The COVID-19 Ontology

Abstract Motivation The COVID-19 pandemic has prompted an impressive, worldwide response by the academic community. In order to support text mining approaches as well as data description, linking and harmonization in the context of COVID-19, we have developed an ontology representing major novel cor...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 36; no. 24; pp. 5703 - 5705
Main Authors Sargsyan, Astghik, Kodamullil, Alpha Tom, Baksi, Shounak, Darms, Johannes, Madan, Sumit, Gebel, Stephan, Keminer, Oliver, Jose, Geena Mariya, Balabin, Helena, DeLong, Lauren Nicole, Kohler, Manfred, Jacobs, Marc, Hofmann-Apitius, Martin
Format Journal Article Web Resource
LanguageEnglish
Published England Oxford University Press 05.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Motivation The COVID-19 pandemic has prompted an impressive, worldwide response by the academic community. In order to support text mining approaches as well as data description, linking and harmonization in the context of COVID-19, we have developed an ontology representing major novel coronavirus (SARS-CoV-2) entities. The ontology has a strong scope on chemical entities suited for drug repurposing, as this is a major target of ongoing COVID-19 therapeutic development. Results The ontology comprises 2270 classes of concepts and 38 987 axioms (2622 logical axioms and 2434 declaration axioms). It depicts the roles of molecular and cellular entities in virus-host interactions and in the virus life cycle, as well as a wide spectrum of medical and epidemiological concepts linked to COVID-19. The performance of the ontology has been tested on Medline and the COVID-19 corpus provided by the Allen Institute. Availabilityand implementation COVID-19 Ontology is released under a Creative Commons 4.0 License and shared via https://github.com/covid-19-ontology/covid-19. The ontology is also deposited in BioPortal at https://bioportal.bioontology.org/ontologies/COVID-19. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Abstract Motivation The COVID-19 pandemic has prompted an impressive, worldwide response by the academic community. In order to support text mining approaches as well as data description, linking and harmonization in the context of COVID-19, we have developed an ontology representing major novel coronavirus (SARS-CoV-2) entities. The ontology has a strong scope on chemical entities suited for drug repurposing, as this is a major target of ongoing COVID-19 therapeutic development. Results The ontology comprises 2270 classes of concepts and 38 987 axioms (2622 logical axioms and 2434 declaration axioms). It depicts the roles of molecular and cellular entities in virus-host interactions and in the virus life cycle, as well as a wide spectrum of medical and epidemiological concepts linked to COVID-19. The performance of the ontology has been tested on Medline and the COVID-19 corpus provided by the Allen Institute. Availabilityand implementation COVID-19 Ontology is released under a Creative Commons 4.0 License and shared via https://github.com/covid-19-ontology/covid-19. The ontology is also deposited in BioPortal at https://bioportal.bioontology.org/ontologies/COVID-19. Supplementary information Supplementary data are available at Bioinformatics online.
The COVID-19 pandemic has prompted an impressive, worldwide response by the academic community. In order to support text mining approaches as well as data description, linking and harmonization in the context of COVID-19, we have developed an ontology representing major novel coronavirus (SARS-CoV-2) entities. The ontology has a strong scope on chemical entities suited for drug repurposing, as this is a major target of ongoing COVID-19 therapeutic development. The ontology comprises 2270 classes of concepts and 38 987 axioms (2622 logical axioms and 2434 declaration axioms). It depicts the roles of molecular and cellular entities in virus-host interactions and in the virus life cycle, as well as a wide spectrum of medical and epidemiological concepts linked to COVID-19. The performance of the ontology has been tested on Medline and the COVID-19 corpus provided by the Allen Institute. COVID-19 Ontology is released under a Creative Commons 4.0 License and shared via https://github.com/covid-19-ontology/covid-19. The ontology is also deposited in BioPortal at https://bioportal.bioontology.org/ontologies/COVID-19. Supplementary data are available at Bioinformatics online.
Author DeLong, Lauren Nicole
Kodamullil, Alpha Tom
Keminer, Oliver
Gebel, Stephan
Kohler, Manfred
Madan, Sumit
Balabin, Helena
Hofmann-Apitius, Martin
Baksi, Shounak
Jose, Geena Mariya
Sargsyan, Astghik
Jacobs, Marc
Darms, Johannes
AuthorAffiliation btaa1057-aff1 Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI) , 53754 Sankt Augustin, Germany
btaa1057-aff3 Causality Biomodels, Kinfra Hi-Tech Park , Cochin, Kerala 683503, India
btaa1057-aff2 Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn , 53113 Bonn, Germany
btaa1057-aff4 Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Hamburg, Germany
AuthorAffiliation_xml – name: btaa1057-aff1 Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI) , 53754 Sankt Augustin, Germany
– name: btaa1057-aff3 Causality Biomodels, Kinfra Hi-Tech Park , Cochin, Kerala 683503, India
– name: btaa1057-aff2 Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn , 53113 Bonn, Germany
– name: btaa1057-aff4 Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Hamburg, Germany
Author_xml – sequence: 1
  givenname: Astghik
  orcidid: 0000-0002-5860-6369
  surname: Sargsyan
  fullname: Sargsyan, Astghik
  organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany
– sequence: 2
  givenname: Alpha Tom
  surname: Kodamullil
  fullname: Kodamullil, Alpha Tom
  email: alpha.tom.kodamullil@scai.fraunhofer.de
  organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany
– sequence: 3
  givenname: Shounak
  surname: Baksi
  fullname: Baksi, Shounak
  organization: Causality Biomodels, Kinfra Hi-Tech Park, Cochin, Kerala 683503, India
– sequence: 4
  givenname: Johannes
  surname: Darms
  fullname: Darms, Johannes
  organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany
– sequence: 5
  givenname: Sumit
  surname: Madan
  fullname: Madan, Sumit
  organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany
– sequence: 6
  givenname: Stephan
  surname: Gebel
  fullname: Gebel, Stephan
  organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany
– sequence: 7
  givenname: Oliver
  surname: Keminer
  fullname: Keminer, Oliver
  organization: Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort, Hamburg, Germany
– sequence: 8
  givenname: Geena Mariya
  surname: Jose
  fullname: Jose, Geena Mariya
  organization: Causality Biomodels, Kinfra Hi-Tech Park, Cochin, Kerala 683503, India
– sequence: 9
  givenname: Helena
  surname: Balabin
  fullname: Balabin, Helena
  organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany
– sequence: 10
  givenname: Lauren Nicole
  surname: DeLong
  fullname: DeLong, Lauren Nicole
  organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany
– sequence: 11
  givenname: Manfred
  surname: Kohler
  fullname: Kohler, Manfred
  organization: Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort, Hamburg, Germany
– sequence: 12
  givenname: Marc
  surname: Jacobs
  fullname: Jacobs, Marc
  organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany
– sequence: 13
  givenname: Martin
  surname: Hofmann-Apitius
  fullname: Hofmann-Apitius, Martin
  email: alpha.tom.kodamullil@scai.fraunhofer.de
  organization: Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33346828$$D View this record in MEDLINE/PubMed
BookMark eNqNkMtrAjEQxkOx1Ed77LUVet6adzaXQrEvQfAivYZsNuqKJjbZLfjfN2VV6q2nGZhvvvnm1wcd550F4B7BRwQlGRWVr9zCh62uKxNHRa01gkxcgB6iHGYYMtlJPeEiozkkXdCPcQ0hQ5TSK9AlhFCe47wHbucrOxzPPicvGZLDmav9xi_31-ByoTfR3hzqAMzfXufjj2w6e5-Mn6eZoXleZ6XRuhS5lkwzSzAsuZWYM4oQ49ZYnc4VUgsKCwEtlbbEpcAlwwYaxrkgA_DU2u6aYmtLY10d9EbtQrXVYa-8rtT5xFUrtfTfSggp0w_J4OFgEPxXY2Ot1r4JLkVWmIqEQhIKk0q0KhN8jMEuThcQVL841TlOdcSZNu_-BjztHfklAW4Fvtn92_UHLvaIow
CitedBy_id crossref_primary_10_1038_s41597_022_01348_9
crossref_primary_10_1093_jamia_ocad149
crossref_primary_10_3390_pharmaceutics14030567
crossref_primary_10_1186_s12911_023_02136_0
crossref_primary_10_1186_s12859_022_05022_0
crossref_primary_10_1075_term_00073_li
crossref_primary_10_1371_journal_pone_0269687
crossref_primary_10_1007_s11227_023_05509_4
crossref_primary_10_1080_13467581_2024_2329361
crossref_primary_10_1016_j_neucom_2023_01_007
crossref_primary_10_1016_j_procs_2021_09_201
crossref_primary_10_1186_s12911_023_02184_6
crossref_primary_10_1016_j_aei_2023_102156
crossref_primary_10_3390_v15020505
crossref_primary_10_1038_s41598_023_34287_5
crossref_primary_10_3390_data9020025
crossref_primary_10_3389_frma_2021_694307
crossref_primary_10_2174_2666796704666230726122536
Cites_doi 10.1002/minf.202000028
10.1007/s40484-020-0199-0
10.1097/CM9.0000000000000797
ContentType Journal Article
Web Resource
Copyright The Author(s) 2020. Published by Oxford University Press. 2020
The Author(s) 2020. Published by Oxford University Press.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. 2020
– notice: The Author(s) 2020. Published by Oxford University Press.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
NPM
AAYXX
CITATION
COVID
5PM
DOI 10.1093/bioinformatics/btaa1057
DatabaseName Open Access: Oxford University Press Open Journals
PubMed
CrossRef
Coronavirus Research Database
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Coronavirus Research Database
DatabaseTitleList CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Open Access: Oxford University Press Open Journals
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: COVID
  name: Coronavirus Research Database
  url: https://proxy.k.utb.cz/login?url=https://search.proquest.com/coronavirus
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
Editor Kelso, Janet
Editor_xml – sequence: 1
  givenname: Janet
  surname: Kelso
  fullname: Kelso, Janet
EndPage 5705
ExternalDocumentID 10_1093_bioinformatics_btaa1057
33346828
10.1093/bioinformatics/btaa1057
Genre Journal Article
GrantInformation_xml – fundername: Fraunhofer Society
– fundername: MAVO program
– fundername: ;
GroupedDBID -~X
.2P
.I3
482
48X
53G
5GY
6.Y
AAIMJ
AAJKP
AAKPC
AAMVS
AAPQZ
AAPXW
AARHZ
AAVAP
ABEFU
ABNKS
ABPTD
ABSAR
ABSMQ
ABWST
ABXVV
ABZBJ
ACGFS
ACMRT
ACPQN
ACUFI
ACYTK
ADEYI
ADFTL
ADGZP
ADHKW
ADOCK
ADRIX
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKPW
AEKSI
AELWJ
AEPUE
AETBJ
AFFNX
AFFZL
AFOFC
AFSHK
AFXEN
AGINJ
AGKRT
AGQXC
AI.
ALMA_UNASSIGNED_HOLDINGS
ALTZX
AQDSO
ARIXL
ASAOO
ATDFG
ATTQO
AXUDD
AYOIW
AZFZN
AZVOD
BCRHZ
BHONS
CXTWN
CZ4
DFGAJ
EE~
ELUNK
F5P
F9B
FEDTE
H5~
HAR
HVGLF
HW0
IOX
KOP
KSI
KSN
MBTAY
MVM
NGC
PB-
Q1.
Q5Y
QBD
RD5
RIG
ROL
ROX
ROZ
RXO
TCN
TLC
TN5
TOX
TR2
VH1
WH7
XJT
ZGI
~91
---
-E4
.DC
0R~
23N
2WC
4.4
5WA
70D
AAIJN
AAMDB
AAOGV
AAVLN
ABEUO
ABIXL
ABQLI
ACIWK
ACPRK
ADBBV
ADEZT
ADGKP
ADHZD
ADPDF
ADRDM
ADVEK
AEMDU
AENEX
AENZO
AEWNT
AFGWE
AFIYH
AFRAH
AGKEF
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALUQC
APIBT
APWMN
ASPBG
AVWKF
BAWUL
BAYMD
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EMOBN
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
HZ~
J21
JXSIZ
KAQDR
KQ8
M-Z
M49
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NPM
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
R44
RNS
RPM
RUSNO
RW1
SV3
TEORI
TJP
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
AASNB
AAYXX
CITATION
COVID
5PM
AAUQX
ID FETCH-LOGICAL-c488t-dcaad78a95a5e320d6e926541156ecea514b9a740b70e49ed2d72d52c0c56673
IEDL.DBID RPM
ISSN 1367-4803
IngestDate Tue Sep 17 21:17:56 EDT 2024
Thu Oct 10 17:45:00 EDT 2024
Fri Aug 23 02:33:25 EDT 2024
Wed Oct 16 00:39:40 EDT 2024
Wed Aug 28 03:17:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
The Author(s) 2020. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-dcaad78a95a5e320d6e926541156ecea514b9a740b70e49ed2d72d52c0c56673
Notes The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.
ORCID 0000-0002-5860-6369
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7799333/
PMID 33346828
PQID 2471469340
PQPubID 4686267
PageCount 3
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7799333
proquest_journals_2471469340
crossref_primary_10_1093_bioinformatics_btaa1057
pubmed_primary_33346828
oup_primary_10_1093_bioinformatics_btaa1057
PublicationCentury 2000
PublicationDate 2021-Apr-05
PublicationDateYYYYMMDD 2021-04-05
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-Apr-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Zhao (2023062408125196700_btaa1057-B7) 2020; 8
(2023062408125196700_btaa1057-B1) 2020
Jin (2023062408125196700_btaa1057-B3) 2020
Smith (2023062408125196700_btaa1057-B5) 2020
Fan (2023062408125196700_btaa1057-B2) 2020
Kucharski (2023062408125196700_btaa1057-B4) 2020
Ton (2023062408125196700_btaa1057-B6) 2020; 39
References_xml – year: 2020
  ident: 2023062408125196700_btaa1057-B1
– year: 2020
  ident: 2023062408125196700_btaa1057-B4
  article-title: Early dynamics of transmission and control of COVID-19: a mathematical modelling studyLancet
  publication-title: Infect Dis
  contributor:
    fullname: Kucharski
– volume: 39
  start-page: 2000028
  year: 2020
  ident: 2023062408125196700_btaa1057-B6
  article-title: 2020 rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds
  publication-title: Mol. Inform
  doi: 10.1002/minf.202000028
  contributor:
    fullname: Ton
– volume: 8
  start-page: 11
  year: 2020
  ident: 2023062408125196700_btaa1057-B7
  article-title: Modeling the epidemic dynamics and control of COVID-19 outbreak in China
  publication-title: Quant. Biol
  doi: 10.1007/s40484-020-0199-0
  contributor:
    fullname: Zhao
– year: 2020
  ident: 2023062408125196700_btaa1057-B3
  contributor:
    fullname: Jin
– year: 2020
  ident: 2023062408125196700_btaa1057-B5
  contributor:
    fullname: Smith
– year: 2020
  ident: 2023062408125196700_btaa1057-B2
  article-title: Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus (2019-nCoV) related coronavirus model
  publication-title: Chin. Med. J. (Engl.)
  doi: 10.1097/CM9.0000000000000797
  contributor:
    fullname: Fan
SSID ssj0051444
ssj0005056
Score 2.5475178
Snippet Abstract Motivation The COVID-19 pandemic has prompted an impressive, worldwide response by the academic community. In order to support text mining approaches...
The COVID-19 pandemic has prompted an impressive, worldwide response by the academic community. In order to support text mining approaches as well as data...
SourceID pubmedcentral
proquest
crossref
pubmed
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 5703
SubjectTerms Applications Notes
SummonAdditionalLinks – databaseName: Coronavirus Research Database
  dbid: COVID
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BuyAGQBQIFJSBDblN_IiTiaFQFSToUqBbZMeuqJDSQtMBfj12HqXpgBBzLDu-s-9hf74P4DLEREXK91GgtEZ0wiiSnPuIES5MdK6NS7XvnR8eg8ETvR-zcXngtihhlZVNzA21miX2jLyLjRU1qRyh3vX8HVnWKHu7WlJobEOTGL-DG9DsDZ_vbiogV0S6cjorS5DassddmQlhqW1rbqj2tG0twtwESq55nv4exNU_F4CTt84yk53ka6Oc4_8ntQ-7L1q61TH-AWzp9BBaZvm4-SSRH7nDNGe5_WzBqH876g1QyaCAErMxM6QSIRQPRcQE0wR7KtARtszfJmvTiRYmWpKR4NST3NM00gorjhXDiZcwywd6BI10luoTcLmJU0SIfWH6oEybLG0iNVORpiHDTGIHvEqe8byokxEX99skrqsgrlTgwJWR-99btysRxuU2W8Q_8nPguFDVqj9CCA1MPukArylx1cAW1q5_SaeveYFtzk3URsjp70OewQ62ABcL42FtaGQfS31uIpRMXpTL8Bv3kewC
  priority: 102
  providerName: ProQuest
Title The COVID-19 Ontology
URI https://www.ncbi.nlm.nih.gov/pubmed/33346828
https://www.proquest.com/docview/2471469340
https://pubmed.ncbi.nlm.nih.gov/PMC7799333
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED3RIlAXxDeFgjqwIZPEH3EyokJVkKAMBXWL7NiISjQgKEP_PeckrlomxJIlzik5n3XvlHf3AM4TykxqoojExlrCXwQnWsqICCYVonOLKdX1O98_xIMnfjcW4zUQvhemJO3nenJZvE0vi8lrya38mOaB54kFj_c9KTGrMhY0oIEB6kt0z-sIS8lWN4qM8CRkntSVskBP3utxpG4EcqBnSjmZ2xZsojUeJ06SfSk7rXS8LQHP3_zJpYTU34atGkl2r6o33oE1W-zCRqUtOd-DfQyAbm_4fHtNorQ7LEqd2vk-jPo3o96A1BoIJMejNSMmV8rIRKVCCctoaGKbUqfdjXWXza1CvKNTJXmoZWh5ag01khpB8zAXTtHzAJrFe2GPoCsRaaiERgptcGGxznrRVpjU8kRQoWkbQv_p2Uc16SKr_lCzbNVxmXdcGy7QRX9f3fGuzOqD8pVRTI5YoTMetuGw8urCnt-UNsgVfy8WuNHYq3cwYsoR2XWEHP_7yRNoUcdecRwd0YHm7PPbniL8mOkzWC8376wMO7yOhuMfT2rcQg
link.rule.ids 230,315,730,783,787,888,1607,27938,27939,38532,43911,53808,53810
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFH9ROGg8qBEVRd3Bmyls_aDs5AEloHxcULkt7VoiMRko46B_vS3bkHEwxvOadn2v76t97_0ArhuYKF95HqorrREdM4ok5x5ihAvjnWtjUm29c69fbz_RhxEbpRdu8zStMtOJS0WtpqG9I69ho0VNKEeoezt7RxY1yr6uphAa21C0FaRGMIvNwXPnLkvk8klNTqZpC1Lb9rgmYyEstG3ODOVK29Y8zM1EyTXL09qHIPvnJOHkrbqIZTX82mjn-P9NHcDei5ZOdo1_CFs6OoKSOT7OcpPI851BtES5_SzBsHU_bLZRiqCAQiOYMVKhEIo3hM8E0wS7qq59bJG_TdSmQy2MtyR9wakruauprxVWHCuGQzdkFg_0GArRNNKn4HDjp4gG9oSZgzJtorSx1Ez5mjYYZhKXwc3oGcySPhlB8r5NgjwLgowFZbgxdP_76EpGwiAVs3nwQ78ynCSsWs1HCKF1E0-WgeeYuBpgG2vnv0ST12WDbc6N10bI2e9LXsFOe9jrBt1O__EcdrFNdrEpPawChfhjoS-MtxLLy_RIfgMf_u7p
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BEagX9qWsPXBDbhIvcXxEhYodDoAQl8iOXVEBoYL0AF-PncSo5YQ4ZzKS_WzNWH5-D2A_wUQLHUUo1sYg2mcUKc4jxAiXtjs3tqS6986XV_HJHT17YA9jVl8laT9Tg07-8trJB08lt3L4mgWeJxbcXHY5t1WVkGCo-8E0zDCnUuUP6p7dEZbGrU6QDNEkJJ7aJUigBm-1KKkTQg5UIaUzu23CnM1J48QZs4_VqIl3b2Pt528W5VhZ6i3Aox9QxUZ57owK1cm-fmk9_mvEizBfN6vtwypkCaZMvgyzlX3l5wqs2jXW7l7fnx6hSLSv89IK93MVbnvHt90TVNssoMzu3gLpTErNEymYZIbgUMdGYGcPbo92JjPStlRKSE5DxUNDhdFYc6wZzsKMOdPQNWjkb7nZgDa3zYxMcCRtDsqMPcr1lWFaGJowzBRuQejnNR1WYhppdQlO0klUUo9KCw7s_P89etvjlNZ78SPFtv7SWBAatmC9guwnn0e8BXwCzJ8Ap749-cVCVKpw15Bs_vvPPZi7OeqlF6dX51vQxI4r4xhBbBsaxfvI7Nhmp1C75bL-BkGo_gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+COVID-19+Ontology&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Sargsyan%2C+Astghik&rft.au=Kodamullil%2C+Alpha+Tom&rft.au=Baksi%2C+Shounak&rft.au=Darms%2C+Johannes&rft.date=2021-04-05&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=36&rft.issue=24&rft.spage=5703&rft.epage=5705&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaa1057&rft_id=info%3Apmid%2F33346828&rft.externalDBID=PMC7799333
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon