Evidence for the maximally entangled low x proton in Deep Inelastic Scattering from H1 data
We investigate the proposal by Kharzeev and Levin of a maximally entangled proton wave function in Deep Inelastic Scattering at low x and the proposed relation between parton number and final state hadron multiplicity. Contrary to the original formulation we determine partonic entropy from the sum o...
Saved in:
Published in | The European physical journal. C, Particles and fields Vol. 82; no. 2; pp. 111 - 5 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2022
Springer Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1434-6044 1434-6052 |
DOI | 10.1140/epjc/s10052-022-10056-y |
Cover
Loading…
Abstract | We investigate the proposal by Kharzeev and Levin of a maximally entangled proton wave function in Deep Inelastic Scattering at low
x
and the proposed relation between parton number and final state hadron multiplicity. Contrary to the original formulation we determine partonic entropy from the sum of gluon and quark distribution functions at low
x
, which we obtain from an unintegrated gluon distribution subject to next-to-leading order Balitsky–Fadin–Kuraev–Lipatov evolution. We find for this framework very good agreement with H1 data. We furthermore provide a comparison based on NNPDF parton distribution functions at both next-to-next-to-leading order and next-to-next-to-leading with small
x
resummation, where the latter provides an acceptable description of data. |
---|---|
AbstractList | We investigate the proposal by Kharzeev and Levin of a maximally entangled proton wave function in Deep Inelastic Scattering at low x and the proposed relation between parton number and final state hadron multiplicity. Contrary to the original formulation we determine partonic entropy from the sum of gluon and quark distribution functions at low x, which we obtain from an unintegrated gluon distribution subject to next-to-leading order Balitsky–Fadin–Kuraev–Lipatov evolution. We find for this framework very good agreement with H1 data. We furthermore provide a comparison based on NNPDF parton distribution functions at both next-to-next-to-leading order and next-to-next-to-leading with small x resummation, where the latter provides an acceptable description of data. We investigate the proposal by Kharzeev and Levin of a maximally entangled proton wave function in Deep Inelastic Scattering at low x and the proposed relation between parton number and final state hadron multiplicity. Contrary to the original formulation we determine partonic entropy from the sum of gluon and quark distribution functions at low x , which we obtain from an unintegrated gluon distribution subject to next-to-leading order Balitsky–Fadin–Kuraev–Lipatov evolution. We find for this framework very good agreement with H1 data. We furthermore provide a comparison based on NNPDF parton distribution functions at both next-to-next-to-leading order and next-to-next-to-leading with small x resummation, where the latter provides an acceptable description of data. Abstract We investigate the proposal by Kharzeev and Levin of a maximally entangled proton wave function in Deep Inelastic Scattering at low x and the proposed relation between parton number and final state hadron multiplicity. Contrary to the original formulation we determine partonic entropy from the sum of gluon and quark distribution functions at low x, which we obtain from an unintegrated gluon distribution subject to next-to-leading order Balitsky–Fadin–Kuraev–Lipatov evolution. We find for this framework very good agreement with H1 data. We furthermore provide a comparison based on NNPDF parton distribution functions at both next-to-next-to-leading order and next-to-next-to-leading with small x resummation, where the latter provides an acceptable description of data. |
ArticleNumber | 111 |
Audience | Academic |
Author | Hentschinski, Martin Kutak, Krzysztof |
Author_xml | – sequence: 1 givenname: Martin surname: Hentschinski fullname: Hentschinski, Martin organization: Departamento de Actuaria, Física y Matemáticas, Universidad de las Americas Puebla – sequence: 2 givenname: Krzysztof surname: Kutak fullname: Kutak, Krzysztof email: krzysztof.kutak@ifj.edu.pl organization: Institute of Nuclear Physics, Polish Academy of Sciences |
BookMark | eNqFkU1vFSEUhompiW31N0jielq-ZgYWLppa7U2auFBXLggDhys3c2EEqr3_Xm7Hj8RNwwJycp435_CcoZOYIiD0mpILSgW5hGVnLwslpGcdYaw7vobu8AydUsFFN7T6yd-3EC_QWSk7QggTRJ6irzc_goNoAfuUcf0GeG8ewt7M8wFDrCZuZ3B4Tj_xA15yqiniEPE7gAVvIsym1GDxJ2tqhRziFvuc9viWYmeqeYmeezMXePX7Pkdf3t98vr7t7j5-2Fxf3XVWSFk7J6xRfPK9mHpHekmYNxyAM2pHOTnL-8FLMXiiuOXccSbZpICB7w1l7Qf4OdqsuS6ZnV5yGz8fdDJBPxZS3mqT25wzaEbHQQ3gFPVKONVLkERMZBRi9BObaMt6s2a1Zb_fQ6l6l-5zbONrNrBe0JEJ2bou1q6taaEh-lSzse042Afb_PjQ6leDokq2_r4Bb1fA5lRKBq9tqKaGFBsYZk2JPsrUR5l6lambTP0oUx8aP_7H_1nzaVKuZFmOgiD_W-gp9BfEw7h_ |
CitedBy_id | crossref_primary_10_1140_epjc_s10052_023_12343_8 crossref_primary_10_1103_PhysRevD_108_034011 crossref_primary_10_1016_j_physletb_2022_137472 crossref_primary_10_1103_PhysRevLett_131_241901 crossref_primary_10_1103_PhysRevD_107_054028 crossref_primary_10_1103_PhysRevLett_134_111902 crossref_primary_10_1103_PhysRevD_108_034017 crossref_primary_10_1103_PhysRevD_110_094029 crossref_primary_10_1103_PhysRevD_108_014014 crossref_primary_10_1103_PhysRevD_108_014036 crossref_primary_10_1103_PhysRevD_105_094009 crossref_primary_10_1016_j_physletb_2024_138453 crossref_primary_10_1016_j_physletb_2023_138199 crossref_primary_10_1103_PhysRevD_106_096025 crossref_primary_10_1016_j_aop_2023_169290 crossref_primary_10_1103_PhysRevD_106_096027 crossref_primary_10_1103_PhysRevD_108_094025 crossref_primary_10_1140_epjd_s10053_023_00665_x crossref_primary_10_1103_PhysRevD_109_116003 crossref_primary_10_1103_PhysRevD_105_074030 crossref_primary_10_1140_epjc_s10052_022_11122_1 crossref_primary_10_1103_PhysRevD_111_014017 crossref_primary_10_1103_PhysRevD_110_085011 crossref_primary_10_1103_PhysRevD_109_054015 crossref_primary_10_1088_1361_6633_ad910b crossref_primary_10_1103_PhysRevD_110_074008 crossref_primary_10_3390_physics7010005 |
Cites_doi | 10.1140/epjc/s10052-018-5634-2 10.1016/0550-3213(95)00638-9 10.1103/PhysRevD.87.034042 10.1103/PhysRevD.94.054002 10.1016/0370-1573(83)90022-4 10.1007/JHEP09(2015)123 10.1103/PhysRevD.87.076005 10.1103/PhysRevD.60.034008 10.1016/S0550-3213(99)00502-7 10.1103/PhysRevD.49.2233 10.1103/PhysRevD.101.036017 10.1140/epjc/s10052-018-5774-4 10.1103/PhysRevD.97.094029 10.1103/PhysRevD.23.287 10.1103/PhysRevLett.96.181602 10.1016/S0370-2693(98)00473-0 10.1103/PhysRevD.104.054014 10.1016/j.physletb.2011.09.113 10.1007/JHEP05(2019)025 10.1140/epjc/s10052-015-3710-4 10.1007/JHEP01(2010)109 10.1007/JHEP04(2015)040 10.1103/PhysRevD.61.074018 10.1103/PhysRevLett.123.142001 10.1103/PhysRevD.95.114008 10.1103/PhysRevLett.124.062001 10.1103/PhysRevD.92.034016 10.1088/1126-6708/1999/07/004 10.1016/j.physletb.2018.10.043 10.1103/RevModPhys.60.373 10.1103/PhysRevD.101.074040 10.1103/PhysRevLett.110.041601 10.1016/0550-3213(94)90636-X 10.1103/PhysRevD.104.L031503 10.1140/epjc/s10052-021-08896-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 COPYRIGHT 2022 Springer The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: COPYRIGHT 2022 Springer – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.1140/epjc/s10052-022-10056-y |
DatabaseName | Springer Nature Open Access Journals CrossRef Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection (ProQuest) Advanced Technologies Database with Aerospace ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea Solid State and Superconductivity Abstracts ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1434-6052 |
EndPage | 5 |
ExternalDocumentID | oai_doaj_org_article_217696ed91f94d958e804b07447fb2b1 A691982485 10_1140_epjc_s10052_022_10056_y |
GrantInformation_xml | – fundername: Consejo Nacional de Ciencia y Tecnología grantid: A1 S-43940 – fundername: Narodowe Centrum Nauki grantid: DEC-2017/27/B/ST2/01985< funderid: http://dx.doi.org/10.13039/501100004281 |
GroupedDBID | -5F -5G -A0 -BR -Y2 -~X .86 0R~ 199 1SB 29G 29Q 2JY 2P1 30V 4.4 408 409 40D 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95. 95~ AAFWJ AAKKN ABDBF ABEEZ ABMNI ABQSL ABTEG ACACY ACGFS ACNCT ACUHS ACULB ADBBV ADINQ ADKPE ADMLS AENEX AFBBN AFFNX AFGXO AFKRA AFPKN AFWTZ AGJBK AGWIL AHSBF AHYZX AI. AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF AZFZN B0M BA0 BCNDV BENPR BGLVJ BGNMA C24 C6C CAG CCPQU COF CS3 CSCUP DL5 DU5 EAD EAP EAS EBS EJD EMK EPL ER. ESX FEDTE GQ6 GQ8 GROUPED_DOAJ GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HVGLF HZ~ H~9 I-F I09 IAO IGS IHE ISR IXC IZIGR IZQ I~X KDC KOV LAS M4Y MA- N2Q NB0 NU0 O9- O93 OK1 P62 P9T PIMPY PROAC PT5 QOS R89 R9I RED RID RNS ROL RPX RSV RZK S1Z S27 S3B SDH SOJ SPH SZN T13 TN5 TSK TSV TUC TUS U2A VC2 VH1 WK8 Z45 Z7Y ~8M AAYXX ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHWEU AIXLP CITATION PHGZM PHGZT PMFND 7U5 8FD ABUWG AZQEC DWQXO H8D L7M PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c488t-d4ca93bf54b5d05802fa3ee321c78bdc356f846f093c33d3282b9e2ef5a121403 |
IEDL.DBID | DOA |
ISSN | 1434-6044 |
IngestDate | Wed Aug 27 01:17:06 EDT 2025 Sat Jul 26 00:13:26 EDT 2025 Tue Jun 10 21:20:27 EDT 2025 Thu Apr 24 23:05:10 EDT 2025 Tue Jul 01 01:40:56 EDT 2025 Fri Feb 21 02:40:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c488t-d4ca93bf54b5d05802fa3ee321c78bdc356f846f093c33d3282b9e2ef5a121403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/217696ed91f94d958e804b07447fb2b1 |
PQID | 2625417248 |
PQPubID | 2034659 |
PageCount | 5 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_217696ed91f94d958e804b07447fb2b1 proquest_journals_2625417248 gale_infotracacademiconefile_A691982485 crossref_citationtrail_10_1140_epjc_s10052_022_10056_y crossref_primary_10_1140_epjc_s10052_022_10056_y springer_journals_10_1140_epjc_s10052_022_10056_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220200 2022-02-00 20220201 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Particles and Fields |
PublicationTitle | The European physical journal. C, Particles and fields |
PublicationTitleAbbrev | Eur. Phys. J. C |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
References | Y. Hagiwara, Y. Hatta, B.W. Xiao, F. Yuan, Phys. Rev. D 97(9), 094029 (2018). https://doi.org/10.1103/PhysRevD.97.094029. arXiv:1801.00087 [hep-ph] M. Hentschinski, A. Sabio Vera and C. Salas, Phys. Rev. Lett. 110(4), 041601 (2013). https://doi.org/10.1103/PhysRevLett.110.041601. arXiv:1209.1353 [hep-ph] R. Bousso, JHEP 07, 004 (1999). https://doi.org/10.1088/1126-6708/1999/07/004. arXiv:hep-th/9905177 [hep-th] F.D. Aaron et al., H1 and ZEUS. JHEP 01, 109 (2010). https://doi.org/10.1007/JHEP01(2010)109. arXiv:0911.0884 [hep-ex] M. Hentschinski, A. Kusina, K. Kutak, M. Serino, Eur. Phys. J. C 78(3), 174 (2018). https://doi.org/10.1140/epjc/s10052-018-5634-2. arXiv:1711.04587 [hep-ph] S. Catani, F. Hautmann, Nucl. Phys. B 427, 475–524 (1994). https://doi.org/10.1016/0550-3213(94)90636-X. arXiv:hep-ph/9405388 [hep-ph] V. Andreev et al. [H1], Eur. Phys. J. C 81(3), 212 (2021). https://doi.org/10.1140/epjc/s10052-021-08896-1. arXiv:2011.01812 [hep-ex] R.D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo, L. Rottoli, Eur. Phys. J. C 78(4), 321 (2018). https://doi.org/10.1140/epjc/s10052-018-5774-4. arXiv:1710.05935 [hep-ph] G. Dvali, R. Venugopalan, arXiv:2106.11989 [hep-th] D.E. Kharzeev, E. Levin, Phys. Rev. D 104(3), L031503 (2021). https://doi.org/10.1103/PhysRevD.104.L031503. arXiv:2102.09773 [hep-ph] G.S. Ramos, M.V.T. Machado, Phys. Rev. D 101(7), 074040 (2020). https://doi.org/10.1103/PhysRevD.101.074040. arXiv:2003.05008 [hep-ph] R.D. Ball et al., NNPDF. JHEP 04, 040 (2015). https://doi.org/10.1007/JHEP04(2015)040. arXiv:1410.8849 [hep-ph] A. Kovner, M. Lublinsky, Phys. Rev. D 92(3), 034016 (2015). https://doi.org/10.1103/PhysRevD.92.034016. arXiv:1506.05394 [hep-ph] G. Chachamis, M. Deák, M. Hentschinski, G. Rodrigo, A. Sabio Vera, JHEP 09, 123 (2015). https://doi.org/10.1007/JHEP09(2015)123. arXiv:1507.05778 [hep-ph] V.S. Fadin, L.N. Lipatov, Phys. Lett. B 429, 127–134 (1998). https://doi.org/10.1016/S0370-2693(98)00473-0. arXiv:hep-ph/9802290 [hep-ph] Y.L. Dokshitzer, V.A. Khoze, S.I. Troian, A.H. Mueller, Rev. Mod. Phys. 60, 373 (1988). https://doi.org/10.1103/RevModPhys.60.373 Y.V. Kovchegov, Phys. Rev. D 61, 074018 (2000). https://doi.org/10.1103/PhysRevD.61.074018. arXiv:hep-ph/9905214 [hep-ph] L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 2233–2241 (1994). https://doi.org/10.1103/PhysRevD.49.2233. arXiv:hep-ph/9309289 [hep-ph] D. Neill, W.J. Waalewijn, Phys. Rev. Lett. 123(14), 142001 (2019). https://doi.org/10.1103/PhysRevLett.123.142001. arXiv:1811.01021 [hep-ph] I. Balitsky, Nucl. Phys. B 463, 99–160 (1996). https://doi.org/10.1016/0550-3213(95)00638-9. arXiv:hep-ph/9509348 [hep-ph] GribovLVLevinEMRyskinMGPhys. Rept.1983100115010.1016/0370-1573(83)90022-4 Z. Tu, D.E. Kharzeev, T. Ullrich, Phys. Rev. Lett. 124(6), 062001 (2020). https://doi.org/10.1103/PhysRevLett.124.062001. arXiv:1904.11974 [hep-ph] A. Kovner, M. Lublinsky, M. Serino, Phys. Lett. B 792, 4–15 (2019). https://doi.org/10.1016/j.physletb.2018.10.043. arXiv:1806.01089 [hep-ph] H. Duan, C. Akkaya, A. Kovner, V.V. Skokov, Phys. Rev. D 101(3), 036017 (2020). https://doi.org/10.1103/PhysRevD.101.036017. arXiv:2001.01726 [hep-ph] A.H. Mueller, Nucl. Phys. B 572, 227–240 (2000). https://doi.org/10.1016/S0550-3213(99)00502-7. arXiv:hep-ph/9906322 [hep-ph] D.E. Kharzeev, Quantum information approach to high energy interactions. arXiv:2108.08792 [hep-ph] M. Hentschinski, Phys. Rev. D 104(5), 054014 (2021). https://doi.org/10.1103/PhysRevD.104.054014. arXiv:2107.06203 [hep-ph] BekensteinJDPhys. Rev. D19812328759989310.1103/PhysRevD.23.287 H. Abramowicz et al. [H1 and ZEUS], Eur. Phys. J. C 75(12), 580 (2015). https://doi.org/10.1140/epjc/s10052-015-3710-4. arXiv:1506.06042 [hep-ex] R. Peschanski, Phys. Rev. D 87(3), 034042 (2013). https://doi.org/10.1103/PhysRevD.87.034042. arXiv:1211.6911 [hep-ph] S. Ryu, T. Takayanagi, Phys. Rev. Lett. 96(2006). https://doi.org/10.1103/PhysRevLett.96.181602. arXiv:hep-th/0603001 [hep-th] D.E. Kharzeev, E.M. Levin, Phys. Rev. D 95(11), 114008 (2017). https://doi.org/10.1103/PhysRevD.95.114008. arXiv:1702.03489 [hep-ph] N. Armesto, F. Dominguez, A. Kovner, M. Lublinsky, V. Skokov, JHEP 05, 025 (2019). https://doi.org/10.1007/JHEP05(2019)025. arXiv:1901.08080 [hep-ph] Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1999). https://doi.org/10.1103/PhysRevD.60.034008. arXiv:hep-ph/9901281 [hep-ph] M. Hentschinski, A. Sabio Vera, C. Salas, Phys. Rev. D 87(7), 076005 (2013). https://doi.org/10.1103/PhysRevD.87.076005. arXiv:1301.5283 [hep-ph] I. Bautista, A. FernandezTellez, M. Hentschinski, Phys. Rev. D 94(5), 054002 (2016). https://doi.org/10.1103/PhysRevD.94.054002. arXiv:1607.05203 [hep-ph] K. Kutak, Phys. Lett. B 705, 217–221 (2011). https://doi.org/10.1016/j.physletb.2011.09.113. arXiv:1103.3654 [hep-ph] 10056_CR28 10056_CR29 10056_CR26 10056_CR27 10056_CR13 10056_CR35 10056_CR14 10056_CR36 10056_CR11 10056_CR33 10056_CR12 10056_CR31 10056_CR10 10056_CR32 JD Bekenstein (10056_CR20) 1981; 23 10056_CR30 LV Gribov (10056_CR34) 1983; 100 10056_CR19 10056_CR2 10056_CR17 10056_CR3 10056_CR18 10056_CR15 10056_CR37 10056_CR1 10056_CR16 10056_CR6 10056_CR7 10056_CR4 10056_CR5 10056_CR8 10056_CR9 10056_CR24 10056_CR25 10056_CR22 10056_CR23 10056_CR21 |
References_xml | – reference: H. Duan, C. Akkaya, A. Kovner, V.V. Skokov, Phys. Rev. D 101(3), 036017 (2020). https://doi.org/10.1103/PhysRevD.101.036017. arXiv:2001.01726 [hep-ph] – reference: V. Andreev et al. [H1], Eur. Phys. J. C 81(3), 212 (2021). https://doi.org/10.1140/epjc/s10052-021-08896-1. arXiv:2011.01812 [hep-ex] – reference: D. Neill, W.J. Waalewijn, Phys. Rev. Lett. 123(14), 142001 (2019). https://doi.org/10.1103/PhysRevLett.123.142001. arXiv:1811.01021 [hep-ph] – reference: Y. Hagiwara, Y. Hatta, B.W. Xiao, F. Yuan, Phys. Rev. D 97(9), 094029 (2018). https://doi.org/10.1103/PhysRevD.97.094029. arXiv:1801.00087 [hep-ph] – reference: D.E. Kharzeev, E.M. Levin, Phys. Rev. D 95(11), 114008 (2017). https://doi.org/10.1103/PhysRevD.95.114008. arXiv:1702.03489 [hep-ph] – reference: Y.V. Kovchegov, Phys. Rev. D 61, 074018 (2000). https://doi.org/10.1103/PhysRevD.61.074018. arXiv:hep-ph/9905214 [hep-ph] – reference: BekensteinJDPhys. Rev. D19812328759989310.1103/PhysRevD.23.287 – reference: S. Ryu, T. Takayanagi, Phys. Rev. Lett. 96(2006). https://doi.org/10.1103/PhysRevLett.96.181602. arXiv:hep-th/0603001 [hep-th] – reference: A. Kovner, M. Lublinsky, Phys. Rev. D 92(3), 034016 (2015). https://doi.org/10.1103/PhysRevD.92.034016. arXiv:1506.05394 [hep-ph] – reference: H. Abramowicz et al. [H1 and ZEUS], Eur. Phys. J. C 75(12), 580 (2015). https://doi.org/10.1140/epjc/s10052-015-3710-4. arXiv:1506.06042 [hep-ex] – reference: M. Hentschinski, Phys. Rev. D 104(5), 054014 (2021). https://doi.org/10.1103/PhysRevD.104.054014. arXiv:2107.06203 [hep-ph] – reference: R. Bousso, JHEP 07, 004 (1999). https://doi.org/10.1088/1126-6708/1999/07/004. arXiv:hep-th/9905177 [hep-th] – reference: N. Armesto, F. Dominguez, A. Kovner, M. Lublinsky, V. Skokov, JHEP 05, 025 (2019). https://doi.org/10.1007/JHEP05(2019)025. arXiv:1901.08080 [hep-ph] – reference: D.E. Kharzeev, Quantum information approach to high energy interactions. arXiv:2108.08792 [hep-ph] – reference: M. Hentschinski, A. Sabio Vera, C. Salas, Phys. Rev. D 87(7), 076005 (2013). https://doi.org/10.1103/PhysRevD.87.076005. arXiv:1301.5283 [hep-ph] – reference: V.S. Fadin, L.N. Lipatov, Phys. Lett. B 429, 127–134 (1998). https://doi.org/10.1016/S0370-2693(98)00473-0. arXiv:hep-ph/9802290 [hep-ph] – reference: M. Hentschinski, A. Sabio Vera and C. Salas, Phys. Rev. Lett. 110(4), 041601 (2013). https://doi.org/10.1103/PhysRevLett.110.041601. arXiv:1209.1353 [hep-ph] – reference: D.E. Kharzeev, E. Levin, Phys. Rev. D 104(3), L031503 (2021). https://doi.org/10.1103/PhysRevD.104.L031503. arXiv:2102.09773 [hep-ph] – reference: R.D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo, L. Rottoli, Eur. Phys. J. C 78(4), 321 (2018). https://doi.org/10.1140/epjc/s10052-018-5774-4. arXiv:1710.05935 [hep-ph] – reference: G.S. Ramos, M.V.T. Machado, Phys. Rev. D 101(7), 074040 (2020). https://doi.org/10.1103/PhysRevD.101.074040. arXiv:2003.05008 [hep-ph] – reference: Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1999). https://doi.org/10.1103/PhysRevD.60.034008. arXiv:hep-ph/9901281 [hep-ph] – reference: S. Catani, F. Hautmann, Nucl. Phys. B 427, 475–524 (1994). https://doi.org/10.1016/0550-3213(94)90636-X. arXiv:hep-ph/9405388 [hep-ph] – reference: A. Kovner, M. Lublinsky, M. Serino, Phys. Lett. B 792, 4–15 (2019). https://doi.org/10.1016/j.physletb.2018.10.043. arXiv:1806.01089 [hep-ph] – reference: I. Bautista, A. FernandezTellez, M. Hentschinski, Phys. Rev. D 94(5), 054002 (2016). https://doi.org/10.1103/PhysRevD.94.054002. arXiv:1607.05203 [hep-ph] – reference: A.H. Mueller, Nucl. Phys. B 572, 227–240 (2000). https://doi.org/10.1016/S0550-3213(99)00502-7. arXiv:hep-ph/9906322 [hep-ph] – reference: G. Chachamis, M. Deák, M. Hentschinski, G. Rodrigo, A. Sabio Vera, JHEP 09, 123 (2015). https://doi.org/10.1007/JHEP09(2015)123. arXiv:1507.05778 [hep-ph] – reference: R.D. Ball et al., NNPDF. JHEP 04, 040 (2015). https://doi.org/10.1007/JHEP04(2015)040. arXiv:1410.8849 [hep-ph] – reference: Y.L. Dokshitzer, V.A. Khoze, S.I. Troian, A.H. Mueller, Rev. Mod. Phys. 60, 373 (1988). https://doi.org/10.1103/RevModPhys.60.373 – reference: L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 2233–2241 (1994). https://doi.org/10.1103/PhysRevD.49.2233. arXiv:hep-ph/9309289 [hep-ph] – reference: F.D. Aaron et al., H1 and ZEUS. JHEP 01, 109 (2010). https://doi.org/10.1007/JHEP01(2010)109. arXiv:0911.0884 [hep-ex] – reference: K. Kutak, Phys. Lett. B 705, 217–221 (2011). https://doi.org/10.1016/j.physletb.2011.09.113. arXiv:1103.3654 [hep-ph] – reference: R. Peschanski, Phys. Rev. D 87(3), 034042 (2013). https://doi.org/10.1103/PhysRevD.87.034042. arXiv:1211.6911 [hep-ph] – reference: G. Dvali, R. Venugopalan, arXiv:2106.11989 [hep-th] – reference: GribovLVLevinEMRyskinMGPhys. Rept.1983100115010.1016/0370-1573(83)90022-4 – reference: Z. Tu, D.E. Kharzeev, T. Ullrich, Phys. Rev. Lett. 124(6), 062001 (2020). https://doi.org/10.1103/PhysRevLett.124.062001. arXiv:1904.11974 [hep-ph] – reference: I. Balitsky, Nucl. Phys. B 463, 99–160 (1996). https://doi.org/10.1016/0550-3213(95)00638-9. arXiv:hep-ph/9509348 [hep-ph] – reference: M. Hentschinski, A. Kusina, K. Kutak, M. Serino, Eur. Phys. J. C 78(3), 174 (2018). https://doi.org/10.1140/epjc/s10052-018-5634-2. arXiv:1711.04587 [hep-ph] – ident: 10056_CR27 doi: 10.1140/epjc/s10052-018-5634-2 – ident: 10056_CR16 doi: 10.1016/0550-3213(95)00638-9 – ident: 10056_CR4 doi: 10.1103/PhysRevD.87.034042 – ident: 10056_CR36 doi: 10.1103/PhysRevD.94.054002 – volume: 100 start-page: 1 year: 1983 ident: 10056_CR34 publication-title: Phys. Rept. doi: 10.1016/0370-1573(83)90022-4 – ident: 10056_CR29 doi: 10.1007/JHEP09(2015)123 – ident: 10056_CR24 doi: 10.1103/PhysRevD.87.076005 – ident: 10056_CR14 doi: 10.1103/PhysRevD.60.034008 – ident: 10056_CR18 doi: 10.1016/S0550-3213(99)00502-7 – ident: 10056_CR35 doi: 10.1103/PhysRevD.49.2233 – ident: 10056_CR8 doi: 10.1103/PhysRevD.101.036017 – ident: 10056_CR32 doi: 10.1140/epjc/s10052-018-5774-4 – ident: 10056_CR12 doi: 10.1103/PhysRevD.97.094029 – volume: 23 start-page: 287 year: 1981 ident: 10056_CR20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.23.287 – ident: 10056_CR22 doi: 10.1103/PhysRevLett.96.181602 – ident: 10056_CR25 doi: 10.1016/S0370-2693(98)00473-0 – ident: 10056_CR28 doi: 10.1103/PhysRevD.104.054014 – ident: 10056_CR3 doi: 10.1016/j.physletb.2011.09.113 – ident: 10056_CR11 – ident: 10056_CR9 – ident: 10056_CR7 doi: 10.1007/JHEP05(2019)025 – ident: 10056_CR30 doi: 10.1140/epjc/s10052-015-3710-4 – ident: 10056_CR37 doi: 10.1007/JHEP01(2010)109 – ident: 10056_CR31 doi: 10.1007/JHEP04(2015)040 – ident: 10056_CR15 doi: 10.1103/PhysRevD.61.074018 – ident: 10056_CR13 doi: 10.1103/PhysRevLett.123.142001 – ident: 10056_CR1 doi: 10.1103/PhysRevD.95.114008 – ident: 10056_CR2 doi: 10.1103/PhysRevLett.124.062001 – ident: 10056_CR5 doi: 10.1103/PhysRevD.92.034016 – ident: 10056_CR21 doi: 10.1088/1126-6708/1999/07/004 – ident: 10056_CR6 doi: 10.1016/j.physletb.2018.10.043 – ident: 10056_CR17 doi: 10.1103/RevModPhys.60.373 – ident: 10056_CR10 doi: 10.1103/PhysRevD.101.074040 – ident: 10056_CR23 doi: 10.1103/PhysRevLett.110.041601 – ident: 10056_CR26 doi: 10.1016/0550-3213(94)90636-X – ident: 10056_CR33 doi: 10.1103/PhysRevD.104.L031503 – ident: 10056_CR19 doi: 10.1140/epjc/s10052-021-08896-1 |
SSID | ssj0002408 |
Score | 2.5223114 |
Snippet | We investigate the proposal by Kharzeev and Levin of a maximally entangled proton wave function in Deep Inelastic Scattering at low
x
and the proposed relation... We investigate the proposal by Kharzeev and Levin of a maximally entangled proton wave function in Deep Inelastic Scattering at low x and the proposed relation... Abstract We investigate the proposal by Kharzeev and Levin of a maximally entangled proton wave function in Deep Inelastic Scattering at low x and the proposed... |
SourceID | doaj proquest gale crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111 |
SubjectTerms | Astronomy Astrophysics and Cosmology Distribution (Probability theory) Distribution functions Elementary Particles Entropy Gluons Hadrons Heavy Ions Inelastic scattering Kinematics Letter Measurement Science and Instrumentation Nuclear Energy Nuclear Physics Partons Physics Physics and Astronomy Protons Quantum Field Theories Quantum Field Theory Quarks String Theory Wave functions |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9UwFA-6IfgifmJ1Sh4En8La5qPJ09h04yo4RB0MfAj56ph07XX3Dnf_e8_pTe-QgXsrbZM2JzknvyTn_A4h71L0qvKNYtpFzYTxmjkvEvNOJC4DN1JggPOXYzU7EZ9P5WnecFtkt8rJJo6GOg4B98h3awDqAmZboffmvxlmjcLT1ZxC4z7ZBhOsYfG1fXB4_PXbxhYjgdcYX8QFU6UQ2cMLVhW7af4rYARdKWuGLu14pdjqn_lppPG_baxvnZqOk9HRY_Ioo0i6v-72J-Re6p-SB6M3Z1g8Iz-nXKEUICkFiEcv3PX5heu6FUVf8f6sS5F2wx96TZGoYejpeU8_pjSnn_oEeBqqpd_DSL0J36cYg0JnFUV30ufk5Ojwx4cZy1kUWADlXLIogjPct1J4GUupy7p1PCVeV6HRPgYuVQsgpC0ND5xHDmswb1KdWumqGtn8XpCtfujTS0JV7bmQTeMkB8V30ocUkwEQVbeB-0YWRE2ysyFTjGOmi86uw59Li0K3a6FbELodhW5XBSk3Bedrlo27ixxg52xeR5rs8cZweWaz1llYbymjUjRVa0Q0UiddCg-oSTStr31VkPfYtRaVGX40uByTAM1FWiy7r0xlNLK-FWRn6n2btXxhb8ZkQappRNw8vqMFr_5f5WvysMZxOXqI75Ct5eVVegMAaOnf5lH-F5xpAEM priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA86EXwRP7E6JQ-CT8E2X20e53RcBX3RwcCHkI_TMbnrvWx3uPvfe07aTmXgwLfSNmlzPpLfIef8wthryNE2sbWiC7kT2sVOhKhBxKBBmaSc0VTg_PmLXRzqT0fm6M-jvijbfd6SLDP1yGdbv4X1j0QVb7WRglLQ6cqK7W12x2AAT8a9T4UO0yRMzF2lsEhpYWutp9Suf3T018JU-Puvz9LXtkvLKnTwgN2f4CPfG_X9kN2C4RG7W9I40_lj9n0-JJQjFuWI7fhpuDw5DcvlllOS-HC8hMyXq5_8khNDw2rgJwN_D7DmHwdAII3d8q-pcG7i9zkVn_BFwymP9Ak7PPjwbX8hpuMTREKv3IisU3Aq9kZHk2vT1bIPCkDJJrVdzEkZ2yP66GunklJZYfAVHUjoTWgk0fg9ZTvDaoBnjFsZlTZtG4xCjw8mJsjgED3JPqnYmorZWXY-TdzidMTF0o91z7UnoftR6B6F7ovQ_bZi9VXD9UivcXOTd6Scq9eJH7vcWJ0d-8ndPAZa1lnIrumdzs500NU6IlzSbR9lbCr2hlTryYvxR1OYihFwuMSH5fesa1xHdG8V25217yf3PvcSo0aN0E93FWtmi_j9-IYRPP-PNi_YPUnGWvLFd9nO5uwCXiIc2sRXxfB_Aa9B_7w priority: 102 providerName: Springer Nature |
Title | Evidence for the maximally entangled low x proton in Deep Inelastic Scattering from H1 data |
URI | https://link.springer.com/article/10.1140/epjc/s10052-022-10056-y https://www.proquest.com/docview/2625417248 https://doaj.org/article/217696ed91f94d958e804b07447fb2b1 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCIkL4ikCZeUDEieriV-xj9uly4JEhYCVKnGwbMdBRWl2RRfR_ffMONkC6mEvXKy8nNjjGfsbZeYzIa9SE3QVas2MbwyTNhjmg0wseJmEisIqiQnOH071Yinfn6mzv7b6wpiwgR54ENwRQGZtdWps1VrZWGWSKWWAhU_WbeAhOz6w5u2cqXEORuKunFckJNOllGNkF3gTR2n9PWLmXKk4w1B2PNJs-8-6lOn7b07SN_6W5kVo_oDcH9EjnQ6tfkhupf4RuZujOOPlY_J1t0coBShKAdrRC391fuG7bksxRrz_1qWGdqtf9IoiQcOqp-c9fZPSmr7rE-BoeC39HDPlJnyfYu4JXVQUw0ifkOX85MtswcbdE1gEo9ywRkZvRWiVDKoplSl560VKglexNqGJQukWwEdbWhGFaAT4XsEmnlrlK44sfk_JQb_q0zNCNQ9Cqrr2SoDBexViapIF8MTbKEKtCqJ3snNxpBbHHS46N6Q9lw6F7gahOxC6y0J324KU1xXXA7vG_irHODjXjyM9dr4ASuNGpXH7lKYgr3FoHRoxNDT6MRcBuot0WG6qbWUNsr0V5HA3-m607kvHwWmUgPykKUi104g_t_f04Pn_6MELco-j9ub48UNysPnxM70EeLQJE3LbzN9OyJ3jk9OPn-BsxiWWejbJNgLlkk9_A5uMC44 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ikCBXwAcbKa-JX4gFChLLv0caGVKnEwfqUq2maX7qJ2_xS_kZlsshWqRE-9RUnsxDPjeSQz3xDyJkWvC19qVrlYMWl8xZyXiXknk1BBGCWxwHlvXw8P5dcjdbRG_vS1MJhW2evEVlHHScBv5JscHHUJ1lZWH6a_GHaNwr-rfQuNpVjspMU5hGyz96Nt4O9bzgefDz4NWddVgAUQ1jmLMjgjfK2kVzFXVc5rJ1ISvAhl5WMQStdglGsI9YMQUUBM4k3iqVau4IhuB_PeIrelEAZ3VDX4stL8CBfWVjMJyXQuZZdPBoM20_RnwHq9XHGGCfR4pNniH2vYNg24ahqu_KNtTd_gAbnf-ax0aylkD8laah6RO23uaJg9Jt_7zqQUHGAKDiU9dRcnp248XlDMTG-OxynS8eScXlCEhZg09KSh2ylN6ahJ4L3DtPRbaIE-4fkUK17osKCYvPqEHN4IdZ-S9WbSpGeEau6FVGXplAA145QPKSYDLhuvg_ClyojuaWdDB2iOfTXGdllsnVskul0S3QLRbUt0u8hIvho4XWJ6XD_kIzJndTuCcrcnJmfHttvjFqI7bXSKpqiNjEZVqcqlBx9NlrXnvsjIO2StRdUBLxpcVwEBy0UQLrulTWEqxJjLyEbPfdvplJm93AEZKXqJuLx8zQqe_3_K1-Tu8GBv1-6O9ndekHscZbTNTd8g6_Oz3-kluF5z_6qVd0p-3PQG-wsv7Tt9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCAuiKcILbAHECcr9r7sPSDUkkYJhagCKlXisOzLVVHqpE1Qm7_Gr2PGsVOhSvTUm2V7196Z2XnYM98Q8iYGpzKXq6SwoUiEdkVinYiJsyJy6bmWAgucv4zV8FB8OpJHG-RPWwuDaZWtTqwVdZh6_EbeY-CoC7C2ouiVTVrEQX_wYXaWYAcp_NPattNYich-XF5A-DZ_P-oDr98yNtj7_nGYNB0GEg-Cu0iC8FZzV0rhZEhlkbLS8hg5y3xeuOC5VCUY6BLCfs954BCfOB1ZLKXNGCLdwbx3yGYOUVHaIZu7e-ODr2s7gOBhdW0TF4lKhWiyy2BYL85-eazeSyVLMJ0ej1Sy_Mc21i0ErhuKa39sa0M4eEgeNB4s3VmJ3COyEavH5G6dSernT8iPtk8pBXeYgntJT-3lyamdTJYU89Sr40kMdDK9oJcUQSKmFT2paD_GGR1VEXx5mJZ-8zXsJzyfYv0LHWYUU1mfksNboe8z0qmmVXxOqGKOC5nnVnJQOlY6H0PU4MCx0nOXyy5RLe2Mb-DNscvGxKxKr1ODRDcrohsguqmJbpZdkq4HzlYIHzcP2UXmrG9HiO76xPT82DQ73kCsp7SKQWelFkHLIhapcOCxibx0zGVd8g5Za1CRwIt629RDwHIRksvsKJ3pAhHnumS75b5pNMzcXO2HLslaibi6fMMKXvx_ytfkHmwu83k03t8i9xmKaJ2ovk06i_Pf8SX4YQv3qhF4Sn7e9h77C3KvQQ8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+the+maximally+entangled+low+x+proton+in+Deep+Inelastic+Scattering+from+H1+data&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Hentschinski%2C+Martin&rft.au=Kutak%2C+Krzysztof&rft.date=2022-02-01&rft.issn=1434-6044&rft.eissn=1434-6052&rft.volume=82&rft.issue=2&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-022-10056-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjc_s10052_022_10056_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6044&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6044&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6044&client=summon |