Magnetic Field–Suppressed Lithium Dendrite Growth for Stable Lithium‐Metal Batteries

Lithium metal is the most attractive anode material due to its extremely high specific capacity, minimum potential, and low density. However, uncontrollable growth of lithium dendrite results in severe safety and cycling stability concerns, which hinders the application in next generation secondary...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 9; no. 20
Main Authors Shen, Kang, Wang, Zeng, Bi, Xuanxuan, Ying, Yao, Zhang, Duo, Jin, Chengbin, Hou, Guangya, Cao, Huazhen, Wu, Liankui, Zheng, Guoqu, Tang, Yiping, Tao, Xinyong, Lu, Jun
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 23.05.2019
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium metal is the most attractive anode material due to its extremely high specific capacity, minimum potential, and low density. However, uncontrollable growth of lithium dendrite results in severe safety and cycling stability concerns, which hinders the application in next generation secondary batteries. In this paper, a new and facile method imposing a magnetic field to lithium metal anodes is proposed. That is, the lithium ions suffering Lorentz force due to the electromagnetic fields are put into spiral motion causing magnetohydrodynamics (MHD) effect. This MHD effect can effectively promote mass transfer and uniform distribution of lithium ions to suppress the dendrite growth as well as obtain uniform and compact lithium deposition. The results show that the lithium metal electrodes within the magnetic field exhibit excellent cycling and rate performance in a symmetrical battery. Additionally, full batteries using limited lithium metal as anodes and commercial LiFePO4 as cathodes show improved performance within the magnetic field. In summary, a new and facile strategy of suppressing lithium dendrites using the MHD effect by imposing a magnetic field is proposed, which may be generalized to other advanced alkali metal batteries. An novel external strategy of imposing a magnetic field to lithium metal anodes is presented. The generated Lorentz force due to the electromagnetic fields is used to promote mass transfer and uniform distribution of lithium ions. This magnetohydrodynamics effect can effectively suppress the dendrite growth as well as obtain uniform and compact lithium deposition with the remarkable performance.
AbstractList Lithium metal is the most attractive anode material due to its extremely high specific capacity, minimum potential, and low density. However, uncontrollable growth of lithium dendrite results in severe safety and cycling stability concerns, which hinders the application in next generation secondary batteries. In this paper, a new and facile method imposing a magnetic field to lithium metal anodes is proposed. That is, the lithium ions suffering Lorentz force due to the electromagnetic fields are put into spiral motion causing magnetohydrodynamics (MHD) effect. This MHD effect can effectively promote mass transfer and uniform distribution of lithium ions to suppress the dendrite growth as well as obtain uniform and compact lithium deposition. The results show that the lithium metal electrodes within the magnetic field exhibit excellent cycling and rate performance in a symmetrical battery. Additionally, full batteries using limited lithium metal as anodes and commercial LiFePO4 as cathodes show improved performance within the magnetic field. In summary, a new and facile strategy of suppressing lithium dendrites using the MHD effect by imposing a magnetic field is proposed, which may be generalized to other advanced alkali metal batteries.
Lithium metal is the most attractive anode material due to its extremely high specific capacity, minimum potential, and low density. However, uncontrollable growth of lithium dendrite results in severe safety and cycling stability concerns, which hinders the application in next generation secondary batteries. In this paper, a new and facile method imposing a magnetic field to lithium metal anodes is proposed. That is, the lithium ions suffering Lorentz force due to the electromagnetic fields are put into spiral motion causing magnetohydrodynamics (MHD) effect. This MHD effect can effectively promote mass transfer and uniform distribution of lithium ions to suppress the dendrite growth as well as obtain uniform and compact lithium deposition. The results show that the lithium metal electrodes within the magnetic field exhibit excellent cycling and rate performance in a symmetrical battery. Additionally, full batteries using limited lithium metal as anodes and commercial LiFePO4 as cathodes show improved performance within the magnetic field. In summary, a new and facile strategy of suppressing lithium dendrites using the MHD effect by imposing a magnetic field is proposed, which may be generalized to other advanced alkali metal batteries. An novel external strategy of imposing a magnetic field to lithium metal anodes is presented. The generated Lorentz force due to the electromagnetic fields is used to promote mass transfer and uniform distribution of lithium ions. This magnetohydrodynamics effect can effectively suppress the dendrite growth as well as obtain uniform and compact lithium deposition with the remarkable performance.
Lithium metal is the most attractive anode material due to its extremely high specific capacity, minimum potential, and low density. However, uncontrollable growth of lithium dendrite results in severe safety and cycling stability concerns, which hinders the application in next generation secondary batteries. In this paper, a new and facile method imposing a magnetic field to lithium metal anodes is proposed. That is, the lithium ions suffering Lorentz force due to the electromagnetic fields are put into spiral motion causing magnetohydrodynamics (MHD) effect. This MHD effect can effectively promote mass transfer and uniform distribution of lithium ions to suppress the dendrite growth as well as obtain uniform and compact lithium deposition. The results show that the lithium metal electrodes within the magnetic field exhibit excellent cycling and rate performance in a symmetrical battery. Additionally, full batteries using limited lithium metal as anodes and commercial LiFePO 4 as cathodes show improved performance within the magnetic field. In summary, a new and facile strategy of suppressing lithium dendrites using the MHD effect by imposing a magnetic field is proposed, which may be generalized to other advanced alkali metal batteries.
Author Wu, Liankui
Zheng, Guoqu
Zhang, Duo
Tang, Yiping
Jin, Chengbin
Wang, Zeng
Hou, Guangya
Ying, Yao
Cao, Huazhen
Lu, Jun
Bi, Xuanxuan
Tao, Xinyong
Shen, Kang
Author_xml – sequence: 1
  givenname: Kang
  surname: Shen
  fullname: Shen, Kang
  organization: Zhejiang University of Technology
– sequence: 2
  givenname: Zeng
  surname: Wang
  fullname: Wang, Zeng
  organization: Zhejiang University of Technology
– sequence: 3
  givenname: Xuanxuan
  surname: Bi
  fullname: Bi, Xuanxuan
  organization: Argonne National Laboratory
– sequence: 4
  givenname: Yao
  surname: Ying
  fullname: Ying, Yao
  organization: Zhejiang University of Technology
– sequence: 5
  givenname: Duo
  surname: Zhang
  fullname: Zhang, Duo
  organization: Zhejiang University of Technology
– sequence: 6
  givenname: Chengbin
  surname: Jin
  fullname: Jin, Chengbin
  organization: Zhejiang University of Technology
– sequence: 7
  givenname: Guangya
  surname: Hou
  fullname: Hou, Guangya
  organization: Zhejiang University of Technology
– sequence: 8
  givenname: Huazhen
  surname: Cao
  fullname: Cao, Huazhen
  organization: Zhejiang University of Technology
– sequence: 9
  givenname: Liankui
  surname: Wu
  fullname: Wu, Liankui
  organization: Zhejiang University of Technology
– sequence: 10
  givenname: Guoqu
  surname: Zheng
  fullname: Zheng, Guoqu
  organization: Zhejiang University of Technology
– sequence: 11
  givenname: Yiping
  surname: Tang
  fullname: Tang, Yiping
  email: tangyiping@zjut.edu.cn
  organization: Zhejiang University of Technology
– sequence: 12
  givenname: Xinyong
  surname: Tao
  fullname: Tao, Xinyong
  email: tao@zjut.edu.cn
  organization: Zhejiang University of Technology
– sequence: 13
  givenname: Jun
  orcidid: 0000-0003-0858-8577
  surname: Lu
  fullname: Lu, Jun
  email: junlu@anl.gov
  organization: Argonne National Laboratory
BackLink https://www.osti.gov/biblio/1504790$$D View this record in Osti.gov
BookMark eNqFkMtKAzEUhoMoqLVb14OuW5NMOjNZeqkXaHVRBXchkzljI9OkJinSnY8g-IZ9ElNGKwji2eQEvu_w8--jbWMNIHRIcJ9gTE8kmFmfYsLjJ8NbaI9khPWyguHtzZ7SXdT1_hnHYZzgNN1Dj2P5ZCBolVxqaKrV28dkMZ878B6qZKTDVC9myQWYyukAyZWzr2Ga1NYlkyDLBr6R1dv7GIJskjMZAjgN_gDt1LLx0P16O-jhcnh_ft0b3V3dnJ-OeooVHPdoicuiqopsUJesriWtCsYI5VmZFXnOaY6pojF-BjktgHOoc0IzmWMJnFSqSDvoqL1rfdDCqxhTTZU1BlQQZIBZznGEjlto7uzLAnwQz3bhTMwlKKU8QikdRIq1lHLWewe1iNdk0NYEJ3UjCBbrrsW6a7HpOmr9X9rc6Zl0y78F3gqvuoHlP7Q4Hd6Of9xPbm2UZQ
CitedBy_id crossref_primary_10_1002_ange_202203564
crossref_primary_10_1016_j_jechem_2024_11_041
crossref_primary_10_1021_acsmacrolett_3c00666
crossref_primary_10_1016_j_cej_2023_141900
crossref_primary_10_1007_s12274_021_3506_9
crossref_primary_10_1007_s12598_022_01994_3
crossref_primary_10_1021_acsenergylett_0c01517
crossref_primary_10_1002_admi_202100368
crossref_primary_10_1016_j_surfin_2021_101106
crossref_primary_10_1016_j_nanoen_2022_106937
crossref_primary_10_1063_5_0068465
crossref_primary_10_1021_acsami_2c19895
crossref_primary_10_1016_j_nanoen_2020_105282
crossref_primary_10_1016_j_ssi_2019_115033
crossref_primary_10_1021_acs_nanolett_1c03207
crossref_primary_10_1002_smll_202106718
crossref_primary_10_1016_j_ensm_2020_02_030
crossref_primary_10_3390_batteries9030188
crossref_primary_10_1002_ange_202010531
crossref_primary_10_1002_adfm_202210127
crossref_primary_10_1016_j_ensm_2021_03_008
crossref_primary_10_1016_j_ensm_2021_03_006
crossref_primary_10_1002_adfm_202421952
crossref_primary_10_1021_acsenergylett_1c02489
crossref_primary_10_1039_D0MA00260G
crossref_primary_10_1002_anie_202105831
crossref_primary_10_1016_j_cclet_2022_05_008
crossref_primary_10_1103_PhysRevFluids_8_113701
crossref_primary_10_1002_smll_202300734
crossref_primary_10_1021_acs_jpcc_3c03096
crossref_primary_10_34133_energymatadv_0053
crossref_primary_10_1002_adfm_202207969
crossref_primary_10_1002_aenm_202102259
crossref_primary_10_1016_j_jechem_2020_11_034
crossref_primary_10_1016_j_jechem_2020_11_031
crossref_primary_10_3390_en17235930
crossref_primary_10_1177_09544070231207915
crossref_primary_10_1016_j_mtener_2024_101557
crossref_primary_10_1002_aenm_202304229
crossref_primary_10_1021_acsaem_2c02890
crossref_primary_10_1021_acscentsci_0c00899
crossref_primary_10_1016_j_cej_2020_126808
crossref_primary_10_1021_acs_chemrev_0c01100
crossref_primary_10_1016_j_ensm_2021_07_035
crossref_primary_10_1021_acsaem_1c01420
crossref_primary_10_1021_acsaem_1c01662
crossref_primary_10_1016_j_apcatb_2023_123579
crossref_primary_10_1016_j_gee_2019_10_003
crossref_primary_10_1002_smll_202307598
crossref_primary_10_1002_sus2_119
crossref_primary_10_1021_acsenergylett_3c01689
crossref_primary_10_1016_j_ssi_2019_115171
crossref_primary_10_1002_adma_201907516
crossref_primary_10_1088_1402_4896_ad8a99
crossref_primary_10_1016_j_surfin_2022_101972
crossref_primary_10_1002_cphc_202000897
crossref_primary_10_1021_acsenergylett_9b01987
crossref_primary_10_1016_j_jcis_2024_07_007
crossref_primary_10_1002_adfm_202005417
crossref_primary_10_1002_anie_202213606
crossref_primary_10_1007_s12598_024_02645_5
crossref_primary_10_1063_5_0107386
crossref_primary_10_1002_adma_202301892
crossref_primary_10_1063_5_0246646
crossref_primary_10_1002_anie_202010531
crossref_primary_10_1016_j_ensm_2022_05_043
crossref_primary_10_1039_C9CS00883G
crossref_primary_10_1016_j_anucene_2024_110639
crossref_primary_10_1103_PhysRevE_108_014801
crossref_primary_10_1039_D4CS00474D
crossref_primary_10_1007_s10570_022_04931_w
crossref_primary_10_1021_acsami_0c09503
crossref_primary_10_1016_j_jmst_2022_05_044
crossref_primary_10_1016_j_est_2024_110907
crossref_primary_10_1016_j_mattod_2024_11_009
crossref_primary_10_1021_acs_chemrev_2c00022
crossref_primary_10_1021_acs_nanolett_0c00797
crossref_primary_10_1007_s41918_022_00158_2
crossref_primary_10_1021_acsami_1c12576
crossref_primary_10_1016_j_mtener_2024_101509
crossref_primary_10_1016_j_surfin_2023_102867
crossref_primary_10_1007_s12598_020_01432_2
crossref_primary_10_1093_nsr_nwaa075
crossref_primary_10_31613_ceramist_2024_27_2_04
crossref_primary_10_1016_j_apenergy_2025_125347
crossref_primary_10_1039_D0TA00448K
crossref_primary_10_1002_ange_202320259
crossref_primary_10_1016_j_nanoen_2022_107655
crossref_primary_10_1016_j_ensm_2021_08_012
crossref_primary_10_1016_j_nanoen_2020_105233
crossref_primary_10_1002_cssc_202400675
crossref_primary_10_1016_j_jechem_2019_09_028
crossref_primary_10_1021_acsanm_4c00999
crossref_primary_10_1002_adfm_202204052
crossref_primary_10_1021_acsami_4c15492
crossref_primary_10_1016_j_ensm_2024_103751
crossref_primary_10_1016_j_ces_2024_120033
crossref_primary_10_1016_j_carbon_2021_09_001
crossref_primary_10_1016_j_ensm_2021_03_010
crossref_primary_10_1039_D2TA09824E
crossref_primary_10_1016_j_electacta_2020_137374
crossref_primary_10_1002_anie_202320259
crossref_primary_10_1002_ange_202105831
crossref_primary_10_1007_s40820_020_00522_1
crossref_primary_10_1002_anie_202211570
crossref_primary_10_1016_j_jechem_2019_09_031
crossref_primary_10_1002_ceat_202300320
crossref_primary_10_1016_j_ensm_2019_09_020
crossref_primary_10_1016_j_matdes_2022_110860
crossref_primary_10_1002_adfm_202305908
crossref_primary_10_1088_0256_307X_39_2_028202
crossref_primary_10_1016_j_jechem_2022_10_023
crossref_primary_10_1002_adma_202004793
crossref_primary_10_1021_acs_iecr_2c00897
crossref_primary_10_1002_chem_202302867
crossref_primary_10_1073_pnas_2413739121
crossref_primary_10_1016_j_ensm_2020_01_001
crossref_primary_10_1002_aesr_202300165
crossref_primary_10_1039_D1SE01739J
crossref_primary_10_1002_adfm_202007598
crossref_primary_10_1002_adma_202414047
crossref_primary_10_1142_S1793292020500332
crossref_primary_10_1016_j_joule_2022_05_020
crossref_primary_10_1002_aenm_201902254
crossref_primary_10_1016_j_ensm_2019_12_028
crossref_primary_10_1016_j_enconman_2024_119069
crossref_primary_10_1016_j_est_2025_116004
crossref_primary_10_1038_s41598_020_67042_1
crossref_primary_10_1002_aenm_201902932
crossref_primary_10_1002_aenm_202200999
crossref_primary_10_1021_acs_energyfuels_4c02106
crossref_primary_10_1039_C9TA06170C
crossref_primary_10_1063_5_0015099
crossref_primary_10_1016_j_jpowsour_2023_233683
crossref_primary_10_1007_s12274_022_5363_6
crossref_primary_10_1039_D3MH00303E
crossref_primary_10_1002_adfm_202004613
crossref_primary_10_1016_j_cej_2021_133689
crossref_primary_10_3866_PKU_WHXB202305053
crossref_primary_10_1021_acsami_0c12541
crossref_primary_10_1021_acsenergylett_1c00583
crossref_primary_10_1007_s40820_023_01234_y
crossref_primary_10_1007_s11771_020_4304_3
crossref_primary_10_1016_j_jallcom_2024_173706
crossref_primary_10_1039_D0NR03833D
crossref_primary_10_1002_ange_202211570
crossref_primary_10_1038_s41467_023_43138_w
crossref_primary_10_1002_adfm_202110110
crossref_primary_10_20517_energymater_2023_24
crossref_primary_10_1016_j_nanoen_2021_106703
crossref_primary_10_1002_inf2_12189
crossref_primary_10_1016_j_ijbiomac_2024_137407
crossref_primary_10_1016_j_jpowsour_2025_236721
crossref_primary_10_1016_j_isci_2021_102691
crossref_primary_10_1021_acsami_2c15347
crossref_primary_10_1016_j_xcrp_2022_101080
crossref_primary_10_1016_j_ensm_2020_11_015
crossref_primary_10_1016_j_ensm_2020_07_037
crossref_primary_10_1002_adsu_202400205
crossref_primary_10_1002_advs_202203321
crossref_primary_10_1016_j_nanoen_2021_106119
crossref_primary_10_1002_adfm_202416527
crossref_primary_10_1016_j_apsusc_2024_161690
crossref_primary_10_1016_j_jechem_2021_03_023
crossref_primary_10_1002_adfm_201905940
crossref_primary_10_1016_j_nanoen_2020_105308
crossref_primary_10_3390_magnetochemistry8110140
crossref_primary_10_1016_j_cej_2025_161452
crossref_primary_10_1007_s00170_023_11424_y
crossref_primary_10_1016_j_ensm_2024_103783
crossref_primary_10_1016_j_isci_2019_100781
crossref_primary_10_1016_j_gee_2020_12_014
crossref_primary_10_1002_adma_202304511
crossref_primary_10_1002_celc_202101564
crossref_primary_10_1021_acsnano_1c05497
crossref_primary_10_1021_acsenergylett_0c02314
crossref_primary_10_1016_j_electacta_2022_140422
crossref_primary_10_1007_s42114_023_00769_3
crossref_primary_10_1021_acs_accounts_9b00437
crossref_primary_10_1149_1945_7111_abec98
crossref_primary_10_1246_cl_220254
crossref_primary_10_1016_j_est_2023_109904
crossref_primary_10_1016_j_carbon_2024_118999
crossref_primary_10_1021_acsami_1c10788
crossref_primary_10_1016_j_jechem_2020_07_019
crossref_primary_10_1016_j_est_2024_110976
crossref_primary_10_1016_j_ensm_2022_03_036
crossref_primary_10_1016_j_ijhydene_2023_12_154
crossref_primary_10_1016_j_ensm_2021_06_015
crossref_primary_10_1063_5_0086130
crossref_primary_10_1021_acs_energyfuels_1c03757
crossref_primary_10_1016_j_egyr_2022_02_095
crossref_primary_10_1016_j_energy_2024_132161
crossref_primary_10_1002_ange_202213606
crossref_primary_10_1002_sstr_202000043
crossref_primary_10_1016_j_pnsc_2021_05_002
crossref_primary_10_1007_s00170_023_11738_x
crossref_primary_10_1002_aenm_201902989
crossref_primary_10_1021_acsami_0c13039
crossref_primary_10_1016_j_scib_2023_08_063
crossref_primary_10_1002_smll_202410226
crossref_primary_10_1016_j_jpowsour_2024_234323
crossref_primary_10_1016_j_ensm_2020_08_032
crossref_primary_10_1155_2024_9657360
crossref_primary_10_1016_j_jechem_2024_09_006
crossref_primary_10_1126_sciadv_abe0219
crossref_primary_10_1016_j_jechem_2019_06_012
crossref_primary_10_1002_elsa_202100091
crossref_primary_10_1021_acsami_0c17302
crossref_primary_10_1039_D1EE00110H
crossref_primary_10_2139_ssrn_4064634
crossref_primary_10_1016_j_cclet_2024_109997
crossref_primary_10_1039_D4TA07087A
crossref_primary_10_1002_smll_202005639
crossref_primary_10_1002_aenm_202101774
crossref_primary_10_1021_acsami_9b13313
crossref_primary_10_1021_acsami_0c04355
crossref_primary_10_1063_5_0116837
crossref_primary_10_1002_adfm_202310097
crossref_primary_10_1002_bte2_20240088
crossref_primary_10_1016_j_ensm_2020_08_009
crossref_primary_10_3390_nano13202782
crossref_primary_10_1016_j_mtnano_2020_100103
crossref_primary_10_1002_aesr_202200112
crossref_primary_10_1002_adfm_202212605
crossref_primary_10_1039_D4QI02970D
crossref_primary_10_12677_JOCR_2023_114024
crossref_primary_10_1002_aenm_202401157
crossref_primary_10_1039_C9TA06260B
crossref_primary_10_1002_anie_202203564
crossref_primary_10_1016_j_cej_2021_131640
crossref_primary_10_1016_j_ensm_2021_01_020
crossref_primary_10_1016_j_cej_2024_158755
crossref_primary_10_1039_D3CS01043K
crossref_primary_10_1149_1945_7111_abeb2a
crossref_primary_10_1016_j_mssp_2021_105808
crossref_primary_10_1021_acsami_1c21573
Cites_doi 10.1002/adfm.201707570
10.1002/anie.201710841
10.1038/s41467-018-06126-z
10.1002/advs.201500213
10.1140/epjst/e2013-01815-2
10.1021/acsenergylett.7b00149
10.1038/srep30830
10.1002/adma.201605531
10.1038/nnano.2014.152
10.1002/aenm.201701482
10.1016/j.jelechem.2014.10.014
10.1038/s41467-018-04394-3
10.1126/sciadv.aat3446
10.1038/nmat4974
10.1038/s41467-018-06077-5
10.1038/srep45511
10.1039/C3EE40795K
10.1038/nnano.2017.16
10.1002/adma.201506124
10.1002/advs.201600445
10.1021/ja312241y
10.1021/acsenergylett.7b00465
10.1002/adma.201700389
10.1038/s41467-018-05289-z
10.1002/anie.201702099
10.1002/adma.201706216
10.1021/jacs.6b08730
10.1016/j.tsf.2006.06.003
10.1039/C7NR09058G
10.1016/j.actamat.2009.02.006
10.1038/ncomms7362
10.1038/nmat4041
10.1002/adma.201703729
10.1016/j.jpowsour.2015.07.027
10.1016/j.nanoen.2017.05.015
10.1038/ncomms9058
10.1088/1468-6996/9/2/024208
10.1073/pnas.1708224114
10.1038/ncomms8436
10.1016/j.elecom.2014.02.006
10.1002/adfm.201606813
10.1016/j.msea.2005.07.001
10.1038/s41560-018-0096-1
10.1021/cm200465u
10.1039/C7CC00940B
10.1016/j.jpowsour.2016.12.011
10.1002/anie.201710806
10.1038/s41467-018-02888-8
10.1126/sciadv.aar4410
10.1016/j.joule.2017.12.001
10.1021/acs.chemrev.7b00115
10.1038/ncomms15106
10.1038/nenergy.2016.114
10.1016/j.jpowsour.2018.09.083
10.1002/adma.201504526
10.1179/1743294413Y.0000000229
10.1039/C5TA10050J
10.1017/CBO9780511525087
10.1039/C6TA06612G
10.1021/jacs.8b02322
10.1007/s11837-017-2340-8
10.1038/nenergy.2017.12
10.1021/acs.nanolett.6b04755
10.1002/smll.201403568
10.1038/ncomms10992
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
OTOTI
DOI 10.1002/aenm.201900260
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 1504790
10_1002_aenm_201900260
AENM201900260
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: U1802254; 51871201; 51722210
– fundername: Zhejiang Provincial Natural Science Foundation of China
  funderid: LY18E040003; LD18E020003
– fundername: U. S. Department of Energy
  funderid: DE‐AC02‐06CH11357
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
AAPBV
AEUQT
OTOTI
ID FETCH-LOGICAL-c4890-2b0b8dd865fb4ffa2d8441296b687792702c26146e728e99ef7126a70ae91dc83
ISSN 1614-6832
IngestDate Fri May 19 02:30:11 EDT 2023
Fri Jul 25 12:18:11 EDT 2025
Tue Jul 01 01:43:29 EDT 2025
Thu Apr 24 22:58:00 EDT 2025
Wed Jan 22 16:27:41 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4890-2b0b8dd865fb4ffa2d8441296b687792702c26146e728e99ef7126a70ae91dc83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
DE‐AC02‐06CH11357
ORCID 0000-0003-0858-8577
0000000308588577
OpenAccessLink https://www.osti.gov/biblio/1504790
PQID 2229047325
PQPubID 886389
PageCount 8
ParticipantIDs osti_scitechconnect_1504790
proquest_journals_2229047325
crossref_citationtrail_10_1002_aenm_201900260
crossref_primary_10_1002_aenm_201900260
wiley_primary_10_1002_aenm_201900260_AENM201900260
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 23, 2019
PublicationDateYYYYMMDD 2019-05-23
PublicationDate_xml – month: 05
  year: 2019
  text: May 23, 2019
  day: 23
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Advanced energy materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2017; 7
2017; 8
2017; 1
2017; 2
2017; 4
2018; 403
2008; 9
2017; 114
2017; 117
2018; 9
2009; 57
2018; 8
2018; 3
2018; 4
2017; 37
2015; 296
2014; 13
2015; 737
2000; 240
2018; 30
2011; 23
2014; 9
2014; 7
2018; 28
2015; 6
2006; 515
2018; 140
2017; 69
2017; 27
2015; 11
2017; 29
2013; 220
2014; 42
2016; 4
2016; 6
2017; 53
2016; 7
2016; 1
2016; 3
2017; 17
2017; 16
2017; 56
2017; 12
2005; 406
2013; 135
2016; 138
2017; 341
2014; 30
2016; 28
2018; 10
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 3
  start-page: 1500213
  year: 2016
  publication-title: Adv. Sci.
– volume: 4
  start-page: 1600445
  year: 2017
  publication-title: Adv. Sci.
– volume: 7
  start-page: 10992
  year: 2016
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1605531
  year: 2017
  publication-title: Adv. Mater.
– volume: 10
  start-page: 6125
  year: 2018
  publication-title: Nanoscale
– volume: 30
  start-page: 83
  year: 2014
  publication-title: Surf. Eng.
– volume: 6
  start-page: 30830
  year: 2016
  publication-title: Sci. Rep.
– volume: 1
  start-page: 649
  year: 2017
  publication-title: Joule
– volume: 341
  start-page: 373
  year: 2017
  publication-title: J. Power Sources
– volume: 4
  start-page: 2427
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1711
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 27
  start-page: 1606813
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 6362
  year: 2015
  publication-title: Nat. Commun.
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 220
  start-page: 303
  year: 2013
  publication-title: Eur. Phys. J.: Spec. Top.
– volume: 7
  start-page: 513
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 57
  start-page: 1505
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 2888
  year: 2016
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1707570
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 403
  start-page: 82
  year: 2018
  publication-title: J. Power Sources
– volume: 138
  start-page: 15443
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 924
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 140
  start-page: 6343
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 15106
  year: 2017
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1700389
  year: 2017
  publication-title: Adv. Mater.
– volume: 57
  start-page: 2096
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 310
  year: 2018
  publication-title: Nat. Energy
– volume: 515
  start-page: 1694
  year: 2006
  publication-title: Thin Solid Films
– volume: 296
  start-page: 150
  year: 2015
  publication-title: J. Power Sources
– volume: 4
  start-page: eaat3446
  year: 2018
  publication-title: Sci. Adv.
– volume: 8
  start-page: 1701482
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 3656
  year: 2018
  publication-title: Nat. Commun.
– volume: 23
  start-page: 2922
  year: 2011
  publication-title: Chem. Mater.
– volume: 7
  start-page: 45511
  year: 2017
  publication-title: Sci. Rep.
– volume: 17
  start-page: 1132
  year: 2017
  publication-title: Nano Lett.
– volume: 117
  start-page: 10403
  year: 2017
  publication-title: Chem. Rev.
– volume: 69
  start-page: 2640
  year: 2017
  publication-title: JOM
– volume: 42
  start-page: 38
  year: 2014
  publication-title: Electrochem. Commun.
– volume: 9
  start-page: 464
  year: 2018
  publication-title: Nat. Commun.
– volume: 9
  start-page: 024208
  year: 2008
  publication-title: Sci. Technol. Adv. Mater.
– volume: 406
  start-page: 286
  year: 2005
  publication-title: Mater. Sci. Eng., A
– volume: 30
  start-page: 1706216
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  start-page: 15597
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 53
  start-page: 5298
  year: 2017
  publication-title: Chem. Commun.
– volume: 29
  start-page: 1703729
  year: 2017
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2631
  year: 2015
  publication-title: Small
– volume: 16
  start-page: 1225
  year: 2017
  publication-title: Nat. Mater.
– volume: 56
  start-page: 7764
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 618
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 8058
  year: 2015
  publication-title: Nat. Commun.
– volume: 1
  start-page: 16114
  year: 2016
  publication-title: Nat. Energy
– volume: 6
  start-page: 7436
  year: 2015
  publication-title: Nat. Commun.
– volume: 57
  start-page: 2482
  year: 2009
  publication-title: Acta Mater.
– volume: 9
  start-page: 2152
  year: 2018
  publication-title: Nat. Commun.
– volume: 2
  start-page: 17012
  year: 2017
  publication-title: Nat. Energy
– volume: 13
  start-page: 961
  year: 2014
  publication-title: Nat. Mater.
– volume: 240
  year: 2000
– volume: 37
  start-page: 177
  year: 2017
  publication-title: Nano Energy
– volume: 9
  start-page: 3729
  year: 2018
  publication-title: Nat. Commun.
– volume: 28
  start-page: 1853
  year: 2016
  publication-title: Adv. Mater.
– volume: 737
  start-page: 226
  year: 2015
  publication-title: J. Electroanal. Chem.
– volume: 9
  start-page: 2942
  year: 2018
  publication-title: Nat. Commun.
– volume: 114
  start-page: 12138
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 4
  start-page: eaar4410
  year: 2018
  publication-title: Sci. Adv.
– volume: 135
  start-page: 4450
  year: 2013
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_6_1
  doi: 10.1002/adfm.201707570
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.201710841
– ident: e_1_2_7_21_1
  doi: 10.1038/s41467-018-06126-z
– ident: e_1_2_7_53_1
  doi: 10.1002/advs.201500213
– ident: e_1_2_7_55_1
  doi: 10.1140/epjst/e2013-01815-2
– ident: e_1_2_7_23_1
  doi: 10.1021/acsenergylett.7b00149
– ident: e_1_2_7_26_1
  doi: 10.1038/srep30830
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201605531
– ident: e_1_2_7_60_1
  doi: 10.1038/nnano.2014.152
– ident: e_1_2_7_65_1
  doi: 10.1002/aenm.201701482
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jelechem.2014.10.014
– ident: e_1_2_7_45_1
  doi: 10.1038/s41467-018-04394-3
– ident: e_1_2_7_63_1
  doi: 10.1126/sciadv.aat3446
– ident: e_1_2_7_50_1
  doi: 10.1038/nmat4974
– ident: e_1_2_7_11_1
  doi: 10.1038/s41467-018-06077-5
– ident: e_1_2_7_32_1
  doi: 10.1038/srep45511
– ident: e_1_2_7_8_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_7_31_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.201506124
– ident: e_1_2_7_27_1
  doi: 10.1002/advs.201600445
– ident: e_1_2_7_52_1
  doi: 10.1021/ja312241y
– ident: e_1_2_7_3_1
  doi: 10.1021/acsenergylett.7b00465
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.201700389
– ident: e_1_2_7_29_1
  doi: 10.1038/s41467-018-05289-z
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.201702099
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.201706216
– ident: e_1_2_7_42_1
  doi: 10.1021/jacs.6b08730
– ident: e_1_2_7_43_1
  doi: 10.1016/j.tsf.2006.06.003
– ident: e_1_2_7_64_1
  doi: 10.1039/C7NR09058G
– ident: e_1_2_7_51_1
  doi: 10.1016/j.actamat.2009.02.006
– ident: e_1_2_7_4_1
  doi: 10.1038/ncomms7362
– ident: e_1_2_7_10_1
  doi: 10.1038/nmat4041
– ident: e_1_2_7_48_1
  doi: 10.1002/adma.201703729
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jpowsour.2015.07.027
– ident: e_1_2_7_7_1
  doi: 10.1016/j.nanoen.2017.05.015
– ident: e_1_2_7_20_1
  doi: 10.1038/ncomms9058
– ident: e_1_2_7_49_1
  doi: 10.1088/1468-6996/9/2/024208
– ident: e_1_2_7_47_1
  doi: 10.1073/pnas.1708224114
– ident: e_1_2_7_12_1
  doi: 10.1038/ncomms8436
– ident: e_1_2_7_30_1
  doi: 10.1016/j.elecom.2014.02.006
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.201606813
– ident: e_1_2_7_33_1
  doi: 10.1016/j.msea.2005.07.001
– ident: e_1_2_7_56_1
  doi: 10.1038/s41560-018-0096-1
– ident: e_1_2_7_37_1
  doi: 10.1021/cm200465u
– ident: e_1_2_7_39_1
  doi: 10.1039/C7CC00940B
– ident: e_1_2_7_2_1
  doi: 10.1016/j.jpowsour.2016.12.011
– ident: e_1_2_7_44_1
  doi: 10.1002/anie.201710806
– ident: e_1_2_7_40_1
  doi: 10.1038/s41467-018-02888-8
– ident: e_1_2_7_54_1
  doi: 10.1126/sciadv.aar4410
– ident: e_1_2_7_58_1
  doi: 10.1016/j.joule.2017.12.001
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_7_5_1
  doi: 10.1038/ncomms15106
– ident: e_1_2_7_57_1
  doi: 10.1038/nenergy.2016.114
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jpowsour.2018.09.083
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201504526
– ident: e_1_2_7_35_1
  doi: 10.1179/1743294413Y.0000000229
– ident: e_1_2_7_17_1
  doi: 10.1039/C5TA10050J
– ident: e_1_2_7_38_1
  doi: 10.1017/CBO9780511525087
– ident: e_1_2_7_18_1
  doi: 10.1039/C6TA06612G
– ident: e_1_2_7_13_1
  doi: 10.1021/jacs.8b02322
– ident: e_1_2_7_34_1
  doi: 10.1007/s11837-017-2340-8
– ident: e_1_2_7_61_1
  doi: 10.1038/nenergy.2017.12
– ident: e_1_2_7_59_1
  doi: 10.1021/acs.nanolett.6b04755
– ident: e_1_2_7_62_1
  doi: 10.1002/smll.201403568
– ident: e_1_2_7_19_1
  doi: 10.1038/ncomms10992
SSID ssj0000491033
Score 2.6407223
Snippet Lithium metal is the most attractive anode material due to its extremely high specific capacity, minimum potential, and low density. However, uncontrollable...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Alkali metals
Anodes
Cycles
dendrites
Dendritic structure
Electrode materials
Electromagnetic fields
Fluid dynamics
Lithium
Lithium ions
lithium metal
Lorentz force
magnetic field
Magnetic fields
Magnetohydrodynamics
magnetohydrodynamics effect
Mass transfer
Storage batteries
Title Magnetic Field–Suppressed Lithium Dendrite Growth for Stable Lithium‐Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201900260
https://www.proquest.com/docview/2229047325
https://www.osti.gov/biblio/1504790
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeoFDVV4ibUE-IHFABnv92j2m0KoC3AutlHKxdtfjFgkcVByBOPUnVOo_7C9h9mU7ojwvVrJZ2cnO5_HMZL5vCXkSc4iBgab9NjJMZQIhkyIPGxkLhiEwk-aP9vIg3z9KX8-z-VBVMuySTj5X36_llfyPVXEM7apZsv9g2f6kOICv0b54RAvj8a9sXIqTVpMQn-2ZjaZd30Kid-o0muC11sQ4_bD8hG6lrc8wutS1pq_dqWkuxDhT06bclL7roQTNj7S6m77D0MvU-oYBsIxBjHbtz-zrNI7r8Ua4B6Ip1Vt38h6GsR3TQzBfivbbcoDnsdtf5VgsxsUIzX_KQssXHrm8ofSIQfI1DUC-xmE9LsYHYc5ckRPGY1bHybtpPkKj4c_97P2tmqyAVksMYKSj9dKG51zffYgxcFrw6CZZo5hboHNcm70q377rS3OYNMVRYqgZ_st5uc-Ivlg9_Uo4M1mgW15JVcYJj4lYDjfIuks1gpnFzR1yA9q75PZIgPIemXsEBQZBV-eXA3YCB4zAYyew2AkQO4HFjp9ydX5hUBP0qLlPjvZ2D1_uh26vjVCljEchlZFkdc3yrJFp0whaMwyUKc9lzoqCa9aiwmQ7zaGgDDiHpohpLopIAI9rxZIHZNIuWnhIAsAMPwHIIWMyTRshmkJxXie1ylQEiZiS0C9ZpZwQvd4P5WNlJbRppZe46pd4Sp728z9bCZZfztzSFqgweNQKyEq3iqmucvaekm1vmMrdxF8qvZ09fprQbEqoMdYfrlHNdg_K_t3mb6-4RW4NN8k2mXRnS3iEMWwnHzvM_QCSfpmC
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+Field%E2%80%93Suppressed+Lithium+Dendrite+Growth+for+Stable+Lithium%E2%80%90Metal+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Shen%2C+Kang&rft.au=Wang%2C+Zeng&rft.au=Bi%2C+Xuanxuan&rft.au=Ying%2C+Yao&rft.date=2019-05-23&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=20&rft_id=info:doi/10.1002%2Faenm.201900260&rft.externalDocID=1504790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon