsc_2021_05_002 crossref_primary_10_1007_s00170_023_11738_x crossref_primary_10_1002_aenm_201902989 crossref_primary_10_1021_acsami_0c13039 crossref_primary_10_1016_j_scib_2023_08_063 crossref_primary_10_1002_smll_202410226 crossref_primary_10_1016_j_jpowsour_2024_234323 crossref_primary_10_1016_j_ensm_2020_08_032 crossref_primary_10_1155_2024_9657360 crossref_primary_10_1016_j_jechem_2024_09_006 crossref_primary_10_1126_sciadv_abe0219 crossref_primary_10_1016_j_jechem_2019_06_012 crossref_primary_10_1002_elsa_202100091 crossref_primary_10_1021_acsami_0c17302 crossref_primary_10_1039_D1EE00110H crossref_primary_10_2139_ssrn_4064634 crossref_primary_10_1016_j_cclet_2024_109997 crossref_primary_10_1039_D4TA07087A crossref_primary_10_1002_smll_202005639 crossref_primary_10_1002_aenm_202101774 crossref_primary_10_1021_acsami_9b13313 crossref_primary_10_1021_acsami_0c04355 crossref_primary_10_1063_5_0116837 crossref_primary_10_1002_adfm_202310097 crossref_primary_10_1002_bte2_20240088 crossref_primary_10_1016_j_ensm_2020_08_009 crossref_primary_10_3390_nano13202782 crossref_primary_10_1016_j_mtnano_2020_100103 crossref_primary_10_1002_aesr_202200112 crossref_primary_10_1002_adfm_202212605 crossref_primary_10_1039_D4QI02970D crossref_primary_10_12677_JOCR_2023_114024 crossref_primary_10_1002_aenm_202401157 crossref_primary_10_1039_C9TA06260B crossref_primary_10_1002_anie_202203564 crossref_primary_10_1016_j_cej_2021_131640 crossref_primary_10_1016_j_ensm_2021_01_020 crossref_primary_10_1016_j_cej_2024_158755 crossref_primary_10_1039_D3CS01043K crossref_primary_10_1149_1945_7111_abeb2a crossref_primary_10_1016_j_mssp_2021_105808 crossref_primary_10_1021_acsami_1c21573 |
Cites_doi | 10.1002/adfm.201707570 10.1002/anie.201710841 10.1038/s41467-018-06126-z 10.1002/advs.201500213 10.1140/epjst/e2013-01815-2 10.1021/acsenergylett.7b00149 10.1038/srep30830 10.1002/adma.201605531 10.1038/nnano.2014.152 10.1002/aenm.201701482 10.1016/j.jelechem.2014.10.014 10.1038/s41467-018-04394-3 10.1126/sciadv.aat3446 10.1038/nmat4974 10.1038/s41467-018-06077-5 10.1038/srep45511 10.1039/C3EE40795K 10.1038/nnano.2017.16 10.1002/adma.201506124 10.1002/advs.201600445 10.1021/ja312241y 10.1021/acsenergylett.7b00465 10.1002/adma.201700389 10.1038/s41467-018-05289-z 10.1002/anie.201702099 10.1002/adma.201706216 10.1021/jacs.6b08730 10.1016/j.tsf.2006.06.003 10.1039/C7NR09058G 10.1016/j.actamat.2009.02.006 10.1038/ncomms7362 10.1038/nmat4041 10.1002/adma.201703729 10.1016/j.jpowsour.2015.07.027 10.1016/j.nanoen.2017.05.015 10.1038/ncomms9058 10.1088/1468-6996/9/2/024208 10.1073/pnas.1708224114 10.1038/ncomms8436 10.1016/j.elecom.2014.02.006 10.1002/adfm.201606813 10.1016/j.msea.2005.07.001 10.1038/s41560-018-0096-1 10.1021/cm200465u 10.1039/C7CC00940B 10.1016/j.jpowsour.2016.12.011 10.1002/anie.201710806 10.1038/s41467-018-02888-8 10.1126/sciadv.aar4410 10.1016/j.joule.2017.12.001 10.1021/acs.chemrev.7b00115 10.1038/ncomms15106 10.1038/nenergy.2016.114 10.1016/j.jpowsour.2018.09.083 10.1002/adma.201504526 10.1179/1743294413Y.0000000229 10.1039/C5TA10050J 10.1017/CBO9780511525087 10.1039/C6TA06612G 10.1021/jacs.8b02322 10.1007/s11837-017-2340-8 10.1038/nenergy.2017.12 10.1021/acs.nanolett.6b04755 10.1002/smll.201403568 10.1038/ncomms10992 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M OTOTI |
DOI | 10.1002/aenm.201900260 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 1504790 10_1002_aenm_201900260 AENM201900260 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: U1802254; 51871201; 51722210 – fundername: Zhejiang Provincial Natural Science Foundation of China funderid: LY18E040003; LD18E020003 – fundername: U. S. Department of Energy funderid: DE‐AC02‐06CH11357 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M AAPBV AEUQT OTOTI |
ID | FETCH-LOGICAL-c4890-2b0b8dd865fb4ffa2d8441296b687792702c26146e728e99ef7126a70ae91dc83 |
ISSN | 1614-6832 |
IngestDate | Fri May 19 02:30:11 EDT 2023 Fri Jul 25 12:18:11 EDT 2025 Tue Jul 01 01:43:29 EDT 2025 Thu Apr 24 22:58:00 EDT 2025 Wed Jan 22 16:27:41 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4890-2b0b8dd865fb4ffa2d8441296b687792702c26146e728e99ef7126a70ae91dc83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE DE‐AC02‐06CH11357 |
ORCID | 0000-0003-0858-8577 0000000308588577 |
OpenAccessLink | https://www.osti.gov/biblio/1504790 |
PQID | 2229047325 |
PQPubID | 886389 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1504790 proquest_journals_2229047325 crossref_citationtrail_10_1002_aenm_201900260 crossref_primary_10_1002_aenm_201900260 wiley_primary_10_1002_aenm_201900260_AENM201900260 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 23, 2019 |
PublicationDateYYYYMMDD | 2019-05-23 |
PublicationDate_xml | – month: 05 year: 2019 text: May 23, 2019 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Advanced energy materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2017; 7 2017; 8 2017; 1 2017; 2 2017; 4 2018; 403 2008; 9 2017; 114 2017; 117 2018; 9 2009; 57 2018; 8 2018; 3 2018; 4 2017; 37 2015; 296 2014; 13 2015; 737 2000; 240 2018; 30 2011; 23 2014; 9 2014; 7 2018; 28 2015; 6 2006; 515 2018; 140 2017; 69 2017; 27 2015; 11 2017; 29 2013; 220 2014; 42 2016; 4 2016; 6 2017; 53 2016; 7 2016; 1 2016; 3 2017; 17 2017; 16 2017; 56 2017; 12 2005; 406 2013; 135 2016; 138 2017; 341 2014; 30 2016; 28 2018; 10 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 3 start-page: 1500213 year: 2016 publication-title: Adv. Sci. – volume: 4 start-page: 1600445 year: 2017 publication-title: Adv. Sci. – volume: 7 start-page: 10992 year: 2016 publication-title: Nat. Commun. – volume: 29 start-page: 1605531 year: 2017 publication-title: Adv. Mater. – volume: 10 start-page: 6125 year: 2018 publication-title: Nanoscale – volume: 30 start-page: 83 year: 2014 publication-title: Surf. Eng. – volume: 6 start-page: 30830 year: 2016 publication-title: Sci. Rep. – volume: 1 start-page: 649 year: 2017 publication-title: Joule – volume: 341 start-page: 373 year: 2017 publication-title: J. Power Sources – volume: 4 start-page: 2427 year: 2016 publication-title: J. Mater. Chem. A – volume: 2 start-page: 1711 year: 2017 publication-title: ACS Energy Lett. – volume: 27 start-page: 1606813 year: 2017 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 6362 year: 2015 publication-title: Nat. Commun. – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 220 start-page: 303 year: 2013 publication-title: Eur. Phys. J.: Spec. Top. – volume: 7 start-page: 513 year: 2014 publication-title: Energy Environ. Sci. – volume: 57 start-page: 1505 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 2888 year: 2016 publication-title: Adv. Mater. – volume: 28 start-page: 1707570 year: 2018 publication-title: Adv. Funct. Mater. – volume: 403 start-page: 82 year: 2018 publication-title: J. Power Sources – volume: 138 start-page: 15443 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 924 year: 2017 publication-title: ACS Energy Lett. – volume: 140 start-page: 6343 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 15106 year: 2017 publication-title: Nat. Commun. – volume: 29 start-page: 1700389 year: 2017 publication-title: Adv. Mater. – volume: 57 start-page: 2096 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 310 year: 2018 publication-title: Nat. Energy – volume: 515 start-page: 1694 year: 2006 publication-title: Thin Solid Films – volume: 296 start-page: 150 year: 2015 publication-title: J. Power Sources – volume: 4 start-page: eaat3446 year: 2018 publication-title: Sci. Adv. – volume: 8 start-page: 1701482 year: 2018 publication-title: Adv. Energy Mater. – volume: 9 start-page: 3656 year: 2018 publication-title: Nat. Commun. – volume: 23 start-page: 2922 year: 2011 publication-title: Chem. Mater. – volume: 7 start-page: 45511 year: 2017 publication-title: Sci. Rep. – volume: 17 start-page: 1132 year: 2017 publication-title: Nano Lett. – volume: 117 start-page: 10403 year: 2017 publication-title: Chem. Rev. – volume: 69 start-page: 2640 year: 2017 publication-title: JOM – volume: 42 start-page: 38 year: 2014 publication-title: Electrochem. Commun. – volume: 9 start-page: 464 year: 2018 publication-title: Nat. Commun. – volume: 9 start-page: 024208 year: 2008 publication-title: Sci. Technol. Adv. Mater. – volume: 406 start-page: 286 year: 2005 publication-title: Mater. Sci. Eng., A – volume: 30 start-page: 1706216 year: 2018 publication-title: Adv. Mater. – volume: 4 start-page: 15597 year: 2016 publication-title: J. Mater. Chem. A – volume: 53 start-page: 5298 year: 2017 publication-title: Chem. Commun. – volume: 29 start-page: 1703729 year: 2017 publication-title: Adv. Mater. – volume: 11 start-page: 2631 year: 2015 publication-title: Small – volume: 16 start-page: 1225 year: 2017 publication-title: Nat. Mater. – volume: 56 start-page: 7764 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 618 year: 2014 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 8058 year: 2015 publication-title: Nat. Commun. – volume: 1 start-page: 16114 year: 2016 publication-title: Nat. Energy – volume: 6 start-page: 7436 year: 2015 publication-title: Nat. Commun. – volume: 57 start-page: 2482 year: 2009 publication-title: Acta Mater. – volume: 9 start-page: 2152 year: 2018 publication-title: Nat. Commun. – volume: 2 start-page: 17012 year: 2017 publication-title: Nat. Energy – volume: 13 start-page: 961 year: 2014 publication-title: Nat. Mater. – volume: 240 year: 2000 – volume: 37 start-page: 177 year: 2017 publication-title: Nano Energy – volume: 9 start-page: 3729 year: 2018 publication-title: Nat. Commun. – volume: 28 start-page: 1853 year: 2016 publication-title: Adv. Mater. – volume: 737 start-page: 226 year: 2015 publication-title: J. Electroanal. Chem. – volume: 9 start-page: 2942 year: 2018 publication-title: Nat. Commun. – volume: 114 start-page: 12138 year: 2017 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 4 start-page: eaar4410 year: 2018 publication-title: Sci. Adv. – volume: 135 start-page: 4450 year: 2013 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_6_1 doi: 10.1002/adfm.201707570 – ident: e_1_2_7_28_1 doi: 10.1002/anie.201710841 – ident: e_1_2_7_21_1 doi: 10.1038/s41467-018-06126-z – ident: e_1_2_7_53_1 doi: 10.1002/advs.201500213 – ident: e_1_2_7_55_1 doi: 10.1140/epjst/e2013-01815-2 – ident: e_1_2_7_23_1 doi: 10.1021/acsenergylett.7b00149 – ident: e_1_2_7_26_1 doi: 10.1038/srep30830 – ident: e_1_2_7_16_1 doi: 10.1002/adma.201605531 – ident: e_1_2_7_60_1 doi: 10.1038/nnano.2014.152 – ident: e_1_2_7_65_1 doi: 10.1002/aenm.201701482 – ident: e_1_2_7_36_1 doi: 10.1016/j.jelechem.2014.10.014 – ident: e_1_2_7_45_1 doi: 10.1038/s41467-018-04394-3 – ident: e_1_2_7_63_1 doi: 10.1126/sciadv.aat3446 – ident: e_1_2_7_50_1 doi: 10.1038/nmat4974 – ident: e_1_2_7_11_1 doi: 10.1038/s41467-018-06077-5 – ident: e_1_2_7_32_1 doi: 10.1038/srep45511 – ident: e_1_2_7_8_1 doi: 10.1039/C3EE40795K – ident: e_1_2_7_31_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_7_46_1 doi: 10.1002/adma.201506124 – ident: e_1_2_7_27_1 doi: 10.1002/advs.201600445 – ident: e_1_2_7_52_1 doi: 10.1021/ja312241y – ident: e_1_2_7_3_1 doi: 10.1021/acsenergylett.7b00465 – ident: e_1_2_7_24_1 doi: 10.1002/adma.201700389 – ident: e_1_2_7_29_1 doi: 10.1038/s41467-018-05289-z – ident: e_1_2_7_22_1 doi: 10.1002/anie.201702099 – ident: e_1_2_7_41_1 doi: 10.1002/adma.201706216 – ident: e_1_2_7_42_1 doi: 10.1021/jacs.6b08730 – ident: e_1_2_7_43_1 doi: 10.1016/j.tsf.2006.06.003 – ident: e_1_2_7_64_1 doi: 10.1039/C7NR09058G – ident: e_1_2_7_51_1 doi: 10.1016/j.actamat.2009.02.006 – ident: e_1_2_7_4_1 doi: 10.1038/ncomms7362 – ident: e_1_2_7_10_1 doi: 10.1038/nmat4041 – ident: e_1_2_7_48_1 doi: 10.1002/adma.201703729 – ident: e_1_2_7_14_1 doi: 10.1016/j.jpowsour.2015.07.027 – ident: e_1_2_7_7_1 doi: 10.1016/j.nanoen.2017.05.015 – ident: e_1_2_7_20_1 doi: 10.1038/ncomms9058 – ident: e_1_2_7_49_1 doi: 10.1088/1468-6996/9/2/024208 – ident: e_1_2_7_47_1 doi: 10.1073/pnas.1708224114 – ident: e_1_2_7_12_1 doi: 10.1038/ncomms8436 – ident: e_1_2_7_30_1 doi: 10.1016/j.elecom.2014.02.006 – ident: e_1_2_7_9_1 doi: 10.1002/adfm.201606813 – ident: e_1_2_7_33_1 doi: 10.1016/j.msea.2005.07.001 – ident: e_1_2_7_56_1 doi: 10.1038/s41560-018-0096-1 – ident: e_1_2_7_37_1 doi: 10.1021/cm200465u – ident: e_1_2_7_39_1 doi: 10.1039/C7CC00940B – ident: e_1_2_7_2_1 doi: 10.1016/j.jpowsour.2016.12.011 – ident: e_1_2_7_44_1 doi: 10.1002/anie.201710806 – ident: e_1_2_7_40_1 doi: 10.1038/s41467-018-02888-8 – ident: e_1_2_7_54_1 doi: 10.1126/sciadv.aar4410 – ident: e_1_2_7_58_1 doi: 10.1016/j.joule.2017.12.001 – ident: e_1_2_7_1_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_7_5_1 doi: 10.1038/ncomms15106 – ident: e_1_2_7_57_1 doi: 10.1038/nenergy.2016.114 – ident: e_1_2_7_25_1 doi: 10.1016/j.jpowsour.2018.09.083 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201504526 – ident: e_1_2_7_35_1 doi: 10.1179/1743294413Y.0000000229 – ident: e_1_2_7_17_1 doi: 10.1039/C5TA10050J – ident: e_1_2_7_38_1 doi: 10.1017/CBO9780511525087 – ident: e_1_2_7_18_1 doi: 10.1039/C6TA06612G – ident: e_1_2_7_13_1 doi: 10.1021/jacs.8b02322 – ident: e_1_2_7_34_1 doi: 10.1007/s11837-017-2340-8 – ident: e_1_2_7_61_1 doi: 10.1038/nenergy.2017.12 – ident: e_1_2_7_59_1 doi: 10.1021/acs.nanolett.6b04755 – ident: e_1_2_7_62_1 doi: 10.1002/smll.201403568 – ident: e_1_2_7_19_1 doi: 10.1038/ncomms10992 |
SSID | ssj0000491033 |
Score | 2.6407223 |
Snippet | Lithium metal is the most attractive anode material due to its extremely high specific capacity, minimum potential, and low density. However, uncontrollable... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Alkali metals Anodes Cycles dendrites Dendritic structure Electrode materials Electromagnetic fields Fluid dynamics Lithium Lithium ions lithium metal Lorentz force magnetic field Magnetic fields Magnetohydrodynamics magnetohydrodynamics effect Mass transfer Storage batteries |
Title | Magnetic Field–Suppressed Lithium Dendrite Growth for Stable Lithium‐Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201900260 https://www.proquest.com/docview/2229047325 https://www.osti.gov/biblio/1504790 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeoFDVV4ibUE-IHFABnv92j2m0KoC3AutlHKxdtfjFgkcVByBOPUnVOo_7C9h9mU7ojwvVrJZ2cnO5_HMZL5vCXkSc4iBgab9NjJMZQIhkyIPGxkLhiEwk-aP9vIg3z9KX8-z-VBVMuySTj5X36_llfyPVXEM7apZsv9g2f6kOICv0b54RAvj8a9sXIqTVpMQn-2ZjaZd30Kid-o0muC11sQ4_bD8hG6lrc8wutS1pq_dqWkuxDhT06bclL7roQTNj7S6m77D0MvU-oYBsIxBjHbtz-zrNI7r8Ua4B6Ip1Vt38h6GsR3TQzBfivbbcoDnsdtf5VgsxsUIzX_KQssXHrm8ofSIQfI1DUC-xmE9LsYHYc5ckRPGY1bHybtpPkKj4c_97P2tmqyAVksMYKSj9dKG51zffYgxcFrw6CZZo5hboHNcm70q377rS3OYNMVRYqgZ_st5uc-Ivlg9_Uo4M1mgW15JVcYJj4lYDjfIuks1gpnFzR1yA9q75PZIgPIemXsEBQZBV-eXA3YCB4zAYyew2AkQO4HFjp9ydX5hUBP0qLlPjvZ2D1_uh26vjVCljEchlZFkdc3yrJFp0whaMwyUKc9lzoqCa9aiwmQ7zaGgDDiHpohpLopIAI9rxZIHZNIuWnhIAsAMPwHIIWMyTRshmkJxXie1ylQEiZiS0C9ZpZwQvd4P5WNlJbRppZe46pd4Sp728z9bCZZfztzSFqgweNQKyEq3iqmucvaekm1vmMrdxF8qvZ09fprQbEqoMdYfrlHNdg_K_t3mb6-4RW4NN8k2mXRnS3iEMWwnHzvM_QCSfpmC |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+Field%E2%80%93Suppressed+Lithium+Dendrite+Growth+for+Stable+Lithium%E2%80%90Metal+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Shen%2C+Kang&rft.au=Wang%2C+Zeng&rft.au=Bi%2C+Xuanxuan&rft.au=Ying%2C+Yao&rft.date=2019-05-23&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=20&rft_id=info:doi/10.1002%2Faenm.201900260&rft.externalDocID=1504790 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |