A Critical Review on the Junction Temperature Measurement of Light Emitting Diodes

In the new age of illumination, light emitting diodes (LEDs) have been proven to be the most efficient alternative to conventional light sources. Yet, in comparison to other lighting systems, LEDs operate at low temperatures while junction temperature (Tj) is is among the main factors dictating thei...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 13; no. 10; p. 1615
Main Authors Cengiz, Ceren, Azarifar, Mohammad, Arik, Mehmet
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 27.09.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the new age of illumination, light emitting diodes (LEDs) have been proven to be the most efficient alternative to conventional light sources. Yet, in comparison to other lighting systems, LEDs operate at low temperatures while junction temperature (Tj) is is among the main factors dictating their lifespan, reliability, and performance. This indicates that accurate measurement of LED temperature is of great importance to better understand the thermal effects over a system and improve performance. Over the years, various Tj measurement techniques have been developed, and existing methods have been improved in many ways with technological and scientific advancements. Correspondingly, in order to address the governing phenomena, benefits, drawbacks, possibilities, and applications, a wide range of measurement techniques and systems are covered. This paper comprises a large number of published studies on junction temperature measurement approaches for LEDs, and a summary of the experimental parameters employed in the literature are given as a reference. In addition, some of the corrections noted in non-ideal thermal calibration processes are discussed and presented. Finally, a comparison between methods will provide the readers a better insight into the topic and direction for future research.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:2072-666X
2072-666X
DOI:10.3390/mi13101615