Cancer-Germline Antigen Expression Discriminates Clinical Outcome to CTLA-4 Blockade

CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 173; no. 3; pp. 624 - 633.e8
Main Authors Shukla, Sachet A., Bachireddy, Pavan, Schilling, Bastian, Galonska, Christina, Zhan, Qian, Bango, Clyde, Langer, Rupert, Lee, Patrick C., Gusenleitner, Daniel, Keskin, Derin B., Babadi, Mehrtash, Mohammad, Arman, Gnirke, Andreas, Clement, Kendell, Cartun, Zachary J., Van Allen, Eliezer M., Miao, Diana, Huang, Ying, Snyder, Alexandra, Merghoub, Taha, Wolchok, Jedd D., Garraway, Levi A., Meissner, Alexander, Weber, Jeffrey S., Hacohen, Nir, Neuberg, Donna, Potts, Patrick R., Murphy, George F., Lian, Christine G., Schadendorf, Dirk, Hodi, F. Stephen, Wu, Catherine J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 19.04.2018
Subjects
Online AccessGet full text
ISSN0092-8674
1097-4172
1097-4172
DOI10.1016/j.cell.2018.03.026

Cover

Abstract CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has previously been shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro. We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors. [Display omitted] •Increased expression of a MAGE-A subcluster predicts resistance to CTLA-4 blockade•This MAGE-A subcluster marks a distinct, epigenetically defined subset of melanomas•This gene signature is specific to resistance to CTLA-4, but not PD-1, blockade•Autophagy is implicated in clinical resistance to CTLA-4 blockade Increased expression of a subcluster of MAGE-A cancer-germline antigens predicts resistance specific to CTLA-4, but not PD-1, blockade, and its association with autophagy suppression implicates the role of autophagy in regulating primary resistance to anti-CTLA-4 therapy in melanoma patients.
AbstractList CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has previously been shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro. We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors. [Display omitted] •Increased expression of a MAGE-A subcluster predicts resistance to CTLA-4 blockade•This MAGE-A subcluster marks a distinct, epigenetically defined subset of melanomas•This gene signature is specific to resistance to CTLA-4, but not PD-1, blockade•Autophagy is implicated in clinical resistance to CTLA-4 blockade Increased expression of a subcluster of MAGE-A cancer-germline antigens predicts resistance specific to CTLA-4, but not PD-1, blockade, and its association with autophagy suppression implicates the role of autophagy in regulating primary resistance to anti-CTLA-4 therapy in melanoma patients.
CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has previously been shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro. We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors.CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has previously been shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro. We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors.
CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has previously been shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro. We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors.
CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has been previously shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro . We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors. Increased expression of a subcluster of MAGE-A cancer-germline antigens predicts resistance specific to CTLA4, but not PD1, blockade, and its association with autophagy suppression implicates the role autophagy in regulating primary resistance to anti-CTLA4 therapy in melanoma patients
CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has previously been shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro. We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors.
Author Cartun, Zachary J.
Neuberg, Donna
Mohammad, Arman
Gnirke, Andreas
Meissner, Alexander
Hodi, F. Stephen
Zhan, Qian
Keskin, Derin B.
Bachireddy, Pavan
Murphy, George F.
Gusenleitner, Daniel
Galonska, Christina
Bango, Clyde
Lee, Patrick C.
Huang, Ying
Shukla, Sachet A.
Schadendorf, Dirk
Langer, Rupert
Weber, Jeffrey S.
Van Allen, Eliezer M.
Hacohen, Nir
Miao, Diana
Snyder, Alexandra
Schilling, Bastian
Merghoub, Taha
Wu, Catherine J.
Wolchok, Jedd D.
Babadi, Mehrtash
Lian, Christine G.
Garraway, Levi A.
Potts, Patrick R.
Clement, Kendell
AuthorAffiliation 14 Department of Pathology, University of Bern, 3012 Bern, Switzerland
5 Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
1 Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
8 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
10 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
11 New York University Langone Medical Center, New York, NY 10016, USA
12 Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
9 Weill Cornell Medical College, New York, NY, USA
2 Broad Institute, Cambridge, MA 02142, USA
4 Department of Dermatology, University Hospital, University Duisburg—Essen, 45147 Essen, Germany and German Cancer Consortium (DKTK), 69121 Heidelberg, Germany
3 Department of Medicine, Brigham & Women’s Hospital, Boston, MA 02115, USA
6
AuthorAffiliation_xml – name: 3 Department of Medicine, Brigham & Women’s Hospital, Boston, MA 02115, USA
– name: 13 Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
– name: 11 New York University Langone Medical Center, New York, NY 10016, USA
– name: 6 Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
– name: 14 Department of Pathology, University of Bern, 3012 Bern, Switzerland
– name: 12 Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
– name: 1 Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– name: 9 Weill Cornell Medical College, New York, NY, USA
– name: 7 Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
– name: 2 Broad Institute, Cambridge, MA 02142, USA
– name: 4 Department of Dermatology, University Hospital, University Duisburg—Essen, 45147 Essen, Germany and German Cancer Consortium (DKTK), 69121 Heidelberg, Germany
– name: 10 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
– name: 5 Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
– name: 8 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
Author_xml – sequence: 1
  givenname: Sachet A.
  surname: Shukla
  fullname: Shukla, Sachet A.
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– sequence: 2
  givenname: Pavan
  surname: Bachireddy
  fullname: Bachireddy, Pavan
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– sequence: 3
  givenname: Bastian
  surname: Schilling
  fullname: Schilling, Bastian
  organization: Department of Dermatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
– sequence: 4
  givenname: Christina
  surname: Galonska
  fullname: Galonska, Christina
  organization: Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
– sequence: 5
  givenname: Qian
  surname: Zhan
  fullname: Zhan, Qian
  organization: Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
– sequence: 6
  givenname: Clyde
  surname: Bango
  fullname: Bango, Clyde
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– sequence: 7
  givenname: Rupert
  surname: Langer
  fullname: Langer, Rupert
  organization: Department of Pathology, University of Bern, 3012 Bern, Switzerland
– sequence: 8
  givenname: Patrick C.
  surname: Lee
  fullname: Lee, Patrick C.
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– sequence: 9
  givenname: Daniel
  surname: Gusenleitner
  fullname: Gusenleitner, Daniel
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– sequence: 10
  givenname: Derin B.
  surname: Keskin
  fullname: Keskin, Derin B.
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– sequence: 11
  givenname: Mehrtash
  surname: Babadi
  fullname: Babadi, Mehrtash
  organization: Broad Institute, Cambridge, MA 02142, USA
– sequence: 12
  givenname: Arman
  surname: Mohammad
  fullname: Mohammad, Arman
  organization: Broad Institute, Cambridge, MA 02142, USA
– sequence: 13
  givenname: Andreas
  surname: Gnirke
  fullname: Gnirke, Andreas
  organization: Broad Institute, Cambridge, MA 02142, USA
– sequence: 14
  givenname: Kendell
  surname: Clement
  fullname: Clement, Kendell
  organization: Broad Institute, Cambridge, MA 02142, USA
– sequence: 15
  givenname: Zachary J.
  surname: Cartun
  fullname: Cartun, Zachary J.
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– sequence: 16
  givenname: Eliezer M.
  surname: Van Allen
  fullname: Van Allen, Eliezer M.
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– sequence: 17
  givenname: Diana
  surname: Miao
  fullname: Miao, Diana
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– sequence: 18
  givenname: Ying
  surname: Huang
  fullname: Huang, Ying
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– sequence: 19
  givenname: Alexandra
  surname: Snyder
  fullname: Snyder, Alexandra
  organization: Weill Cornell Medical College, New York, NY, USA
– sequence: 20
  givenname: Taha
  surname: Merghoub
  fullname: Merghoub, Taha
  organization: Weill Cornell Medical College, New York, NY, USA
– sequence: 21
  givenname: Jedd D.
  surname: Wolchok
  fullname: Wolchok, Jedd D.
  organization: Weill Cornell Medical College, New York, NY, USA
– sequence: 22
  givenname: Levi A.
  surname: Garraway
  fullname: Garraway, Levi A.
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– sequence: 23
  givenname: Alexander
  surname: Meissner
  fullname: Meissner, Alexander
  organization: Broad Institute, Cambridge, MA 02142, USA
– sequence: 24
  givenname: Jeffrey S.
  surname: Weber
  fullname: Weber, Jeffrey S.
  organization: New York University Langone Medical Center, New York, NY 10016, USA
– sequence: 25
  givenname: Nir
  surname: Hacohen
  fullname: Hacohen, Nir
  organization: Broad Institute, Cambridge, MA 02142, USA
– sequence: 26
  givenname: Donna
  surname: Neuberg
  fullname: Neuberg, Donna
  organization: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
– sequence: 27
  givenname: Patrick R.
  surname: Potts
  fullname: Potts, Patrick R.
  organization: Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
– sequence: 28
  givenname: George F.
  surname: Murphy
  fullname: Murphy, George F.
  organization: Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
– sequence: 29
  givenname: Christine G.
  surname: Lian
  fullname: Lian, Christine G.
  organization: Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
– sequence: 30
  givenname: Dirk
  surname: Schadendorf
  fullname: Schadendorf, Dirk
  organization: Department of Dermatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
– sequence: 31
  givenname: F. Stephen
  surname: Hodi
  fullname: Hodi, F. Stephen
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– sequence: 32
  givenname: Catherine J.
  surname: Wu
  fullname: Wu, Catherine J.
  email: cwu@partners.org
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29656892$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFP8AB5cglYezYiS0hpCWUgrRSL8vZcpxJ8ZLYi52t4N_j1ZYKOJSTpfH3nt7MuyBnPngk5CWFigJt3uwqi9NUMaCygroC1jwhKwqqLTlt2RlZAShWyqbl5-QipR0ASCHEM3LOVCMaqdiKbDvjLcbyGuM8OY_F2i_uFn1x9WMfMSUXfPHBJRvd7LxZMBVdxpw1U3FzWGyYsVhC0W0365IX76dgv5kBn5Ono5kSvrh_L8mXj1fb7lO5ubn-3K03peVSLuU4CsZ7M0JtamUMKAEoBRjeg6TDqIAOXPQ9pWis6tUw1mMrWt7iYEekCutL8u7kuz_0c56iX6KZ9D6HNfGnDsbpv3-8-6pvw51ugHMmIRu8vjeI4fsB06LnvGs-qvEYDkkzJhspFW_Z_1FgolVKiCP66s9YD3l-Xz0D7ATYGFKKOD4gFPSxWr3TR2t9rFZDrXO1WST_EVm3mCUXlFdz0-PStycp5jLuHEadrMPc--Ai2kUPwT0m_wWLHb_N
CitedBy_id crossref_primary_10_1002_ctm2_1735
crossref_primary_10_1038_s41467_020_18546_x
crossref_primary_10_1038_s41416_021_01674_6
crossref_primary_10_1158_2326_6066_CIR_18_0198
crossref_primary_10_1158_1078_0432_CCR_20_3463
crossref_primary_10_3390_biomedicines11041130
crossref_primary_10_3389_fmed_2022_959348
crossref_primary_10_1002_onco_13575
crossref_primary_10_3389_fonc_2019_01040
crossref_primary_10_1093_nar_gkaa407
crossref_primary_10_3389_fonc_2024_1464125
crossref_primary_10_1186_s12967_024_05565_1
crossref_primary_10_33218_prnano1_2__180724_2
crossref_primary_10_1016_j_intimp_2025_114381
crossref_primary_10_1186_s40364_020_00209_0
crossref_primary_10_3389_fonc_2020_603661
crossref_primary_10_1038_s41435_021_00138_4
crossref_primary_10_1016_j_drup_2021_100752
crossref_primary_10_1016_j_omton_2024_200768
crossref_primary_10_3390_cells11192996
crossref_primary_10_1038_s41416_020_01039_5
crossref_primary_10_1186_s12943_019_0944_z
crossref_primary_10_3390_cancers13174297
crossref_primary_10_3389_fgene_2022_843579
crossref_primary_10_3390_jcm9010286
crossref_primary_10_1007_s40257_020_00509_z
crossref_primary_10_1016_j_bbcan_2023_189012
crossref_primary_10_1039_D3TB02471G
crossref_primary_10_1016_j_ctarc_2021_100489
crossref_primary_10_1007_s11864_023_01053_8
crossref_primary_10_2147_CMAR_S272031
crossref_primary_10_1016_j_heliyon_2024_e35940
crossref_primary_10_1016_j_csbj_2023_04_002
crossref_primary_10_1016_j_heliyon_2023_e13599
crossref_primary_10_1053_j_seminhematol_2024_10_007
crossref_primary_10_1016_j_it_2020_06_002
crossref_primary_10_1038_s41418_019_0290_0
crossref_primary_10_1126_scitranslmed_aat7807
crossref_primary_10_18632_oncotarget_27488
crossref_primary_10_1038_s41467_022_29442_x
crossref_primary_10_1080_15548627_2024_2330261
crossref_primary_10_1111_pcmr_12847
crossref_primary_10_1096_fba_2023_00009
crossref_primary_10_31988_SciTrends_29289
crossref_primary_10_1186_s12943_023_01749_3
crossref_primary_10_1038_s41698_024_00570_5
crossref_primary_10_1080_0284186X_2018_1555375
crossref_primary_10_3390_ijms23105384
crossref_primary_10_1038_s41568_019_0116_x
crossref_primary_10_1016_S0151_9638_18_31288_2
crossref_primary_10_3892_etm_2022_11127
crossref_primary_10_1016_j_csbj_2024_06_035
crossref_primary_10_1038_s41598_024_74636_6
crossref_primary_10_1186_s13046_024_03042_7
crossref_primary_10_3390_cancers14225506
crossref_primary_10_1016_j_isci_2024_111590
crossref_primary_10_1007_s13402_024_01027_4
crossref_primary_10_1016_j_canlet_2024_216856
crossref_primary_10_3389_fimmu_2020_00057
crossref_primary_10_1016_j_csbj_2023_12_001
crossref_primary_10_1158_1078_0432_CCR_20_3559
crossref_primary_10_1016_j_ccell_2020_07_013
crossref_primary_10_1038_s41392_022_01046_3
crossref_primary_10_3390_cancers15164094
crossref_primary_10_1016_j_jare_2023_01_011
crossref_primary_10_1016_j_fsi_2020_11_002
crossref_primary_10_12944_CRNFSJ_12_3_32
crossref_primary_10_1016_j_envres_2023_116895
crossref_primary_10_1038_s41418_020_0495_2
crossref_primary_10_1038_s41568_019_0125_9
crossref_primary_10_1002_advs_202406624
crossref_primary_10_1074_jbc_REV120_008029
crossref_primary_10_1016_j_adcanc_2022_100086
crossref_primary_10_3390_cells12060926
crossref_primary_10_3389_fonc_2021_784925
crossref_primary_10_3390_ijms24010041
crossref_primary_10_1007_s00726_023_03364_4
crossref_primary_10_1016_j_it_2022_03_006
crossref_primary_10_3389_fonc_2021_695006
crossref_primary_10_1002_biof_2142
crossref_primary_10_1186_s41021_020_00162_2
crossref_primary_10_1016_j_canlet_2022_215868
crossref_primary_10_2174_0115680096273730231206054104
crossref_primary_10_1002_advs_202401061
crossref_primary_10_4252_wjsc_v12_i5_303
crossref_primary_10_1038_s41591_019_0434_2
crossref_primary_10_1073_pnas_1904498116
crossref_primary_10_1186_s12943_025_02277_y
crossref_primary_10_1007_s11427_020_1768_y
crossref_primary_10_3390_ijms26062448
crossref_primary_10_1038_s43856_022_00114_7
crossref_primary_10_1136_jitc_2023_007935
crossref_primary_10_1200_JCO_19_03296
crossref_primary_10_1186_s13073_022_01050_w
crossref_primary_10_15252_embr_201847352
crossref_primary_10_7554_eLife_48963
crossref_primary_10_1038_s41467_020_17395_y
crossref_primary_10_1002_cac2_12203
crossref_primary_10_1016_j_scib_2024_01_025
crossref_primary_10_1186_s12885_020_6624_y
crossref_primary_10_3390_metabo12100966
crossref_primary_10_1136_esmoopen_2018_000475
crossref_primary_10_1038_s41591_019_0382_x
crossref_primary_10_3389_fonc_2020_606436
crossref_primary_10_1016_j_omtn_2021_03_023
crossref_primary_10_1016_S0140_6736_20_32598_8
crossref_primary_10_3390_cancers13164110
crossref_primary_10_1016_j_ceb_2020_01_005
crossref_primary_10_3390_cancers13071639
crossref_primary_10_1007_s12032_021_01621_8
crossref_primary_10_1159_000502933
crossref_primary_10_1021_acs_nanolett_1c01210
crossref_primary_10_1186_s13045_018_0684_3
crossref_primary_10_1186_s12943_020_01260_z
crossref_primary_10_1016_j_celrep_2018_09_082
crossref_primary_10_1016_j_ebiom_2019_01_064
crossref_primary_10_1097_CJI_0000000000000538
crossref_primary_10_1158_1078_0432_CCR_21_0575
crossref_primary_10_1038_s41598_024_58003_z
crossref_primary_10_1158_1078_0432_CCR_18_1013
crossref_primary_10_3389_fimmu_2022_1018334
Cites_doi 10.1038/nrc1669
10.1128/MCB.00740-14
10.1056/NEJMoa1604958
10.1016/j.cell.2015.01.034
10.1016/j.cell.2016.02.065
10.1016/j.ccell.2016.05.016
10.1016/S1470-2045(16)00099-1
10.1007/s00403-004-0527-7
10.1093/nar/gkv1194
10.1038/ng.3677
10.1016/j.cell.2014.03.044
10.1038/icb.2014.81
10.1083/jcb.200911078
10.1186/1471-2105-12-323
10.1172/JCI39104
10.1056/NEJMoa1003466
10.1016/j.cell.2016.08.069
10.4081/ejh.2015.2481
10.1126/science.1840703
10.1038/nature04444
10.1034/j.1600-065X.2002.18806.x
10.1016/j.gene.2008.02.019
10.1126/science.aad0095
10.1200/JCO.2011.37.8539
10.1186/s13059-015-0620-6
10.1073/pnas.1016791108
10.1016/j.molcel.2010.08.029
10.1126/science.1208347
10.1007/BF01246677
10.1016/j.cell.2015.05.044
10.18632/oncotarget.9649
10.1016/j.ccell.2016.06.005
10.1038/ncomms10715
10.1158/1078-0432.CCR-05-1544
10.1016/j.jmb.2017.03.005
10.1093/annonc/mdw291
10.1126/scitranslmed.aad5659
10.1093/bioinformatics/bts635
10.1016/j.cell.2015.08.052
10.1182/blood-2012-01-402404
10.1093/bioinformatics/btu638
10.1073/pnas.1110814108
10.1038/nm1622
10.1038/nbt.2203
10.1038/nrc3670
10.1016/S1470-2045(16)30126-7
10.1056/NEJMoa1406498
10.1056/NEJMoa1302369
10.1038/nm.2028
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2018.03.026
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 633.e8
ExternalDocumentID PMC6044280
29656892
10_1016_j_cell_2018_03_026
S0092867418303064
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA155010
– fundername: NIDA NIH HHS
  grantid: R01 DA036898
– fundername: NCI NIH HHS
  grantid: P30 CA006516
– fundername: Howard Hughes Medical Institute
– fundername: NCI NIH HHS
  grantid: R50 CA211482
– fundername: NHLBI NIH HHS
  grantid: R01 HL103532
– fundername: NCI NIH HHS
  grantid: P30 CA008748
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIDAL
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c488t-ff524baf03a39aa0950e850a4b081df901d45bb11eac9b9df3f75747edcfe19e3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 13:37:16 EDT 2025
Fri Sep 05 14:15:22 EDT 2025
Fri Sep 05 11:49:02 EDT 2025
Thu Apr 03 07:02:27 EDT 2025
Thu Apr 24 23:00:01 EDT 2025
Tue Jul 01 02:17:00 EDT 2025
Fri Feb 23 02:45:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords immunogenomics
checkpoint blockade
cancer-germline antigen
autophagy
ipilimumab
immunotherapy
melanoma
CTLA-4
MAGE-A
PD-1
Language English
License This article is made available under the Elsevier license.
Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-ff524baf03a39aa0950e850a4b081df901d45bb11eac9b9df3f75747edcfe19e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867418303064
PMID 29656892
PQID 2025799552
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6044280
proquest_miscellaneous_2286889472
proquest_miscellaneous_2025799552
pubmed_primary_29656892
crossref_primary_10_1016_j_cell_2018_03_026
crossref_citationtrail_10_1016_j_cell_2018_03_026
elsevier_sciencedirect_doi_10_1016_j_cell_2018_03_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-19
PublicationDateYYYYMMDD 2018-04-19
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ghiringhelli, Apetoh, Tesniere, Aymeric, Ma, Ortiz, Vermaelen, Panaretakis, Mignot, Ullrich (bib18) 2009; 15
Kalluri, Weinberg (bib22) 2009; 119
Pedicord, Montalvo, Leiner, Allison (bib29) 2011; 108
Van Der Bruggen, Zhang, Chaux, Stroobant, Panichelli, Schultz, Chapiro, Van Den Eynde, Brasseur, Boon (bib43) 2002; 188
Di Biase, Lee, Brandhorst, Manes, Buono, Cheng, Cacciottolo, Martin-Montalvo, de Cabo, Wei (bib14) 2016; 30
Bronietzki, Schuster, Schmitz (bib9) 2015; 93
Barrow, Browning, MacGregor, Davis, Sturrock, Jungbluth, Cebon (bib7) 2006; 12
Carter, Cibulskis, Helman, McKenna, Shen, Zack, Laird, Onofrio, Winckler, Weir (bib11) 2012; 30
Vansteenkiste, Cho, Vanakesa, De Pas, Zielinski, Kim, Jassem, Yoshimura, Dahabreh, Nakayama (bib44) 2016; 17
Palucka, Banchereau (bib28) 2014; 157
Schläfli, Berezowska, Adams, Langer, Tschan (bib36) 2015; 59
Apetoh, Ghiringhelli, Tesniere, Obeid, Ortiz, Criollo, Mignot, Maiuri, Ullrich, Saulnier (bib4) 2007; 13
Azimi, Scolyer, Rumcheva, Moncrieff, Murali, McCarthy, Saw, Thompson (bib5) 2012; 30
Tang, Kang, Livesey, Cheh, Farkas, Loughran, Hoppe, Bianchi, Tracey, Zeh, Lotze (bib39) 2010; 190
(bib10) 2015; 161
Li, Dewey (bib25) 2011; 12
Roeder, Schuler-Thurner, Berchtold, Vieth, Driesch, Schuler, Lüftl (bib34) 2005; 296
Doyle, Gao, Wang, Yang, Potts (bib16) 2010; 39
Gumireddy, Li, Kossenkov, Sakurai, Yan, Li, Xu, Wang, Zhang, Zhang (bib19) 2016; 7
Pineda, Ramanathan, Fon Tacer, Weon, Potts, Ou, White, Potts (bib31) 2015; 160
Saiag, Gutzmer, Ascierto, Maio, Grob, Murawa, Dreno, Ross, Weber, Hauschild (bib35) 2016; 27
Van Allen, Miao, Schilling, Shukla, Blank, Zimmer, Sucker, Hillen, Foppen, Goldinger (bib41) 2015; 350
Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib15) 2013; 29
Angelova, Charoentong, Hackl, Fischer, Snajder, Krogsdam, Waldner, Bindea, Mlecnik, Galon, Trajanoski (bib3) 2015; 16
Lee, Potts (bib24) 2017; 429
Hugo, Zaretsky, Sun, Song, Moreno, Hu-Lieskovan, Berent-Maoz, Pang, Chmielowski, Cherry (bib21) 2016; 165
Wolchok, Kluger, Callahan, Postow, Rizvi, Lesokhin, Segal, Ariyan, Gordon, Reed (bib47) 2013; 369
Zaretsky, Garcia-Diaz, Shin, Escuin-Ordinas, Hugo, Hu-Lieskovan, Torrejon, Abril-Rodriguez, Sandoval, Barthly (bib49) 2016; 375
Weber, Gibney, Sullivan, Sosman, Slingluff, Lawrence, Logan, Schuchter, Nair, Fecher (bib45) 2016; 17
Anders, Pyl, Huber (bib2) 2015; 31
Riaz, Havel, Kendall, Makarov, Walsh, Desrichard, Weinhold, Chan (bib33) 2016; 48
Mi, Poudel, Muruganujan, Casagrande, Thomas (bib26) 2016; 44
Kleffel, Posch, Barthel, Mueller, Schlapbach, Guenova, Elco, Lee, Juneja, Zhan (bib23) 2015; 162
Bredenbeck, Hollstein, Trefzer, Sterry, Walden, Losch (bib8) 2008; 415
van der Bruggen, Traversari, Chomez, Lurquin, De Plaen, Van den Eynde, Knuth, Boon (bib42) 1991; 254
Coulie, Van den Eynde, van der Bruggen, Boon (bib12) 2014; 14
Tey, Khanna (bib40) 2012; 120
Snyder, Makarov, Merghoub, Yuan, Zaretsky, Desrichard, Walsh, Postow, Wong, Ho (bib38) 2014; 371
Gao, Shi, Zhao, Chen, Xiong, He, Chen, Roszik, Bernatchez, Woodman (bib17) 2016; 167
Pu, Xu, Liang, Yang, Guo, Yang, Fu (bib32) 2016; 8
Adams, Dislich, Berezowska, Schläfli, Seiler, Kröll, Tschan, Langer (bib1) 2016; 7
De Plaen, Arden, Traversari, Gaforio, Szikora, De Smet, Brasseur, van der Bruggen, Lethé, Lurquin (bib13) 1994; 40
Michaud, Martins, Sukkurwala, Adjemian, Ma, Pellegatti, Shen, Kepp, Scoazec, Mignot (bib27) 2011; 334
Simpson, Caballero, Jungbluth, Chen, Old (bib37) 2005; 5
Barber, Wherry, Masopust, Zhu, Allison, Sharpe, Freeman, Ahmed (bib6) 2006; 439
Pietrocola, Pol, Vacchelli, Rao, Enot, Baracco, Levesque, Castoldi, Jacquelot, Yamazaki (bib30) 2016; 30
Weerasekara, Panek, Broadbent, Mortenson, Mathis, Logan, Prince, Thomson, Thompson, Andersen (bib46) 2014; 34
Yuan, Adamow, Ginsberg, Rasalan, Ritter, Gallardo, Xu, Pogoriler, Terzulli, Kuk (bib48) 2011; 108
Hodi, O’Day, McDermott, Weber, Sosman, Haanen, Gonzalez, Robert, Schadendorf, Hassel (bib20) 2010; 363
Lee (10.1016/j.cell.2018.03.026_bib24) 2017; 429
Snyder (10.1016/j.cell.2018.03.026_bib38) 2014; 371
Simpson (10.1016/j.cell.2018.03.026_bib37) 2005; 5
Pedicord (10.1016/j.cell.2018.03.026_bib29) 2011; 108
Vansteenkiste (10.1016/j.cell.2018.03.026_bib44) 2016; 17
Palucka (10.1016/j.cell.2018.03.026_bib28) 2014; 157
Anders (10.1016/j.cell.2018.03.026_bib2) 2015; 31
Coulie (10.1016/j.cell.2018.03.026_bib12) 2014; 14
Angelova (10.1016/j.cell.2018.03.026_bib3) 2015; 16
Gumireddy (10.1016/j.cell.2018.03.026_bib19) 2016; 7
Di Biase (10.1016/j.cell.2018.03.026_bib14) 2016; 30
Pietrocola (10.1016/j.cell.2018.03.026_bib30) 2016; 30
Van Allen (10.1016/j.cell.2018.03.026_bib41) 2015; 350
Doyle (10.1016/j.cell.2018.03.026_bib16) 2010; 39
Gao (10.1016/j.cell.2018.03.026_bib17) 2016; 167
Kalluri (10.1016/j.cell.2018.03.026_bib22) 2009; 119
Bredenbeck (10.1016/j.cell.2018.03.026_bib8) 2008; 415
De Plaen (10.1016/j.cell.2018.03.026_bib13) 1994; 40
Dobin (10.1016/j.cell.2018.03.026_bib15) 2013; 29
Tang (10.1016/j.cell.2018.03.026_bib39) 2010; 190
Zaretsky (10.1016/j.cell.2018.03.026_bib49) 2016; 375
Mi (10.1016/j.cell.2018.03.026_bib26) 2016; 44
Schläfli (10.1016/j.cell.2018.03.026_bib36) 2015; 59
Carter (10.1016/j.cell.2018.03.026_bib11) 2012; 30
Apetoh (10.1016/j.cell.2018.03.026_bib4) 2007; 13
Adams (10.1016/j.cell.2018.03.026_bib1) 2016; 7
Azimi (10.1016/j.cell.2018.03.026_bib5) 2012; 30
Wolchok (10.1016/j.cell.2018.03.026_bib47) 2013; 369
Michaud (10.1016/j.cell.2018.03.026_bib27) 2011; 334
Saiag (10.1016/j.cell.2018.03.026_bib35) 2016; 27
Ghiringhelli (10.1016/j.cell.2018.03.026_bib18) 2009; 15
Pu (10.1016/j.cell.2018.03.026_bib32) 2016; 8
Yuan (10.1016/j.cell.2018.03.026_bib48) 2011; 108
Hugo (10.1016/j.cell.2018.03.026_bib21) 2016; 165
Roeder (10.1016/j.cell.2018.03.026_bib34) 2005; 296
Barber (10.1016/j.cell.2018.03.026_bib6) 2006; 439
Van Der Bruggen (10.1016/j.cell.2018.03.026_bib43) 2002; 188
Kleffel (10.1016/j.cell.2018.03.026_bib23) 2015; 162
Weber (10.1016/j.cell.2018.03.026_bib45) 2016; 17
Li (10.1016/j.cell.2018.03.026_bib25) 2011; 12
Tey (10.1016/j.cell.2018.03.026_bib40) 2012; 120
Barrow (10.1016/j.cell.2018.03.026_bib7) 2006; 12
Bronietzki (10.1016/j.cell.2018.03.026_bib9) 2015; 93
Hodi (10.1016/j.cell.2018.03.026_bib20) 2010; 363
(10.1016/j.cell.2018.03.026_bib10) 2015; 161
Weerasekara (10.1016/j.cell.2018.03.026_bib46) 2014; 34
Riaz (10.1016/j.cell.2018.03.026_bib33) 2016; 48
Pineda (10.1016/j.cell.2018.03.026_bib31) 2015; 160
van der Bruggen (10.1016/j.cell.2018.03.026_bib42) 1991; 254
References_xml – volume: 14
  start-page: 135
  year: 2014
  end-page: 146
  ident: bib12
  article-title: Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy
  publication-title: Nat. Rev. Cancer
– volume: 165
  start-page: 35
  year: 2016
  end-page: 44
  ident: bib21
  article-title: Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma
  publication-title: Cell
– volume: 17
  start-page: 943
  year: 2016
  end-page: 955
  ident: bib45
  article-title: Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial
  publication-title: Lancet Oncol.
– volume: 363
  start-page: 711
  year: 2010
  end-page: 723
  ident: bib20
  article-title: Improved survival with ipilimumab in patients with metastatic melanoma
  publication-title: N. Engl. J. Med.
– volume: 39
  start-page: 963
  year: 2010
  end-page: 974
  ident: bib16
  article-title: MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases
  publication-title: Mol. Cell
– volume: 8
  start-page: 333ra47
  year: 2016
  ident: bib32
  article-title: Androgen receptor antagonists compromise T cell response against prostate cancer leading to early tumor relapse
  publication-title: Sci. Transl. Med.
– volume: 44
  start-page: D336
  year: 2016
  end-page: D342
  ident: bib26
  article-title: PANTHER version 10: expanded protein families and functions, and analysis tools
  publication-title: Nucleic Acids Res.
– volume: 254
  start-page: 1643
  year: 1991
  end-page: 1647
  ident: bib42
  article-title: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma
  publication-title: Science
– volume: 93
  start-page: 25
  year: 2015
  end-page: 34
  ident: bib9
  article-title: Autophagy in T-cell development, activation and differentiation
  publication-title: Immunol. Cell Biol.
– volume: 40
  start-page: 360
  year: 1994
  end-page: 369
  ident: bib13
  article-title: Structure, chromosomal localization, and expression of 12 genes of the MAGE family
  publication-title: Immunogenetics
– volume: 415
  start-page: 68
  year: 2008
  end-page: 73
  ident: bib8
  article-title: Coordinated expression of clustered cancer/testis genes encoded in a large inverted repeat DNA structure
  publication-title: Gene
– volume: 119
  start-page: 1420
  year: 2009
  end-page: 1428
  ident: bib22
  article-title: The basics of epithelial-mesenchymal transition
  publication-title: J. Clin. Invest.
– volume: 27
  start-page: 1947
  year: 2016
  end-page: 1953
  ident: bib35
  article-title: Prospective assessment of a gene signature potentially predictive of clinical benefit in metastatic melanoma patients following MAGE-A3 immunotherapeutic (PREDICT)
  publication-title: Ann. Oncol.
– volume: 188
  start-page: 51
  year: 2002
  end-page: 64
  ident: bib43
  article-title: Tumor-specific shared antigenic peptides recognized by human T cells
  publication-title: Immunol. Rev.
– volume: 30
  start-page: 2678
  year: 2012
  end-page: 2683
  ident: bib5
  article-title: Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma
  publication-title: J. Clin. Oncol.
– volume: 13
  start-page: 1050
  year: 2007
  end-page: 1059
  ident: bib4
  article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy
  publication-title: Nat. Med.
– volume: 12
  start-page: 764
  year: 2006
  end-page: 771
  ident: bib7
  article-title: Tumor antigen expression in melanoma varies according to antigen and stage
  publication-title: Clin. Cancer Res.
– volume: 16
  start-page: 64
  year: 2015
  ident: bib3
  article-title: Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy
  publication-title: Genome Biol.
– volume: 375
  start-page: 819
  year: 2016
  end-page: 829
  ident: bib49
  article-title: Mutations associated with acquired resistance to PD-1 blockade in melanoma
  publication-title: N. Engl. J. Med.
– volume: 296
  start-page: 314
  year: 2005
  end-page: 319
  ident: bib34
  article-title: MAGE-A3 is a frequent tumor antigen of metastasized melanoma
  publication-title: Arch. Dermatol. Res.
– volume: 7
  start-page: 10715
  year: 2016
  ident: bib19
  article-title: The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis
  publication-title: Nat. Commun.
– volume: 5
  start-page: 615
  year: 2005
  end-page: 625
  ident: bib37
  article-title: Cancer/testis antigens, gametogenesis and cancer
  publication-title: Nat. Rev. Cancer
– volume: 17
  start-page: 822
  year: 2016
  end-page: 835
  ident: bib44
  article-title: Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial
  publication-title: Lancet Oncol.
– volume: 108
  start-page: 16723
  year: 2011
  end-page: 16728
  ident: bib48
  article-title: Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 161
  start-page: 1681
  year: 2015
  end-page: 1696
  ident: bib10
  article-title: Genomic classification of cutaneous melanoma
  publication-title: Cell
– volume: 30
  start-page: 413
  year: 2012
  end-page: 421
  ident: bib11
  article-title: Absolute quantification of somatic DNA alterations in human cancer
  publication-title: Nat. Biotechnol.
– volume: 167
  start-page: 397
  year: 2016
  end-page: 404
  ident: bib17
  article-title: Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy
  publication-title: Cell
– volume: 334
  start-page: 1573
  year: 2011
  end-page: 1577
  ident: bib27
  article-title: Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice
  publication-title: Science
– volume: 190
  start-page: 881
  year: 2010
  end-page: 892
  ident: bib39
  article-title: Endogenous HMGB1 regulates autophagy
  publication-title: J. Cell Biol.
– volume: 15
  start-page: 1170
  year: 2009
  end-page: 1178
  ident: bib18
  article-title: Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors
  publication-title: Nat. Med.
– volume: 120
  start-page: 994
  year: 2012
  end-page: 1004
  ident: bib40
  article-title: Autophagy mediates transporter associated with antigen processing-independent presentation of viral epitopes through MHC class I pathway
  publication-title: Blood
– volume: 7
  start-page: 39241
  year: 2016
  end-page: 39255
  ident: bib1
  article-title: Prognostic relevance of autophagy markers LC3B and p62 in esophageal adenocarcinomas
  publication-title: Oncotarget
– volume: 108
  start-page: 266
  year: 2011
  end-page: 271
  ident: bib29
  article-title: Single dose of anti-CTLA-4 enhances CD8+ T-cell memory formation, function, and maintenance
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 48
  start-page: 1327
  year: 2016
  end-page: 1329
  ident: bib33
  article-title: Recurrent SERPINB3 and SERPINB4 mutations in patients who respond to anti-CTLA4 immunotherapy
  publication-title: Nat. Genet.
– volume: 439
  start-page: 682
  year: 2006
  end-page: 687
  ident: bib6
  article-title: Restoring function in exhausted CD8 T cells during chronic viral infection
  publication-title: Nature
– volume: 30
  start-page: 136
  year: 2016
  end-page: 146
  ident: bib14
  article-title: Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity
  publication-title: Cancer Cell
– volume: 59
  start-page: 2481
  year: 2015
  ident: bib36
  article-title: Reliable LC3 and p62 autophagy marker detection in formalin fixed paraffin embedded human tissue by immunohistochemistry
  publication-title: Eur. J. Histochem.
– volume: 31
  start-page: 166
  year: 2015
  end-page: 169
  ident: bib2
  article-title: HTSeq--a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
– volume: 162
  start-page: 1242
  year: 2015
  end-page: 1256
  ident: bib23
  article-title: Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth
  publication-title: Cell
– volume: 429
  start-page: 1114
  year: 2017
  end-page: 1142
  ident: bib24
  article-title: A comprehensive guide to the MAGE family of ubiquitin ligases
  publication-title: J. Mol. Biol.
– volume: 369
  start-page: 122
  year: 2013
  end-page: 133
  ident: bib47
  article-title: Nivolumab plus ipilimumab in advanced melanoma
  publication-title: N. Engl. J. Med.
– volume: 34
  start-page: 4379
  year: 2014
  end-page: 4388
  ident: bib46
  article-title: Metabolic-stress-induced rearrangement of the 14-3-3ζ interactome promotes autophagy via a ULK1- and AMPK-regulated 14-3-3ζ interaction with phosphorylated Atg9
  publication-title: Mol. Cell. Biol.
– volume: 157
  start-page: 516
  year: 2014
  end-page: 516.e1
  ident: bib28
  article-title: SnapShot: cancer vaccines
  publication-title: Cell
– volume: 371
  start-page: 2189
  year: 2014
  end-page: 2199
  ident: bib38
  article-title: Genetic basis for clinical response to CTLA-4 blockade in melanoma
  publication-title: N. Engl. J. Med.
– volume: 12
  start-page: 323
  year: 2011
  ident: bib25
  article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
  publication-title: BMC Bioinformatics
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  ident: bib15
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
– volume: 160
  start-page: 715
  year: 2015
  end-page: 728
  ident: bib31
  article-title: Degradation of AMPK by a cancer-specific ubiquitin ligase
  publication-title: Cell
– volume: 350
  start-page: 207
  year: 2015
  end-page: 211
  ident: bib41
  article-title: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma
  publication-title: Science
– volume: 30
  start-page: 147
  year: 2016
  end-page: 160
  ident: bib30
  article-title: Caloric restriction mimetics enhance anticancer immunosurveillance
  publication-title: Cancer Cell
– volume: 5
  start-page: 615
  year: 2005
  ident: 10.1016/j.cell.2018.03.026_bib37
  article-title: Cancer/testis antigens, gametogenesis and cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1669
– volume: 34
  start-page: 4379
  year: 2014
  ident: 10.1016/j.cell.2018.03.026_bib46
  article-title: Metabolic-stress-induced rearrangement of the 14-3-3ζ interactome promotes autophagy via a ULK1- and AMPK-regulated 14-3-3ζ interaction with phosphorylated Atg9
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00740-14
– volume: 375
  start-page: 819
  year: 2016
  ident: 10.1016/j.cell.2018.03.026_bib49
  article-title: Mutations associated with acquired resistance to PD-1 blockade in melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1604958
– volume: 160
  start-page: 715
  year: 2015
  ident: 10.1016/j.cell.2018.03.026_bib31
  article-title: Degradation of AMPK by a cancer-specific ubiquitin ligase
  publication-title: Cell
  doi: 10.1016/j.cell.2015.01.034
– volume: 165
  start-page: 35
  year: 2016
  ident: 10.1016/j.cell.2018.03.026_bib21
  article-title: Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.065
– volume: 30
  start-page: 147
  year: 2016
  ident: 10.1016/j.cell.2018.03.026_bib30
  article-title: Caloric restriction mimetics enhance anticancer immunosurveillance
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.05.016
– volume: 17
  start-page: 822
  year: 2016
  ident: 10.1016/j.cell.2018.03.026_bib44
  article-title: Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(16)00099-1
– volume: 296
  start-page: 314
  year: 2005
  ident: 10.1016/j.cell.2018.03.026_bib34
  article-title: MAGE-A3 is a frequent tumor antigen of metastasized melanoma
  publication-title: Arch. Dermatol. Res.
  doi: 10.1007/s00403-004-0527-7
– volume: 44
  start-page: D336
  issue: D1
  year: 2016
  ident: 10.1016/j.cell.2018.03.026_bib26
  article-title: PANTHER version 10: expanded protein families and functions, and analysis tools
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1194
– volume: 48
  start-page: 1327
  year: 2016
  ident: 10.1016/j.cell.2018.03.026_bib33
  article-title: Recurrent SERPINB3 and SERPINB4 mutations in patients who respond to anti-CTLA4 immunotherapy
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3677
– volume: 157
  start-page: 516
  year: 2014
  ident: 10.1016/j.cell.2018.03.026_bib28
  article-title: SnapShot: cancer vaccines
  publication-title: Cell
  doi: 10.1016/j.cell.2014.03.044
– volume: 93
  start-page: 25
  year: 2015
  ident: 10.1016/j.cell.2018.03.026_bib9
  article-title: Autophagy in T-cell development, activation and differentiation
  publication-title: Immunol. Cell Biol.
  doi: 10.1038/icb.2014.81
– volume: 190
  start-page: 881
  year: 2010
  ident: 10.1016/j.cell.2018.03.026_bib39
  article-title: Endogenous HMGB1 regulates autophagy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200911078
– volume: 12
  start-page: 323
  year: 2011
  ident: 10.1016/j.cell.2018.03.026_bib25
  article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-323
– volume: 119
  start-page: 1420
  year: 2009
  ident: 10.1016/j.cell.2018.03.026_bib22
  article-title: The basics of epithelial-mesenchymal transition
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI39104
– volume: 363
  start-page: 711
  year: 2010
  ident: 10.1016/j.cell.2018.03.026_bib20
  article-title: Improved survival with ipilimumab in patients with metastatic melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1003466
– volume: 167
  start-page: 397
  year: 2016
  ident: 10.1016/j.cell.2018.03.026_bib17
  article-title: Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.069
– volume: 59
  start-page: 2481
  year: 2015
  ident: 10.1016/j.cell.2018.03.026_bib36
  article-title: Reliable LC3 and p62 autophagy marker detection in formalin fixed paraffin embedded human tissue by immunohistochemistry
  publication-title: Eur. J. Histochem.
  doi: 10.4081/ejh.2015.2481
– volume: 254
  start-page: 1643
  year: 1991
  ident: 10.1016/j.cell.2018.03.026_bib42
  article-title: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma
  publication-title: Science
  doi: 10.1126/science.1840703
– volume: 439
  start-page: 682
  year: 2006
  ident: 10.1016/j.cell.2018.03.026_bib6
  article-title: Restoring function in exhausted CD8 T cells during chronic viral infection
  publication-title: Nature
  doi: 10.1038/nature04444
– volume: 188
  start-page: 51
  year: 2002
  ident: 10.1016/j.cell.2018.03.026_bib43
  article-title: Tumor-specific shared antigenic peptides recognized by human T cells
  publication-title: Immunol. Rev.
  doi: 10.1034/j.1600-065X.2002.18806.x
– volume: 415
  start-page: 68
  year: 2008
  ident: 10.1016/j.cell.2018.03.026_bib8
  article-title: Coordinated expression of clustered cancer/testis genes encoded in a large inverted repeat DNA structure
  publication-title: Gene
  doi: 10.1016/j.gene.2008.02.019
– volume: 350
  start-page: 207
  year: 2015
  ident: 10.1016/j.cell.2018.03.026_bib41
  article-title: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma
  publication-title: Science
  doi: 10.1126/science.aad0095
– volume: 30
  start-page: 2678
  year: 2012
  ident: 10.1016/j.cell.2018.03.026_bib5
  article-title: Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2011.37.8539
– volume: 16
  start-page: 64
  year: 2015
  ident: 10.1016/j.cell.2018.03.026_bib3
  article-title: Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0620-6
– volume: 108
  start-page: 266
  year: 2011
  ident: 10.1016/j.cell.2018.03.026_bib29
  article-title: Single dose of anti-CTLA-4 enhances CD8+ T-cell memory formation, function, and maintenance
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1016791108
– volume: 39
  start-page: 963
  year: 2010
  ident: 10.1016/j.cell.2018.03.026_bib16
  article-title: MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.08.029
– volume: 334
  start-page: 1573
  year: 2011
  ident: 10.1016/j.cell.2018.03.026_bib27
  article-title: Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice
  publication-title: Science
  doi: 10.1126/science.1208347
– volume: 40
  start-page: 360
  year: 1994
  ident: 10.1016/j.cell.2018.03.026_bib13
  article-title: Structure, chromosomal localization, and expression of 12 genes of the MAGE family
  publication-title: Immunogenetics
  doi: 10.1007/BF01246677
– volume: 161
  start-page: 1681
  year: 2015
  ident: 10.1016/j.cell.2018.03.026_bib10
  article-title: Genomic classification of cutaneous melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.044
– volume: 7
  start-page: 39241
  year: 2016
  ident: 10.1016/j.cell.2018.03.026_bib1
  article-title: Prognostic relevance of autophagy markers LC3B and p62 in esophageal adenocarcinomas
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9649
– volume: 30
  start-page: 136
  year: 2016
  ident: 10.1016/j.cell.2018.03.026_bib14
  article-title: Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.06.005
– volume: 7
  start-page: 10715
  year: 2016
  ident: 10.1016/j.cell.2018.03.026_bib19
  article-title: The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10715
– volume: 12
  start-page: 764
  year: 2006
  ident: 10.1016/j.cell.2018.03.026_bib7
  article-title: Tumor antigen expression in melanoma varies according to antigen and stage
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-05-1544
– volume: 429
  start-page: 1114
  year: 2017
  ident: 10.1016/j.cell.2018.03.026_bib24
  article-title: A comprehensive guide to the MAGE family of ubiquitin ligases
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.03.005
– volume: 27
  start-page: 1947
  year: 2016
  ident: 10.1016/j.cell.2018.03.026_bib35
  article-title: Prospective assessment of a gene signature potentially predictive of clinical benefit in metastatic melanoma patients following MAGE-A3 immunotherapeutic (PREDICT)
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdw291
– volume: 8
  start-page: 333ra47
  year: 2016
  ident: 10.1016/j.cell.2018.03.026_bib32
  article-title: Androgen receptor antagonists compromise T cell response against prostate cancer leading to early tumor relapse
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aad5659
– volume: 29
  start-page: 15
  year: 2013
  ident: 10.1016/j.cell.2018.03.026_bib15
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 162
  start-page: 1242
  year: 2015
  ident: 10.1016/j.cell.2018.03.026_bib23
  article-title: Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.052
– volume: 120
  start-page: 994
  year: 2012
  ident: 10.1016/j.cell.2018.03.026_bib40
  article-title: Autophagy mediates transporter associated with antigen processing-independent presentation of viral epitopes through MHC class I pathway
  publication-title: Blood
  doi: 10.1182/blood-2012-01-402404
– volume: 31
  start-page: 166
  year: 2015
  ident: 10.1016/j.cell.2018.03.026_bib2
  article-title: HTSeq--a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 108
  start-page: 16723
  year: 2011
  ident: 10.1016/j.cell.2018.03.026_bib48
  article-title: Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1110814108
– volume: 13
  start-page: 1050
  year: 2007
  ident: 10.1016/j.cell.2018.03.026_bib4
  article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy
  publication-title: Nat. Med.
  doi: 10.1038/nm1622
– volume: 30
  start-page: 413
  year: 2012
  ident: 10.1016/j.cell.2018.03.026_bib11
  article-title: Absolute quantification of somatic DNA alterations in human cancer
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2203
– volume: 14
  start-page: 135
  year: 2014
  ident: 10.1016/j.cell.2018.03.026_bib12
  article-title: Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3670
– volume: 17
  start-page: 943
  year: 2016
  ident: 10.1016/j.cell.2018.03.026_bib45
  article-title: Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(16)30126-7
– volume: 371
  start-page: 2189
  year: 2014
  ident: 10.1016/j.cell.2018.03.026_bib38
  article-title: Genetic basis for clinical response to CTLA-4 blockade in melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1406498
– volume: 369
  start-page: 122
  year: 2013
  ident: 10.1016/j.cell.2018.03.026_bib47
  article-title: Nivolumab plus ipilimumab in advanced melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1302369
– volume: 15
  start-page: 1170
  year: 2009
  ident: 10.1016/j.cell.2018.03.026_bib18
  article-title: Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors
  publication-title: Nat. Med.
  doi: 10.1038/nm.2028
SSID ssj0008555
Score 2.5867527
Snippet CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 624
SubjectTerms Animals
Antibodies, Monoclonal - therapeutic use
antigens
Antigens, Neoplasm - genetics
Antigens, Neoplasm - immunology
Autophagy
cancer-germline antigen
Cell Line, Tumor
checkpoint blockade
chromosomes
CTLA-4
CTLA-4 Antigen - genetics
CTLA-4 Antigen - immunology
DNA Methylation
Epigenesis, Genetic
Female
gene expression
Gene Expression Profiling
Germ-Line Mutation
Humans
immunogenomics
Immunotherapy
ipilimumab
Ipilimumab - pharmacology
MAGE-A
Male
melanoma
Melanoma - genetics
Melanoma - immunology
Melanoma-Specific Antigens - genetics
Melanoma-Specific Antigens - immunology
metastasis
Mice
Mice, Transgenic
Neoplasms - genetics
Neoplasms - immunology
patients
PD-1
protein content
Skin Neoplasms - genetics
Skin Neoplasms - immunology
therapeutics
ubiquitin-protein ligase
Title Cancer-Germline Antigen Expression Discriminates Clinical Outcome to CTLA-4 Blockade
URI https://dx.doi.org/10.1016/j.cell.2018.03.026
https://www.ncbi.nlm.nih.gov/pubmed/29656892
https://www.proquest.com/docview/2025799552
https://www.proquest.com/docview/2286889472
https://pubmed.ncbi.nlm.nih.gov/PMC6044280
Volume 173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIPgifjs_RgTfpNg2Sds8zvmF-PEyYW8hXRKcjm5oB_rfe7emw6nswccmV2jvkrtf07vfEXJijUhjCHSBiBgPuMaDpiy1gYwHknHMB0iwUPj-Ibl54rd90W-Qbl0Lg2mV3vdXPn3mrf3Imdfm2WQ4xBpfGWcJsq8wBL7ICYpVpVjE1z-fe-NMiKqLgYSdD9K-cKbK8cLDcUzvymZEp0iw8Hdw-g0-f-ZQfgtKV-tkzaNJ2qkeeIM0bLFJVqr-kp9bpNdFm74F1-B-EU7STlEi-ya9_PD5rwW9GKLjwIQYAJ3U04SO6OO0BJVYWo5pt3fXCTg9h7D3qo3dJk9Xl73uTeDbKAQD2J1l4JyIea5dyDSTWgOmCm0mQs1zgAPGgT0MF3keReCDZS6NYy4V8JUB7-ZsJC3bIc1iXNg9LPCO89SYgRZ5yI0zWjjtOGMwqJPURS0S1fpTA88xjq0uRqpOJntRqHOFOlchU6DzFjmd3zOpGDaWSovaLGphnSgIAUvvO65tqGAD4bQu7Hj6DkLgtaQUIl4iAwstyyRPQWa3svv8WWMJkDiTMJMurIi5ABJ4L84Uw-cZkXcScvj6C_f_-U4HZBWv8N9WJA9Js3yb2iOASGXexgAl2rOd8AWhoRC9
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELYKE4IXtI3fPzZP4g1FTWI7iR9LV9aOFl5aqW-WU9uiG0oRS6Xx33PXOBWFqQ97jS9SfGfffY6--0zIhTUijaHQBSJiPOAafzRlqQ1kPJGMIx8gwUbhwW3SHfGfYzFukHbdC4O0Sp_7q5y-yNb-SdN7s_k4nWKPr4yzBNVXGAJfvkE-ABpIUEC_N75apuNMiOoaAwlbH8x950xF8sK_48jvyhZKp6iw8O_q9B59viVRvqpK1x_JroeTtFV98SfSsMVnslVdMPm8R4ZtDOpT8APyL-JJ2ipKlN-knb-eAFvQ71PMHMiIAdRJvU7oA72bl-ATS8sZbQ_7rYDTK6h7v7Wx-2R03Rm2u4G_RyGYwPYsA-dEzHPtQqaZ1BpAVWgzEWqeAx4wDgJiuMjzKIIkLHNpHHOpgGMGzM3ZSFp2QDaLWWGPsMM7zlNjJlrkITfOaOG044zBQ52kLjomUe0_NfEi43jXxYOq2WS_FPpcoc9VyBT4_JhcLt95rCQ21lqLOixqZaEoqAFr3_tWx1DBDsJhXdjZ_A8YQdqSUoh4jQ2stCyTPAWbwyruy2-NJWDiTMJIurIilgao4L06UkzvF0reScjh-Bee_OecvpLt7nDQV_3e7c0p2YkRcSDZRpyRzfJpbs8BL5X5l8V-eAH0qxLz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer-Germline+Antigen+Expression+Discriminates+Clinical+Outcome+to+CTLA-4+Blockade&rft.jtitle=Cell&rft.au=Shukla%2C+Sachet+A.&rft.au=Bachireddy%2C+Pavan&rft.au=Schilling%2C+Bastian&rft.au=Galonska%2C+Christina&rft.date=2018-04-19&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=173&rft.issue=3&rft.spage=624&rft.epage=633.e8&rft_id=info:doi/10.1016%2Fj.cell.2018.03.026&rft.externalDocID=S0092867418303064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon