Cancer-Germline Antigen Expression Discriminates Clinical Outcome to CTLA-4 Blockade
CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We...
Saved in:
Published in | Cell Vol. 173; no. 3; pp. 624 - 633.e8 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
19.04.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0092-8674 1097-4172 1097-4172 |
DOI | 10.1016/j.cell.2018.03.026 |
Cover
Abstract | CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has previously been shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro. We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors.
[Display omitted]
•Increased expression of a MAGE-A subcluster predicts resistance to CTLA-4 blockade•This MAGE-A subcluster marks a distinct, epigenetically defined subset of melanomas•This gene signature is specific to resistance to CTLA-4, but not PD-1, blockade•Autophagy is implicated in clinical resistance to CTLA-4 blockade
Increased expression of a subcluster of MAGE-A cancer-germline antigens predicts resistance specific to CTLA-4, but not PD-1, blockade, and its association with autophagy suppression implicates the role of autophagy in regulating primary resistance to anti-CTLA-4 therapy in melanoma patients. |
---|---|
AbstractList | CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has previously been shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro. We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors.
[Display omitted]
•Increased expression of a MAGE-A subcluster predicts resistance to CTLA-4 blockade•This MAGE-A subcluster marks a distinct, epigenetically defined subset of melanomas•This gene signature is specific to resistance to CTLA-4, but not PD-1, blockade•Autophagy is implicated in clinical resistance to CTLA-4 blockade
Increased expression of a subcluster of MAGE-A cancer-germline antigens predicts resistance specific to CTLA-4, but not PD-1, blockade, and its association with autophagy suppression implicates the role of autophagy in regulating primary resistance to anti-CTLA-4 therapy in melanoma patients. CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has previously been shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro. We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors.CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has previously been shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro. We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors. CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has previously been shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro. We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors. CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has been previously shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro . We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors. Increased expression of a subcluster of MAGE-A cancer-germline antigens predicts resistance specific to CTLA4, but not PD1, blockade, and its association with autophagy suppression implicates the role autophagy in regulating primary resistance to anti-CTLA4 therapy in melanoma patients CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has previously been shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro. We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors. |
Author | Cartun, Zachary J. Neuberg, Donna Mohammad, Arman Gnirke, Andreas Meissner, Alexander Hodi, F. Stephen Zhan, Qian Keskin, Derin B. Bachireddy, Pavan Murphy, George F. Gusenleitner, Daniel Galonska, Christina Bango, Clyde Lee, Patrick C. Huang, Ying Shukla, Sachet A. Schadendorf, Dirk Langer, Rupert Weber, Jeffrey S. Van Allen, Eliezer M. Hacohen, Nir Miao, Diana Snyder, Alexandra Schilling, Bastian Merghoub, Taha Wu, Catherine J. Wolchok, Jedd D. Babadi, Mehrtash Lian, Christine G. Garraway, Levi A. Potts, Patrick R. Clement, Kendell |
AuthorAffiliation | 14 Department of Pathology, University of Bern, 3012 Bern, Switzerland 5 Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany 1 Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA 8 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA 10 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA 11 New York University Langone Medical Center, New York, NY 10016, USA 12 Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA 9 Weill Cornell Medical College, New York, NY, USA 2 Broad Institute, Cambridge, MA 02142, USA 4 Department of Dermatology, University Hospital, University Duisburg—Essen, 45147 Essen, Germany and German Cancer Consortium (DKTK), 69121 Heidelberg, Germany 3 Department of Medicine, Brigham & Women’s Hospital, Boston, MA 02115, USA 6 |
AuthorAffiliation_xml | – name: 3 Department of Medicine, Brigham & Women’s Hospital, Boston, MA 02115, USA – name: 13 Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA – name: 11 New York University Langone Medical Center, New York, NY 10016, USA – name: 6 Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany – name: 14 Department of Pathology, University of Bern, 3012 Bern, Switzerland – name: 12 Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA – name: 1 Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – name: 9 Weill Cornell Medical College, New York, NY, USA – name: 7 Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA – name: 2 Broad Institute, Cambridge, MA 02142, USA – name: 4 Department of Dermatology, University Hospital, University Duisburg—Essen, 45147 Essen, Germany and German Cancer Consortium (DKTK), 69121 Heidelberg, Germany – name: 10 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA – name: 5 Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany – name: 8 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA |
Author_xml | – sequence: 1 givenname: Sachet A. surname: Shukla fullname: Shukla, Sachet A. organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – sequence: 2 givenname: Pavan surname: Bachireddy fullname: Bachireddy, Pavan organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – sequence: 3 givenname: Bastian surname: Schilling fullname: Schilling, Bastian organization: Department of Dermatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany – sequence: 4 givenname: Christina surname: Galonska fullname: Galonska, Christina organization: Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany – sequence: 5 givenname: Qian surname: Zhan fullname: Zhan, Qian organization: Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA – sequence: 6 givenname: Clyde surname: Bango fullname: Bango, Clyde organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – sequence: 7 givenname: Rupert surname: Langer fullname: Langer, Rupert organization: Department of Pathology, University of Bern, 3012 Bern, Switzerland – sequence: 8 givenname: Patrick C. surname: Lee fullname: Lee, Patrick C. organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – sequence: 9 givenname: Daniel surname: Gusenleitner fullname: Gusenleitner, Daniel organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – sequence: 10 givenname: Derin B. surname: Keskin fullname: Keskin, Derin B. organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – sequence: 11 givenname: Mehrtash surname: Babadi fullname: Babadi, Mehrtash organization: Broad Institute, Cambridge, MA 02142, USA – sequence: 12 givenname: Arman surname: Mohammad fullname: Mohammad, Arman organization: Broad Institute, Cambridge, MA 02142, USA – sequence: 13 givenname: Andreas surname: Gnirke fullname: Gnirke, Andreas organization: Broad Institute, Cambridge, MA 02142, USA – sequence: 14 givenname: Kendell surname: Clement fullname: Clement, Kendell organization: Broad Institute, Cambridge, MA 02142, USA – sequence: 15 givenname: Zachary J. surname: Cartun fullname: Cartun, Zachary J. organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – sequence: 16 givenname: Eliezer M. surname: Van Allen fullname: Van Allen, Eliezer M. organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – sequence: 17 givenname: Diana surname: Miao fullname: Miao, Diana organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – sequence: 18 givenname: Ying surname: Huang fullname: Huang, Ying organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – sequence: 19 givenname: Alexandra surname: Snyder fullname: Snyder, Alexandra organization: Weill Cornell Medical College, New York, NY, USA – sequence: 20 givenname: Taha surname: Merghoub fullname: Merghoub, Taha organization: Weill Cornell Medical College, New York, NY, USA – sequence: 21 givenname: Jedd D. surname: Wolchok fullname: Wolchok, Jedd D. organization: Weill Cornell Medical College, New York, NY, USA – sequence: 22 givenname: Levi A. surname: Garraway fullname: Garraway, Levi A. organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – sequence: 23 givenname: Alexander surname: Meissner fullname: Meissner, Alexander organization: Broad Institute, Cambridge, MA 02142, USA – sequence: 24 givenname: Jeffrey S. surname: Weber fullname: Weber, Jeffrey S. organization: New York University Langone Medical Center, New York, NY 10016, USA – sequence: 25 givenname: Nir surname: Hacohen fullname: Hacohen, Nir organization: Broad Institute, Cambridge, MA 02142, USA – sequence: 26 givenname: Donna surname: Neuberg fullname: Neuberg, Donna organization: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA – sequence: 27 givenname: Patrick R. surname: Potts fullname: Potts, Patrick R. organization: Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA – sequence: 28 givenname: George F. surname: Murphy fullname: Murphy, George F. organization: Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA – sequence: 29 givenname: Christine G. surname: Lian fullname: Lian, Christine G. organization: Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA – sequence: 30 givenname: Dirk surname: Schadendorf fullname: Schadendorf, Dirk organization: Department of Dermatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany – sequence: 31 givenname: F. Stephen surname: Hodi fullname: Hodi, F. Stephen organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – sequence: 32 givenname: Catherine J. surname: Wu fullname: Wu, Catherine J. email: cwu@partners.org organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29656892$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS1URLeFP8AB5cglYezYiS0hpCWUgrRSL8vZcpxJ8ZLYi52t4N_j1ZYKOJSTpfH3nt7MuyBnPngk5CWFigJt3uwqi9NUMaCygroC1jwhKwqqLTlt2RlZAShWyqbl5-QipR0ASCHEM3LOVCMaqdiKbDvjLcbyGuM8OY_F2i_uFn1x9WMfMSUXfPHBJRvd7LxZMBVdxpw1U3FzWGyYsVhC0W0365IX76dgv5kBn5Ono5kSvrh_L8mXj1fb7lO5ubn-3K03peVSLuU4CsZ7M0JtamUMKAEoBRjeg6TDqIAOXPQ9pWis6tUw1mMrWt7iYEekCutL8u7kuz_0c56iX6KZ9D6HNfGnDsbpv3-8-6pvw51ugHMmIRu8vjeI4fsB06LnvGs-qvEYDkkzJhspFW_Z_1FgolVKiCP66s9YD3l-Xz0D7ATYGFKKOD4gFPSxWr3TR2t9rFZDrXO1WST_EVm3mCUXlFdz0-PStycp5jLuHEadrMPc--Ai2kUPwT0m_wWLHb_N |
CitedBy_id | crossref_primary_10_1002_ctm2_1735 crossref_primary_10_1038_s41467_020_18546_x crossref_primary_10_1038_s41416_021_01674_6 crossref_primary_10_1158_2326_6066_CIR_18_0198 crossref_primary_10_1158_1078_0432_CCR_20_3463 crossref_primary_10_3390_biomedicines11041130 crossref_primary_10_3389_fmed_2022_959348 crossref_primary_10_1002_onco_13575 crossref_primary_10_3389_fonc_2019_01040 crossref_primary_10_1093_nar_gkaa407 crossref_primary_10_3389_fonc_2024_1464125 crossref_primary_10_1186_s12967_024_05565_1 crossref_primary_10_33218_prnano1_2__180724_2 crossref_primary_10_1016_j_intimp_2025_114381 crossref_primary_10_1186_s40364_020_00209_0 crossref_primary_10_3389_fonc_2020_603661 crossref_primary_10_1038_s41435_021_00138_4 crossref_primary_10_1016_j_drup_2021_100752 crossref_primary_10_1016_j_omton_2024_200768 crossref_primary_10_3390_cells11192996 crossref_primary_10_1038_s41416_020_01039_5 crossref_primary_10_1186_s12943_019_0944_z crossref_primary_10_3390_cancers13174297 crossref_primary_10_3389_fgene_2022_843579 crossref_primary_10_3390_jcm9010286 crossref_primary_10_1007_s40257_020_00509_z crossref_primary_10_1016_j_bbcan_2023_189012 crossref_primary_10_1039_D3TB02471G crossref_primary_10_1016_j_ctarc_2021_100489 crossref_primary_10_1007_s11864_023_01053_8 crossref_primary_10_2147_CMAR_S272031 crossref_primary_10_1016_j_heliyon_2024_e35940 crossref_primary_10_1016_j_csbj_2023_04_002 crossref_primary_10_1016_j_heliyon_2023_e13599 crossref_primary_10_1053_j_seminhematol_2024_10_007 crossref_primary_10_1016_j_it_2020_06_002 crossref_primary_10_1038_s41418_019_0290_0 crossref_primary_10_1126_scitranslmed_aat7807 crossref_primary_10_18632_oncotarget_27488 crossref_primary_10_1038_s41467_022_29442_x crossref_primary_10_1080_15548627_2024_2330261 crossref_primary_10_1111_pcmr_12847 crossref_primary_10_1096_fba_2023_00009 crossref_primary_10_31988_SciTrends_29289 crossref_primary_10_1186_s12943_023_01749_3 crossref_primary_10_1038_s41698_024_00570_5 crossref_primary_10_1080_0284186X_2018_1555375 crossref_primary_10_3390_ijms23105384 crossref_primary_10_1038_s41568_019_0116_x crossref_primary_10_1016_S0151_9638_18_31288_2 crossref_primary_10_3892_etm_2022_11127 crossref_primary_10_1016_j_csbj_2024_06_035 crossref_primary_10_1038_s41598_024_74636_6 crossref_primary_10_1186_s13046_024_03042_7 crossref_primary_10_3390_cancers14225506 crossref_primary_10_1016_j_isci_2024_111590 crossref_primary_10_1007_s13402_024_01027_4 crossref_primary_10_1016_j_canlet_2024_216856 crossref_primary_10_3389_fimmu_2020_00057 crossref_primary_10_1016_j_csbj_2023_12_001 crossref_primary_10_1158_1078_0432_CCR_20_3559 crossref_primary_10_1016_j_ccell_2020_07_013 crossref_primary_10_1038_s41392_022_01046_3 crossref_primary_10_3390_cancers15164094 crossref_primary_10_1016_j_jare_2023_01_011 crossref_primary_10_1016_j_fsi_2020_11_002 crossref_primary_10_12944_CRNFSJ_12_3_32 crossref_primary_10_1016_j_envres_2023_116895 crossref_primary_10_1038_s41418_020_0495_2 crossref_primary_10_1038_s41568_019_0125_9 crossref_primary_10_1002_advs_202406624 crossref_primary_10_1074_jbc_REV120_008029 crossref_primary_10_1016_j_adcanc_2022_100086 crossref_primary_10_3390_cells12060926 crossref_primary_10_3389_fonc_2021_784925 crossref_primary_10_3390_ijms24010041 crossref_primary_10_1007_s00726_023_03364_4 crossref_primary_10_1016_j_it_2022_03_006 crossref_primary_10_3389_fonc_2021_695006 crossref_primary_10_1002_biof_2142 crossref_primary_10_1186_s41021_020_00162_2 crossref_primary_10_1016_j_canlet_2022_215868 crossref_primary_10_2174_0115680096273730231206054104 crossref_primary_10_1002_advs_202401061 crossref_primary_10_4252_wjsc_v12_i5_303 crossref_primary_10_1038_s41591_019_0434_2 crossref_primary_10_1073_pnas_1904498116 crossref_primary_10_1186_s12943_025_02277_y crossref_primary_10_1007_s11427_020_1768_y crossref_primary_10_3390_ijms26062448 crossref_primary_10_1038_s43856_022_00114_7 crossref_primary_10_1136_jitc_2023_007935 crossref_primary_10_1200_JCO_19_03296 crossref_primary_10_1186_s13073_022_01050_w crossref_primary_10_15252_embr_201847352 crossref_primary_10_7554_eLife_48963 crossref_primary_10_1038_s41467_020_17395_y crossref_primary_10_1002_cac2_12203 crossref_primary_10_1016_j_scib_2024_01_025 crossref_primary_10_1186_s12885_020_6624_y crossref_primary_10_3390_metabo12100966 crossref_primary_10_1136_esmoopen_2018_000475 crossref_primary_10_1038_s41591_019_0382_x crossref_primary_10_3389_fonc_2020_606436 crossref_primary_10_1016_j_omtn_2021_03_023 crossref_primary_10_1016_S0140_6736_20_32598_8 crossref_primary_10_3390_cancers13164110 crossref_primary_10_1016_j_ceb_2020_01_005 crossref_primary_10_3390_cancers13071639 crossref_primary_10_1007_s12032_021_01621_8 crossref_primary_10_1159_000502933 crossref_primary_10_1021_acs_nanolett_1c01210 crossref_primary_10_1186_s13045_018_0684_3 crossref_primary_10_1186_s12943_020_01260_z crossref_primary_10_1016_j_celrep_2018_09_082 crossref_primary_10_1016_j_ebiom_2019_01_064 crossref_primary_10_1097_CJI_0000000000000538 crossref_primary_10_1158_1078_0432_CCR_21_0575 crossref_primary_10_1038_s41598_024_58003_z crossref_primary_10_1158_1078_0432_CCR_18_1013 crossref_primary_10_3389_fimmu_2022_1018334 |
Cites_doi | 10.1038/nrc1669 10.1128/MCB.00740-14 10.1056/NEJMoa1604958 10.1016/j.cell.2015.01.034 10.1016/j.cell.2016.02.065 10.1016/j.ccell.2016.05.016 10.1016/S1470-2045(16)00099-1 10.1007/s00403-004-0527-7 10.1093/nar/gkv1194 10.1038/ng.3677 10.1016/j.cell.2014.03.044 10.1038/icb.2014.81 10.1083/jcb.200911078 10.1186/1471-2105-12-323 10.1172/JCI39104 10.1056/NEJMoa1003466 10.1016/j.cell.2016.08.069 10.4081/ejh.2015.2481 10.1126/science.1840703 10.1038/nature04444 10.1034/j.1600-065X.2002.18806.x 10.1016/j.gene.2008.02.019 10.1126/science.aad0095 10.1200/JCO.2011.37.8539 10.1186/s13059-015-0620-6 10.1073/pnas.1016791108 10.1016/j.molcel.2010.08.029 10.1126/science.1208347 10.1007/BF01246677 10.1016/j.cell.2015.05.044 10.18632/oncotarget.9649 10.1016/j.ccell.2016.06.005 10.1038/ncomms10715 10.1158/1078-0432.CCR-05-1544 10.1016/j.jmb.2017.03.005 10.1093/annonc/mdw291 10.1126/scitranslmed.aad5659 10.1093/bioinformatics/bts635 10.1016/j.cell.2015.08.052 10.1182/blood-2012-01-402404 10.1093/bioinformatics/btu638 10.1073/pnas.1110814108 10.1038/nm1622 10.1038/nbt.2203 10.1038/nrc3670 10.1016/S1470-2045(16)30126-7 10.1056/NEJMoa1406498 10.1056/NEJMoa1302369 10.1038/nm.2028 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2018.03.026 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 633.e8 |
ExternalDocumentID | PMC6044280 29656892 10_1016_j_cell_2018_03_026 S0092867418303064 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA155010 – fundername: NIDA NIH HHS grantid: R01 DA036898 – fundername: NCI NIH HHS grantid: P30 CA006516 – fundername: Howard Hughes Medical Institute – fundername: NCI NIH HHS grantid: R50 CA211482 – fundername: NHLBI NIH HHS grantid: R01 HL103532 – fundername: NCI NIH HHS grantid: P30 CA008748 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c488t-ff524baf03a39aa0950e850a4b081df901d45bb11eac9b9df3f75747edcfe19e3 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 13:37:16 EDT 2025 Fri Sep 05 14:15:22 EDT 2025 Fri Sep 05 11:49:02 EDT 2025 Thu Apr 03 07:02:27 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Tue Jul 01 02:17:00 EDT 2025 Fri Feb 23 02:45:29 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | immunogenomics checkpoint blockade cancer-germline antigen autophagy ipilimumab immunotherapy melanoma CTLA-4 MAGE-A PD-1 |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c488t-ff524baf03a39aa0950e850a4b081df901d45bb11eac9b9df3f75747edcfe19e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867418303064 |
PMID | 29656892 |
PQID | 2025799552 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6044280 proquest_miscellaneous_2286889472 proquest_miscellaneous_2025799552 pubmed_primary_29656892 crossref_primary_10_1016_j_cell_2018_03_026 crossref_citationtrail_10_1016_j_cell_2018_03_026 elsevier_sciencedirect_doi_10_1016_j_cell_2018_03_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-19 |
PublicationDateYYYYMMDD | 2018-04-19 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ghiringhelli, Apetoh, Tesniere, Aymeric, Ma, Ortiz, Vermaelen, Panaretakis, Mignot, Ullrich (bib18) 2009; 15 Kalluri, Weinberg (bib22) 2009; 119 Pedicord, Montalvo, Leiner, Allison (bib29) 2011; 108 Van Der Bruggen, Zhang, Chaux, Stroobant, Panichelli, Schultz, Chapiro, Van Den Eynde, Brasseur, Boon (bib43) 2002; 188 Di Biase, Lee, Brandhorst, Manes, Buono, Cheng, Cacciottolo, Martin-Montalvo, de Cabo, Wei (bib14) 2016; 30 Bronietzki, Schuster, Schmitz (bib9) 2015; 93 Barrow, Browning, MacGregor, Davis, Sturrock, Jungbluth, Cebon (bib7) 2006; 12 Carter, Cibulskis, Helman, McKenna, Shen, Zack, Laird, Onofrio, Winckler, Weir (bib11) 2012; 30 Vansteenkiste, Cho, Vanakesa, De Pas, Zielinski, Kim, Jassem, Yoshimura, Dahabreh, Nakayama (bib44) 2016; 17 Palucka, Banchereau (bib28) 2014; 157 Schläfli, Berezowska, Adams, Langer, Tschan (bib36) 2015; 59 Apetoh, Ghiringhelli, Tesniere, Obeid, Ortiz, Criollo, Mignot, Maiuri, Ullrich, Saulnier (bib4) 2007; 13 Azimi, Scolyer, Rumcheva, Moncrieff, Murali, McCarthy, Saw, Thompson (bib5) 2012; 30 Tang, Kang, Livesey, Cheh, Farkas, Loughran, Hoppe, Bianchi, Tracey, Zeh, Lotze (bib39) 2010; 190 (bib10) 2015; 161 Li, Dewey (bib25) 2011; 12 Roeder, Schuler-Thurner, Berchtold, Vieth, Driesch, Schuler, Lüftl (bib34) 2005; 296 Doyle, Gao, Wang, Yang, Potts (bib16) 2010; 39 Gumireddy, Li, Kossenkov, Sakurai, Yan, Li, Xu, Wang, Zhang, Zhang (bib19) 2016; 7 Pineda, Ramanathan, Fon Tacer, Weon, Potts, Ou, White, Potts (bib31) 2015; 160 Saiag, Gutzmer, Ascierto, Maio, Grob, Murawa, Dreno, Ross, Weber, Hauschild (bib35) 2016; 27 Van Allen, Miao, Schilling, Shukla, Blank, Zimmer, Sucker, Hillen, Foppen, Goldinger (bib41) 2015; 350 Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib15) 2013; 29 Angelova, Charoentong, Hackl, Fischer, Snajder, Krogsdam, Waldner, Bindea, Mlecnik, Galon, Trajanoski (bib3) 2015; 16 Lee, Potts (bib24) 2017; 429 Hugo, Zaretsky, Sun, Song, Moreno, Hu-Lieskovan, Berent-Maoz, Pang, Chmielowski, Cherry (bib21) 2016; 165 Wolchok, Kluger, Callahan, Postow, Rizvi, Lesokhin, Segal, Ariyan, Gordon, Reed (bib47) 2013; 369 Zaretsky, Garcia-Diaz, Shin, Escuin-Ordinas, Hugo, Hu-Lieskovan, Torrejon, Abril-Rodriguez, Sandoval, Barthly (bib49) 2016; 375 Weber, Gibney, Sullivan, Sosman, Slingluff, Lawrence, Logan, Schuchter, Nair, Fecher (bib45) 2016; 17 Anders, Pyl, Huber (bib2) 2015; 31 Riaz, Havel, Kendall, Makarov, Walsh, Desrichard, Weinhold, Chan (bib33) 2016; 48 Mi, Poudel, Muruganujan, Casagrande, Thomas (bib26) 2016; 44 Kleffel, Posch, Barthel, Mueller, Schlapbach, Guenova, Elco, Lee, Juneja, Zhan (bib23) 2015; 162 Bredenbeck, Hollstein, Trefzer, Sterry, Walden, Losch (bib8) 2008; 415 van der Bruggen, Traversari, Chomez, Lurquin, De Plaen, Van den Eynde, Knuth, Boon (bib42) 1991; 254 Coulie, Van den Eynde, van der Bruggen, Boon (bib12) 2014; 14 Tey, Khanna (bib40) 2012; 120 Snyder, Makarov, Merghoub, Yuan, Zaretsky, Desrichard, Walsh, Postow, Wong, Ho (bib38) 2014; 371 Gao, Shi, Zhao, Chen, Xiong, He, Chen, Roszik, Bernatchez, Woodman (bib17) 2016; 167 Pu, Xu, Liang, Yang, Guo, Yang, Fu (bib32) 2016; 8 Adams, Dislich, Berezowska, Schläfli, Seiler, Kröll, Tschan, Langer (bib1) 2016; 7 De Plaen, Arden, Traversari, Gaforio, Szikora, De Smet, Brasseur, van der Bruggen, Lethé, Lurquin (bib13) 1994; 40 Michaud, Martins, Sukkurwala, Adjemian, Ma, Pellegatti, Shen, Kepp, Scoazec, Mignot (bib27) 2011; 334 Simpson, Caballero, Jungbluth, Chen, Old (bib37) 2005; 5 Barber, Wherry, Masopust, Zhu, Allison, Sharpe, Freeman, Ahmed (bib6) 2006; 439 Pietrocola, Pol, Vacchelli, Rao, Enot, Baracco, Levesque, Castoldi, Jacquelot, Yamazaki (bib30) 2016; 30 Weerasekara, Panek, Broadbent, Mortenson, Mathis, Logan, Prince, Thomson, Thompson, Andersen (bib46) 2014; 34 Yuan, Adamow, Ginsberg, Rasalan, Ritter, Gallardo, Xu, Pogoriler, Terzulli, Kuk (bib48) 2011; 108 Hodi, O’Day, McDermott, Weber, Sosman, Haanen, Gonzalez, Robert, Schadendorf, Hassel (bib20) 2010; 363 Lee (10.1016/j.cell.2018.03.026_bib24) 2017; 429 Snyder (10.1016/j.cell.2018.03.026_bib38) 2014; 371 Simpson (10.1016/j.cell.2018.03.026_bib37) 2005; 5 Pedicord (10.1016/j.cell.2018.03.026_bib29) 2011; 108 Vansteenkiste (10.1016/j.cell.2018.03.026_bib44) 2016; 17 Palucka (10.1016/j.cell.2018.03.026_bib28) 2014; 157 Anders (10.1016/j.cell.2018.03.026_bib2) 2015; 31 Coulie (10.1016/j.cell.2018.03.026_bib12) 2014; 14 Angelova (10.1016/j.cell.2018.03.026_bib3) 2015; 16 Gumireddy (10.1016/j.cell.2018.03.026_bib19) 2016; 7 Di Biase (10.1016/j.cell.2018.03.026_bib14) 2016; 30 Pietrocola (10.1016/j.cell.2018.03.026_bib30) 2016; 30 Van Allen (10.1016/j.cell.2018.03.026_bib41) 2015; 350 Doyle (10.1016/j.cell.2018.03.026_bib16) 2010; 39 Gao (10.1016/j.cell.2018.03.026_bib17) 2016; 167 Kalluri (10.1016/j.cell.2018.03.026_bib22) 2009; 119 Bredenbeck (10.1016/j.cell.2018.03.026_bib8) 2008; 415 De Plaen (10.1016/j.cell.2018.03.026_bib13) 1994; 40 Dobin (10.1016/j.cell.2018.03.026_bib15) 2013; 29 Tang (10.1016/j.cell.2018.03.026_bib39) 2010; 190 Zaretsky (10.1016/j.cell.2018.03.026_bib49) 2016; 375 Mi (10.1016/j.cell.2018.03.026_bib26) 2016; 44 Schläfli (10.1016/j.cell.2018.03.026_bib36) 2015; 59 Carter (10.1016/j.cell.2018.03.026_bib11) 2012; 30 Apetoh (10.1016/j.cell.2018.03.026_bib4) 2007; 13 Adams (10.1016/j.cell.2018.03.026_bib1) 2016; 7 Azimi (10.1016/j.cell.2018.03.026_bib5) 2012; 30 Wolchok (10.1016/j.cell.2018.03.026_bib47) 2013; 369 Michaud (10.1016/j.cell.2018.03.026_bib27) 2011; 334 Saiag (10.1016/j.cell.2018.03.026_bib35) 2016; 27 Ghiringhelli (10.1016/j.cell.2018.03.026_bib18) 2009; 15 Pu (10.1016/j.cell.2018.03.026_bib32) 2016; 8 Yuan (10.1016/j.cell.2018.03.026_bib48) 2011; 108 Hugo (10.1016/j.cell.2018.03.026_bib21) 2016; 165 Roeder (10.1016/j.cell.2018.03.026_bib34) 2005; 296 Barber (10.1016/j.cell.2018.03.026_bib6) 2006; 439 Van Der Bruggen (10.1016/j.cell.2018.03.026_bib43) 2002; 188 Kleffel (10.1016/j.cell.2018.03.026_bib23) 2015; 162 Weber (10.1016/j.cell.2018.03.026_bib45) 2016; 17 Li (10.1016/j.cell.2018.03.026_bib25) 2011; 12 Tey (10.1016/j.cell.2018.03.026_bib40) 2012; 120 Barrow (10.1016/j.cell.2018.03.026_bib7) 2006; 12 Bronietzki (10.1016/j.cell.2018.03.026_bib9) 2015; 93 Hodi (10.1016/j.cell.2018.03.026_bib20) 2010; 363 (10.1016/j.cell.2018.03.026_bib10) 2015; 161 Weerasekara (10.1016/j.cell.2018.03.026_bib46) 2014; 34 Riaz (10.1016/j.cell.2018.03.026_bib33) 2016; 48 Pineda (10.1016/j.cell.2018.03.026_bib31) 2015; 160 van der Bruggen (10.1016/j.cell.2018.03.026_bib42) 1991; 254 |
References_xml | – volume: 14 start-page: 135 year: 2014 end-page: 146 ident: bib12 article-title: Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy publication-title: Nat. Rev. Cancer – volume: 165 start-page: 35 year: 2016 end-page: 44 ident: bib21 article-title: Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma publication-title: Cell – volume: 17 start-page: 943 year: 2016 end-page: 955 ident: bib45 article-title: Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial publication-title: Lancet Oncol. – volume: 363 start-page: 711 year: 2010 end-page: 723 ident: bib20 article-title: Improved survival with ipilimumab in patients with metastatic melanoma publication-title: N. Engl. J. Med. – volume: 39 start-page: 963 year: 2010 end-page: 974 ident: bib16 article-title: MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases publication-title: Mol. Cell – volume: 8 start-page: 333ra47 year: 2016 ident: bib32 article-title: Androgen receptor antagonists compromise T cell response against prostate cancer leading to early tumor relapse publication-title: Sci. Transl. Med. – volume: 44 start-page: D336 year: 2016 end-page: D342 ident: bib26 article-title: PANTHER version 10: expanded protein families and functions, and analysis tools publication-title: Nucleic Acids Res. – volume: 254 start-page: 1643 year: 1991 end-page: 1647 ident: bib42 article-title: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma publication-title: Science – volume: 93 start-page: 25 year: 2015 end-page: 34 ident: bib9 article-title: Autophagy in T-cell development, activation and differentiation publication-title: Immunol. Cell Biol. – volume: 40 start-page: 360 year: 1994 end-page: 369 ident: bib13 article-title: Structure, chromosomal localization, and expression of 12 genes of the MAGE family publication-title: Immunogenetics – volume: 415 start-page: 68 year: 2008 end-page: 73 ident: bib8 article-title: Coordinated expression of clustered cancer/testis genes encoded in a large inverted repeat DNA structure publication-title: Gene – volume: 119 start-page: 1420 year: 2009 end-page: 1428 ident: bib22 article-title: The basics of epithelial-mesenchymal transition publication-title: J. Clin. Invest. – volume: 27 start-page: 1947 year: 2016 end-page: 1953 ident: bib35 article-title: Prospective assessment of a gene signature potentially predictive of clinical benefit in metastatic melanoma patients following MAGE-A3 immunotherapeutic (PREDICT) publication-title: Ann. Oncol. – volume: 188 start-page: 51 year: 2002 end-page: 64 ident: bib43 article-title: Tumor-specific shared antigenic peptides recognized by human T cells publication-title: Immunol. Rev. – volume: 30 start-page: 2678 year: 2012 end-page: 2683 ident: bib5 article-title: Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma publication-title: J. Clin. Oncol. – volume: 13 start-page: 1050 year: 2007 end-page: 1059 ident: bib4 article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy publication-title: Nat. Med. – volume: 12 start-page: 764 year: 2006 end-page: 771 ident: bib7 article-title: Tumor antigen expression in melanoma varies according to antigen and stage publication-title: Clin. Cancer Res. – volume: 16 start-page: 64 year: 2015 ident: bib3 article-title: Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy publication-title: Genome Biol. – volume: 375 start-page: 819 year: 2016 end-page: 829 ident: bib49 article-title: Mutations associated with acquired resistance to PD-1 blockade in melanoma publication-title: N. Engl. J. Med. – volume: 296 start-page: 314 year: 2005 end-page: 319 ident: bib34 article-title: MAGE-A3 is a frequent tumor antigen of metastasized melanoma publication-title: Arch. Dermatol. Res. – volume: 7 start-page: 10715 year: 2016 ident: bib19 article-title: The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis publication-title: Nat. Commun. – volume: 5 start-page: 615 year: 2005 end-page: 625 ident: bib37 article-title: Cancer/testis antigens, gametogenesis and cancer publication-title: Nat. Rev. Cancer – volume: 17 start-page: 822 year: 2016 end-page: 835 ident: bib44 article-title: Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial publication-title: Lancet Oncol. – volume: 108 start-page: 16723 year: 2011 end-page: 16728 ident: bib48 article-title: Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab publication-title: Proc. Natl. Acad. Sci. USA – volume: 161 start-page: 1681 year: 2015 end-page: 1696 ident: bib10 article-title: Genomic classification of cutaneous melanoma publication-title: Cell – volume: 30 start-page: 413 year: 2012 end-page: 421 ident: bib11 article-title: Absolute quantification of somatic DNA alterations in human cancer publication-title: Nat. Biotechnol. – volume: 167 start-page: 397 year: 2016 end-page: 404 ident: bib17 article-title: Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy publication-title: Cell – volume: 334 start-page: 1573 year: 2011 end-page: 1577 ident: bib27 article-title: Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice publication-title: Science – volume: 190 start-page: 881 year: 2010 end-page: 892 ident: bib39 article-title: Endogenous HMGB1 regulates autophagy publication-title: J. Cell Biol. – volume: 15 start-page: 1170 year: 2009 end-page: 1178 ident: bib18 article-title: Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors publication-title: Nat. Med. – volume: 120 start-page: 994 year: 2012 end-page: 1004 ident: bib40 article-title: Autophagy mediates transporter associated with antigen processing-independent presentation of viral epitopes through MHC class I pathway publication-title: Blood – volume: 7 start-page: 39241 year: 2016 end-page: 39255 ident: bib1 article-title: Prognostic relevance of autophagy markers LC3B and p62 in esophageal adenocarcinomas publication-title: Oncotarget – volume: 108 start-page: 266 year: 2011 end-page: 271 ident: bib29 article-title: Single dose of anti-CTLA-4 enhances CD8+ T-cell memory formation, function, and maintenance publication-title: Proc. Natl. Acad. Sci. USA – volume: 48 start-page: 1327 year: 2016 end-page: 1329 ident: bib33 article-title: Recurrent SERPINB3 and SERPINB4 mutations in patients who respond to anti-CTLA4 immunotherapy publication-title: Nat. Genet. – volume: 439 start-page: 682 year: 2006 end-page: 687 ident: bib6 article-title: Restoring function in exhausted CD8 T cells during chronic viral infection publication-title: Nature – volume: 30 start-page: 136 year: 2016 end-page: 146 ident: bib14 article-title: Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity publication-title: Cancer Cell – volume: 59 start-page: 2481 year: 2015 ident: bib36 article-title: Reliable LC3 and p62 autophagy marker detection in formalin fixed paraffin embedded human tissue by immunohistochemistry publication-title: Eur. J. Histochem. – volume: 31 start-page: 166 year: 2015 end-page: 169 ident: bib2 article-title: HTSeq--a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics – volume: 162 start-page: 1242 year: 2015 end-page: 1256 ident: bib23 article-title: Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth publication-title: Cell – volume: 429 start-page: 1114 year: 2017 end-page: 1142 ident: bib24 article-title: A comprehensive guide to the MAGE family of ubiquitin ligases publication-title: J. Mol. Biol. – volume: 369 start-page: 122 year: 2013 end-page: 133 ident: bib47 article-title: Nivolumab plus ipilimumab in advanced melanoma publication-title: N. Engl. J. Med. – volume: 34 start-page: 4379 year: 2014 end-page: 4388 ident: bib46 article-title: Metabolic-stress-induced rearrangement of the 14-3-3ζ interactome promotes autophagy via a ULK1- and AMPK-regulated 14-3-3ζ interaction with phosphorylated Atg9 publication-title: Mol. Cell. Biol. – volume: 157 start-page: 516 year: 2014 end-page: 516.e1 ident: bib28 article-title: SnapShot: cancer vaccines publication-title: Cell – volume: 371 start-page: 2189 year: 2014 end-page: 2199 ident: bib38 article-title: Genetic basis for clinical response to CTLA-4 blockade in melanoma publication-title: N. Engl. J. Med. – volume: 12 start-page: 323 year: 2011 ident: bib25 article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinformatics – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: bib15 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics – volume: 160 start-page: 715 year: 2015 end-page: 728 ident: bib31 article-title: Degradation of AMPK by a cancer-specific ubiquitin ligase publication-title: Cell – volume: 350 start-page: 207 year: 2015 end-page: 211 ident: bib41 article-title: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma publication-title: Science – volume: 30 start-page: 147 year: 2016 end-page: 160 ident: bib30 article-title: Caloric restriction mimetics enhance anticancer immunosurveillance publication-title: Cancer Cell – volume: 5 start-page: 615 year: 2005 ident: 10.1016/j.cell.2018.03.026_bib37 article-title: Cancer/testis antigens, gametogenesis and cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1669 – volume: 34 start-page: 4379 year: 2014 ident: 10.1016/j.cell.2018.03.026_bib46 article-title: Metabolic-stress-induced rearrangement of the 14-3-3ζ interactome promotes autophagy via a ULK1- and AMPK-regulated 14-3-3ζ interaction with phosphorylated Atg9 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00740-14 – volume: 375 start-page: 819 year: 2016 ident: 10.1016/j.cell.2018.03.026_bib49 article-title: Mutations associated with acquired resistance to PD-1 blockade in melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1604958 – volume: 160 start-page: 715 year: 2015 ident: 10.1016/j.cell.2018.03.026_bib31 article-title: Degradation of AMPK by a cancer-specific ubiquitin ligase publication-title: Cell doi: 10.1016/j.cell.2015.01.034 – volume: 165 start-page: 35 year: 2016 ident: 10.1016/j.cell.2018.03.026_bib21 article-title: Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma publication-title: Cell doi: 10.1016/j.cell.2016.02.065 – volume: 30 start-page: 147 year: 2016 ident: 10.1016/j.cell.2018.03.026_bib30 article-title: Caloric restriction mimetics enhance anticancer immunosurveillance publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.05.016 – volume: 17 start-page: 822 year: 2016 ident: 10.1016/j.cell.2018.03.026_bib44 article-title: Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(16)00099-1 – volume: 296 start-page: 314 year: 2005 ident: 10.1016/j.cell.2018.03.026_bib34 article-title: MAGE-A3 is a frequent tumor antigen of metastasized melanoma publication-title: Arch. Dermatol. Res. doi: 10.1007/s00403-004-0527-7 – volume: 44 start-page: D336 issue: D1 year: 2016 ident: 10.1016/j.cell.2018.03.026_bib26 article-title: PANTHER version 10: expanded protein families and functions, and analysis tools publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1194 – volume: 48 start-page: 1327 year: 2016 ident: 10.1016/j.cell.2018.03.026_bib33 article-title: Recurrent SERPINB3 and SERPINB4 mutations in patients who respond to anti-CTLA4 immunotherapy publication-title: Nat. Genet. doi: 10.1038/ng.3677 – volume: 157 start-page: 516 year: 2014 ident: 10.1016/j.cell.2018.03.026_bib28 article-title: SnapShot: cancer vaccines publication-title: Cell doi: 10.1016/j.cell.2014.03.044 – volume: 93 start-page: 25 year: 2015 ident: 10.1016/j.cell.2018.03.026_bib9 article-title: Autophagy in T-cell development, activation and differentiation publication-title: Immunol. Cell Biol. doi: 10.1038/icb.2014.81 – volume: 190 start-page: 881 year: 2010 ident: 10.1016/j.cell.2018.03.026_bib39 article-title: Endogenous HMGB1 regulates autophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.200911078 – volume: 12 start-page: 323 year: 2011 ident: 10.1016/j.cell.2018.03.026_bib25 article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-323 – volume: 119 start-page: 1420 year: 2009 ident: 10.1016/j.cell.2018.03.026_bib22 article-title: The basics of epithelial-mesenchymal transition publication-title: J. Clin. Invest. doi: 10.1172/JCI39104 – volume: 363 start-page: 711 year: 2010 ident: 10.1016/j.cell.2018.03.026_bib20 article-title: Improved survival with ipilimumab in patients with metastatic melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1003466 – volume: 167 start-page: 397 year: 2016 ident: 10.1016/j.cell.2018.03.026_bib17 article-title: Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy publication-title: Cell doi: 10.1016/j.cell.2016.08.069 – volume: 59 start-page: 2481 year: 2015 ident: 10.1016/j.cell.2018.03.026_bib36 article-title: Reliable LC3 and p62 autophagy marker detection in formalin fixed paraffin embedded human tissue by immunohistochemistry publication-title: Eur. J. Histochem. doi: 10.4081/ejh.2015.2481 – volume: 254 start-page: 1643 year: 1991 ident: 10.1016/j.cell.2018.03.026_bib42 article-title: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma publication-title: Science doi: 10.1126/science.1840703 – volume: 439 start-page: 682 year: 2006 ident: 10.1016/j.cell.2018.03.026_bib6 article-title: Restoring function in exhausted CD8 T cells during chronic viral infection publication-title: Nature doi: 10.1038/nature04444 – volume: 188 start-page: 51 year: 2002 ident: 10.1016/j.cell.2018.03.026_bib43 article-title: Tumor-specific shared antigenic peptides recognized by human T cells publication-title: Immunol. Rev. doi: 10.1034/j.1600-065X.2002.18806.x – volume: 415 start-page: 68 year: 2008 ident: 10.1016/j.cell.2018.03.026_bib8 article-title: Coordinated expression of clustered cancer/testis genes encoded in a large inverted repeat DNA structure publication-title: Gene doi: 10.1016/j.gene.2008.02.019 – volume: 350 start-page: 207 year: 2015 ident: 10.1016/j.cell.2018.03.026_bib41 article-title: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma publication-title: Science doi: 10.1126/science.aad0095 – volume: 30 start-page: 2678 year: 2012 ident: 10.1016/j.cell.2018.03.026_bib5 article-title: Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2011.37.8539 – volume: 16 start-page: 64 year: 2015 ident: 10.1016/j.cell.2018.03.026_bib3 article-title: Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy publication-title: Genome Biol. doi: 10.1186/s13059-015-0620-6 – volume: 108 start-page: 266 year: 2011 ident: 10.1016/j.cell.2018.03.026_bib29 article-title: Single dose of anti-CTLA-4 enhances CD8+ T-cell memory formation, function, and maintenance publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1016791108 – volume: 39 start-page: 963 year: 2010 ident: 10.1016/j.cell.2018.03.026_bib16 article-title: MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.08.029 – volume: 334 start-page: 1573 year: 2011 ident: 10.1016/j.cell.2018.03.026_bib27 article-title: Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice publication-title: Science doi: 10.1126/science.1208347 – volume: 40 start-page: 360 year: 1994 ident: 10.1016/j.cell.2018.03.026_bib13 article-title: Structure, chromosomal localization, and expression of 12 genes of the MAGE family publication-title: Immunogenetics doi: 10.1007/BF01246677 – volume: 161 start-page: 1681 year: 2015 ident: 10.1016/j.cell.2018.03.026_bib10 article-title: Genomic classification of cutaneous melanoma publication-title: Cell doi: 10.1016/j.cell.2015.05.044 – volume: 7 start-page: 39241 year: 2016 ident: 10.1016/j.cell.2018.03.026_bib1 article-title: Prognostic relevance of autophagy markers LC3B and p62 in esophageal adenocarcinomas publication-title: Oncotarget doi: 10.18632/oncotarget.9649 – volume: 30 start-page: 136 year: 2016 ident: 10.1016/j.cell.2018.03.026_bib14 article-title: Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.06.005 – volume: 7 start-page: 10715 year: 2016 ident: 10.1016/j.cell.2018.03.026_bib19 article-title: The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis publication-title: Nat. Commun. doi: 10.1038/ncomms10715 – volume: 12 start-page: 764 year: 2006 ident: 10.1016/j.cell.2018.03.026_bib7 article-title: Tumor antigen expression in melanoma varies according to antigen and stage publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-05-1544 – volume: 429 start-page: 1114 year: 2017 ident: 10.1016/j.cell.2018.03.026_bib24 article-title: A comprehensive guide to the MAGE family of ubiquitin ligases publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.03.005 – volume: 27 start-page: 1947 year: 2016 ident: 10.1016/j.cell.2018.03.026_bib35 article-title: Prospective assessment of a gene signature potentially predictive of clinical benefit in metastatic melanoma patients following MAGE-A3 immunotherapeutic (PREDICT) publication-title: Ann. Oncol. doi: 10.1093/annonc/mdw291 – volume: 8 start-page: 333ra47 year: 2016 ident: 10.1016/j.cell.2018.03.026_bib32 article-title: Androgen receptor antagonists compromise T cell response against prostate cancer leading to early tumor relapse publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aad5659 – volume: 29 start-page: 15 year: 2013 ident: 10.1016/j.cell.2018.03.026_bib15 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 162 start-page: 1242 year: 2015 ident: 10.1016/j.cell.2018.03.026_bib23 article-title: Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth publication-title: Cell doi: 10.1016/j.cell.2015.08.052 – volume: 120 start-page: 994 year: 2012 ident: 10.1016/j.cell.2018.03.026_bib40 article-title: Autophagy mediates transporter associated with antigen processing-independent presentation of viral epitopes through MHC class I pathway publication-title: Blood doi: 10.1182/blood-2012-01-402404 – volume: 31 start-page: 166 year: 2015 ident: 10.1016/j.cell.2018.03.026_bib2 article-title: HTSeq--a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 108 start-page: 16723 year: 2011 ident: 10.1016/j.cell.2018.03.026_bib48 article-title: Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1110814108 – volume: 13 start-page: 1050 year: 2007 ident: 10.1016/j.cell.2018.03.026_bib4 article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy publication-title: Nat. Med. doi: 10.1038/nm1622 – volume: 30 start-page: 413 year: 2012 ident: 10.1016/j.cell.2018.03.026_bib11 article-title: Absolute quantification of somatic DNA alterations in human cancer publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2203 – volume: 14 start-page: 135 year: 2014 ident: 10.1016/j.cell.2018.03.026_bib12 article-title: Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3670 – volume: 17 start-page: 943 year: 2016 ident: 10.1016/j.cell.2018.03.026_bib45 article-title: Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(16)30126-7 – volume: 371 start-page: 2189 year: 2014 ident: 10.1016/j.cell.2018.03.026_bib38 article-title: Genetic basis for clinical response to CTLA-4 blockade in melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1406498 – volume: 369 start-page: 122 year: 2013 ident: 10.1016/j.cell.2018.03.026_bib47 article-title: Nivolumab plus ipilimumab in advanced melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1302369 – volume: 15 start-page: 1170 year: 2009 ident: 10.1016/j.cell.2018.03.026_bib18 article-title: Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors publication-title: Nat. Med. doi: 10.1038/nm.2028 |
SSID | ssj0008555 |
Score | 2.5867527 |
Snippet | CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 624 |
SubjectTerms | Animals Antibodies, Monoclonal - therapeutic use antigens Antigens, Neoplasm - genetics Antigens, Neoplasm - immunology Autophagy cancer-germline antigen Cell Line, Tumor checkpoint blockade chromosomes CTLA-4 CTLA-4 Antigen - genetics CTLA-4 Antigen - immunology DNA Methylation Epigenesis, Genetic Female gene expression Gene Expression Profiling Germ-Line Mutation Humans immunogenomics Immunotherapy ipilimumab Ipilimumab - pharmacology MAGE-A Male melanoma Melanoma - genetics Melanoma - immunology Melanoma-Specific Antigens - genetics Melanoma-Specific Antigens - immunology metastasis Mice Mice, Transgenic Neoplasms - genetics Neoplasms - immunology patients PD-1 protein content Skin Neoplasms - genetics Skin Neoplasms - immunology therapeutics ubiquitin-protein ligase |
Title | Cancer-Germline Antigen Expression Discriminates Clinical Outcome to CTLA-4 Blockade |
URI | https://dx.doi.org/10.1016/j.cell.2018.03.026 https://www.ncbi.nlm.nih.gov/pubmed/29656892 https://www.proquest.com/docview/2025799552 https://www.proquest.com/docview/2286889472 https://pubmed.ncbi.nlm.nih.gov/PMC6044280 |
Volume | 173 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIPgifjs_RgTfpNg2Sds8zvmF-PEyYW8hXRKcjm5oB_rfe7emw6nswccmV2jvkrtf07vfEXJijUhjCHSBiBgPuMaDpiy1gYwHknHMB0iwUPj-Ibl54rd90W-Qbl0Lg2mV3vdXPn3mrf3Imdfm2WQ4xBpfGWcJsq8wBL7ICYpVpVjE1z-fe-NMiKqLgYSdD9K-cKbK8cLDcUzvymZEp0iw8Hdw-g0-f-ZQfgtKV-tkzaNJ2qkeeIM0bLFJVqr-kp9bpNdFm74F1-B-EU7STlEi-ya9_PD5rwW9GKLjwIQYAJ3U04SO6OO0BJVYWo5pt3fXCTg9h7D3qo3dJk9Xl73uTeDbKAQD2J1l4JyIea5dyDSTWgOmCm0mQs1zgAPGgT0MF3keReCDZS6NYy4V8JUB7-ZsJC3bIc1iXNg9LPCO89SYgRZ5yI0zWjjtOGMwqJPURS0S1fpTA88xjq0uRqpOJntRqHOFOlchU6DzFjmd3zOpGDaWSovaLGphnSgIAUvvO65tqGAD4bQu7Hj6DkLgtaQUIl4iAwstyyRPQWa3svv8WWMJkDiTMJMurIi5ABJ4L84Uw-cZkXcScvj6C_f_-U4HZBWv8N9WJA9Js3yb2iOASGXexgAl2rOd8AWhoRC9 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELYKE4IXtI3fPzZP4g1FTWI7iR9LV9aOFl5aqW-WU9uiG0oRS6Xx33PXOBWFqQ97jS9SfGfffY6--0zIhTUijaHQBSJiPOAafzRlqQ1kPJGMIx8gwUbhwW3SHfGfYzFukHbdC4O0Sp_7q5y-yNb-SdN7s_k4nWKPr4yzBNVXGAJfvkE-ABpIUEC_N75apuNMiOoaAwlbH8x950xF8sK_48jvyhZKp6iw8O_q9B59viVRvqpK1x_JroeTtFV98SfSsMVnslVdMPm8R4ZtDOpT8APyL-JJ2ipKlN-knb-eAFvQ71PMHMiIAdRJvU7oA72bl-ATS8sZbQ_7rYDTK6h7v7Wx-2R03Rm2u4G_RyGYwPYsA-dEzHPtQqaZ1BpAVWgzEWqeAx4wDgJiuMjzKIIkLHNpHHOpgGMGzM3ZSFp2QDaLWWGPsMM7zlNjJlrkITfOaOG044zBQ52kLjomUe0_NfEi43jXxYOq2WS_FPpcoc9VyBT4_JhcLt95rCQ21lqLOixqZaEoqAFr3_tWx1DBDsJhXdjZ_A8YQdqSUoh4jQ2stCyTPAWbwyruy2-NJWDiTMJIurIilgao4L06UkzvF0reScjh-Bee_OecvpLt7nDQV_3e7c0p2YkRcSDZRpyRzfJpbs8BL5X5l8V-eAH0qxLz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer-Germline+Antigen+Expression+Discriminates+Clinical+Outcome+to+CTLA-4+Blockade&rft.jtitle=Cell&rft.au=Shukla%2C+Sachet+A.&rft.au=Bachireddy%2C+Pavan&rft.au=Schilling%2C+Bastian&rft.au=Galonska%2C+Christina&rft.date=2018-04-19&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=173&rft.issue=3&rft.spage=624&rft.epage=633.e8&rft_id=info:doi/10.1016%2Fj.cell.2018.03.026&rft.externalDocID=S0092867418303064 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |