Realistic neutron star models in f(T) gravity
We investigate the nonrotating neutron stars in f ( T ) gravity with f ( T ) = T + α T 2 , where T is the torsion scalar in the teleparallel formalism of gravity. In particular, we utilize the SLy and BSk family of equations of state for perfect fluid to describe the neutron stellar matter and searc...
Saved in:
Published in | The European physical journal. C, Particles and fields Vol. 82; no. 4; pp. 1 - 16 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2022
Springer Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1434-6052 1434-6044 1434-6052 |
DOI | 10.1140/epjc/s10052-022-10268-2 |
Cover
Abstract | We investigate the nonrotating neutron stars in
f
(
T
) gravity with
f
(
T
)
=
T
+
α
T
2
, where
T
is the torsion scalar in the teleparallel formalism of gravity. In particular, we utilize the SLy and BSk family of equations of state for perfect fluid to describe the neutron stellar matter and search for the effects of the
f
(
T
) modification on the models of neutron stars. For positive
α
, the modification results in a smaller stellar mass in comparison to general relativity, while the neutron stars will contain larger amount of matter for negative
α
. Moreover, there seems to be an upper limit for the central density of the neutron stars with
α
>
0
, beyond which the effective
f
(
T
) fluid would have a steplike phase transition in density and pressure profiles, collapsing the numerical system. We obtain the mass–radius relations of the realistic models of neutron stars and subject them to the joint constraints from the observed massive pulsars PSR J0030+0451, PSR J0740+6620, and PSR J2215+5135, and gravitational wave events GW170817 and GW190814. For the neutron star model in
f
(
T
) gravity to be able to accommodate all the mentioned data, the model parameter
α
needs to be smaller than
-
4.295
,
-
6.476
,
-
4.4
, and
-
2.12
(in the unit of
G
2
M
⊙
2
/
c
4
) for SLy, BSk19, BSk20, and BSk21 equations of state, respectively. If one considers the unknown compact object in the event GW190814 not to be a neutron star and hence excludes this dataset, the constraints can be loosened to
α
<
-
0.594
,
-
3.5
, 0.4 and 1.9 (in the unit of
G
2
M
⊙
2
/
c
4
), respectively. |
---|---|
AbstractList | We investigate the nonrotating neutron stars in f(T) gravity with f(T)=T+αT2, where T is the torsion scalar in the teleparallel formalism of gravity. In particular, we utilize the SLy and BSk family of equations of state for perfect fluid to describe the neutron stellar matter and search for the effects of the f(T) modification on the models of neutron stars. For positive α, the modification results in a smaller stellar mass in comparison to general relativity, while the neutron stars will contain larger amount of matter for negative α. Moreover, there seems to be an upper limit for the central density of the neutron stars with α>0, beyond which the effective f(T) fluid would have a steplike phase transition in density and pressure profiles, collapsing the numerical system. We obtain the mass–radius relations of the realistic models of neutron stars and subject them to the joint constraints from the observed massive pulsars PSR J0030+0451, PSR J0740+6620, and PSR J2215+5135, and gravitational wave events GW170817 and GW190814. For the neutron star model in f(T) gravity to be able to accommodate all the mentioned data, the model parameter α needs to be smaller than -4.295, -6.476, -4.4, and -2.12 (in the unit of G2M⊙2/c4) for SLy, BSk19, BSk20, and BSk21 equations of state, respectively. If one considers the unknown compact object in the event GW190814 not to be a neutron star and hence excludes this dataset, the constraints can be loosened to α<-0.594, -3.5, 0.4 and 1.9 (in the unit of G2M⊙2/c4), respectively. We investigate the nonrotating neutron stars in f ( T ) gravity with f ( T ) = T + α T 2 , where T is the torsion scalar in the teleparallel formalism of gravity. In particular, we utilize the SLy and BSk family of equations of state for perfect fluid to describe the neutron stellar matter and search for the effects of the f ( T ) modification on the models of neutron stars. For positive α , the modification results in a smaller stellar mass in comparison to general relativity, while the neutron stars will contain larger amount of matter for negative α . Moreover, there seems to be an upper limit for the central density of the neutron stars with α > 0 , beyond which the effective f ( T ) fluid would have a steplike phase transition in density and pressure profiles, collapsing the numerical system. We obtain the mass–radius relations of the realistic models of neutron stars and subject them to the joint constraints from the observed massive pulsars PSR J0030+0451, PSR J0740+6620, and PSR J2215+5135, and gravitational wave events GW170817 and GW190814. For the neutron star model in f ( T ) gravity to be able to accommodate all the mentioned data, the model parameter α needs to be smaller than - 4.295 , - 6.476 , - 4.4 , and - 2.12 (in the unit of G 2 M ⊙ 2 / c 4 ) for SLy, BSk19, BSk20, and BSk21 equations of state, respectively. If one considers the unknown compact object in the event GW190814 not to be a neutron star and hence excludes this dataset, the constraints can be loosened to α < - 0.594 , - 3.5 , 0.4 and 1.9 (in the unit of G 2 M ⊙ 2 / c 4 ), respectively. Abstract We investigate the nonrotating neutron stars in f(T) gravity with $$f(T)=T+\alpha {T}^2$$ f ( T ) = T + α T 2 , where T is the torsion scalar in the teleparallel formalism of gravity. In particular, we utilize the SLy and BSk family of equations of state for perfect fluid to describe the neutron stellar matter and search for the effects of the f(T) modification on the models of neutron stars. For positive $$\alpha $$ α , the modification results in a smaller stellar mass in comparison to general relativity, while the neutron stars will contain larger amount of matter for negative $$\alpha $$ α . Moreover, there seems to be an upper limit for the central density of the neutron stars with $$\alpha >0$$ α > 0 , beyond which the effective f(T) fluid would have a steplike phase transition in density and pressure profiles, collapsing the numerical system. We obtain the mass–radius relations of the realistic models of neutron stars and subject them to the joint constraints from the observed massive pulsars PSR J0030+0451, PSR J0740+6620, and PSR J2215+5135, and gravitational wave events GW170817 and GW190814. For the neutron star model in f(T) gravity to be able to accommodate all the mentioned data, the model parameter $$\alpha $$ α needs to be smaller than $$-\,4.295$$ - 4.295 , $$-\,6.476$$ - 6.476 , $$-\,4.4$$ - 4.4 , and $$-\,2.12$$ - 2.12 (in the unit of $${G}^2M_\odot ^2/c^4$$ G 2 M ⊙ 2 / c 4 ) for SLy, BSk19, BSk20, and BSk21 equations of state, respectively. If one considers the unknown compact object in the event GW190814 not to be a neutron star and hence excludes this dataset, the constraints can be loosened to $$\alpha <-\,0.594$$ α < - 0.594 , $$-\,3.5$$ - 3.5 , 0.4 and 1.9 (in the unit of $${G}^2M_\odot ^2/c^4$$ G 2 M ⊙ 2 / c 4 ), respectively. We investigate the nonrotating neutron stars in f ( T ) gravity with $$f(T)=T+\alpha {T}^2$$ f ( T ) = T + α T 2 , where T is the torsion scalar in the teleparallel formalism of gravity. In particular, we utilize the SLy and BSk family of equations of state for perfect fluid to describe the neutron stellar matter and search for the effects of the f ( T ) modification on the models of neutron stars. For positive $$\alpha $$ α , the modification results in a smaller stellar mass in comparison to general relativity, while the neutron stars will contain larger amount of matter for negative $$\alpha $$ α . Moreover, there seems to be an upper limit for the central density of the neutron stars with $$\alpha >0$$ α > 0 , beyond which the effective f ( T ) fluid would have a steplike phase transition in density and pressure profiles, collapsing the numerical system. We obtain the mass–radius relations of the realistic models of neutron stars and subject them to the joint constraints from the observed massive pulsars PSR J0030+0451, PSR J0740+6620, and PSR J2215+5135, and gravitational wave events GW170817 and GW190814. For the neutron star model in f ( T ) gravity to be able to accommodate all the mentioned data, the model parameter $$\alpha $$ α needs to be smaller than $$-\,4.295$$ - 4.295 , $$-\,6.476$$ - 6.476 , $$-\,4.4$$ - 4.4 , and $$-\,2.12$$ - 2.12 (in the unit of $${G}^2M_\odot ^2/c^4$$ G 2 M ⊙ 2 / c 4 ) for SLy, BSk19, BSk20, and BSk21 equations of state, respectively. If one considers the unknown compact object in the event GW190814 not to be a neutron star and hence excludes this dataset, the constraints can be loosened to $$\alpha <-\,0.594$$ α < - 0.594 , $$-\,3.5$$ - 3.5 , 0.4 and 1.9 (in the unit of $${G}^2M_\odot ^2/c^4$$ G 2 M ⊙ 2 / c 4 ), respectively. We investigate the nonrotating neutron stars in f(T) gravity with [Formula omitted], where T is the torsion scalar in the teleparallel formalism of gravity. In particular, we utilize the SLy and BSk family of equations of state for perfect fluid to describe the neutron stellar matter and search for the effects of the f(T) modification on the models of neutron stars. For positive [Formula omitted], the modification results in a smaller stellar mass in comparison to general relativity, while the neutron stars will contain larger amount of matter for negative [Formula omitted]. Moreover, there seems to be an upper limit for the central density of the neutron stars with [Formula omitted], beyond which the effective f(T) fluid would have a steplike phase transition in density and pressure profiles, collapsing the numerical system. We obtain the mass-radius relations of the realistic models of neutron stars and subject them to the joint constraints from the observed massive pulsars PSR J0030+0451, PSR J0740+6620, and PSR J2215+5135, and gravitational wave events GW170817 and GW190814. For the neutron star model in f(T) gravity to be able to accommodate all the mentioned data, the model parameter [Formula omitted] needs to be smaller than [Formula omitted], [Formula omitted], [Formula omitted], and [Formula omitted] (in the unit of [Formula omitted]) for SLy, BSk19, BSk20, and BSk21 equations of state, respectively. If one considers the unknown compact object in the event GW190814 not to be a neutron star and hence excludes this dataset, the constraints can be loosened to [Formula omitted], [Formula omitted], 0.4 and 1.9 (in the unit of [Formula omitted]), respectively. |
ArticleNumber | 308 |
Audience | Academic |
Author | Lin, Rui-Hui Chen, Xiao-Ning Zhai, Xiang-Hua |
Author_xml | – sequence: 1 givenname: Rui-Hui surname: Lin fullname: Lin, Rui-Hui organization: Division of Mathematics and Theoretical Physics, Shanghai Normal University – sequence: 2 givenname: Xiao-Ning surname: Chen fullname: Chen, Xiao-Ning organization: Division of Mathematics and Theoretical Physics, Shanghai Normal University – sequence: 3 givenname: Xiang-Hua surname: Zhai fullname: Zhai, Xiang-Hua email: zhaixh@shnu.edu.cn organization: Division of Mathematics and Theoretical Physics, Shanghai Normal University |
BookMark | eNqFkU9rHSEUxaWk0CTtZ-hANsliEq86ji6yCKFtAoFCSdfi-OfhY56-qC-Qbx_fm5aUbqIL5XB_x3s9J-gopugQ-gr4EoDhK7ddm6sCGA-kx4T0gAkXPfmAjoFR1vOmH_1z_4ROSlljjAnD4hj1v5yeQ6nBdNHtak6xK1XnbpOsm0sXYufPHy-6VdbPob58Rh-9nov78uc8Rb-_f3u8vesffv64v7156A0TovaWDZpMmlkCFkCOHKgEQSc2ES20a2uYvLR2lOPkuRskAPGGjOAw5RMl9BTdL7426bXa5rDR-UUlHdRBSHmldG49z05ZR42XgK2UlrXXJ445lwbADUbrSTavs8Vrm9PTzpWq1mmXY2tfEc4EJSOnolVdLlUr3UxD9Klmbdq2bhNM-3Efmn7DpZQYM7q3vV4Ak1Mp2XllQtU1pNjAMCvAah-P2sejlnhUi0cd4lH7Ecf_-L9jvk-KhSyNiCuX3wZ6D30FZNOnqQ |
CitedBy_id | crossref_primary_10_1016_j_astropartphys_2024_103053 crossref_primary_10_1140_epjc_s10052_022_10688_0 crossref_primary_10_1016_j_nuclphysb_2025_116819 crossref_primary_10_1142_S0219887824502037 crossref_primary_10_1088_1475_7516_2023_04_044 crossref_primary_10_1140_epjc_s10052_023_11525_8 crossref_primary_10_3390_universe9050202 crossref_primary_10_1088_1475_7516_2024_09_011 crossref_primary_10_1088_1475_7516_2024_05_057 crossref_primary_10_1016_j_dark_2025_101851 crossref_primary_10_1016_j_aop_2023_169460 crossref_primary_10_1140_epjp_s13360_024_05395_6 crossref_primary_10_1088_1475_7516_2023_01_005 crossref_primary_10_1016_j_physleta_2024_129676 crossref_primary_10_1016_j_newast_2024_102347 crossref_primary_10_1016_j_cjph_2023_08_005 crossref_primary_10_1093_ptep_ptae043 crossref_primary_10_1140_epjc_s10052_022_10358_1 crossref_primary_10_1142_S0217751X24501318 crossref_primary_10_1007_s10714_024_03341_6 crossref_primary_10_1140_epjp_s13360_025_06003_x crossref_primary_10_1016_j_cjph_2023_12_018 |
Cites_doi | 10.1016/0370-2693(80)90670-X 10.1103/PhysRevD.98.064057 10.1103/PhysRevD.100.084023 10.3847/1538-4357/ab5a7f 10.12942/lrr-2010-3 10.1103/PhysRevD.81.127301 10.1051/0004-6361:20011402 10.1103/PhysRevD.80.104016 10.3390/universe7050153 10.1103/PhysRevLett.32.324 10.1103/PhysRevD.93.023501 10.3847/2041-8213/ac089b 10.1103/PhysRevD.99.024022 10.1103/PhysRevD.85.104036 10.1103/PhysRevD.95.044032 10.1016/j.physrep.2011.09.003 10.1103/PhysRevLett.121.161101 10.3847/2041-8213/ab50c5 10.1016/j.physrep.2020.07.001 10.1103/physrevd.86.044009 10.1007/JHEP01(2016)131 10.1103/PhysRevD.98.064047 10.1016/j.physletb.2021.136222 10.1016/j.physletb.2020.135910 10.48550/arXiv.1411.3293 10.3847/2041-8213/ab960f 10.1007/s10509-015-2610-2 10.1103/PhysRevD.90.024062 10.1140/epjc/s10052-019-7427-7 10.3847/1538-4357/aabde6 10.1002/andp.201200272 10.1098/rspa.1962.0206 10.1103/PhysRevD.101.024053 10.1103/PhysRevD.94.124025 10.1103/PhysRevD.73.124017 10.1051/0004-6361/201321697 10.1088/1361-6382/aa8971 10.1088/0034-4885/79/10/106901 10.3390/universe5070173 10.1103/physrevd.83.064035 10.1088/0264-9381/15/10/017 10.48550/arXiv.2202.08958.arXiv.2202.08958 10.1016/j.physletb.2011.06.049 10.1088/1361-6382/aa7830 10.1088/1475-7516/2013/12/040 10.1140/epjc/s10052-020-08551-1 10.1088/0264-9381/33/11/115009 10.1088/1475-7516/2011/07/020 10.1103/PhysRevD.79.124019 10.1103/physrevd.83.104030 10.1103/PhysRevD.53.1938 10.1103/RevModPhys.82.451 10.1016/j.physrep.2017.06.001 10.1051/0004-6361:20041722 10.1103/PhysRevD.102.084019 10.1007/978-94-007-5143-9 10.1098/rspa.1962.0161 10.1103/PhysRevD.91.064019 10.1103/PhysRev.116.1322 10.1088/0264-9381/28/24/245020 10.3390/universe7050121 10.1103/PhysRevD.98.064056 10.1209/0295-5075/134/59001 10.1016/j.physrep.2011.04.001 10.1038/s41550-019-0880-2 10.1103/PhysRev.136.B571 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 COPYRIGHT 2022 Springer The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: COPYRIGHT 2022 Springer – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.1140/epjc/s10052-022-10268-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea Solid State and Superconductivity Abstracts ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1434-6052 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_de3cf910d99d4488b60669c11e5caab9 A699900439 10_1140_epjc_s10052_022_10268_2 |
GroupedDBID | -5F -5G -A0 -BR -~X .86 0R~ 199 29G 2JY 30V 4.4 408 409 40D 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95. 95~ AAFWJ AAKKN ABDBF ABEEZ ABMNI ACACY ACGFS ACNCT ACUHS ACULB ADBBV ADINQ ADMLS AENEX AFBBN AFGXO AFKRA AFPKN AFWTZ AGWIL AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF AZFZN B0M BA0 BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DL5 DU5 EAD EAP EAS EBS EMK EPL ER. ESX FEDTE GQ6 GQ8 GROUPED_DOAJ GXS HCIFZ HF~ HG5 HG6 HMJXF HVGLF HZ~ I-F I09 IAO IGS IHE ISR IXC IZIGR IZQ I~X KDC KOV LAS MA- NB0 O9- O93 OK1 P62 P9T PIMPY QOS R89 R9I RED RID RNS RPX RSV S27 S3B SDH SOJ SPH SZN T13 TN5 TSK TSV TUC TUS U2A VC2 WK8 Z45 Z7Y ~8M -Y2 1SB 29Q 2P1 AAYXX ABFSG ABQSL ABTEG ACSTC ADHKG ADKPE AEZWR AFFNX AFHIU AGJBK AGQPQ AHSBF AHWEU AI. AIXLP BGNMA CAG CITATION COF EJD H13 H~9 M4Y N2Q NU0 PHGZM PHGZT PROAC PT5 ROL RZK S1Z VH1 PMFND 7U5 8FD ABUWG AZQEC DWQXO H8D L7M PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c488t-d45a2ba4d21d11976139183b4b2a8aeeee5bf9dd797bf6e59112fc271e036b323 |
IEDL.DBID | C6C |
ISSN | 1434-6052 1434-6044 |
IngestDate | Wed Aug 27 01:14:54 EDT 2025 Sat Jul 26 00:35:04 EDT 2025 Tue Jun 10 20:30:18 EDT 2025 Tue Jul 01 01:41:02 EDT 2025 Thu Apr 24 23:12:42 EDT 2025 Fri Feb 21 02:45:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c488t-d45a2ba4d21d11976139183b4b2a8aeeee5bf9dd797bf6e59112fc271e036b323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1140/epjc/s10052-022-10268-2 |
PQID | 2648327638 |
PQPubID | 2034659 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_de3cf910d99d4488b60669c11e5caab9 proquest_journals_2648327638 gale_infotracacademiconefile_A699900439 crossref_citationtrail_10_1140_epjc_s10052_022_10268_2 crossref_primary_10_1140_epjc_s10052_022_10268_2 springer_journals_10_1140_epjc_s10052_022_10268_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Particles and Fields |
PublicationTitle | The European physical journal. C, Particles and fields |
PublicationTitleAbbrev | Eur. Phys. J. C |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
References | SotaniHKokkotasKDPhys. Rev. D20179540440322017PhRvD..95d4032S10.1103/PhysRevD.95.044032 G.G.L. Nashed, W. El Hanafy, S.K. Ibrahim, (2014). https://doi.org/10.48550/arXiv.1411.3293. arXiv:1411.3293 GolovnevAGuzmánMJUniverse2021751212021Univ....7..121G10.3390/universe7050121 SotiriouTPFaraoniVRev. Mod. Phys.2010824512010RvMP...82..451S10.1103/RevModPhys.82.451 CromartieHTNat. Astron.201941722020NatAs...4...72C10.1038/s41550-019-0880-2 NojiriSOdintsovSOikonomouVPhys. Rep.201769212017PhR...692....1N368391310.1016/j.physrep.2017.06.001 IlijićScvSossichMPhys. Rev. D2018980640472018PhRvD..98f4047I393868210.1103/PhysRevD.98.064047 AbbottBPPhys. Rev. Lett.2018121161611012018PhRvL.121p1101A10.1103/PhysRevLett.121.161101 KrššákMSaridakisENClass. Quantum Gravity201633111150092016CQGra..33k5009K10.1088/0264-9381/33/11/115009 FerraroRFioriniFPhys. Lett. B20117021752011PhLB..702...75F281899510.1016/j.physletb.2011.06.049 De FeliceATsujikawaSLiving Rev. Relativ.20101332010LRR....13....3D10.12942/lrr-2010-3 AstashenokAVOdintsovSDde la Cruz-DombrizAClass. Quantum Gravity201734202050082017CQGra..34t5008A10.1088/1361-6382/aa8971 PotekhinAYFantinaAFChamelNPearsonJMGorielySAstron. Astrophys.2013560A482013A&A...560A..48P10.1051/0004-6361/201321697 TamaniniNBöhmerCGPhys. Rev. D20128640440092012PhRvD..86d4009T10.1103/physrevd.86.044009 CaiRGCaoLMHuYPOhtaNPhys. Rev. D2009801040162009PhRvD..80j4016C10.1103/PhysRevD.80.104016 GolovnevAKoivistoTSandstadMClass. Quantum Gravity201734141450132017CQGra..34n5013G10.1088/1361-6382/aa7830 HaywardSAPhys. Rev. D19965319381996PhRvD..53.1938H138001210.1103/PhysRevD.53.1938 HaenselPPotekhinAYAstron. Astrophys.20044281912004A&A...428..191H10.1051/0004-6361:20041722 ZubairMAbbasGAstrophys. Space Sci.20163611272016Ap&SS.361...27Z10.1007/s10509-015-2610-2 HaywardSAClass. Quantum Gravity19981531471998CQGra..15.3147H10.1088/0264-9381/15/10/017 CapozzielloSDe LaurentisMPhys. Rep.20115091672011PhR...509..167C286969010.1016/j.physrep.2011.09.003 MisnerCWSharpDHPhys. Rev.1964136B5711964PhRv..136..571M10.1103/PhysRev.136.B571 AbbottRAstrophys. J. Lett.20208962L442020ApJ...896L..44A10.3847/2041-8213/ab960f RezazadehKAbdolmalekiAKaramiKJHEP2016011312016JHEP...01..131R10.1007/JHEP01(2016)131 CaiYFCapozzielloSDe LaurentisMSaridakisENRep. Prog. Phys.201679101069012016RPPh...79j6901C10.1088/0034-4885/79/10/106901 JiménezJBHeisenbergLKoivistoTSUniverse2019571732019Univ....5..173B10.3390/universe5070173 DeBenedictisAIlijićScvPhys. Rev. D2016941240252016PhRvD..94l4025D376366810.1103/PhysRevD.94.124025 SahaPDebnathUEur. Phys. J. C201979119192019EPJC...79..919S10.1140/epjc/s10052-019-7427-7 LinaresMShahbazTCasaresJAstrophys. J.20188591542018ApJ...859...54L10.3847/1538-4357/aabde6 AstashenokAVCapozzielloSOdintsovSDJCAP2013120402013JCAP...12..040A10.1088/1475-7516/2013/12/040 PfeiferCSchusterSUniverse2021751532021Univ....7..153P10.3390/universe7050153 LinderEVPhys. Rev. D2010811273012010PhRvD..81l7301L10.1103/PhysRevD.81.127301 IlijićSSossichMPhys. Rev. D202010280840192020PhRvD.102h4019I417833910.1103/PhysRevD.102.084019 OlmoGJRubiera-GarciaDWojnarAPhys. Rep.202087612020PhR...876....1O414839510.1016/j.physrep.2020.07.001 MillerMCAstrophys. J. Lett.20219182L282021ApJ...918L..28M10.3847/2041-8213/ac089b ArapogluASDelidumanCEksiKYJCAP2011070202011JCAP...07..020A10.1088/1475-7516/2011/07/020 FerraroRFioriniFPhys. Rev. D2015910640192015PhRvD..91f4019F341531310.1103/PhysRevD.91.064019 LinRHZhaiXHPhys. Rev. D20199920240222019PhRvD..99b4022L398148910.1103/PhysRevD.99.024022 ZhangHHuYLiXZPhys. Rev. D20149020240622014PhRvD..90b4062Z10.1103/PhysRevD.90.024062 HaradaJPhys. Rev. D20201010240532020PhRvD.101b4053H406865810.1103/PhysRevD.101.024053 SachsRKProc. R. Soc. Lond. A19622701031962RSPSA.270..103S10.1098/rspa.1962.0206 ArnowittRLDeserSMisnerCWPhys. Rev.195911613221959PhRv..116.1322A11366710.1103/PhysRev.116.1322 MalufJWAnnalen der Physik201352553392013AnP...525..339M305535910.1002/andp.201200272 LiBSotiriouTPBarrowJDPhys. Rev. D20118360640352011PhRvD..83f4035L10.1103/physrevd.83.064035 Newton SinghKRahamanFBanerjeeAPhys. Rev. D201910080840232019PhRvD.100h4023N403102310.1103/PhysRevD.100.084023 BambaKMyrzakulovRNojiriSOdintsovSDPhys. Rev. D2012851040362012PhRvD..85j4036B10.1103/PhysRevD.85.104036 RhoadesCEJrRuffiniRPhys. Rev. Lett.1974323241974PhRvL..32..324R10.1103/PhysRevLett.32.324 AldrovandiRPereiraJGTeleparallel Gravity: An Introduction2013BerlinSpringer10.1007/978-94-007-5143-91259.83002 Zel’dovichYBEkspZhTeor. Fiz.1961411609 DouchinFHaenselPAstron. Astrophys.20013801512001A&A...380..151D10.1051/0004-6361:20011402 BengocheaGRFerraroRPhys. Rev. D2009791240192009PhRvD..79l4019B10.1103/PhysRevD.79.124019 NashedGGLCapozzielloSEur. Phys. J. C202080109692020EPJC...80..969N10.1140/epjc/s10052-020-08551-1 StarobinskyAAAdv. Ser. Astrophys. Cosmol.1987313010.1016/0370-2693(80)90670-X AstashenokAVCapozzielloSOdintsovSDOikonomouVKPhys. Lett. B202181613622210.1016/j.physletb.2021.136222 A. DeBenedictis, S. Iliji’c, M. Sossich, (2022). https://doi.org/10.48550/arXiv.2202.08958.arXiv.2202.08958 DeBenedictisAIlijićSPhys. Rev. D20189860640562018PhRvD..98f4056D393869110.1103/PhysRevD.98.064056 AstashenokAVCapozzielloSOdintsovSDOikonomouVKEPL20211345590012021EL....13459001A10.1209/0295-5075/134/59001 CaiYFKhurshudyanMSaridakisENAstrophys. J.2020888622020ApJ...888...62C10.3847/1538-4357/ab5a7f BoehmerCGMussaATamaniniNClass. Quantum Gravity2011282450202011CQGra..28x5020B10.1088/0264-9381/28/24/245020 NojiriSOdintsovSDPhys. Rep.2011505592011PhR...505...59N282637410.1016/j.physrep.2011.04.001 PodkowkaDMMendesRFPPoissonEPhys. Rev. D20189860640572018PhRvD..98f4057P10.1103/PhysRevD.98.064057 CapozzielloSDe LaurentisMFarinelliROdintsovSDPhys. Rev. D20169320235012016PhRvD..93b3501C348182910.1103/PhysRevD.93.023501 MillerMCAstrophys. J. Lett.20198871L242019ApJ...887L..24M10.3847/2041-8213/ab50c5 ObukhovYNRubilarGFPhys. Rev. D2006731240172006PhRvD..73l4017O223181610.1103/PhysRevD.73.124017 SotiriouTPLiBBarrowJDPhys. Rev. D201183101040302011PhRvD..83j4030S10.1103/physrevd.83.104030 AstashenokAVCapozzielloSOdintsovSDOikonomouVKPhys. Lett. B2020811135910417128810.1016/j.physletb.2020.135910 BondiHvan der BurgMGJMetznerAWKProc. R. Soc. Lond. A1962269211962RSPSA.269...21B10.1098/rspa.1962.0161 GJ Olmo (10268_CR38) 2020; 876 H Bondi (10268_CR55) 1962; 269 CE Rhoades Jr (10268_CR39) 1974; 32 K Newton Singh (10268_CR28) 2019; 100 AY Potekhin (10268_CR51) 2013; 560 CW Misner (10268_CR57) 1964; 136 EV Linder (10268_CR10) 2010; 81 Scv Ilijić (10268_CR33) 2018; 98 H Sotani (10268_CR64) 2017; 95 A DeBenedictis (10268_CR31) 2018; 98 YN Obukhov (10268_CR18) 2006; 73 P Haensel (10268_CR50) 2004; 428 F Douchin (10268_CR49) 2001; 380 MC Miller (10268_CR63) 2021; 918 JW Maluf (10268_CR8) 2013; 525 AV Astashenok (10268_CR37) 2017; 34 S Ilijić (10268_CR32) 2020; 102 M Zubair (10268_CR27) 2016; 361 HT Cromartie (10268_CR42) 2019; 4 YF Cai (10268_CR11) 2016; 79 10268_CR25 DM Podkowka (10268_CR53) 2018; 98 P Saha (10268_CR29) 2019; 79 RK Sachs (10268_CR56) 1962; 270 AA Starobinsky (10268_CR44) 1987; 3 TP Sotiriou (10268_CR13) 2011; 83 H Zhang (10268_CR60) 2014; 90 K Rezazadeh (10268_CR46) 2016; 01 YB Zel’dovich (10268_CR52) 1961; 41 B Li (10268_CR14) 2011; 83 AS Arapoglu (10268_CR34) 2011; 07 M Linares (10268_CR40) 2018; 859 AV Astashenok (10268_CR66) 2021; 816 CG Boehmer (10268_CR26) 2011; 28 S Nojiri (10268_CR4) 2011; 505 AV Astashenok (10268_CR67) 2020; 811 R Abbott (10268_CR43) 2020; 896 A De Felice (10268_CR1) 2010; 13 AV Astashenok (10268_CR35) 2013; 12 R Ferraro (10268_CR15) 2015; 91 A Golovnev (10268_CR20) 2017; 34 S Capozziello (10268_CR36) 2016; 93 SA Hayward (10268_CR58) 1996; 53 K Bamba (10268_CR47) 2012; 85 BP Abbott (10268_CR62) 2018; 121 C Pfeifer (10268_CR24) 2021; 7 JB Jiménez (10268_CR5) 2019; 5 R Aldrovandi (10268_CR7) 2013 A Golovnev (10268_CR23) 2021; 7 YF Cai (10268_CR48) 2020; 888 A DeBenedictis (10268_CR22) 2016; 94 AV Astashenok (10268_CR65) 2021; 134 R Ferraro (10268_CR16) 2011; 702 RH Lin (10268_CR21) 2019; 99 SA Hayward (10268_CR61) 1998; 15 M Krššák (10268_CR19) 2016; 33 GR Bengochea (10268_CR9) 2009; 79 10268_CR45 S Nojiri (10268_CR12) 2017; 692 J Harada (10268_CR6) 2020; 101 N Tamanini (10268_CR17) 2012; 86 RL Arnowitt (10268_CR54) 1959; 116 GGL Nashed (10268_CR30) 2020; 80 MC Miller (10268_CR41) 2019; 887 RG Cai (10268_CR59) 2009; 80 TP Sotiriou (10268_CR2) 2010; 82 S Capozziello (10268_CR3) 2011; 509 |
References_xml | – reference: KrššákMSaridakisENClass. Quantum Gravity201633111150092016CQGra..33k5009K10.1088/0264-9381/33/11/115009 – reference: RhoadesCEJrRuffiniRPhys. Rev. Lett.1974323241974PhRvL..32..324R10.1103/PhysRevLett.32.324 – reference: ZhangHHuYLiXZPhys. Rev. D20149020240622014PhRvD..90b4062Z10.1103/PhysRevD.90.024062 – reference: BengocheaGRFerraroRPhys. Rev. D2009791240192009PhRvD..79l4019B10.1103/PhysRevD.79.124019 – reference: CapozzielloSDe LaurentisMPhys. Rep.20115091672011PhR...509..167C286969010.1016/j.physrep.2011.09.003 – reference: MisnerCWSharpDHPhys. Rev.1964136B5711964PhRv..136..571M10.1103/PhysRev.136.B571 – reference: AbbottBPPhys. Rev. Lett.2018121161611012018PhRvL.121p1101A10.1103/PhysRevLett.121.161101 – reference: ObukhovYNRubilarGFPhys. Rev. D2006731240172006PhRvD..73l4017O223181610.1103/PhysRevD.73.124017 – reference: BoehmerCGMussaATamaniniNClass. Quantum Gravity2011282450202011CQGra..28x5020B10.1088/0264-9381/28/24/245020 – reference: AstashenokAVCapozzielloSOdintsovSDOikonomouVKPhys. Lett. B202181613622210.1016/j.physletb.2021.136222 – reference: JiménezJBHeisenbergLKoivistoTSUniverse2019571732019Univ....5..173B10.3390/universe5070173 – reference: DeBenedictisAIlijićScvPhys. Rev. D2016941240252016PhRvD..94l4025D376366810.1103/PhysRevD.94.124025 – reference: IlijićScvSossichMPhys. Rev. D2018980640472018PhRvD..98f4047I393868210.1103/PhysRevD.98.064047 – reference: HaywardSAPhys. Rev. D19965319381996PhRvD..53.1938H138001210.1103/PhysRevD.53.1938 – reference: GolovnevAGuzmánMJUniverse2021751212021Univ....7..121G10.3390/universe7050121 – reference: DeBenedictisAIlijićSPhys. Rev. D20189860640562018PhRvD..98f4056D393869110.1103/PhysRevD.98.064056 – reference: AstashenokAVOdintsovSDde la Cruz-DombrizAClass. Quantum Gravity201734202050082017CQGra..34t5008A10.1088/1361-6382/aa8971 – reference: CromartieHTNat. Astron.201941722020NatAs...4...72C10.1038/s41550-019-0880-2 – reference: LinderEVPhys. Rev. D2010811273012010PhRvD..81l7301L10.1103/PhysRevD.81.127301 – reference: AstashenokAVCapozzielloSOdintsovSDOikonomouVKEPL20211345590012021EL....13459001A10.1209/0295-5075/134/59001 – reference: A. DeBenedictis, S. Iliji’c, M. Sossich, (2022). https://doi.org/10.48550/arXiv.2202.08958.arXiv.2202.08958 – reference: FerraroRFioriniFPhys. Lett. B20117021752011PhLB..702...75F281899510.1016/j.physletb.2011.06.049 – reference: TamaniniNBöhmerCGPhys. Rev. D20128640440092012PhRvD..86d4009T10.1103/physrevd.86.044009 – reference: HaenselPPotekhinAYAstron. Astrophys.20044281912004A&A...428..191H10.1051/0004-6361:20041722 – reference: NashedGGLCapozzielloSEur. Phys. J. C202080109692020EPJC...80..969N10.1140/epjc/s10052-020-08551-1 – reference: ZubairMAbbasGAstrophys. Space Sci.20163611272016Ap&SS.361...27Z10.1007/s10509-015-2610-2 – reference: G.G.L. Nashed, W. El Hanafy, S.K. Ibrahim, (2014). https://doi.org/10.48550/arXiv.1411.3293. arXiv:1411.3293 – reference: NojiriSOdintsovSDPhys. Rep.2011505592011PhR...505...59N282637410.1016/j.physrep.2011.04.001 – reference: CaiYFCapozzielloSDe LaurentisMSaridakisENRep. Prog. Phys.201679101069012016RPPh...79j6901C10.1088/0034-4885/79/10/106901 – reference: IlijićSSossichMPhys. Rev. D202010280840192020PhRvD.102h4019I417833910.1103/PhysRevD.102.084019 – reference: Newton SinghKRahamanFBanerjeeAPhys. Rev. D201910080840232019PhRvD.100h4023N403102310.1103/PhysRevD.100.084023 – reference: BondiHvan der BurgMGJMetznerAWKProc. R. Soc. Lond. A1962269211962RSPSA.269...21B10.1098/rspa.1962.0161 – reference: AstashenokAVCapozzielloSOdintsovSDOikonomouVKPhys. Lett. B2020811135910417128810.1016/j.physletb.2020.135910 – reference: PfeiferCSchusterSUniverse2021751532021Univ....7..153P10.3390/universe7050153 – reference: HaradaJPhys. Rev. D20201010240532020PhRvD.101b4053H406865810.1103/PhysRevD.101.024053 – reference: LiBSotiriouTPBarrowJDPhys. Rev. D20118360640352011PhRvD..83f4035L10.1103/physrevd.83.064035 – reference: FerraroRFioriniFPhys. Rev. D2015910640192015PhRvD..91f4019F341531310.1103/PhysRevD.91.064019 – reference: SotiriouTPFaraoniVRev. Mod. Phys.2010824512010RvMP...82..451S10.1103/RevModPhys.82.451 – reference: GolovnevAKoivistoTSandstadMClass. Quantum Gravity201734141450132017CQGra..34n5013G10.1088/1361-6382/aa7830 – reference: MillerMCAstrophys. J. Lett.20198871L242019ApJ...887L..24M10.3847/2041-8213/ab50c5 – reference: SachsRKProc. R. Soc. Lond. A19622701031962RSPSA.270..103S10.1098/rspa.1962.0206 – reference: LinRHZhaiXHPhys. Rev. D20199920240222019PhRvD..99b4022L398148910.1103/PhysRevD.99.024022 – reference: MalufJWAnnalen der Physik201352553392013AnP...525..339M305535910.1002/andp.201200272 – reference: SahaPDebnathUEur. Phys. J. C201979119192019EPJC...79..919S10.1140/epjc/s10052-019-7427-7 – reference: DouchinFHaenselPAstron. Astrophys.20013801512001A&A...380..151D10.1051/0004-6361:20011402 – reference: PodkowkaDMMendesRFPPoissonEPhys. Rev. D20189860640572018PhRvD..98f4057P10.1103/PhysRevD.98.064057 – reference: CaiRGCaoLMHuYPOhtaNPhys. Rev. D2009801040162009PhRvD..80j4016C10.1103/PhysRevD.80.104016 – reference: BambaKMyrzakulovRNojiriSOdintsovSDPhys. Rev. D2012851040362012PhRvD..85j4036B10.1103/PhysRevD.85.104036 – reference: CaiYFKhurshudyanMSaridakisENAstrophys. J.2020888622020ApJ...888...62C10.3847/1538-4357/ab5a7f – reference: SotiriouTPLiBBarrowJDPhys. Rev. D201183101040302011PhRvD..83j4030S10.1103/physrevd.83.104030 – reference: PotekhinAYFantinaAFChamelNPearsonJMGorielySAstron. Astrophys.2013560A482013A&A...560A..48P10.1051/0004-6361/201321697 – reference: Zel’dovichYBEkspZhTeor. Fiz.1961411609 – reference: OlmoGJRubiera-GarciaDWojnarAPhys. Rep.202087612020PhR...876....1O414839510.1016/j.physrep.2020.07.001 – reference: AldrovandiRPereiraJGTeleparallel Gravity: An Introduction2013BerlinSpringer10.1007/978-94-007-5143-91259.83002 – reference: NojiriSOdintsovSOikonomouVPhys. Rep.201769212017PhR...692....1N368391310.1016/j.physrep.2017.06.001 – reference: SotaniHKokkotasKDPhys. Rev. D20179540440322017PhRvD..95d4032S10.1103/PhysRevD.95.044032 – reference: MillerMCAstrophys. J. Lett.20219182L282021ApJ...918L..28M10.3847/2041-8213/ac089b – reference: ArapogluASDelidumanCEksiKYJCAP2011070202011JCAP...07..020A10.1088/1475-7516/2011/07/020 – reference: ArnowittRLDeserSMisnerCWPhys. Rev.195911613221959PhRv..116.1322A11366710.1103/PhysRev.116.1322 – reference: AbbottRAstrophys. J. Lett.20208962L442020ApJ...896L..44A10.3847/2041-8213/ab960f – reference: HaywardSAClass. Quantum Gravity19981531471998CQGra..15.3147H10.1088/0264-9381/15/10/017 – reference: LinaresMShahbazTCasaresJAstrophys. J.20188591542018ApJ...859...54L10.3847/1538-4357/aabde6 – reference: CapozzielloSDe LaurentisMFarinelliROdintsovSDPhys. Rev. D20169320235012016PhRvD..93b3501C348182910.1103/PhysRevD.93.023501 – reference: RezazadehKAbdolmalekiAKaramiKJHEP2016011312016JHEP...01..131R10.1007/JHEP01(2016)131 – reference: AstashenokAVCapozzielloSOdintsovSDJCAP2013120402013JCAP...12..040A10.1088/1475-7516/2013/12/040 – reference: De FeliceATsujikawaSLiving Rev. Relativ.20101332010LRR....13....3D10.12942/lrr-2010-3 – reference: StarobinskyAAAdv. Ser. Astrophys. Cosmol.1987313010.1016/0370-2693(80)90670-X – volume: 3 start-page: 130 year: 1987 ident: 10268_CR44 publication-title: Adv. Ser. Astrophys. Cosmol. doi: 10.1016/0370-2693(80)90670-X – volume: 98 start-page: 064057 issue: 6 year: 2018 ident: 10268_CR53 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.064057 – volume: 100 start-page: 084023 issue: 8 year: 2019 ident: 10268_CR28 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.084023 – volume: 888 start-page: 62 year: 2020 ident: 10268_CR48 publication-title: Astrophys. J. doi: 10.3847/1538-4357/ab5a7f – volume: 13 start-page: 3 year: 2010 ident: 10268_CR1 publication-title: Living Rev. Relativ. doi: 10.12942/lrr-2010-3 – volume: 81 start-page: 127301 year: 2010 ident: 10268_CR10 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.81.127301 – volume: 380 start-page: 151 year: 2001 ident: 10268_CR49 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20011402 – volume: 80 start-page: 104016 year: 2009 ident: 10268_CR59 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.80.104016 – volume: 7 start-page: 153 issue: 5 year: 2021 ident: 10268_CR24 publication-title: Universe doi: 10.3390/universe7050153 – volume: 32 start-page: 324 year: 1974 ident: 10268_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.32.324 – volume: 93 start-page: 023501 issue: 2 year: 2016 ident: 10268_CR36 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.023501 – volume: 918 start-page: L28 issue: 2 year: 2021 ident: 10268_CR63 publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/ac089b – volume: 99 start-page: 024022 issue: 2 year: 2019 ident: 10268_CR21 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.024022 – volume: 85 start-page: 104036 year: 2012 ident: 10268_CR47 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.104036 – volume: 95 start-page: 044032 issue: 4 year: 2017 ident: 10268_CR64 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.044032 – volume: 509 start-page: 167 year: 2011 ident: 10268_CR3 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2011.09.003 – volume: 121 start-page: 161101 issue: 16 year: 2018 ident: 10268_CR62 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.161101 – volume: 887 start-page: L24 issue: 1 year: 2019 ident: 10268_CR41 publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/ab50c5 – volume: 876 start-page: 1 year: 2020 ident: 10268_CR38 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2020.07.001 – volume: 86 start-page: 044009 issue: 4 year: 2012 ident: 10268_CR17 publication-title: Phys. Rev. D doi: 10.1103/physrevd.86.044009 – volume: 01 start-page: 131 year: 2016 ident: 10268_CR46 publication-title: JHEP doi: 10.1007/JHEP01(2016)131 – volume: 98 start-page: 064047 year: 2018 ident: 10268_CR33 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.064047 – volume: 816 start-page: 136222 year: 2021 ident: 10268_CR66 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2021.136222 – volume: 811 start-page: 135910 year: 2020 ident: 10268_CR67 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2020.135910 – ident: 10268_CR45 doi: 10.48550/arXiv.1411.3293 – volume: 896 start-page: L44 issue: 2 year: 2020 ident: 10268_CR43 publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/ab960f – volume: 361 start-page: 27 issue: 1 year: 2016 ident: 10268_CR27 publication-title: Astrophys. Space Sci. doi: 10.1007/s10509-015-2610-2 – volume: 41 start-page: 1609 year: 1961 ident: 10268_CR52 publication-title: Teor. Fiz. – volume: 90 start-page: 024062 issue: 2 year: 2014 ident: 10268_CR60 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.024062 – volume: 79 start-page: 919 issue: 11 year: 2019 ident: 10268_CR29 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-7427-7 – volume: 859 start-page: 54 issue: 1 year: 2018 ident: 10268_CR40 publication-title: Astrophys. J. doi: 10.3847/1538-4357/aabde6 – volume: 525 start-page: 339 issue: 5 year: 2013 ident: 10268_CR8 publication-title: Annalen der Physik doi: 10.1002/andp.201200272 – volume: 270 start-page: 103 year: 1962 ident: 10268_CR56 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1962.0206 – volume: 101 start-page: 024053 year: 2020 ident: 10268_CR6 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.024053 – volume: 94 start-page: 124025 year: 2016 ident: 10268_CR22 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.124025 – volume: 73 start-page: 124017 year: 2006 ident: 10268_CR18 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.73.124017 – volume: 560 start-page: A48 year: 2013 ident: 10268_CR51 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201321697 – volume: 34 start-page: 205008 issue: 20 year: 2017 ident: 10268_CR37 publication-title: Class. Quantum Gravity doi: 10.1088/1361-6382/aa8971 – volume: 79 start-page: 106901 issue: 10 year: 2016 ident: 10268_CR11 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/79/10/106901 – volume: 5 start-page: 173 issue: 7 year: 2019 ident: 10268_CR5 publication-title: Universe doi: 10.3390/universe5070173 – volume: 83 start-page: 064035 issue: 6 year: 2011 ident: 10268_CR14 publication-title: Phys. Rev. D doi: 10.1103/physrevd.83.064035 – volume: 15 start-page: 3147 year: 1998 ident: 10268_CR61 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/15/10/017 – ident: 10268_CR25 doi: 10.48550/arXiv.2202.08958.arXiv.2202.08958 – volume: 702 start-page: 75 issue: 1 year: 2011 ident: 10268_CR16 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2011.06.049 – volume: 34 start-page: 145013 issue: 14 year: 2017 ident: 10268_CR20 publication-title: Class. Quantum Gravity doi: 10.1088/1361-6382/aa7830 – volume: 12 start-page: 040 year: 2013 ident: 10268_CR35 publication-title: JCAP doi: 10.1088/1475-7516/2013/12/040 – volume: 80 start-page: 969 issue: 10 year: 2020 ident: 10268_CR30 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-08551-1 – volume: 33 start-page: 115009 issue: 11 year: 2016 ident: 10268_CR19 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/33/11/115009 – volume: 07 start-page: 020 year: 2011 ident: 10268_CR34 publication-title: JCAP doi: 10.1088/1475-7516/2011/07/020 – volume: 79 start-page: 124019 year: 2009 ident: 10268_CR9 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.79.124019 – volume: 83 start-page: 104030 issue: 10 year: 2011 ident: 10268_CR13 publication-title: Phys. Rev. D doi: 10.1103/physrevd.83.104030 – volume: 53 start-page: 1938 year: 1996 ident: 10268_CR58 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.53.1938 – volume: 82 start-page: 451 year: 2010 ident: 10268_CR2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.451 – volume: 692 start-page: 1 year: 2017 ident: 10268_CR12 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2017.06.001 – volume: 428 start-page: 191 year: 2004 ident: 10268_CR50 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20041722 – volume: 102 start-page: 084019 issue: 8 year: 2020 ident: 10268_CR32 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.084019 – volume-title: Teleparallel Gravity: An Introduction year: 2013 ident: 10268_CR7 doi: 10.1007/978-94-007-5143-9 – volume: 269 start-page: 21 year: 1962 ident: 10268_CR55 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1962.0161 – volume: 91 start-page: 064019 year: 2015 ident: 10268_CR15 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.064019 – volume: 116 start-page: 1322 year: 1959 ident: 10268_CR54 publication-title: Phys. Rev. doi: 10.1103/PhysRev.116.1322 – volume: 28 start-page: 245020 year: 2011 ident: 10268_CR26 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/28/24/245020 – volume: 7 start-page: 121 issue: 5 year: 2021 ident: 10268_CR23 publication-title: Universe doi: 10.3390/universe7050121 – volume: 98 start-page: 064056 issue: 6 year: 2018 ident: 10268_CR31 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.064056 – volume: 134 start-page: 59001 issue: 5 year: 2021 ident: 10268_CR65 publication-title: EPL doi: 10.1209/0295-5075/134/59001 – volume: 505 start-page: 59 year: 2011 ident: 10268_CR4 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2011.04.001 – volume: 4 start-page: 72 issue: 1 year: 2019 ident: 10268_CR42 publication-title: Nat. Astron. doi: 10.1038/s41550-019-0880-2 – volume: 136 start-page: B571 year: 1964 ident: 10268_CR57 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B571 |
SSID | ssj0002408 |
Score | 2.477274 |
Snippet | We investigate the nonrotating neutron stars in
f
(
T
) gravity with
f
(
T
)
=
T
+
α
T
2
, where
T
is the torsion scalar in the teleparallel formalism of... We investigate the nonrotating neutron stars in f ( T ) gravity with $$f(T)=T+\alpha {T}^2$$ f ( T ) = T + α T 2 , where T is the torsion scalar in the... We investigate the nonrotating neutron stars in f(T) gravity with [Formula omitted], where T is the torsion scalar in the teleparallel formalism of gravity. In... We investigate the nonrotating neutron stars in f(T) gravity with f(T)=T+αT2, where T is the torsion scalar in the teleparallel formalism of gravity. In... Abstract We investigate the nonrotating neutron stars in f(T) gravity with $$f(T)=T+\alpha {T}^2$$ f ( T ) = T + α T 2 , where T is the torsion scalar in the... |
SourceID | doaj proquest gale crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Analysis Astronomy Astrophysics and Cosmology Density Elementary Particles Equations of state Gravitational waves Hadrons Heavy Ions Mathematical models Measurement Science and Instrumentation Neutron stars Neutrons Nuclear Energy Nuclear Physics Phase transitions Physics Physics and Astronomy Pulsars Quantum Field Theories Quantum Field Theory Regular Article - Theoretical Physics Relativity Stellar mass String Theory |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyInzid0oOgHsLaNGnXo4pjCHqQDXYL-QRF6tjH_-97aTqVHXaxxzaB5Pde3kfzPgi55j531rCSqswwygunKChhTsEByr0ALtKhHdDLazGa8OepmP5q9YUxYU154Aa4vnW58aDTbFVZcCUGGi3uymSZE0YpHVL30iptnakog7FwV4zmAg-i72YfBrPlUsEohq-DVi2AQf7oolCyf1Mwb9yQBsUzPCD70WJM7puVHpIdVx-R3RC5aRbHhL45rGEIH5ParfDHdgIG3zwJLW4WyXud-NvxXYJthsDgPiGT4dP4cURjDwRqYLNLarlQTCtuWWbxxg-0bwWnUHPN1EA5eIT2lbVlVWpfOAGyi3nAPnOgmnTO8lPSqb9qd0YSZiyzHgC04IJxxVReeitMKUpemUKnXVK0aEgTC4Rjn4pP2SQvpxJhlA2MEmCUAUbJuiRdT5w1NTK2T3lAuNfDsch1eAGkl5H0chvpu-QGiSXxKMJCjYoZBbBdLGol7wuwfvGqE0b2WnrKeEYXEmP7cgbyddAlWUvjn89bdnD-Hzu4IHsM-TFEAvVIZzlfuUswcpb6KvDzNzLt9Jg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR3LSgMxMPhA8CI-sb7Yg6AeQnezSbZ7EhWrCHoQBW8hT1FkW9v6_86kaYsU7B43ybKZ92QmM4Sc8lB6Z1lFdWEZ5dJrCkqYU3CAyiCAikxsB_T4JO9f-cObeEsHbsOUVjmRiVFQu57FM_I2ZmKVDLihc9n_ptg1CqOrqYXGMlktQNMgnXe6d1NJjOW74u2iklOZc57yu8CnaPv-p8X7c7lgFBPaQc9KIJk_2ikW8Z8X1XMx06iKuptkI9mQ2dUY6VtkyTfbZC3mctrhDqHPHqsawmDW-B886s7ABBxksenNMPtosnD-cpFh4yEwwXfJa_f25eaepq4I1AKzjajjQjOjuWOFwxgg6OMa-NJww3RHe3iECbVzVV2ZIL0AacYCYKPwoKxMyco9stL0Gr9PMmYdc6FjpAOnjGumyyo4YStR8dpKk7eInEBD2VQyHDtXfKnxdeZcIRjVGIwKwKgiGBVrkXy6sD-umrF4yTWCezody17HF73Bu0pcpJwvbQADx9W1A78S_hwsptoWhRdWa1O3yBkiSyFzwo9ane4YwHaxzJW6kmAPY_ATZh5N8KkS1w7VjMZapJjgeDa8YAcH_3_ykKwzpLSY9XNEVkaDH38MBs3InESq_QUzGO1q priority: 102 providerName: ProQuest |
Title | Realistic neutron star models in f(T) gravity |
URI | https://link.springer.com/article/10.1140/epjc/s10052-022-10268-2 https://www.proquest.com/docview/2648327638 https://doaj.org/article/de3cf910d99d4488b60669c11e5caab9 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSgMxcPCB4EV8Yn2UPQjqIdjNJtnusRarCIqIBW8hT1BkLbb-vzPptiqCgntY2E0CyUzmkcwL4EjEInjHS2Zyx5lQwTAUwoLhAaiIEneRTeWAbm7V1VBcP8rHBTibxcJ8td-j7n8WRs-O4tw6kjNyPEd5qBC1i7As80Il66zqz1kv5etqnLh-GfxNBKVM_T_58Q_DaJI3g3VYaxTFrDfF7AYshHoTVpLDphtvAbsPlLoQG7M6vNN9doZ63luWKtuMs6c6iycPpxlVF0I9exuGg4uH_hVrSh8whxQ1YV5Iw60RnueeDH0odCskPissN10T8JE2Vt6XVWmjChJZFo8I8jygRLIFL3ZgqX6twy5k3HnuY9cqjycvYbgpyuilK2UpKqdspwVqBg3tmrzgVJ7iRU9jljuawKinYNQIRp3AqHkLOvOBo2lqjL-HnBO4590pt3X6gSjXDaloHwoXUYvxVeXx8IgzR7WocnkepDPGVi04JmRpokCcqDNNIAEul3JZ6Z5CpZcsnNjzYIZP3ZDmWJNLX8GRrXZbkM9w_Nn8xwr2_jFmH1Y5bb_k73MAS5O393CIqszEtmGxO7hsw_L5xe3dPX71uWinLd1OlwP4HvLeB7h27Tg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IJ5ioYAPIOBgNXEcZ3NAqIVWW9quULWVejN-ViCUXXa3QvwpfiMzTrIVqkRPzTG2o3j8eR72PABeyVgE70TFTe4ElyoYjkJYcjSAilgiimwqB3Q8UeNT-fmsPNuAP30sDLlV9jwxMWo_c3RGvk2eWIXA3TD6MP_JqWoU3a72JTRaWByG37_QZFu-P_iE6_taiP296ccx76oKcIdgXXEvSyOskV7knu7QUJ7ViGsrrTAjE_Apbay9r-rKRhVK5AYi4mzygMzeFpToAFn-pqSI1gFs7u5NvpyseT8lDEvxTIXkKpOy8yhDK2Y7zL87itjLSsHJhR4lu0KQ_iMPU9mAq8Lhyi1tEn779-Bup7WynRZm92EjNA_gVvIedcuHwE8C5VHERtaECzpcZ6h0Llgqs7Nk3xoW307fMSp1hEr_Izi9EYo9hkEza8ITYMJ54ePIKo9moDTCFFX0pavKStZO2WwIqqeGdl2ScqqV8UO3AdSZJjLqlowayagTGbUYQrYeOG_zdFw_ZJfIve5OibbTi9niXHf7VvtQuIgqla9rj5Ys_jnqaLXL81A6Y2w9hDe0WJrYAf6oM11UA06XEmvpHYUaOF23Ys-tfj11xyeW-hLVQ8j7Nb5svmYGT___yZdwezw9PtJHB5PDZ3BHEOqSz9EWDFaLi_Ac1amVfdFhmMHXm942fwE96Svy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRSAuiKdYKOADCDhYmzi2szkgVChLS6FCqJV6M35WIJRddrdC_DV-HTNOshWqRE_NMbajePx5HvY8AJ7KVMXgRc1t6QWXOlqOQlhyNICqpBBFLpcD-nSgd4_kh2N1vAF_hlgYcqsceGJm1GHm6Yx8TJ5YlcDdMBmn3i3i88709fwnpwpSdNM6lNPoILIff_9C8235am8H1_qZENN3h293eV9hgHsE7ooHqaxwVgZRBrpPQ9nWIMaddMJObMRHudSEUDe1Szoq5Awi4czKiIzfVZT0ANn_lbrCDhSlPn2_lgKUOixHNlWS60LK3rcM7ZlxnH_3FLtXKMHJmR5lvEa4_iMZcwGB82Li3H1tFoPTm3Cj11_Zdge4W7AR29twNfuR-uUd4F8iZVTERtbGUzpmZ6h-LlguuLNk31qWXhy-ZFT0CNX_u3B0KfS6B5vtrI33gQkfREgTpwMahNIKW9UpKF-rWjZeu2IEeqCG8X26cqqa8cN0odSFITKajowGyWgyGY0YQbEeOO8ydlw85A2Re92dUm7nF7PFiel3sAmx8gmVq9A0AW1a_HPU1hpfllF5a10zgue0WIYYA_6ot318A06XUmyZbY26OF28Ys-tYT1NzzGW5gzfIyiHNT5rvmAGD_7_ySdwDTeL-bh3sP8QrgsCXXY-2oLN1eI0PkK9auUeZwAz-HrZO-YvOgAuwg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realistic+neutron+star+models+in+f%28T%29+gravity&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Lin%2C+Rui-Hui&rft.au=Chen%2C+Xiao-Ning&rft.au=Zhai%2C+Xiang-Hua&rft.date=2022-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1434-6052&rft.volume=82&rft.issue=4&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-022-10268-2&rft.externalDocID=10_1140_epjc_s10052_022_10268_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6052&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6052&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6052&client=summon |