Evidence for the maximally entangled low x proton in Deep Inelastic Scattering from H1 data

We investigate the proposal by Kharzeev and Levin of a maximally entangled proton wave function in Deep Inelastic Scattering at low x and the proposed relation between parton number and final state hadron multiplicity. Contrary to the original formulation we determine partonic entropy from the sum o...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. C, Particles and fields Vol. 82; no. 2; pp. 111 - 5
Main Authors Hentschinski, Martin, Kutak, Krzysztof
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2022
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1434-6044
1434-6052
DOI10.1140/epjc/s10052-022-10056-y

Cover

Loading…
Abstract We investigate the proposal by Kharzeev and Levin of a maximally entangled proton wave function in Deep Inelastic Scattering at low x and the proposed relation between parton number and final state hadron multiplicity. Contrary to the original formulation we determine partonic entropy from the sum of gluon and quark distribution functions at low x , which we obtain from an unintegrated gluon distribution subject to next-to-leading order Balitsky–Fadin–Kuraev–Lipatov evolution. We find for this framework very good agreement with H1 data. We furthermore provide a comparison based on NNPDF parton distribution functions at both next-to-next-to-leading order and next-to-next-to-leading with small x resummation, where the latter provides an acceptable description of data.
AbstractList We investigate the proposal by Kharzeev and Levin of a maximally entangled proton wave function in Deep Inelastic Scattering at low x and the proposed relation between parton number and final state hadron multiplicity. Contrary to the original formulation we determine partonic entropy from the sum of gluon and quark distribution functions at low x, which we obtain from an unintegrated gluon distribution subject to next-to-leading order Balitsky–Fadin–Kuraev–Lipatov evolution. We find for this framework very good agreement with H1 data. We furthermore provide a comparison based on NNPDF parton distribution functions at both next-to-next-to-leading order and next-to-next-to-leading with small x resummation, where the latter provides an acceptable description of data.
We investigate the proposal by Kharzeev and Levin of a maximally entangled proton wave function in Deep Inelastic Scattering at low x and the proposed relation between parton number and final state hadron multiplicity. Contrary to the original formulation we determine partonic entropy from the sum of gluon and quark distribution functions at low x , which we obtain from an unintegrated gluon distribution subject to next-to-leading order Balitsky–Fadin–Kuraev–Lipatov evolution. We find for this framework very good agreement with H1 data. We furthermore provide a comparison based on NNPDF parton distribution functions at both next-to-next-to-leading order and next-to-next-to-leading with small x resummation, where the latter provides an acceptable description of data.
Abstract We investigate the proposal by Kharzeev and Levin of a maximally entangled proton wave function in Deep Inelastic Scattering at low x and the proposed relation between parton number and final state hadron multiplicity. Contrary to the original formulation we determine partonic entropy from the sum of gluon and quark distribution functions at low x, which we obtain from an unintegrated gluon distribution subject to next-to-leading order Balitsky–Fadin–Kuraev–Lipatov evolution. We find for this framework very good agreement with H1 data. We furthermore provide a comparison based on NNPDF parton distribution functions at both next-to-next-to-leading order and next-to-next-to-leading with small x resummation, where the latter provides an acceptable description of data.
ArticleNumber 111
Audience Academic
Author Hentschinski, Martin
Kutak, Krzysztof
Author_xml – sequence: 1
  givenname: Martin
  surname: Hentschinski
  fullname: Hentschinski, Martin
  organization: Departamento de Actuaria, Física y Matemáticas, Universidad de las Americas Puebla
– sequence: 2
  givenname: Krzysztof
  surname: Kutak
  fullname: Kutak, Krzysztof
  email: krzysztof.kutak@ifj.edu.pl
  organization: Institute of Nuclear Physics, Polish Academy of Sciences
BookMark eNqFkU1vFSEUhompiW31N0jielq-ZgYWLppa7U2auFBXLggDhys3c2EEqr3_Xm7Hj8RNwwJycp435_CcoZOYIiD0mpILSgW5hGVnLwslpGcdYaw7vobu8AydUsFFN7T6yd-3EC_QWSk7QggTRJ6irzc_goNoAfuUcf0GeG8ewt7M8wFDrCZuZ3B4Tj_xA15yqiniEPE7gAVvIsym1GDxJ2tqhRziFvuc9viWYmeqeYmeezMXePX7Pkdf3t98vr7t7j5-2Fxf3XVWSFk7J6xRfPK9mHpHekmYNxyAM2pHOTnL-8FLMXiiuOXccSbZpICB7w1l7Qf4OdqsuS6ZnV5yGz8fdDJBPxZS3mqT25wzaEbHQQ3gFPVKONVLkERMZBRi9BObaMt6s2a1Zb_fQ6l6l-5zbONrNrBe0JEJ2bou1q6taaEh-lSzse042Afb_PjQ6leDokq2_r4Bb1fA5lRKBq9tqKaGFBsYZk2JPsrUR5l6lambTP0oUx8aP_7H_1nzaVKuZFmOgiD_W-gp9BfEw7h_
CitedBy_id crossref_primary_10_1140_epjc_s10052_023_12343_8
crossref_primary_10_1103_PhysRevD_108_034011
crossref_primary_10_1016_j_physletb_2022_137472
crossref_primary_10_1103_PhysRevLett_131_241901
crossref_primary_10_1103_PhysRevD_107_054028
crossref_primary_10_1103_PhysRevLett_134_111902
crossref_primary_10_1103_PhysRevD_108_034017
crossref_primary_10_1103_PhysRevD_110_094029
crossref_primary_10_1103_PhysRevD_108_014014
crossref_primary_10_1103_PhysRevD_108_014036
crossref_primary_10_1103_PhysRevD_105_094009
crossref_primary_10_1016_j_physletb_2024_138453
crossref_primary_10_1016_j_physletb_2023_138199
crossref_primary_10_1103_PhysRevD_106_096025
crossref_primary_10_1016_j_aop_2023_169290
crossref_primary_10_1103_PhysRevD_106_096027
crossref_primary_10_1103_PhysRevD_108_094025
crossref_primary_10_1140_epjd_s10053_023_00665_x
crossref_primary_10_1103_PhysRevD_109_116003
crossref_primary_10_1103_PhysRevD_105_074030
crossref_primary_10_1140_epjc_s10052_022_11122_1
crossref_primary_10_1103_PhysRevD_111_014017
crossref_primary_10_1103_PhysRevD_110_085011
crossref_primary_10_1103_PhysRevD_109_054015
crossref_primary_10_1088_1361_6633_ad910b
crossref_primary_10_1103_PhysRevD_110_074008
crossref_primary_10_3390_physics7010005
Cites_doi 10.1140/epjc/s10052-018-5634-2
10.1016/0550-3213(95)00638-9
10.1103/PhysRevD.87.034042
10.1103/PhysRevD.94.054002
10.1016/0370-1573(83)90022-4
10.1007/JHEP09(2015)123
10.1103/PhysRevD.87.076005
10.1103/PhysRevD.60.034008
10.1016/S0550-3213(99)00502-7
10.1103/PhysRevD.49.2233
10.1103/PhysRevD.101.036017
10.1140/epjc/s10052-018-5774-4
10.1103/PhysRevD.97.094029
10.1103/PhysRevD.23.287
10.1103/PhysRevLett.96.181602
10.1016/S0370-2693(98)00473-0
10.1103/PhysRevD.104.054014
10.1016/j.physletb.2011.09.113
10.1007/JHEP05(2019)025
10.1140/epjc/s10052-015-3710-4
10.1007/JHEP01(2010)109
10.1007/JHEP04(2015)040
10.1103/PhysRevD.61.074018
10.1103/PhysRevLett.123.142001
10.1103/PhysRevD.95.114008
10.1103/PhysRevLett.124.062001
10.1103/PhysRevD.92.034016
10.1088/1126-6708/1999/07/004
10.1016/j.physletb.2018.10.043
10.1103/RevModPhys.60.373
10.1103/PhysRevD.101.074040
10.1103/PhysRevLett.110.041601
10.1016/0550-3213(94)90636-X
10.1103/PhysRevD.104.L031503
10.1140/epjc/s10052-021-08896-1
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2022 Springer
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.1140/epjc/s10052-022-10056-y
DatabaseName Springer Nature Open Access Journals
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection‎ (ProQuest)
Advanced Technologies Database with Aerospace
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
Solid State and Superconductivity Abstracts
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6052
EndPage 5
ExternalDocumentID oai_doaj_org_article_217696ed91f94d958e804b07447fb2b1
A691982485
10_1140_epjc_s10052_022_10056_y
GrantInformation_xml – fundername: Consejo Nacional de Ciencia y Tecnología
  grantid: A1 S-43940
– fundername: Narodowe Centrum Nauki
  grantid: DEC-2017/27/B/ST2/01985<
  funderid: http://dx.doi.org/10.13039/501100004281
GroupedDBID -5F
-5G
-A0
-BR
-Y2
-~X
.86
0R~
199
1SB
29G
29Q
2JY
2P1
30V
4.4
408
409
40D
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95.
95~
AAFWJ
AAKKN
ABDBF
ABEEZ
ABMNI
ABQSL
ABTEG
ACACY
ACGFS
ACNCT
ACUHS
ACULB
ADBBV
ADINQ
ADKPE
ADMLS
AENEX
AFBBN
AFFNX
AFGXO
AFKRA
AFPKN
AFWTZ
AGJBK
AGWIL
AHSBF
AHYZX
AI.
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
AZFZN
B0M
BA0
BCNDV
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DL5
DU5
EAD
EAP
EAS
EBS
EJD
EMK
EPL
ER.
ESX
FEDTE
GQ6
GQ8
GROUPED_DOAJ
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
ISR
IXC
IZIGR
IZQ
I~X
KDC
KOV
LAS
M4Y
MA-
N2Q
NB0
NU0
O9-
O93
OK1
P62
P9T
PIMPY
PROAC
PT5
QOS
R89
R9I
RED
RID
RNS
ROL
RPX
RSV
RZK
S1Z
S27
S3B
SDH
SOJ
SPH
SZN
T13
TN5
TSK
TSV
TUC
TUS
U2A
VC2
VH1
WK8
Z45
Z7Y
~8M
AAYXX
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHWEU
AIXLP
CITATION
PHGZM
PHGZT
PMFND
7U5
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c488t-d4ca93bf54b5d05802fa3ee321c78bdc356f846f093c33d3282b9e2ef5a121403
IEDL.DBID DOA
ISSN 1434-6044
IngestDate Wed Aug 27 01:17:06 EDT 2025
Sat Jul 26 00:13:26 EDT 2025
Tue Jun 10 21:20:27 EDT 2025
Thu Apr 24 23:05:10 EDT 2025
Tue Jul 01 01:40:56 EDT 2025
Fri Feb 21 02:40:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-d4ca93bf54b5d05802fa3ee321c78bdc356f846f093c33d3282b9e2ef5a121403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/217696ed91f94d958e804b07447fb2b1
PQID 2625417248
PQPubID 2034659
PageCount 5
ParticipantIDs doaj_primary_oai_doaj_org_article_217696ed91f94d958e804b07447fb2b1
proquest_journals_2625417248
gale_infotracacademiconefile_A691982485
crossref_citationtrail_10_1140_epjc_s10052_022_10056_y
crossref_primary_10_1140_epjc_s10052_022_10056_y
springer_journals_10_1140_epjc_s10052_022_10056_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Particles and Fields
PublicationTitle The European physical journal. C, Particles and fields
PublicationTitleAbbrev Eur. Phys. J. C
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References Y. Hagiwara, Y. Hatta, B.W. Xiao, F. Yuan, Phys. Rev. D 97(9), 094029 (2018). https://doi.org/10.1103/PhysRevD.97.094029. arXiv:1801.00087 [hep-ph]
M. Hentschinski, A. Sabio Vera and C. Salas, Phys. Rev. Lett. 110(4), 041601 (2013). https://doi.org/10.1103/PhysRevLett.110.041601. arXiv:1209.1353 [hep-ph]
R. Bousso, JHEP 07, 004 (1999). https://doi.org/10.1088/1126-6708/1999/07/004. arXiv:hep-th/9905177 [hep-th]
F.D. Aaron et al., H1 and ZEUS. JHEP 01, 109 (2010). https://doi.org/10.1007/JHEP01(2010)109. arXiv:0911.0884 [hep-ex]
M. Hentschinski, A. Kusina, K. Kutak, M. Serino, Eur. Phys. J. C 78(3), 174 (2018). https://doi.org/10.1140/epjc/s10052-018-5634-2. arXiv:1711.04587 [hep-ph]
S. Catani, F. Hautmann, Nucl. Phys. B 427, 475–524 (1994). https://doi.org/10.1016/0550-3213(94)90636-X. arXiv:hep-ph/9405388 [hep-ph]
V. Andreev et al. [H1], Eur. Phys. J. C 81(3), 212 (2021). https://doi.org/10.1140/epjc/s10052-021-08896-1. arXiv:2011.01812 [hep-ex]
R.D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo, L. Rottoli, Eur. Phys. J. C 78(4), 321 (2018). https://doi.org/10.1140/epjc/s10052-018-5774-4. arXiv:1710.05935 [hep-ph]
G. Dvali, R. Venugopalan, arXiv:2106.11989 [hep-th]
D.E. Kharzeev, E. Levin, Phys. Rev. D 104(3), L031503 (2021). https://doi.org/10.1103/PhysRevD.104.L031503. arXiv:2102.09773 [hep-ph]
G.S. Ramos, M.V.T. Machado, Phys. Rev. D 101(7), 074040 (2020). https://doi.org/10.1103/PhysRevD.101.074040. arXiv:2003.05008 [hep-ph]
R.D. Ball et al., NNPDF. JHEP 04, 040 (2015). https://doi.org/10.1007/JHEP04(2015)040. arXiv:1410.8849 [hep-ph]
A. Kovner, M. Lublinsky, Phys. Rev. D 92(3), 034016 (2015). https://doi.org/10.1103/PhysRevD.92.034016. arXiv:1506.05394 [hep-ph]
G. Chachamis, M. Deák, M. Hentschinski, G. Rodrigo, A. Sabio Vera, JHEP 09, 123 (2015). https://doi.org/10.1007/JHEP09(2015)123. arXiv:1507.05778 [hep-ph]
V.S. Fadin, L.N. Lipatov, Phys. Lett. B 429, 127–134 (1998). https://doi.org/10.1016/S0370-2693(98)00473-0. arXiv:hep-ph/9802290 [hep-ph]
Y.L. Dokshitzer, V.A. Khoze, S.I. Troian, A.H. Mueller, Rev. Mod. Phys. 60, 373 (1988). https://doi.org/10.1103/RevModPhys.60.373
Y.V. Kovchegov, Phys. Rev. D 61, 074018 (2000). https://doi.org/10.1103/PhysRevD.61.074018. arXiv:hep-ph/9905214 [hep-ph]
L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 2233–2241 (1994). https://doi.org/10.1103/PhysRevD.49.2233. arXiv:hep-ph/9309289 [hep-ph]
D. Neill, W.J. Waalewijn, Phys. Rev. Lett. 123(14), 142001 (2019). https://doi.org/10.1103/PhysRevLett.123.142001. arXiv:1811.01021 [hep-ph]
I. Balitsky, Nucl. Phys. B 463, 99–160 (1996). https://doi.org/10.1016/0550-3213(95)00638-9. arXiv:hep-ph/9509348 [hep-ph]
GribovLVLevinEMRyskinMGPhys. Rept.1983100115010.1016/0370-1573(83)90022-4
Z. Tu, D.E. Kharzeev, T. Ullrich, Phys. Rev. Lett. 124(6), 062001 (2020). https://doi.org/10.1103/PhysRevLett.124.062001. arXiv:1904.11974 [hep-ph]
A. Kovner, M. Lublinsky, M. Serino, Phys. Lett. B 792, 4–15 (2019). https://doi.org/10.1016/j.physletb.2018.10.043. arXiv:1806.01089 [hep-ph]
H. Duan, C. Akkaya, A. Kovner, V.V. Skokov, Phys. Rev. D 101(3), 036017 (2020). https://doi.org/10.1103/PhysRevD.101.036017. arXiv:2001.01726 [hep-ph]
A.H. Mueller, Nucl. Phys. B 572, 227–240 (2000). https://doi.org/10.1016/S0550-3213(99)00502-7. arXiv:hep-ph/9906322 [hep-ph]
D.E. Kharzeev, Quantum information approach to high energy interactions. arXiv:2108.08792 [hep-ph]
M. Hentschinski, Phys. Rev. D 104(5), 054014 (2021). https://doi.org/10.1103/PhysRevD.104.054014. arXiv:2107.06203 [hep-ph]
BekensteinJDPhys. Rev. D19812328759989310.1103/PhysRevD.23.287
H. Abramowicz et al. [H1 and ZEUS], Eur. Phys. J. C 75(12), 580 (2015). https://doi.org/10.1140/epjc/s10052-015-3710-4. arXiv:1506.06042 [hep-ex]
R. Peschanski, Phys. Rev. D 87(3), 034042 (2013). https://doi.org/10.1103/PhysRevD.87.034042. arXiv:1211.6911 [hep-ph]
S. Ryu, T. Takayanagi, Phys. Rev. Lett. 96(2006). https://doi.org/10.1103/PhysRevLett.96.181602. arXiv:hep-th/0603001 [hep-th]
D.E. Kharzeev, E.M. Levin, Phys. Rev. D 95(11), 114008 (2017). https://doi.org/10.1103/PhysRevD.95.114008. arXiv:1702.03489 [hep-ph]
N. Armesto, F. Dominguez, A. Kovner, M. Lublinsky, V. Skokov, JHEP 05, 025 (2019). https://doi.org/10.1007/JHEP05(2019)025. arXiv:1901.08080 [hep-ph]
Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1999). https://doi.org/10.1103/PhysRevD.60.034008. arXiv:hep-ph/9901281 [hep-ph]
M. Hentschinski, A. Sabio Vera, C. Salas, Phys. Rev. D 87(7), 076005 (2013). https://doi.org/10.1103/PhysRevD.87.076005. arXiv:1301.5283 [hep-ph]
I. Bautista, A. FernandezTellez, M. Hentschinski, Phys. Rev. D 94(5), 054002 (2016). https://doi.org/10.1103/PhysRevD.94.054002. arXiv:1607.05203 [hep-ph]
K. Kutak, Phys. Lett. B 705, 217–221 (2011). https://doi.org/10.1016/j.physletb.2011.09.113. arXiv:1103.3654 [hep-ph]
10056_CR28
10056_CR29
10056_CR26
10056_CR27
10056_CR13
10056_CR35
10056_CR14
10056_CR36
10056_CR11
10056_CR33
10056_CR12
10056_CR31
10056_CR10
10056_CR32
JD Bekenstein (10056_CR20) 1981; 23
10056_CR30
LV Gribov (10056_CR34) 1983; 100
10056_CR19
10056_CR2
10056_CR17
10056_CR3
10056_CR18
10056_CR15
10056_CR37
10056_CR1
10056_CR16
10056_CR6
10056_CR7
10056_CR4
10056_CR5
10056_CR8
10056_CR9
10056_CR24
10056_CR25
10056_CR22
10056_CR23
10056_CR21
References_xml – reference: H. Duan, C. Akkaya, A. Kovner, V.V. Skokov, Phys. Rev. D 101(3), 036017 (2020). https://doi.org/10.1103/PhysRevD.101.036017. arXiv:2001.01726 [hep-ph]
– reference: V. Andreev et al. [H1], Eur. Phys. J. C 81(3), 212 (2021). https://doi.org/10.1140/epjc/s10052-021-08896-1. arXiv:2011.01812 [hep-ex]
– reference: D. Neill, W.J. Waalewijn, Phys. Rev. Lett. 123(14), 142001 (2019). https://doi.org/10.1103/PhysRevLett.123.142001. arXiv:1811.01021 [hep-ph]
– reference: Y. Hagiwara, Y. Hatta, B.W. Xiao, F. Yuan, Phys. Rev. D 97(9), 094029 (2018). https://doi.org/10.1103/PhysRevD.97.094029. arXiv:1801.00087 [hep-ph]
– reference: D.E. Kharzeev, E.M. Levin, Phys. Rev. D 95(11), 114008 (2017). https://doi.org/10.1103/PhysRevD.95.114008. arXiv:1702.03489 [hep-ph]
– reference: Y.V. Kovchegov, Phys. Rev. D 61, 074018 (2000). https://doi.org/10.1103/PhysRevD.61.074018. arXiv:hep-ph/9905214 [hep-ph]
– reference: BekensteinJDPhys. Rev. D19812328759989310.1103/PhysRevD.23.287
– reference: S. Ryu, T. Takayanagi, Phys. Rev. Lett. 96(2006). https://doi.org/10.1103/PhysRevLett.96.181602. arXiv:hep-th/0603001 [hep-th]
– reference: A. Kovner, M. Lublinsky, Phys. Rev. D 92(3), 034016 (2015). https://doi.org/10.1103/PhysRevD.92.034016. arXiv:1506.05394 [hep-ph]
– reference: H. Abramowicz et al. [H1 and ZEUS], Eur. Phys. J. C 75(12), 580 (2015). https://doi.org/10.1140/epjc/s10052-015-3710-4. arXiv:1506.06042 [hep-ex]
– reference: M. Hentschinski, Phys. Rev. D 104(5), 054014 (2021). https://doi.org/10.1103/PhysRevD.104.054014. arXiv:2107.06203 [hep-ph]
– reference: R. Bousso, JHEP 07, 004 (1999). https://doi.org/10.1088/1126-6708/1999/07/004. arXiv:hep-th/9905177 [hep-th]
– reference: N. Armesto, F. Dominguez, A. Kovner, M. Lublinsky, V. Skokov, JHEP 05, 025 (2019). https://doi.org/10.1007/JHEP05(2019)025. arXiv:1901.08080 [hep-ph]
– reference: D.E. Kharzeev, Quantum information approach to high energy interactions. arXiv:2108.08792 [hep-ph]
– reference: M. Hentschinski, A. Sabio Vera, C. Salas, Phys. Rev. D 87(7), 076005 (2013). https://doi.org/10.1103/PhysRevD.87.076005. arXiv:1301.5283 [hep-ph]
– reference: V.S. Fadin, L.N. Lipatov, Phys. Lett. B 429, 127–134 (1998). https://doi.org/10.1016/S0370-2693(98)00473-0. arXiv:hep-ph/9802290 [hep-ph]
– reference: M. Hentschinski, A. Sabio Vera and C. Salas, Phys. Rev. Lett. 110(4), 041601 (2013). https://doi.org/10.1103/PhysRevLett.110.041601. arXiv:1209.1353 [hep-ph]
– reference: D.E. Kharzeev, E. Levin, Phys. Rev. D 104(3), L031503 (2021). https://doi.org/10.1103/PhysRevD.104.L031503. arXiv:2102.09773 [hep-ph]
– reference: R.D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo, L. Rottoli, Eur. Phys. J. C 78(4), 321 (2018). https://doi.org/10.1140/epjc/s10052-018-5774-4. arXiv:1710.05935 [hep-ph]
– reference: G.S. Ramos, M.V.T. Machado, Phys. Rev. D 101(7), 074040 (2020). https://doi.org/10.1103/PhysRevD.101.074040. arXiv:2003.05008 [hep-ph]
– reference: Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1999). https://doi.org/10.1103/PhysRevD.60.034008. arXiv:hep-ph/9901281 [hep-ph]
– reference: S. Catani, F. Hautmann, Nucl. Phys. B 427, 475–524 (1994). https://doi.org/10.1016/0550-3213(94)90636-X. arXiv:hep-ph/9405388 [hep-ph]
– reference: A. Kovner, M. Lublinsky, M. Serino, Phys. Lett. B 792, 4–15 (2019). https://doi.org/10.1016/j.physletb.2018.10.043. arXiv:1806.01089 [hep-ph]
– reference: I. Bautista, A. FernandezTellez, M. Hentschinski, Phys. Rev. D 94(5), 054002 (2016). https://doi.org/10.1103/PhysRevD.94.054002. arXiv:1607.05203 [hep-ph]
– reference: A.H. Mueller, Nucl. Phys. B 572, 227–240 (2000). https://doi.org/10.1016/S0550-3213(99)00502-7. arXiv:hep-ph/9906322 [hep-ph]
– reference: G. Chachamis, M. Deák, M. Hentschinski, G. Rodrigo, A. Sabio Vera, JHEP 09, 123 (2015). https://doi.org/10.1007/JHEP09(2015)123. arXiv:1507.05778 [hep-ph]
– reference: R.D. Ball et al., NNPDF. JHEP 04, 040 (2015). https://doi.org/10.1007/JHEP04(2015)040. arXiv:1410.8849 [hep-ph]
– reference: Y.L. Dokshitzer, V.A. Khoze, S.I. Troian, A.H. Mueller, Rev. Mod. Phys. 60, 373 (1988). https://doi.org/10.1103/RevModPhys.60.373
– reference: L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 2233–2241 (1994). https://doi.org/10.1103/PhysRevD.49.2233. arXiv:hep-ph/9309289 [hep-ph]
– reference: F.D. Aaron et al., H1 and ZEUS. JHEP 01, 109 (2010). https://doi.org/10.1007/JHEP01(2010)109. arXiv:0911.0884 [hep-ex]
– reference: K. Kutak, Phys. Lett. B 705, 217–221 (2011). https://doi.org/10.1016/j.physletb.2011.09.113. arXiv:1103.3654 [hep-ph]
– reference: R. Peschanski, Phys. Rev. D 87(3), 034042 (2013). https://doi.org/10.1103/PhysRevD.87.034042. arXiv:1211.6911 [hep-ph]
– reference: G. Dvali, R. Venugopalan, arXiv:2106.11989 [hep-th]
– reference: GribovLVLevinEMRyskinMGPhys. Rept.1983100115010.1016/0370-1573(83)90022-4
– reference: Z. Tu, D.E. Kharzeev, T. Ullrich, Phys. Rev. Lett. 124(6), 062001 (2020). https://doi.org/10.1103/PhysRevLett.124.062001. arXiv:1904.11974 [hep-ph]
– reference: I. Balitsky, Nucl. Phys. B 463, 99–160 (1996). https://doi.org/10.1016/0550-3213(95)00638-9. arXiv:hep-ph/9509348 [hep-ph]
– reference: M. Hentschinski, A. Kusina, K. Kutak, M. Serino, Eur. Phys. J. C 78(3), 174 (2018). https://doi.org/10.1140/epjc/s10052-018-5634-2. arXiv:1711.04587 [hep-ph]
– ident: 10056_CR27
  doi: 10.1140/epjc/s10052-018-5634-2
– ident: 10056_CR16
  doi: 10.1016/0550-3213(95)00638-9
– ident: 10056_CR4
  doi: 10.1103/PhysRevD.87.034042
– ident: 10056_CR36
  doi: 10.1103/PhysRevD.94.054002
– volume: 100
  start-page: 1
  year: 1983
  ident: 10056_CR34
  publication-title: Phys. Rept.
  doi: 10.1016/0370-1573(83)90022-4
– ident: 10056_CR29
  doi: 10.1007/JHEP09(2015)123
– ident: 10056_CR24
  doi: 10.1103/PhysRevD.87.076005
– ident: 10056_CR14
  doi: 10.1103/PhysRevD.60.034008
– ident: 10056_CR18
  doi: 10.1016/S0550-3213(99)00502-7
– ident: 10056_CR35
  doi: 10.1103/PhysRevD.49.2233
– ident: 10056_CR8
  doi: 10.1103/PhysRevD.101.036017
– ident: 10056_CR32
  doi: 10.1140/epjc/s10052-018-5774-4
– ident: 10056_CR12
  doi: 10.1103/PhysRevD.97.094029
– volume: 23
  start-page: 287
  year: 1981
  ident: 10056_CR20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.23.287
– ident: 10056_CR22
  doi: 10.1103/PhysRevLett.96.181602
– ident: 10056_CR25
  doi: 10.1016/S0370-2693(98)00473-0
– ident: 10056_CR28
  doi: 10.1103/PhysRevD.104.054014
– ident: 10056_CR3
  doi: 10.1016/j.physletb.2011.09.113
– ident: 10056_CR11
– ident: 10056_CR9
– ident: 10056_CR7
  doi: 10.1007/JHEP05(2019)025
– ident: 10056_CR30
  doi: 10.1140/epjc/s10052-015-3710-4
– ident: 10056_CR37
  doi: 10.1007/JHEP01(2010)109
– ident: 10056_CR31
  doi: 10.1007/JHEP04(2015)040
– ident: 10056_CR15
  doi: 10.1103/PhysRevD.61.074018
– ident: 10056_CR13
  doi: 10.1103/PhysRevLett.123.142001
– ident: 10056_CR1
  doi: 10.1103/PhysRevD.95.114008
– ident: 10056_CR2
  doi: 10.1103/PhysRevLett.124.062001
– ident: 10056_CR5
  doi: 10.1103/PhysRevD.92.034016
– ident: 10056_CR21
  doi: 10.1088/1126-6708/1999/07/004
– ident: 10056_CR6
  doi: 10.1016/j.physletb.2018.10.043
– ident: 10056_CR17
  doi: 10.1103/RevModPhys.60.373
– ident: 10056_CR10
  doi: 10.1103/PhysRevD.101.074040
– ident: 10056_CR23
  doi: 10.1103/PhysRevLett.110.041601
– ident: 10056_CR26
  doi: 10.1016/0550-3213(94)90636-X
– ident: 10056_CR33
  doi: 10.1103/PhysRevD.104.L031503
– ident: 10056_CR19
  doi: 10.1140/epjc/s10052-021-08896-1
SSID ssj0002408
Score 2.5223114
Snippet We investigate the proposal by Kharzeev and Levin of a maximally entangled proton wave function in Deep Inelastic Scattering at low x and the proposed relation...
We investigate the proposal by Kharzeev and Levin of a maximally entangled proton wave function in Deep Inelastic Scattering at low x and the proposed relation...
Abstract We investigate the proposal by Kharzeev and Levin of a maximally entangled proton wave function in Deep Inelastic Scattering at low x and the proposed...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111
SubjectTerms Astronomy
Astrophysics and Cosmology
Distribution (Probability theory)
Distribution functions
Elementary Particles
Entropy
Gluons
Hadrons
Heavy Ions
Inelastic scattering
Kinematics
Letter
Measurement Science and Instrumentation
Nuclear Energy
Nuclear Physics
Partons
Physics
Physics and Astronomy
Protons
Quantum Field Theories
Quantum Field Theory
Quarks
String Theory
Wave functions
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9UwFA-6IfgifmJ1Sh4En8La5qPJ09h04yo4RB0MfAj56ph07XX3Dnf_e8_pTe-QgXsrbZM2JzknvyTn_A4h71L0qvKNYtpFzYTxmjkvEvNOJC4DN1JggPOXYzU7EZ9P5WnecFtkt8rJJo6GOg4B98h3awDqAmZboffmvxlmjcLT1ZxC4z7ZBhOsYfG1fXB4_PXbxhYjgdcYX8QFU6UQ2cMLVhW7af4rYARdKWuGLu14pdjqn_lppPG_baxvnZqOk9HRY_Ioo0i6v-72J-Re6p-SB6M3Z1g8Iz-nXKEUICkFiEcv3PX5heu6FUVf8f6sS5F2wx96TZGoYejpeU8_pjSnn_oEeBqqpd_DSL0J36cYg0JnFUV30ufk5Ojwx4cZy1kUWADlXLIogjPct1J4GUupy7p1PCVeV6HRPgYuVQsgpC0ND5xHDmswb1KdWumqGtn8XpCtfujTS0JV7bmQTeMkB8V30ocUkwEQVbeB-0YWRE2ysyFTjGOmi86uw59Li0K3a6FbELodhW5XBSk3Bedrlo27ixxg52xeR5rs8cZweWaz1llYbymjUjRVa0Q0UiddCg-oSTStr31VkPfYtRaVGX40uByTAM1FWiy7r0xlNLK-FWRn6n2btXxhb8ZkQappRNw8vqMFr_5f5WvysMZxOXqI75Ct5eVVegMAaOnf5lH-F5xpAEM
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA86EXwRP7E6JQ-CT8E2X20e53RcBX3RwcCHkI_TMbnrvWx3uPvfe07aTmXgwLfSNmlzPpLfIef8wthryNE2sbWiC7kT2sVOhKhBxKBBmaSc0VTg_PmLXRzqT0fm6M-jvijbfd6SLDP1yGdbv4X1j0QVb7WRglLQ6cqK7W12x2AAT8a9T4UO0yRMzF2lsEhpYWutp9Suf3T018JU-Puvz9LXtkvLKnTwgN2f4CPfG_X9kN2C4RG7W9I40_lj9n0-JJQjFuWI7fhpuDw5DcvlllOS-HC8hMyXq5_8khNDw2rgJwN_D7DmHwdAII3d8q-pcG7i9zkVn_BFwymP9Ak7PPjwbX8hpuMTREKv3IisU3Aq9kZHk2vT1bIPCkDJJrVdzEkZ2yP66GunklJZYfAVHUjoTWgk0fg9ZTvDaoBnjFsZlTZtG4xCjw8mJsjgED3JPqnYmorZWXY-TdzidMTF0o91z7UnoftR6B6F7ovQ_bZi9VXD9UivcXOTd6Scq9eJH7vcWJ0d-8ndPAZa1lnIrumdzs500NU6IlzSbR9lbCr2hlTryYvxR1OYihFwuMSH5fesa1xHdG8V25217yf3PvcSo0aN0E93FWtmi_j9-IYRPP-PNi_YPUnGWvLFd9nO5uwCXiIc2sRXxfB_Aa9B_7w
  priority: 102
  providerName: Springer Nature
Title Evidence for the maximally entangled low x proton in Deep Inelastic Scattering from H1 data
URI https://link.springer.com/article/10.1140/epjc/s10052-022-10056-y
https://www.proquest.com/docview/2625417248
https://doaj.org/article/217696ed91f94d958e804b07447fb2b1
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCIkL4ikCZeUDEieriV-xj9uly4JEhYCVKnGwbMdBRWl2RRfR_ffMONkC6mEvXKy8nNjjGfsbZeYzIa9SE3QVas2MbwyTNhjmg0wseJmEisIqiQnOH071Yinfn6mzv7b6wpiwgR54ENwRQGZtdWps1VrZWGWSKWWAhU_WbeAhOz6w5u2cqXEORuKunFckJNOllGNkF3gTR2n9PWLmXKk4w1B2PNJs-8-6lOn7b07SN_6W5kVo_oDcH9EjnQ6tfkhupf4RuZujOOPlY_J1t0coBShKAdrRC391fuG7bksxRrz_1qWGdqtf9IoiQcOqp-c9fZPSmr7rE-BoeC39HDPlJnyfYu4JXVQUw0ifkOX85MtswcbdE1gEo9ywRkZvRWiVDKoplSl560VKglexNqGJQukWwEdbWhGFaAT4XsEmnlrlK44sfk_JQb_q0zNCNQ9Cqrr2SoDBexViapIF8MTbKEKtCqJ3snNxpBbHHS46N6Q9lw6F7gahOxC6y0J324KU1xXXA7vG_irHODjXjyM9dr4ASuNGpXH7lKYgr3FoHRoxNDT6MRcBuot0WG6qbWUNsr0V5HA3-m607kvHwWmUgPykKUi104g_t_f04Pn_6MELco-j9ub48UNysPnxM70EeLQJE3LbzN9OyJ3jk9OPn-BsxiWWejbJNgLlkk9_A5uMC44
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ikCBXwAcbKa-JX4gFChLLv0caGVKnEwfqUq2maX7qJ2_xS_kZlsshWqRE-9RUnsxDPjeSQz3xDyJkWvC19qVrlYMWl8xZyXiXknk1BBGCWxwHlvXw8P5dcjdbRG_vS1MJhW2evEVlHHScBv5JscHHUJ1lZWH6a_GHaNwr-rfQuNpVjspMU5hGyz96Nt4O9bzgefDz4NWddVgAUQ1jmLMjgjfK2kVzFXVc5rJ1ISvAhl5WMQStdglGsI9YMQUUBM4k3iqVau4IhuB_PeIrelEAZ3VDX4stL8CBfWVjMJyXQuZZdPBoM20_RnwHq9XHGGCfR4pNniH2vYNg24ahqu_KNtTd_gAbnf-ax0aylkD8laah6RO23uaJg9Jt_7zqQUHGAKDiU9dRcnp248XlDMTG-OxynS8eScXlCEhZg09KSh2ylN6ahJ4L3DtPRbaIE-4fkUK17osKCYvPqEHN4IdZ-S9WbSpGeEau6FVGXplAA145QPKSYDLhuvg_ClyojuaWdDB2iOfTXGdllsnVskul0S3QLRbUt0u8hIvho4XWJ6XD_kIzJndTuCcrcnJmfHttvjFqI7bXSKpqiNjEZVqcqlBx9NlrXnvsjIO2StRdUBLxpcVwEBy0UQLrulTWEqxJjLyEbPfdvplJm93AEZKXqJuLx8zQqe_3_K1-Tu8GBv1-6O9ndekHscZbTNTd8g6_Oz3-kluF5z_6qVd0p-3PQG-wsv7Tt9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCAuiKcILbAHECcr9r7sPSDUkkYJhagCKlXisOzLVVHqpE1Qm7_Gr2PGsVOhSvTUm2V7196Z2XnYM98Q8iYGpzKXq6SwoUiEdkVinYiJsyJy6bmWAgucv4zV8FB8OpJHG-RPWwuDaZWtTqwVdZh6_EbeY-CoC7C2ouiVTVrEQX_wYXaWYAcp_NPattNYich-XF5A-DZ_P-oDr98yNtj7_nGYNB0GEg-Cu0iC8FZzV0rhZEhlkbLS8hg5y3xeuOC5VCUY6BLCfs954BCfOB1ZLKXNGCLdwbx3yGYOUVHaIZu7e-ODr2s7gOBhdW0TF4lKhWiyy2BYL85-eazeSyVLMJ0ej1Sy_Mc21i0ErhuKa39sa0M4eEgeNB4s3VmJ3COyEavH5G6dSernT8iPtk8pBXeYgntJT-3lyamdTJYU89Sr40kMdDK9oJcUQSKmFT2paD_GGR1VEXx5mJZ-8zXsJzyfYv0LHWYUU1mfksNboe8z0qmmVXxOqGKOC5nnVnJQOlY6H0PU4MCx0nOXyy5RLe2Mb-DNscvGxKxKr1ODRDcrohsguqmJbpZdkq4HzlYIHzcP2UXmrG9HiO76xPT82DQ73kCsp7SKQWelFkHLIhapcOCxibx0zGVd8g5Za1CRwIt629RDwHIRksvsKJ3pAhHnumS75b5pNMzcXO2HLslaibi6fMMKXvx_ytfkHmwu83k03t8i9xmKaJ2ovk06i_Pf8SX4YQv3qhF4Sn7e9h77C3KvQQ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+the+maximally+entangled+low+x+proton+in+Deep+Inelastic+Scattering+from+H1+data&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Hentschinski%2C+Martin&rft.au=Kutak%2C+Krzysztof&rft.date=2022-02-01&rft.issn=1434-6044&rft.eissn=1434-6052&rft.volume=82&rft.issue=2&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-022-10056-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjc_s10052_022_10056_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6044&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6044&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6044&client=summon