A Critical Review on the Junction Temperature Measurement of Light Emitting Diodes
In the new age of illumination, light emitting diodes (LEDs) have been proven to be the most efficient alternative to conventional light sources. Yet, in comparison to other lighting systems, LEDs operate at low temperatures while junction temperature (Tj) is is among the main factors dictating thei...
Saved in:
Published in | Micromachines (Basel) Vol. 13; no. 10; p. 1615 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
27.09.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the new age of illumination, light emitting diodes (LEDs) have been proven to be the most efficient alternative to conventional light sources. Yet, in comparison to other lighting systems, LEDs operate at low temperatures while junction temperature (Tj) is is among the main factors dictating their lifespan, reliability, and performance. This indicates that accurate measurement of LED temperature is of great importance to better understand the thermal effects over a system and improve performance. Over the years, various Tj measurement techniques have been developed, and existing methods have been improved in many ways with technological and scientific advancements. Correspondingly, in order to address the governing phenomena, benefits, drawbacks, possibilities, and applications, a wide range of measurement techniques and systems are covered. This paper comprises a large number of published studies on junction temperature measurement approaches for LEDs, and a summary of the experimental parameters employed in the literature are given as a reference. In addition, some of the corrections noted in non-ideal thermal calibration processes are discussed and presented. Finally, a comparison between methods will provide the readers a better insight into the topic and direction for future research. |
---|---|
AbstractList | In the new age of illumination, light emitting diodes (LEDs) have been proven to be the most efficient alternative to conventional light sources. Yet, in comparison to other lighting systems, LEDs operate at low temperatures while junction temperature (Tj) is is among the main factors dictating their lifespan, reliability, and performance. This indicates that accurate measurement of LED temperature is of great importance to better understand the thermal effects over a system and improve performance. Over the years, various Tj measurement techniques have been developed, and existing methods have been improved in many ways with technological and scientific advancements. Correspondingly, in order to address the governing phenomena, benefits, drawbacks, possibilities, and applications, a wide range of measurement techniques and systems are covered. This paper comprises a large number of published studies on junction temperature measurement approaches for LEDs, and a summary of the experimental parameters employed in the literature are given as a reference. In addition, some of the corrections noted in non-ideal thermal calibration processes are discussed and presented. Finally, a comparison between methods will provide the readers a better insight into the topic and direction for future research. In the new age of illumination, light emitting diodes (LEDs) have been proven to be the most efficient alternative to conventional light sources. Yet, in comparison to other lighting systems, LEDs operate at low temperatures while junction temperature ( T j ) is is among the main factors dictating their lifespan, reliability, and performance. This indicates that accurate measurement of LED temperature is of great importance to better understand the thermal effects over a system and improve performance. Over the years, various T j measurement techniques have been developed, and existing methods have been improved in many ways with technological and scientific advancements. Correspondingly, in order to address the governing phenomena, benefits, drawbacks, possibilities, and applications, a wide range of measurement techniques and systems are covered. This paper comprises a large number of published studies on junction temperature measurement approaches for LEDs, and a summary of the experimental parameters employed in the literature are given as a reference. In addition, some of the corrections noted in non-ideal thermal calibration processes are discussed and presented. Finally, a comparison between methods will provide the readers a better insight into the topic and direction for future research. In the new age of illumination, light emitting diodes (LEDs) have been proven to be the most efficient alternative to conventional light sources. Yet, in comparison to other lighting systems, LEDs operate at low temperatures while junction temperature (Tj) is is among the main factors dictating their lifespan, reliability, and performance. This indicates that accurate measurement of LED temperature is of great importance to better understand the thermal effects over a system and improve performance. Over the years, various Tj measurement techniques have been developed, and existing methods have been improved in many ways with technological and scientific advancements. Correspondingly, in order to address the governing phenomena, benefits, drawbacks, possibilities, and applications, a wide range of measurement techniques and systems are covered. This paper comprises a large number of published studies on junction temperature measurement approaches for LEDs, and a summary of the experimental parameters employed in the literature are given as a reference. In addition, some of the corrections noted in non-ideal thermal calibration processes are discussed and presented. Finally, a comparison between methods will provide the readers a better insight into the topic and direction for future research.In the new age of illumination, light emitting diodes (LEDs) have been proven to be the most efficient alternative to conventional light sources. Yet, in comparison to other lighting systems, LEDs operate at low temperatures while junction temperature (Tj) is is among the main factors dictating their lifespan, reliability, and performance. This indicates that accurate measurement of LED temperature is of great importance to better understand the thermal effects over a system and improve performance. Over the years, various Tj measurement techniques have been developed, and existing methods have been improved in many ways with technological and scientific advancements. Correspondingly, in order to address the governing phenomena, benefits, drawbacks, possibilities, and applications, a wide range of measurement techniques and systems are covered. This paper comprises a large number of published studies on junction temperature measurement approaches for LEDs, and a summary of the experimental parameters employed in the literature are given as a reference. In addition, some of the corrections noted in non-ideal thermal calibration processes are discussed and presented. Finally, a comparison between methods will provide the readers a better insight into the topic and direction for future research. |
Audience | Academic |
Author | Cengiz, Ceren Azarifar, Mohammad Arik, Mehmet |
AuthorAffiliation | 3 Evateg Center, Ozyegin University, Istanbul 34794, Turkey 1 Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA 2 Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA |
AuthorAffiliation_xml | – name: 1 Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA – name: 3 Evateg Center, Ozyegin University, Istanbul 34794, Turkey – name: 2 Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA |
Author_xml | – sequence: 1 givenname: Ceren orcidid: 0000-0003-4420-4171 surname: Cengiz fullname: Cengiz, Ceren – sequence: 2 givenname: Mohammad orcidid: 0000-0003-1197-8488 surname: Azarifar fullname: Azarifar, Mohammad – sequence: 3 givenname: Mehmet orcidid: 0000-0002-9505-281X surname: Arik fullname: Arik, Mehmet |
BookMark | eNptUt9rFDEQXqSC9eyLf8GCLyJcm2w22c2LcJzVVk6EUsG3MJvM7uXY3ZzZbMX_3rleRVtMYCaZfPNlfr3MTsYwYpa95uxcCM0uBs8FZ1xx-Sw7LVhVLJVS30_-Ob_IzqZpx2hVlSZxmt2s8nX0yVvo8xu88_gzD2Oetph_nkebPF1ucdhjhDRHzL8gTKQHHFMe2nzju23KLwefkh-7_IMPDqdX2fMW-gnPHvQi-_bx8nZ9tdx8_XS9Xm2WtqzrtHRQqlaxugUslAOrQLJaclG6BrTGwopCAeeiqrWoK-VaxktWtlZS4E5KIRbZ9ZHXBdiZffQDxF8mgDf3hhA7A5Ey69FwDlhWshENQNloaConQYDgygmQTUFc749c-7kZ0FnKL0L_iPTxy-i3pgt3RivOKW4iePtAEMOPGadkBj9Z7HsYMcyTKapCy4KTJOibJ9BdmONIpTqgask0vyc8P6I6oAT82Ab619J2OHhLjW892VdVKXWhNdVpkbGjg41hmiK2xvoEhw6So-8NZ-YwJebvlJDLuycufxL-D_g3vOO-AA |
CitedBy_id | crossref_primary_10_35848_1347_4065_ada904 crossref_primary_10_3389_frsen_2024_1347507 crossref_primary_10_3390_s24102974 crossref_primary_10_3390_electronics12183844 crossref_primary_10_3390_sym17010058 crossref_primary_10_1364_OE_518534 crossref_primary_10_3390_mi14081636 crossref_primary_10_1016_j_jlumin_2023_120376 crossref_primary_10_1109_TED_2024_3393448 crossref_primary_10_1016_j_physo_2024_100214 crossref_primary_10_1364_OL_525315 crossref_primary_10_1109_TED_2024_3450441 crossref_primary_10_1016_j_ijthermalsci_2024_109654 crossref_primary_10_35848_1347_4065_adb299 crossref_primary_10_3390_machines11080792 crossref_primary_10_1109_TED_2023_3248524 |
Cites_doi | 10.1002/pssa.201200658 10.1109/ESIME.2010.5464567 10.1063/5.0077039 10.1115/1.2993145 10.1109/TED.2017.2686704 10.1016/j.icheatmasstransfer.2013.08.022 10.3390/en12101860 10.1063/1.4930868 10.1109/TPEL.2011.2178433 10.1117/12.732504 10.1086/203705 10.1109/JPROC.2006.879793 10.1109/LED.2006.889215 10.1109/LED.2019.2900841 10.1016/j.vibspec.2011.08.003 10.1109/TCPMT.2018.2799488 10.1103/PhysRevApplied.10.034049 10.1109/TED.2017.2678513 10.1109/TPEL.2013.2281812 10.1109/JDT.2012.2226017 10.1109/TED.2016.2625264 10.1016/j.measurement.2007.10.007 10.1109/TED.2007.908874 10.1016/j.sse.2013.04.001 10.1016/j.optmat.2010.06.005 10.1063/1.5026650 10.1063/1.1363696 10.1016/j.ijheatmasstransfer.2022.122607 10.1103/PhysRev.176.950 10.1063/1.1852073 10.1063/1.124083 10.1038/srep06338 10.1021/acsnano.5b06734 10.1143/JJAP.44.7260 10.1016/j.jhydrol.2006.10.023 10.1109/TED.2006.882274 10.1016/j.microrel.2017.05.020 10.1016/j.tsf.2017.01.033 10.1063/1.367972 10.1038/s41598-020-74585-w 10.1002/9780470827857 10.1016/j.enconman.2015.04.063 10.1016/S1748-0132(07)70019-1 10.35848/1347-4065/abf90c 10.1016/j.diamond.2009.02.018 10.1088/0957-0233/21/4/045107 10.1109/EuroSimE.2016.7463297 10.1063/1.4824355 10.1109/JESTPE.2021.3063305 10.1002/pssc.200405098 10.1117/12.863060 10.1109/BCICTS45179.2019.8972732 10.1109/TED.2013.2280644 10.1038/s41598-017-18686-z 10.1533/9780857099242.1 10.1016/j.microrel.2013.01.003 10.1109/IEMT.2012.6521830 10.1021/acsphotonics.2c00285 10.1115/1.4047381 10.1063/1.4948737 10.1115/1.4024359 10.3390/mi13081245 10.1016/j.infrared.2021.103980 10.1016/j.jcrysgro.2006.10.259 10.1016/j.sna.2019.111578 10.5755/j01.eie.22.2.8522 10.1117/12.509751 10.1063/1.2043231 10.1063/5.0047914 10.1186/s40539-015-0026-9 10.1002/qre.4680090411 10.1118/1.3106342 10.3390/s120404648 10.1007/s00170-015-7244-6 10.1016/j.jallcom.2020.154542 10.1109/55.641429 10.1109/MIE.2014.2312427 10.1109/SEMI-THERM.2018.8357354 10.1007/s11082-021-03182-6 10.1007/s11664-007-0370-7 10.1002/pssc.201300290 10.1088/0957-4484/23/7/075703 10.1016/j.icheatmasstransfer.2008.11.015 10.1109/MSPEC.2014.6905492 10.1063/1.1735869 10.1016/j.pecs.2016.05.003 10.1063/1.1534935 10.1080/17686733.2019.1600318 10.1016/0167-9317(95)00348-7 10.1088/0268-1242/27/10/105011 10.1364/OPN.19.9.000022 10.1063/1.1518155 10.1109/ITherm51669.2021.9503203 10.1063/1.117026 10.3390/cryst11091061 10.1149/2.0372001JSS 10.1007/978-3-319-58175-0 10.1109/JEDS.2021.3095501 10.1109/SSLChinaIFWS49075.2019.9019776 10.1364/AO.52.008484 10.1109/JMEMS.2021.3112769 10.1002/(SICI)1521-396X(199911)176:1<783::AID-PSSA783>3.0.CO;2-Z 10.1109/ACEPT.2017.8168600 10.1016/j.ijheatmasstransfer.2018.07.091 10.1143/JPSJ.48.1661 10.1002/9783527693306 10.1016/j.applthermaleng.2015.04.044 10.1109/TDMR.2015.2510223 10.1088/0022-3727/42/14/143001 10.1016/j.sse.2011.10.033 10.1109/LPT.2004.828361 10.3390/mi13020229 10.1115/1.3450396 10.1063/1.122810 10.1002/adfm.201905445 10.1049/ip-g-2.1991.0065 10.1109/TED.2012.2228656 10.1088/1757-899X/774/1/012091 10.1109/ITHERM.2014.6892277 10.1016/j.microrel.2021.114121 10.1016/j.microrel.2014.01.016 10.2514/1.T4801 10.1016/j.ijheatmasstransfer.2018.03.055 10.1109/STHERM.2010.5444276 10.1016/j.ijleo.2021.166606 10.1007/s11664-010-1360-8 10.1063/5.0005874 10.1117/12.2040710 10.1016/0031-8914(67)90062-6 10.1063/1.4821538 10.3390/s21093113 10.1016/j.ijheatmasstransfer.2012.11.056 10.1016/0034-4257(92)90095-2 10.1063/1.1148752 10.1143/JJAP.45.L1084 10.1063/1.3505780 10.1049/et.2018.0906 10.1109/ICEPT47577.2019.245093 10.1016/j.ijheatmasstransfer.2013.05.072 10.1088/1361-6463/ac802b 10.1016/j.applthermaleng.2012.05.018 10.1016/j.expthermflusci.2010.03.011 10.1088/1742-6596/2116/1/012121 10.1109/ICEP.2016.7486781 10.1063/1.1645326 10.1109/ISAPM.2010.5441381 10.1016/j.jlumin.2006.01.262 10.1016/j.mssp.2007.11.007 10.1109/TCPMT.2019.2929172 10.1016/S0022-2313(99)00588-8 10.1017/CBO9780511790546 10.1142/S0129156404002715 10.1016/j.applthermaleng.2012.01.014 10.1016/j.mee.2020.111451 10.1115/1.4055145 10.1143/JJAP.47.2171 10.1063/1.345314 10.1109/STHERM.2011.5767216 10.1109/LED.2018.2805192 10.1063/1.3243319 10.1109/ICEPT.2014.6922934 10.1016/S0079-6727(96)00002-X 10.1016/j.jcrysgro.2004.04.071 10.1063/1.3359651 10.1364/OE.451509 10.1063/1.3657154 10.1007/s12200-015-0533-8 10.1063/1.1849838 10.1016/j.microrel.2010.03.007 10.1364/OE.16.021835 10.1016/0167-9317(94)90093-0 10.1016/j.microrel.2012.10.010 10.1088/1674-4926/32/1/014007 10.1016/j.mejo.2012.01.007 10.1063/1.1305516 10.1038/srep17227 10.1063/1.4944800 10.1063/1.122164 10.1016/j.mee.2021.111694 10.1109/TCAPT.2003.811467 10.1016/j.microrel.2011.07.063 10.1088/0268-1242/29/3/035008 10.1364/CLEO.2009.JWA82 10.1016/j.microrel.2012.02.005 10.1021/nl101354e 10.1063/1.4718612 10.1021/nl071033g 10.1109/JQE.2014.2359958 10.1364/OL.431933 10.1016/j.jlumin.2020.117782 10.1016/j.mee.2015.11.002 10.1126/science.1175028 10.1063/1.3009966 10.1002/pssa.200925575 10.1117/12.509682 10.1002/crat.201100443 10.1115/1.1568125 10.1002/adfm.201801407 10.1016/j.microrel.2011.02.021 10.1109/ICSENS.2011.6127191 10.1143/JJAP.36.L382 10.1109/TED.2016.2556079 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 7SP 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/mi13101615 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2072-666X |
ExternalDocumentID | oai_doaj_org_article_11ae475b3baa4b9ab7d5a3a316d3a5b2 PMC9611508 A745929911 10_3390_mi13101615 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: TUBITAK grantid: 121F134 |
GroupedDBID | 53G 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 L6V M7S MM. MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RPM TR2 TUS PMFND 7SP 7TB 8FD ABUWG AZQEC DWQXO FR3 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c488t-da46f608fae26dac6a5085134dba99e2c326a1137893876df01404fc5900d5533 |
IEDL.DBID | DOA |
ISSN | 2072-666X |
IngestDate | Wed Aug 27 01:30:15 EDT 2025 Thu Aug 21 18:38:49 EDT 2025 Fri Jul 11 10:56:06 EDT 2025 Fri Jul 25 11:59:27 EDT 2025 Tue May 27 03:55:05 EDT 2025 Tue Jul 01 03:41:23 EDT 2025 Thu Apr 24 22:55:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c488t-da46f608fae26dac6a5085134dba99e2c326a1137893876df01404fc5900d5533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1197-8488 0000-0002-9505-281X 0000-0003-4420-4171 |
OpenAccessLink | https://doaj.org/article/11ae475b3baa4b9ab7d5a3a316d3a5b2 |
PQID | 2728509108 |
PQPubID | 2032359 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_11ae475b3baa4b9ab7d5a3a316d3a5b2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9611508 proquest_miscellaneous_2729521729 proquest_journals_2728509108 gale_infotracacademiconefile_A745929911 crossref_citationtrail_10_3390_mi13101615 crossref_primary_10_3390_mi13101615 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220927 |
PublicationDateYYYYMMDD | 2022-09-27 |
PublicationDate_xml | – month: 9 year: 2022 text: 20220927 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Micromachines (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Narukawa (ref_12) 2006; 45 Chen (ref_106) 2007; 10 ref_138 Zhong (ref_233) 2012; 23 ref_133 ref_132 ref_96 Senawiratne (ref_160) 2008; 37 Cui (ref_150) 1998; 83 Lee (ref_195) 2010; 207 Schwegler (ref_156) 1999; 176 Rongier (ref_128) 2022; 120 Keppens (ref_184) 2008; 104 Ren (ref_34) 2020; 829 Christofferson (ref_97) 2008; 130 Korhonen (ref_205) 2015; 81 Pavlidis (ref_151) 2017; 64 Qiu (ref_58) 2020; Volume 774 Kempkens (ref_134) 1990; 67 Burzo (ref_137) 2003; 26 Chang (ref_43) 2012; 52 Lee (ref_90) 2022; 9 ref_72 Kim (ref_76) 2019; 3 ref_70 Xi (ref_62) 2005; 86 Farina (ref_173) 1995; 1 Ha (ref_41) 2012; 52 ref_74 Xiao (ref_142) 2017; 64 Hwang (ref_176) 2004; 1 Baker (ref_56) 2014; 8 Yang (ref_201) 2013; 48 Brandt (ref_124) 2008; 41 Ohsaka (ref_165) 1980; 48 ref_81 Zhao (ref_216) 2014; 29 ref_80 Claeys (ref_136) 1993; 9 Onwukaeme (ref_188) 2021; 53 Chernyakov (ref_116) 2013; 210 ref_140 Abdullah (ref_174) 2010; 34 ref_141 Tamura (ref_84) 2000; 87 ref_87 Kalker (ref_57) 2021; 10 ref_143 Rahman (ref_44) 2015; 16 Kim (ref_190) 2016; 119 Choi (ref_229) 2019; 298 Cho (ref_79) 1998; 73 Faranda (ref_223) 2012; 48 Hu (ref_236) 2015; 118 Lin (ref_158) 2010; 108 Das (ref_149) 2011; 57 ref_218 Feng (ref_92) 2021; 11 Yang (ref_88) 2018; 8 ref_219 Tsuji (ref_159) 2008; 47 Han (ref_192) 2020; 10 ref_210 Priante (ref_94) 2018; 124 ref_212 Chen (ref_83) 2013; 53 Jin (ref_89) 2019; 40 Dilhaire (ref_101) 2004; 84 Oh (ref_196) 2017; 641 Hyun (ref_91) 2022; 30 Yang (ref_202) 2015; 100 Yung (ref_112) 2013; 52 Long (ref_93) 2021; 46 Ju (ref_131) 1997; 18 Martin (ref_209) 2016; 22 Wu (ref_66) 2012; 43 David (ref_69) 2019; 9 Horiuchi (ref_168) 2015; 2 Kim (ref_113) 2015; 148 ref_207 ref_208 Liu (ref_19) 2008; Volume 6841 Yang (ref_48) 2010; 50 Zheng (ref_145) 2021; 60 Katra (ref_118) 2007; 334 Lin (ref_215) 2013; 60 ref_200 Fu (ref_230) 2013; 65 Cheng (ref_114) 2012; 38 ref_119 Sarua (ref_153) 2007; 54 Nguyen (ref_36) 2013; 10 Sun (ref_17) 2019; 29 Cooper (ref_170) 1975; 97 ref_231 Varshni (ref_60) 1967; 34 Graydon (ref_11) 2007; 1 Raypah (ref_206) 2016; 63 Meyaard (ref_187) 2013; 103 Sadat (ref_225) 2010; 10 ref_104 Sarua (ref_126) 2006; 53 ref_103 ref_108 ref_109 ref_220 Hwang (ref_25) 2010; 7 Calizo (ref_154) 2007; 7 Chen (ref_45) 2011; 32 Aladov (ref_117) 2019; 16 (ref_224) 2021; 120 Chang (ref_107) 2012; 12 Webb (ref_120) 1991; 138 Kuball (ref_147) 2003; 82 Xi (ref_64) 2005; 44 Jayawardena (ref_68) 2013; 86 ref_13 Mohammad (ref_16) 1996; 20 Choi (ref_211) 2021; 235 ref_18 Andonova (ref_110) 2016; 22 Nishiura (ref_22) 2011; 33 ref_15 Lundt (ref_166) 2013; 84 Oesterschulze (ref_95) 1996; 31 Kennedy (ref_20) 1960; 31 Kim (ref_26) 2016; 10 Titkov (ref_193) 2014; 50 Jang (ref_105) 2018; 124 Shin (ref_67) 2012; 68 Zhong (ref_235) 2014; 4 Rao (ref_180) 2013; 9 Lee (ref_175) 2004; 16 Xie (ref_50) 2018; 28 Brown (ref_2) 2009; 325 ref_29 Altet (ref_98) 2006; 94 ref_28 ref_27 Matatagui (ref_139) 1968; 176 Chitnis (ref_155) 2002; 81 Hollstein (ref_122) 2022; 254 Akasaki (ref_10) 2007; 300 Azarifar (ref_38) 2017; 74 Chen (ref_78) 2009; 106 Childs (ref_53) 2000; 71 Krajewski (ref_9) 2014; 51 Luo (ref_24) 2013; 58 Tamdogan (ref_164) 2018; 8 Azarifar (ref_23) 2020; 231 Lee (ref_111) 2018; 127 Razavi (ref_21) 2016; 30 Smith (ref_8) 2018; 13 Mansanares (ref_102) 2005; 98 Chu (ref_227) 2003; 21 Gerbedoen (ref_35) 2009; 18 Wang (ref_71) 1998; 73 Jung (ref_221) 2015; 86 Liu (ref_157) 1999; 74 Cheng (ref_39) 2022; 120 Cengiz (ref_52) 2022; 144 Gu (ref_86) 2004; 5187 Jiang (ref_186) 2007; 122–123 Weaver (ref_232) 2009; 36 Muslu (ref_129) 2021; 143 Zhao (ref_194) 2018; 39 Chhajed (ref_82) 2005; 5739 Park (ref_163) 2018; 10 Welna (ref_127) 2012; 47 Tessier (ref_100) 2001; 78 Kim (ref_14) 2008; 16 Watson (ref_121) 1992; 42 ref_172 Liu (ref_203) 2014; 54 ref_54 ref_177 Chhajed (ref_77) 2005; 97 ref_179 ref_178 Takeuchi (ref_75) 1997; 36 James (ref_3) 1989; 30 Xi (ref_185) 2004; 14 ref_182 ref_59 ref_181 Chen (ref_85) 2014; 29 ref_61 Weng (ref_51) 2009; 36 Natarajan (ref_169) 2013; 135 Shih (ref_228) 2021; 30 DiLaura (ref_5) 2008; 19 ref_65 ref_63 ref_167 Wu (ref_217) 2013; 60 Yao (ref_214) 2016; 9 ref_171 Hopper (ref_125) 2010; 21 Meneghini (ref_191) 2020; 127 Farzaneh (ref_130) 2009; 42 Ozluk (ref_115) 2019; 9 Cutolo (ref_99) 1998; 69 Lee (ref_226) 2007; 2 Horng (ref_46) 2012; 52 Hao (ref_73) 2021; 235 Xu (ref_234) 2016; 87 Xiao (ref_144) 2021; 9 ref_197 ref_33 Luo (ref_42) 2016; 56 ref_32 ref_199 ref_31 ref_198 ref_30 Claeys (ref_135) 1994; 24 Yang (ref_204) 2012; 27 Zheng (ref_161) 2015; 5 Song (ref_222) 2013; 53 Batten (ref_152) 2010; 107 Narendran (ref_49) 2004; 268 ref_47 Zhu (ref_213) 2017; 64 Perlin (ref_183) 1996; 69 ref_40 ref_189 ref_1 Avenas (ref_55) 2012; 27 Vellvehi (ref_123) 2011; 82 Kuball (ref_148) 2007; 28 Azarifar (ref_146) 2022; 189 Wang (ref_162) 2010; 39 Muzychka (ref_37) 2003; 125 ref_4 ref_7 ref_6 |
References_xml | – volume: 210 start-page: 466 year: 2013 ident: ref_116 article-title: Experimental and Theoretical Study of Electrical, Thermal, and Optical Characteristics of InGaN/GaN High-power Flip-chip LEDs publication-title: Phys. Status Solidi doi: 10.1002/pssa.201200658 – ident: ref_104 doi: 10.1109/ESIME.2010.5464567 – volume: 120 start-page: 30501 year: 2022 ident: ref_39 article-title: Perspective on Thermal Conductance across Heterogeneously Integrated Interfaces for Wide and Ultrawide Bandgap Electronics publication-title: Appl. Phys. Lett. doi: 10.1063/5.0077039 – volume: 130 start-page: 041101 year: 2008 ident: ref_97 article-title: Microscale and Nanoscale Thermal Characterization Techniques publication-title: J. Electron. Packag. doi: 10.1115/1.2993145 – volume: 64 start-page: 2326 year: 2017 ident: ref_213 article-title: A Bipolar-Pulse Voltage Method for Junction Temperature Measurement of Alternating Current Light-Emitting Diodes publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2017.2686704 – volume: 48 start-page: 73 year: 2013 ident: ref_201 article-title: An Experimental Study on the Heat Dissipation of LED Lighting Module Using Metal/Carbon Foam publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2013.08.022 – ident: ref_28 doi: 10.3390/en12101860 – volume: 118 start-page: 124501 year: 2015 ident: ref_236 article-title: Noninvasively Probing the Light-Emitting Diode Temperature by Magnetic Nanoparticles publication-title: J. Appl. Phys. doi: 10.1063/1.4930868 – volume: 27 start-page: 3081 year: 2012 ident: ref_55 article-title: Temperature Measurement of Power Semiconductor Devices by Thermo-Sensitive Electrical Parameters—A Review publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2011.2178433 – ident: ref_61 doi: 10.1117/12.732504 – volume: 30 start-page: 1 year: 1989 ident: ref_3 article-title: Hominid Use of Fire in the Lower and Middle Pleistocene: A Review of the Evidence and Comments and Replies publication-title: Curr. Anthropol. doi: 10.1086/203705 – volume: 94 start-page: 1519 year: 2006 ident: ref_98 article-title: Dynamic Surface Temperature Measurements in ICs publication-title: Proc. IEEE doi: 10.1109/JPROC.2006.879793 – volume: 28 start-page: 86 year: 2007 ident: ref_148 article-title: Time-Resolved Temperature Measurement of AlGaN/GaN Electronic Devices Using Micro-Raman Spectroscopy publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2006.889215 – volume: 40 start-page: 506 year: 2019 ident: ref_89 article-title: A Microscopic Hyperspectral-Based Centroid Wavelength Method for Measuring Two-Dimensional Junction Temperature Distribution of LEDs publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2019.2900841 – volume: 57 start-page: 163 year: 2011 ident: ref_149 article-title: Raman Spectroscopy: Recent Advancements, Techniques and Applications publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2011.08.003 – ident: ref_4 – volume: 8 start-page: 1914 year: 2018 ident: ref_164 article-title: A Comparative Study on the Junction Temperature Measurements of LEDs with Raman Spectroscopy, Microinfrared (IR) Imaging, and Forward Voltage Methods publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. doi: 10.1109/TCPMT.2018.2799488 – ident: ref_172 – volume: 10 start-page: 034049 year: 2018 ident: ref_163 article-title: Operando Micro-Raman Three-Dimensional Thermometry with Diffraction-Limit Spatial Resolution for Ga N-Based Light-Emitting Diodes publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.10.034049 – volume: 64 start-page: 2257 year: 2017 ident: ref_142 article-title: Determining Junction Temperature of LEDs by the Relative Reflected Intensity of the Incident Exciting Light publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2017.2678513 – ident: ref_13 – volume: 29 start-page: 3709 year: 2014 ident: ref_85 article-title: Color Variation Reduction of GaN-Based White Light-Emitting Diodes via Peak-Wavelength Stabilization publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2013.2281812 – volume: 9 start-page: 453 year: 2013 ident: ref_180 article-title: An Improved Slurry Method of Self-Adaptive Phosphor Coating for White Pc-LED Packaging publication-title: IEEE/OSA J. Disp. Technol. doi: 10.1109/JDT.2012.2226017 – volume: 64 start-page: 78 year: 2017 ident: ref_151 article-title: Characterization of AlGaN/GaN HEMTs Using Gate Resistance Thermometry publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2016.2625264 – volume: 41 start-page: 731 year: 2008 ident: ref_124 article-title: Emissivity Reference Paints for High Temperature Applications publication-title: Measurement doi: 10.1016/j.measurement.2007.10.007 – volume: 54 start-page: 3152 year: 2007 ident: ref_153 article-title: Thermal Boundary Resistance Between GaN and Substrate in AlGaN/GaN Electronic Devices publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2007.908874 – volume: 86 start-page: 11 year: 2013 ident: ref_68 article-title: Analysis of Three Different Junction Temperature Estimation Methods for AC LEDs publication-title: Solid. State. Electron. doi: 10.1016/j.sse.2013.04.001 – volume: 33 start-page: 688 year: 2011 ident: ref_22 article-title: Properties of Transparent Ce: YAG Ceramic Phosphors for White LED publication-title: Opt. Mater. doi: 10.1016/j.optmat.2010.06.005 – volume: 124 start-page: 15702 year: 2018 ident: ref_94 article-title: Diode Junction Temperature in Ultraviolet AlGaN Quantum-Disks-in-Nanowires publication-title: J. Appl. Phys. doi: 10.1063/1.5026650 – volume: 78 start-page: 2267 year: 2001 ident: ref_100 article-title: Quantitative Thermal Imaging by Synchronous Thermoreflectance with Optimized Illumination Wavelengths publication-title: Appl. Phys. Lett. doi: 10.1063/1.1363696 – volume: 189 start-page: 122607 year: 2022 ident: ref_146 article-title: Thermal and Optical Performance Characterization of Bare and Phosphor Converted LEDs through Package Level Immersion Cooling publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2022.122607 – volume: 7 start-page: 2157 year: 2010 ident: ref_25 article-title: Study on the Effect of the Relative Position of the Phosphor Layer in the LED Package on the High Power LED Lifetime publication-title: Phys. Status Solidi Curr. Top. Solid State Phys. – volume: 176 start-page: 950 year: 1968 ident: ref_139 article-title: Thermoreflectance in Semiconductors publication-title: Phys. Rev. doi: 10.1103/PhysRev.176.950 – volume: 97 start-page: 054506 year: 2005 ident: ref_77 article-title: Influence of Junction Temperature on Chromaticity and Color-Rendering Properties of Trichromatic White-Light Sources Based on Light-Emitting Diodes publication-title: J. Appl. Phys. doi: 10.1063/1.1852073 – volume: 74 start-page: 3125 year: 1999 ident: ref_157 article-title: Temperature Dependence of Raman Scattering in Single Crystal GaN Films publication-title: Appl. Phys. Lett. doi: 10.1063/1.124083 – volume: 4 start-page: 6338 year: 2014 ident: ref_235 article-title: A New Approach for Highly Accurate, Remote Temperature Probing Using Magnetic Nanoparticles publication-title: Sci. Rep. doi: 10.1038/srep06338 – volume: 10 start-page: 238 year: 2016 ident: ref_26 article-title: Bin Effective Heat Dissipation from Color-Converting Plates in High-Power White Light Emitting Diodes by Transparent Graphene Wrapping publication-title: ACS Nano doi: 10.1021/acsnano.5b06734 – volume: 44 start-page: 7260 year: 2005 ident: ref_64 article-title: Junction Temperature in Ultraviolet Light-Emitting Diodes publication-title: Jpn. J. Appl. Physics Part 1 Regul. Pap. Short Notes Rev. Pap. doi: 10.1143/JJAP.44.7260 – volume: 334 start-page: 359 year: 2007 ident: ref_118 article-title: Topsoil Moisture Patterns on Arid Hillsides – Micro-Scale Mapping by Thermal Infrared Images publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.10.023 – ident: ref_177 – volume: 53 start-page: 2438 year: 2006 ident: ref_126 article-title: Integrated Micro-Raman/Infrared Thermography Probe for Monitoring of Self-Heating in AlGaN/GaN Transistor Structures publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2006.882274 – volume: 74 start-page: 82 year: 2017 ident: ref_38 article-title: A Multiscale Analytical Correction Technique for Two-Dimensional Thermal Models of AlGaN/GaN HEMTs publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2017.05.020 – volume: 641 start-page: 8 year: 2017 ident: ref_196 article-title: Junction Temperature Rise Due to Self-Heating Effects in GaInN Blue Light-Emitting Diodes publication-title: Thin Solid Films doi: 10.1016/j.tsf.2017.01.033 – volume: 83 start-page: 7929 year: 1998 ident: ref_150 article-title: Noncontact Temperature Measurements of Diamond by Raman Scattering Spectroscopy publication-title: J. Appl. Phys. doi: 10.1063/1.367972 – ident: ref_200 – volume: 10 start-page: 17433 year: 2020 ident: ref_192 article-title: Identifying the Cause of Thermal Droop in GaInN-Based LEDs by Carrier- and Thermo-Dynamics Analysis publication-title: Sci. Rep. doi: 10.1038/s41598-020-74585-w – ident: ref_31 doi: 10.1002/9780470827857 – volume: 100 start-page: 37 year: 2015 ident: ref_202 article-title: A Novel Flat Polymer Heat Pipe with Thermal via for Cooling Electronic Devices publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.04.063 – volume: 2 start-page: 48 year: 2007 ident: ref_226 article-title: Thermometer Design at the Nanoscale publication-title: Nano Today doi: 10.1016/S1748-0132(07)70019-1 – volume: 60 start-page: 052003 year: 2021 ident: ref_145 article-title: Measuring the Surface Temperature of Light-Emitting Diodes by Thermoreflectance publication-title: Jpn. J. Appl. Phys. doi: 10.35848/1347-4065/abf90c – volume: 1 start-page: 10 year: 1995 ident: ref_173 article-title: Making Surface Temperature Measurements Using Liquid Crystal Thermography publication-title: Electron. Cool. – volume: 18 start-page: 1039 year: 2009 ident: ref_35 article-title: AlGaN/GaN MISHEMT with HBN as Gate Dielectric publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2009.02.018 – volume: 21 start-page: 45107 year: 2010 ident: ref_125 article-title: Use of Carbon Micro-Particles for Improved Infrared Temperature Measurement of CMOS MEMS Devices publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/21/4/045107 – ident: ref_178 doi: 10.1109/EuroSimE.2016.7463297 – volume: 84 start-page: 104906 year: 2013 ident: ref_166 article-title: High Spatial Resolution Raman Thermometry Analysis of TiO2 Microparticles publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4824355 – volume: 10 start-page: 1326 year: 2021 ident: ref_57 article-title: Reviewing Thermal Monitoring Techniques for Smart Power Modules publication-title: IEEE J. Emerg. Sel. Top. Power Electron. doi: 10.1109/JESTPE.2021.3063305 – volume: 1 start-page: 2429 year: 2004 ident: ref_176 article-title: Determination of Junction Temperature and Thermal Resistance in the GaN-Based LEDs Using Direct Temperature Measurement publication-title: Phys. Status Solidi doi: 10.1002/pssc.200405098 – ident: ref_212 doi: 10.1117/12.863060 – ident: ref_132 doi: 10.1109/BCICTS45179.2019.8972732 – ident: ref_15 doi: 10.1002/9780470827857 – volume: 60 start-page: 3775 year: 2013 ident: ref_215 article-title: Determining Junction Temperature in InGaN Light-Emitting Diodes Using Low Forward Currents publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2013.2280644 – volume: 8 start-page: 296 year: 2018 ident: ref_88 article-title: Noncontact and Instant Detection of Phosphor Temperature in Phosphor-Converted White LEDs publication-title: Sci. Rep. doi: 10.1038/s41598-017-18686-z – ident: ref_1 doi: 10.1533/9780857099242.1 – volume: 53 start-page: 701 year: 2013 ident: ref_83 article-title: Estimating the Average Junction Temperature of AlGaInP LED Arrays by Spectral Analysis publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2013.01.003 – ident: ref_109 doi: 10.1109/IEMT.2012.6521830 – volume: 9 start-page: 2905 year: 2022 ident: ref_90 article-title: Technology and Applications of Micro-LEDs: Their Characteristics, Fabrication, Advancement, and Challenges publication-title: ACS Photonics doi: 10.1021/acsphotonics.2c00285 – volume: 143 start-page: 011007 year: 2021 ident: ref_129 article-title: An Investigation Into the Optothermal Behavior of a High Power Red Light Emitting Diode: Impact of an Optical Path publication-title: J. Electron. Packag. Trans. ASME doi: 10.1115/1.4047381 – volume: 87 start-page: 54902 year: 2016 ident: ref_234 article-title: Nanosecond-Resolved Temperature Measurements Using Magnetic Nanoparticles publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4948737 – volume: 135 start-page: 91201 year: 2013 ident: ref_169 article-title: A Comparative Study of Thermal Metrology Techniques for Ultraviolet Light Emitting Diodes publication-title: J. Heat Transfer doi: 10.1115/1.4024359 – ident: ref_87 doi: 10.3390/mi13081245 – ident: ref_7 – volume: 120 start-page: 103980 year: 2022 ident: ref_128 article-title: Infrared Thermography Applied to the Validation of Thermal Simulation of High Luminance LED Used in Automotive Front Lighting publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2021.103980 – volume: 300 start-page: 2 year: 2007 ident: ref_10 article-title: Key Inventions in the History of Nitride-Based Blue LED and LD publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2006.10.259 – volume: 298 start-page: 111578 year: 2019 ident: ref_229 article-title: Integrated Microsensor for Precise, Real-Time Measurement of Junction Temperature of Surface-Mounted Light-Emitting Diode publication-title: Sensors Actuators A Phys. doi: 10.1016/j.sna.2019.111578 – volume: 22 start-page: 49 year: 2016 ident: ref_110 article-title: Estimation the Amount of Heat Generated by LEDs under Different Operating Conditions publication-title: Elektron. Ir Elektrotechnika doi: 10.5755/j01.eie.22.2.8522 – volume: 5187 start-page: 107 year: 2004 ident: ref_86 article-title: A Noncontact Method for Determining Junction Temperature of Phosphor-Converted White LEDs publication-title: Third Int. Conf. Solid State Light. doi: 10.1117/12.509751 – volume: 98 start-page: 63508 year: 2005 ident: ref_102 article-title: Sensitivity Enhancement in Thermoreflectance Microscopy of Semiconductor Devices Using Suitable Probe Wavelengths publication-title: J. Appl. Phys. doi: 10.1063/1.2043231 – volume: 11 start-page: 045227 year: 2021 ident: ref_92 article-title: Thermal Characteristics of InGaN-Based Green Micro-LEDs publication-title: AIP Adv. doi: 10.1063/5.0047914 – volume: 2 start-page: 7 year: 2015 ident: ref_168 article-title: Development of Junction Temperature Estimation System for Light-Emitting LED Using Pulsed-Laser Raman Scattering publication-title: J. Solid State Light. doi: 10.1186/s40539-015-0026-9 – ident: ref_138 – volume: 9 start-page: 303 year: 1993 ident: ref_136 article-title: Thermoreflectance Optical Test Probe for the Measurement of Current-induced Temperature Changes in Microelectronic Components publication-title: Qual. Reliab. Eng. Int. doi: 10.1002/qre.4680090411 – volume: 36 start-page: 1822 year: 2009 ident: ref_232 article-title: Magnetic Nanoparticle Temperature Estimation publication-title: Med. Phys. doi: 10.1118/1.3106342 – volume: 12 start-page: 4648 year: 2012 ident: ref_107 article-title: Precise Temperature Mapping of GaN-Based LEDs by Quantitative Infrared Micro-Thermography publication-title: Sensors doi: 10.3390/s120404648 – volume: 81 start-page: 529 year: 2015 ident: ref_205 article-title: Roll-to-Roll Printed and Assembled Large Area LED Lighting Element publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7244-6 – volume: 829 start-page: 154542 year: 2020 ident: ref_34 article-title: Layered Boron Nitride Enabling High-Performance AlGaN/GaN High Electron Mobility Transistor publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154542 – volume: 18 start-page: 512 year: 1997 ident: ref_131 article-title: Thermal Mapping of Interconnects Subjected to Brief Electrical Stresses publication-title: IEEE Electron Device Lett. doi: 10.1109/55.641429 – volume: 8 start-page: 17 year: 2014 ident: ref_56 article-title: Improved Reliability of Power Modules: A Review of Online Junction Temperature Measurement Methods publication-title: IEEE Ind. Electron. Mag. doi: 10.1109/MIE.2014.2312427 – ident: ref_189 doi: 10.1109/SEMI-THERM.2018.8357354 – volume: 53 start-page: 513 year: 2021 ident: ref_188 article-title: Accurate Determination of Junction Temperature in a GaN-Based Blue Light-Emitting Diode Using Nonlinear Voltage-Temperature Relation publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-021-03182-6 – volume: 37 start-page: 607 year: 2008 ident: ref_160 article-title: Junction Temperature Measurements and Thermal Modeling of GaInN/GaN Quantum Well Light-Emitting Diodes publication-title: J. Electron. Mater. doi: 10.1007/s11664-007-0370-7 – ident: ref_167 – volume: 10 start-page: 1401 year: 2013 ident: ref_36 article-title: Fabrication and Characterization of BN/AlGaN/GaN Metal-insulator-semiconductor Heterojunction Field-effect Transistors with Sputtering-deposited BN Gate Dielectric publication-title: Phys. Status Solidi doi: 10.1002/pssc.201300290 – volume: 23 start-page: 75703 year: 2012 ident: ref_233 article-title: A Noninvasive, Remote and Precise Method for Temperature and Concentration Estimation Using Magnetic Nanoparticles publication-title: Nanotechnology doi: 10.1088/0957-4484/23/7/075703 – volume: 36 start-page: 245 year: 2009 ident: ref_51 article-title: Advanced Thermal Enhancement and Management of LED Packages publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2008.11.015 – volume: 51 start-page: 56 year: 2014 ident: ref_9 article-title: The Great Lightbulb Conspiracy publication-title: IEEE Spectr. doi: 10.1109/MSPEC.2014.6905492 – volume: 31 start-page: 1490 year: 1960 ident: ref_20 article-title: Spreading Resistance in Cylindrical Semiconductor Devices publication-title: J. Appl. Phys. doi: 10.1063/1.1735869 – ident: ref_54 – volume: 56 start-page: 1 year: 2016 ident: ref_42 article-title: Heat and Fluid Flow in High-Power LED Packaging and Applications publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2016.05.003 – volume: 82 start-page: 124 year: 2003 ident: ref_147 article-title: Measurement of Temperature Distribution in Multifinger AlGaN/GaN Heterostructure Field-Effect Transistors Using Micro-Raman Spectroscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.1534935 – volume: 16 start-page: 172 year: 2019 ident: ref_117 article-title: Infrared Micro-Thermography of High-Power AlInGaN LEDs Using High Emissivity (Black) in IR and Transparent in the Visible Spectral Region Coating publication-title: Quant. Infrared Thermogr. J. doi: 10.1080/17686733.2019.1600318 – volume: 31 start-page: 251 year: 1996 ident: ref_95 article-title: Thermal Imaging and Measurement Techniques for Electronic Materials and Devices publication-title: Microelectron. Eng. doi: 10.1016/0167-9317(95)00348-7 – ident: ref_133 – volume: 27 start-page: 105011 year: 2012 ident: ref_204 article-title: Transient Thermal Characterization of Organic Light-Emitting Diodes publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/27/10/105011 – volume: 19 start-page: 22 year: 2008 ident: ref_5 article-title: A Brief History of Lighting publication-title: Opt. Photonics News doi: 10.1364/OPN.19.9.000022 – volume: 81 start-page: 3491 year: 2002 ident: ref_155 article-title: Self-Heating Effects at High Pump Currents in Deep Ultraviolet Light-Emitting Diodes at 324 Nm publication-title: Appl. Phys. Lett. doi: 10.1063/1.1518155 – ident: ref_96 doi: 10.1109/ITherm51669.2021.9503203 – volume: 69 start-page: 1680 year: 1996 ident: ref_183 article-title: Low-temperature Study of Current and Electroluminescence in InGaN/AlGaN/GaN Double-heterostructure Blue Light-emitting Diodes publication-title: Appl. Phys. Lett. doi: 10.1063/1.117026 – ident: ref_74 doi: 10.3390/cryst11091061 – volume: 9 start-page: 16021 year: 2019 ident: ref_69 article-title: Review—The Physics of Recombinations in III-Nitride Emitters publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0372001JSS – ident: ref_47 doi: 10.1007/978-3-319-58175-0 – ident: ref_198 – volume: 9 start-page: 663 year: 2021 ident: ref_144 article-title: Two-Dimensional Transient Temperature Distribution Measurement of GaN Light-Emitting Diode Using High Speed Camera publication-title: IEEE J. Electron Devices Soc. doi: 10.1109/JEDS.2021.3095501 – ident: ref_27 doi: 10.1109/SSLChinaIFWS49075.2019.9019776 – volume: 52 start-page: 8484 year: 2013 ident: ref_112 article-title: Heat Dissipation Performance of a High-Brightness LED Package Assembly Using High-Thermal Conductivity Filler publication-title: Appl. Opt. doi: 10.1364/AO.52.008484 – volume: 30 start-page: 864 year: 2021 ident: ref_228 article-title: A Monolithic Micromachined Thermocouple Probe With Electroplating Nickel for Micro-LED Inspection publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2021.3112769 – volume: 176 start-page: 783 year: 1999 ident: ref_156 article-title: Ohmic Heating of InGaN LEDs during Operation: Determination of the Junction Temperature and Its Influence on Device Performance publication-title: Phys. Status Solidi doi: 10.1002/(SICI)1521-396X(199911)176:1<783::AID-PSSA783>3.0.CO;2-Z – ident: ref_59 doi: 10.1109/ACEPT.2017.8168600 – volume: 127 start-page: 1243 year: 2018 ident: ref_111 article-title: A Study on the Measurement and Prediction of LED Junction Temperature publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.07.091 – volume: 48 start-page: 1661 year: 1980 ident: ref_165 article-title: Temperature Dependence of the Raman Spectrum in Anatase Tio2 publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.48.1661 – ident: ref_103 doi: 10.1002/9783527693306 – volume: 86 start-page: 143 year: 2015 ident: ref_221 article-title: Development of a Heat Dissipating LED Headlamp with Silicone Lens to Replace Halogen Bulbs in Used Cars publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.04.044 – volume: 5739 start-page: 16 year: 2005 ident: ref_82 article-title: Junction Temperature in Light-Emitting Diodes Assessed by Different Methods publication-title: Light. Diodes Res. Manuf. Appl. IX – volume: 16 start-page: 1 year: 2015 ident: ref_44 article-title: Short-and Long-Term Reliability Studies of Broadband Phosphor-Converted Red, Green, and White Light-Emitting Diodes publication-title: IEEE Trans. Device Mater. Reliab. doi: 10.1109/TDMR.2015.2510223 – volume: 42 start-page: 143001 year: 2009 ident: ref_130 article-title: CCD-Based Thermoreflectance Microscopy: Principles and Applications publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/42/14/143001 – volume: 68 start-page: 48 year: 2012 ident: ref_67 article-title: Thermal Analysis of High Power LED Packages under the Alternating Current Operation publication-title: Solid. State. Electron. doi: 10.1016/j.sse.2011.10.033 – volume: 16 start-page: 1706 year: 2004 ident: ref_175 article-title: Temperature Measurement of Visible Light-Emitting Diodes Using Nematic Liquid Crystal Thermography With Laser Illumination publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2004.828361 – ident: ref_30 doi: 10.3390/mi13020229 – volume: 97 start-page: 442 year: 1975 ident: ref_170 article-title: Liquid Crystal Thermography and Its Application to the Study of Convective Heat Transfer publication-title: J. Heat Transfer doi: 10.1115/1.3450396 – volume: 73 start-page: 3571 year: 1998 ident: ref_71 article-title: Photoluminescence Investigation of InGaN/GaN Single Quantum Well and Multiple Quantum Wells publication-title: Appl. Phys. Lett. doi: 10.1063/1.122810 – volume: 29 start-page: 1905445 year: 2019 ident: ref_17 article-title: Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905445 – volume: 138 start-page: 390 year: 1991 ident: ref_120 article-title: Thermal Imaging of Electronic Devices with Low Surface Emissivity publication-title: IEE Proc. G Circuits Devices Syst. doi: 10.1049/ip-g-2.1991.0065 – volume: Volume 6841 start-page: 161 year: 2008 ident: ref_19 article-title: New Approach for 1w High Output LED Package Using 3D Lead Frame publication-title: Solid State Lighting and Solar Energy Technologies – volume: 60 start-page: 241 year: 2013 ident: ref_217 article-title: Junction-Temperature Determination in InGaN Light-Emitting Diodes Using Reverse Current Method publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2012.2228656 – volume: Volume 774 start-page: 12091 year: 2020 ident: ref_58 article-title: Review of Igbt Junction Temperature Extraction and Estimation Methods publication-title: IOP Conference Series: Materials Science and Engineering doi: 10.1088/1757-899X/774/1/012091 – ident: ref_63 doi: 10.1109/ITHERM.2014.6892277 – volume: 120 start-page: 114121 year: 2021 ident: ref_224 article-title: Experimental Analysis on Estimating Junction Temperature and Service Life of High Power LED Array publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2021.114121 – volume: 54 start-page: 926 year: 2014 ident: ref_203 article-title: Experimental and Numerical Approach on Junction Temperature of High-Power LED publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2014.01.016 – volume: 30 start-page: 863 year: 2016 ident: ref_21 article-title: Review of Advances in Thermal Spreading Resistance Problems publication-title: J. Thermophys. Heat Transf. doi: 10.2514/1.T4801 – ident: ref_220 – volume: 124 start-page: 36 year: 2018 ident: ref_105 article-title: Innovative Analytic and Experimental Methods for Thermal Management of SMD-Type LED Chips publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.03.055 – ident: ref_207 doi: 10.1109/STHERM.2010.5444276 – volume: 235 start-page: 166606 year: 2021 ident: ref_73 article-title: Effects of Growth Temperature Change in Quantum Well on Luminescence Performance and Optical Spectrum publication-title: Optik doi: 10.1016/j.ijleo.2021.166606 – volume: 39 start-page: 2448 year: 2010 ident: ref_162 article-title: In Situ Temperature Measurement of GaN-Based Ultraviolet Light-Emitting Diodes by Micro-Raman Spectroscopy publication-title: J. Electron. Mater. doi: 10.1007/s11664-010-1360-8 – volume: 127 start-page: 211102 year: 2020 ident: ref_191 article-title: Thermal Droop in III-Nitride Based Light-Emitting Diodes: Physical Origin and Perspectives publication-title: J. Appl. Phys. doi: 10.1063/5.0005874 – ident: ref_6 – ident: ref_72 doi: 10.1117/12.2040710 – volume: 34 start-page: 149 year: 1967 ident: ref_60 article-title: Temperature Dependence of the Energy Gap in Semiconductors publication-title: Physica doi: 10.1016/0031-8914(67)90062-6 – ident: ref_81 – volume: 103 start-page: 121103 year: 2013 ident: ref_187 article-title: Analysis of the Temperature Dependence of the Forward Voltage Characteristics of GaInN Light-Emitting Diodes publication-title: Appl. Phys. Lett. doi: 10.1063/1.4821538 – ident: ref_33 – ident: ref_219 – ident: ref_182 doi: 10.3390/s21093113 – ident: ref_231 – volume: 58 start-page: 276 year: 2013 ident: ref_24 article-title: Phosphor Self-Heating in Phosphor Converted Light Emitting Diode Packaging publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.11.056 – volume: 42 start-page: 117 year: 1992 ident: ref_121 article-title: Two-Temperature Method for Measuring Emissivity publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(92)90095-2 – ident: ref_199 – volume: 1 start-page: 10 year: 2007 ident: ref_11 article-title: Haitz’s Law publication-title: Nat. Photonics – volume: 69 start-page: 337 year: 1998 ident: ref_99 article-title: Selected Contactless Optoelectronic Measurements for Electronic Applications publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1148752 – volume: 45 start-page: L1084 year: 2006 ident: ref_12 article-title: Ultra-High Efficiency White Light Emitting Diodes publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.45.L1084 – volume: 108 start-page: 114501 year: 2010 ident: ref_158 article-title: Temperature Rise in InGaN/GaN Vertical Light Emitting Diode on Copper Transferred from Silicon Probed by Raman Scattering publication-title: J. Appl. Phys. doi: 10.1063/1.3505780 – volume: 13 start-page: 54 year: 2018 ident: ref_8 article-title: The Whole Story of Light Bulbs publication-title: Eng. Technol. doi: 10.1049/et.2018.0906 – volume: 3 start-page: 164 year: 2019 ident: ref_76 article-title: Effects of Carrier Leakage on Photoluminescence Properties of GaN-Based Light-Emitting Diodes at Room Temperature publication-title: Curr. Opt. Photonics – ident: ref_208 doi: 10.1109/ICEPT47577.2019.245093 – volume: 65 start-page: 199 year: 2013 ident: ref_230 article-title: Can Thermocouple Measure Surface Temperature of Light Emitting Diode Module Accurately? publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.05.072 – ident: ref_210 doi: 10.1088/1361-6463/ac802b – volume: 48 start-page: 155 year: 2012 ident: ref_223 article-title: Refrigerating Liquid Prototype for LED’s Thermal Management publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.05.018 – volume: 34 start-page: 1089 year: 2010 ident: ref_174 article-title: The Basics and Issues of Thermochromic Liquid Crystal Calibrations publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2010.03.011 – ident: ref_29 doi: 10.1088/1742-6596/2116/1/012121 – ident: ref_32 doi: 10.1109/ICEP.2016.7486781 – volume: 84 start-page: 822 year: 2004 ident: ref_101 article-title: Calibration Procedure for Temperature Measurements by Thermoreflectance under High Magnification Conditions publication-title: Appl. Phys. Lett. doi: 10.1063/1.1645326 – volume: 22 start-page: 20 year: 2016 ident: ref_209 article-title: Delphi4LED-from Measurements to Standardized Multi-Domain Compact Models of Light Emitting Diodes (LED) publication-title: Electron. Cool. – ident: ref_108 doi: 10.1109/ISAPM.2010.5441381 – ident: ref_171 – volume: 122–123 start-page: 693 year: 2007 ident: ref_186 article-title: Research on the Junction-Temperature Characteristic of GaN Light-Emitting Diodes on Si Substrate publication-title: J. Lumin. doi: 10.1016/j.jlumin.2006.01.262 – volume: 10 start-page: 206 year: 2007 ident: ref_106 article-title: Junction Temperature and Reliability of High-Power Flip-Chip Light Emitting Diodes publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2007.11.007 – volume: 9 start-page: 2024 year: 2019 ident: ref_115 article-title: A Comparative Study for the Junction Temperature of Green Light-Emitting Diodes publication-title: IEEE Trans. Components, Packag. Manuf. Technol. doi: 10.1109/TCPMT.2019.2929172 – volume: 87 start-page: 1180 year: 2000 ident: ref_84 article-title: Illumination Characteristics of Lighting Array Using 10 Candela-Class White LEDs under AC 100 V Operation publication-title: J. Lumin. doi: 10.1016/S0022-2313(99)00588-8 – ident: ref_80 doi: 10.1017/CBO9780511790546 – volume: 14 start-page: 708 year: 2004 ident: ref_185 article-title: Schub Junction-Temperature Measurement In GaN UV Light-Emitting Diodes Using The Diode Forward Voltage publication-title: Int. J. High Speed Electron. Syst. doi: 10.1142/S0129156404002715 – volume: 38 start-page: 105 year: 2012 ident: ref_114 article-title: On the Thermal Characterization of an RGB LED-Based White Light Module publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.01.014 – volume: 235 start-page: 111451 year: 2021 ident: ref_211 article-title: Precise Measurement of Junction Temperature by Thermal Analysis of Light-Emitting Diode Operated at High Environmental Temperature publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2020.111451 – volume: 144 start-page: 102101 year: 2022 ident: ref_52 article-title: Discrete Phase Analysis of Self Heating Particles Over an Immersion Liquid Cooled High Power Blue Light-Emitting Diode With Suspended Phosphor Particles publication-title: J. Heat Transfer doi: 10.1115/1.4055145 – volume: 47 start-page: 2171 year: 2008 ident: ref_159 article-title: Temperature Measurements of Organic Light-Emitting Diodes by Stokes and Anti-Stokes Raman Scattering publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.47.2171 – volume: 67 start-page: 3618 year: 1990 ident: ref_134 article-title: Measurements of Electrode Temperature Evolution by Laser Light Reflection publication-title: J. Appl. Phys. doi: 10.1063/1.345314 – ident: ref_143 doi: 10.1109/STHERM.2011.5767216 – volume: 39 start-page: 528 year: 2018 ident: ref_194 article-title: Temperature-Dependent Efficiency Droop in GaN-Based Blue LEDs publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2018.2805192 – volume: 106 start-page: 074514 year: 2009 ident: ref_78 article-title: Spectral Shape and Broadening of Emission from AlGaInP Light-Emitting Diodes Spectral Shape and Broadening of Emission from AlGaInP Light-Emitting publication-title: J. Appl. Phys. doi: 10.1063/1.3243319 – ident: ref_141 doi: 10.1109/ICEPT.2014.6922934 – volume: 20 start-page: 361 year: 1996 ident: ref_16 article-title: Progress and Prospects of Group-III Nitride Semiconductors publication-title: Prog. Quantum Electron. doi: 10.1016/S0079-6727(96)00002-X – volume: 268 start-page: 449 year: 2004 ident: ref_49 article-title: Solid-State Lighting: Failure Analysis of White LEDs publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2004.04.071 – volume: 107 start-page: 074502 year: 2010 ident: ref_152 article-title: Temperature Analysis of AlGaN/GaN Based Devices Using Photoluminescence Spectroscopy: Challenges and Comparison to Raman Thermography publication-title: J. Appl. Phys. doi: 10.1063/1.3359651 – volume: 30 start-page: 10119 year: 2022 ident: ref_91 article-title: Ultra-Bright Green InGaN Micro-LEDs with Brightness over 10M Nits publication-title: Opt. Express doi: 10.1364/OE.451509 – volume: 82 start-page: 114901 year: 2011 ident: ref_123 article-title: Irradiance-Based Emissivity Correction in Infrared Thermography for Electronic Applications publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3657154 – ident: ref_197 – volume: 9 start-page: 555 year: 2016 ident: ref_214 article-title: Junction Temperature Measurement of Alternating Current Light-Emitting-Diode by Threshold Voltage Method publication-title: Front. Optoelectron. doi: 10.1007/s12200-015-0533-8 – volume: 86 start-page: 031907 year: 2005 ident: ref_62 article-title: Junction and Carrier Temperature Measurements in Deep-Ultraviolet Light-Emitting Diodes Using Three Different Methods publication-title: Appl. Phys. Lett. doi: 10.1063/1.1849838 – volume: 50 start-page: 959 year: 2010 ident: ref_48 article-title: Failure and Degradation Mechanisms of High-Power White Light Emitting Diodes publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2010.03.007 – volume: 16 start-page: 21835 year: 2008 ident: ref_14 article-title: Transcending the Replacement Paradigm of Solid-State Lighting publication-title: Opt. Express doi: 10.1364/OE.16.021835 – volume: 24 start-page: 411 year: 1994 ident: ref_135 article-title: Laser Probing of Thermal Behaviour of Electronic Components and Its Application in Quality and Reliability Testing publication-title: Microelectron. Eng. doi: 10.1016/0167-9317(94)90093-0 – volume: 53 start-page: 435 year: 2013 ident: ref_222 article-title: Optimum Design Domain of LED-Based Solid State Lighting Considering Cost, Energy Consumption and Reliability publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2012.10.010 – volume: 32 start-page: 14007 year: 2011 ident: ref_45 article-title: Reliability Test and Failure Analysis of High Power LED Packages publication-title: J. Semicond. doi: 10.1088/1674-4926/32/1/014007 – volume: 43 start-page: 280 year: 2012 ident: ref_66 article-title: A Study on the Heat Dissipation of High Power Multi-Chip COB LEDs publication-title: Microelectron. J. doi: 10.1016/j.mejo.2012.01.007 – volume: 71 start-page: 2959 year: 2000 ident: ref_53 article-title: Review of Temperature Measurement publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1305516 – volume: 5 start-page: 17227 year: 2015 ident: ref_161 article-title: Direct Observation of the Biaxial Stress Effect on Efficiency Droop in GaN-Based Light-Emitting Diode under Electrical Injection publication-title: Sci. Rep. doi: 10.1038/srep17227 – volume: 119 start-page: 125104 year: 2016 ident: ref_190 article-title: Effect of Junction Temperature on Heat Dissipation of High Power Light Emitting Diodes publication-title: J. Appl. Phys. doi: 10.1063/1.4944800 – volume: 73 start-page: 1370 year: 1998 ident: ref_79 article-title: “S-Shaped” Temperature-Dependent Emission Shift and Carrier Dynamics in InGaN/GaN Multiple Quantum Wells publication-title: Appl. Phys. Lett. doi: 10.1063/1.122164 – volume: 254 start-page: 111694 year: 2022 ident: ref_122 article-title: Developing a Micro-Thermography System for Thermal Characterization of LED Packages publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2021.111694 – volume: 26 start-page: 80 year: 2003 ident: ref_137 article-title: Thermal Transport Properties of Gold-Covered Thin-Film Silicon Dioxide publication-title: IEEE Trans. Compon. Packag. Technol. doi: 10.1109/TCAPT.2003.811467 – volume: 52 start-page: 762 year: 2012 ident: ref_43 article-title: Light Emitting Diodes Reliability Review publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2011.07.063 – volume: 29 start-page: 035008 year: 2014 ident: ref_216 article-title: Junction Temperature Measurement of GaN-Based Light-Emitting Diodes Using Temperature-Dependent Resistance publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/29/3/035008 – ident: ref_140 doi: 10.1364/CLEO.2009.JWA82 – volume: 52 start-page: 836 year: 2012 ident: ref_41 article-title: Development of a Thermal Resistance Model for Chip-on-Board Packaging of High Power LED Arrays publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2012.02.005 – ident: ref_119 – ident: ref_218 – volume: 10 start-page: 2613 year: 2010 ident: ref_225 article-title: Nanoscale Thermometry Using Point Contact Thermocouples publication-title: Nano Lett. doi: 10.1021/nl101354e – ident: ref_70 doi: 10.1063/1.4718612 – volume: 7 start-page: 2645 year: 2007 ident: ref_154 article-title: Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers publication-title: Nano Lett. doi: 10.1021/nl071033g – volume: 50 start-page: 911 year: 2014 ident: ref_193 article-title: Temperature-Dependent Internal Quantum Efficiency of Blue High-Brightness Light-Emitting Diodes publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.2014.2359958 – ident: ref_40 – ident: ref_18 – volume: 46 start-page: 3271 year: 2021 ident: ref_93 article-title: AlGaN-Based Deep Ultraviolet Micro-LED Emitting at 275 Nm publication-title: Opt. Lett. doi: 10.1364/OL.431933 – volume: 231 start-page: 117782 year: 2020 ident: ref_23 article-title: Particle Based Investigation of Self-Heating Effect of Phosphor Particles in Phosphor Converted Light Emitting Diodes publication-title: J. Lumin. doi: 10.1016/j.jlumin.2020.117782 – volume: 148 start-page: 129 year: 2015 ident: ref_113 article-title: Microscale Thermometry: A Review publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2015.11.002 – volume: 325 start-page: 859 year: 2009 ident: ref_2 article-title: Fire as an Engineering Tool of Early Modern Humans publication-title: Science doi: 10.1126/science.1175028 – volume: 104 start-page: 093104 year: 2008 ident: ref_184 article-title: High Power Light-Emitting Diode Junction Temperature Determination from Current-Voltage Characteristics publication-title: J. Appl. Phys. doi: 10.1063/1.3009966 – volume: 207 start-page: 1497 year: 2010 ident: ref_195 article-title: Thermal Analysis and Characterization of the Effect of Substrate Thinning on the Peformances of GaN-based Light Emitting Diodes publication-title: Phys. Status Solidi doi: 10.1002/pssa.200925575 – ident: ref_65 doi: 10.1117/12.509682 – volume: 47 start-page: 347 year: 2012 ident: ref_127 article-title: Transparency of GaN Substrates in the Mid-infrared Spectral Range publication-title: Cryst. Res. Technol. doi: 10.1002/crat.201100443 – volume: 125 start-page: 178 year: 2003 ident: ref_37 article-title: Thermal Spreading Resistance of Eccentric Heat Sources on Rectangular Flux Channels publication-title: J. Electron. Packag. doi: 10.1115/1.1568125 – volume: 28 start-page: 1801407 year: 2018 ident: ref_50 article-title: Targeting Cooling for Quantum Dots in White QDs-LEDs by Hexagonal Boron Nitride Platelets with Electrostatic Bonding publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801407 – volume: 52 start-page: 818 year: 2012 ident: ref_46 article-title: Failure Modes and Effects Analysis for High-Power GaN-Based Light-Emitting Diodes Package Technology publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2011.02.021 – ident: ref_179 doi: 10.1109/ICSENS.2011.6127191 – volume: 36 start-page: L382 year: 1997 ident: ref_75 article-title: Quantum-Confined Stark Effect Due to Piezoelectric Fields in GaInN Strained Quantum Wells publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.36.L382 – volume: 21 start-page: 2985 year: 2003 ident: ref_227 article-title: Transient Temperature Measurements of Resist Heating Using Nanothermocouples publication-title: J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. – ident: ref_181 – volume: 63 start-page: 2790 year: 2016 ident: ref_206 article-title: Estimation of Luminous Flux and Luminous Efficacy of Low-Power SMD LED as a Function of Injection Current and Ambient Temperature publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2016.2556079 |
SSID | ssj0000779007 |
Score | 2.3501954 |
SecondaryResourceType | review_article |
Snippet | In the new age of illumination, light emitting diodes (LEDs) have been proven to be the most efficient alternative to conventional light sources. Yet, in... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1615 |
SubjectTerms | Design and construction Heat heat generation Illumination Investigations junction temperature light emitting diode (LED) Light emitting diodes Light sources Lighting Low temperature measurement systems Measurement techniques Methods Performance enhancement Radiation Reliability aspects Review Semiconductors Temperature Temperature effects Temperature measurement Temperature measurements Thermal properties thermometry |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-QwEB88fbl7EPXuuPpF5A7Eh-K2TZPmSVZdEVE5RMG3kiapLmir7vr_O5Nmd9078bUJtM18_WaS_Abgj-2lttK6iDG2qpgLnsRFqlWslXHEXoI6TbeRLy7F6Q0_u81vQ8FtFI5VTnyid9S2NVQj309lWvjgVhw8PcfUNYp2V0MLjS-whC64wORr6XBw-fdqWmXpEZ1eT3a8pBnm9_uPwyRLPM6Zi0SesP9_t_zvUcl3sedkBZYDaGT9TsqrsOCaNfj2jkrwO1z12aRrAevq_axtGKI7doaRi1afXTuEyB2FMruYlQZZW7NzStHZ4HHoT0Gz42Fr3egH3JwMro9O49AvITZohuPYai5q0Stq7VJhtRE6J0CVcZSGUi41CNV0kmQSMQo6QVt7bp3aUONQmyPu-wmLTdu4X8CSCqGAlIWtpOCO-ngagz5V1EomtXF1BHuTtStNIBOnnhYPJSYVtM7lbJ0j-D2d-9RRaHw465BEMJ1BtNf-QftyVwYrwnRFOy7zKkP14pXSlbS5znSWCJvpvEoj2CUBlmSc-DlGhzsG-FNEc1X2Jc8RD6KDj2BzIuMyWO2onOlYBDvTYbQ32kTRjWtf_RyVU1cvFYGc0425T58faYb3nrlbCQLgxfrnL9-AryldsqC9L7kJi-OXV7eF0GdcbQf9fgPudQSN priority: 102 providerName: ProQuest |
Title | A Critical Review on the Junction Temperature Measurement of Light Emitting Diodes |
URI | https://www.proquest.com/docview/2728509108 https://www.proquest.com/docview/2729521729 https://pubmed.ncbi.nlm.nih.gov/PMC9611508 https://doaj.org/article/11ae475b3baa4b9ab7d5a3a316d3a5b2 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VeoFDVfpQ09KVEUhVDxHrxLHj41J2QaigCoHEzXJsR6wECYLl_3fGyS67LRIXrrEV2fP8_PoGYM8PM19ZW6aYW3UqpOBpmVmdWu0CsZegTdNr5NMzeXwpTq6Kq6VSX3QnrKMH7gS3z7kNQhVVjn8UlbaV8oXNbc6lz21RxeiLOW9pMRVjMNHoDVXHR5rjun7_dspzHvHNSgaKRP3_h-N_r0gu5ZzJe3jXg0U26ga5BW9C8wE2lygEP8L5iM2rFbBun5-1DUNUx04wY5HU2UVAaNxRJ7PTpy1B1tbsNy3N2fh2Gm8_s8Np68PDJ7icjC9-Had9nYTUofvNUm-FrOWwrG3IpLdO2oKAVC5QC1qHzCFEs5znCrEJBj9fR06d2lHBUF8g3vsM603bhC_AeIUQQKnSV0qKQPU7ncNYKmuteO1CncDPueyM60nEqZbFjcHFBMnZPMk5gd1F37uOOuPZXgekgkUPoruOH9AITG8E5iUjSOAHKdCQU-JwnO3fFuCkiN7KjJQoEAdiYE9ge65j03vrg8lUVkbgVCaws2hGP6PDE9uE9jH20QVV89IJqBXbWBn6akszvY6M3VoS8C6_vsZcv8FGRk8w6GRMbcP67P4xfEdgNKsGsFZOjgbw9mB89ud8ED3iL2kuDyI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V5QAcUPkSgQJGgBCHqPlw7PiA0EK7bNvdHtBW6i04tgMr0aTtboX4U_xGZpxktwuIW69rS_F6xjPPY_s9gFc2SmypdR5iblUhFzwO80SrUCvjiL0EfZpeI0-OxOiYH5xkJxvwq38LQ9cq-5joA7VtDNXIdxKZ5D655e_PzkNSjaLT1V5Co3WLQ_fzB27Z5u_2d9G-r5NkuDf9OAo7VYHQoLMuQqu5qESUV9olwmojdEawI-U4ZqVcYhDQ6DhOJWZyDBW28gw0lSF5TZtlVADFkH-Dp6miFZUPPy1rOhGR90WyZUHF9mjndBansUdVa3nPywP8nQT-vJh5JdMNt-BOB1HZoPWpu7Dh6ntw-wpx4X34PGC9RgJrTxdYUzPEkuwA8yTZmk0dAvKWsJlNVoVI1lRsTAUBtnc683eu2e6ssW7-AI6vZR4fwmbd1O4RsLhE4CFlbkspuCPVUGMwgotKybgyrgrgbT93hemoy0lB43uBWxia52I1zwG8XPY9awk7_tnrA5lg2YNItv0PzcXXoluzuDnSjsusTNGZeal0KW2mU53GwqY6K5MA3pABCwoFOByjuxcN-KeIVKsYSJ4h-sR0EsB2b-OiixHzYuXRAbxYNuPqpiMbXbvm0vdRGWmIqQDkmm-sDX29pZ598zzhShDczx___-PP4eZoOhkX4_2jwydwK6HnHXTqJrdhc3Fx6Z4i6FqUz7ynM_hy3UvrN1FyPrc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBAVEeIlCoESDEIdrESez4UKEtu6s-V1XVSr0Fx3ZgJZqU7laIv8av60weu11A3HpNLMXxjGc-j-3vA3hnA25zrVMfc6vyYxGHfsq18rUyjthL0KfpNvLRROyexfvnyfka_O7uwtCxyi4m1oHaVoZq5H0ueVont7RftMcijofjT5c_fFKQop3WTk6jcZED9-snLt9m23tDtPV7zsej08-7fqsw4Bt03LlvdSwKEaSFdlxYbYROCIJEMfZfKccNghsdhpHErI5hwxY1G01hSGrTJgkVQzH8r0tcFQU9WN8ZTY5PFhWegKj8AtlwokaRCvoX0zAKa4y1kgVrsYC_U8KfxzRv5b3xI3jYAlY2aDxsA9Zc-Rge3KIxfAInA9YpJrBmr4FVJUNkyfYxa5Ll2alDeN7QN7OjZVmSVQU7pPIAG11M6xPYbDitrJs9hbM7Gcln0Cur0j0HFuYIQ6RMbS5F7EhD1BiM56JQMiyMKzz42I1dZloic9LT-J7hgobGOVuOswdvF20vG_qOf7baIRMsWhDldv2guvqatTMYl0raxTLJI3TtOFc6lzbRkY5CYSOd5NyDD2TAjAIDdsfo9n4D_hRRbGUDGSeIRTG5eLDZ2ThrI8YsW_q3B28Wr3Gu0waOLl11XbdRCSmKKQ_kim-sdH31TTn9VrOGK0HgP33x_49vwT2cVtnh3uTgJdzndNeDtuDkJvTmV9fuFSKwef66dXUGX-56dt0AakFESQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Critical+Review+on+the+Junction+Temperature+Measurement+of+Light+Emitting+Diodes&rft.jtitle=Micromachines+%28Basel%29&rft.au=Ceren+Cengiz&rft.au=Mohammad+Azarifar&rft.au=Mehmet+Arik&rft.date=2022-09-27&rft.pub=MDPI+AG&rft.eissn=2072-666X&rft.volume=13&rft.issue=10&rft.spage=1615&rft_id=info:doi/10.3390%2Fmi13101615&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_11ae475b3baa4b9ab7d5a3a316d3a5b2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon |