Realistic neutron star models in f(T) gravity

We investigate the nonrotating neutron stars in f ( T ) gravity with f ( T ) = T + α T 2 , where T is the torsion scalar in the teleparallel formalism of gravity. In particular, we utilize the SLy and BSk family of equations of state for perfect fluid to describe the neutron stellar matter and searc...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. C, Particles and fields Vol. 82; no. 4; pp. 1 - 16
Main Authors Lin, Rui-Hui, Chen, Xiao-Ning, Zhai, Xiang-Hua
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2022
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1434-6052
1434-6044
1434-6052
DOI10.1140/epjc/s10052-022-10268-2

Cover

Abstract We investigate the nonrotating neutron stars in f ( T ) gravity with f ( T ) = T + α T 2 , where T is the torsion scalar in the teleparallel formalism of gravity. In particular, we utilize the SLy and BSk family of equations of state for perfect fluid to describe the neutron stellar matter and search for the effects of the f ( T ) modification on the models of neutron stars. For positive α , the modification results in a smaller stellar mass in comparison to general relativity, while the neutron stars will contain larger amount of matter for negative α . Moreover, there seems to be an upper limit for the central density of the neutron stars with α > 0 , beyond which the effective f ( T ) fluid would have a steplike phase transition in density and pressure profiles, collapsing the numerical system. We obtain the mass–radius relations of the realistic models of neutron stars and subject them to the joint constraints from the observed massive pulsars PSR J0030+0451, PSR J0740+6620, and PSR J2215+5135, and gravitational wave events GW170817 and GW190814. For the neutron star model in f ( T ) gravity to be able to accommodate all the mentioned data, the model parameter α needs to be smaller than - 4.295 , - 6.476 , - 4.4 , and - 2.12 (in the unit of G 2 M ⊙ 2 / c 4 ) for SLy, BSk19, BSk20, and BSk21 equations of state, respectively. If one considers the unknown compact object in the event GW190814 not to be a neutron star and hence excludes this dataset, the constraints can be loosened to α < - 0.594 , - 3.5 , 0.4 and 1.9 (in the unit of G 2 M ⊙ 2 / c 4 ), respectively.
AbstractList We investigate the nonrotating neutron stars in f(T) gravity with f(T)=T+αT2, where T is the torsion scalar in the teleparallel formalism of gravity. In particular, we utilize the SLy and BSk family of equations of state for perfect fluid to describe the neutron stellar matter and search for the effects of the f(T) modification on the models of neutron stars. For positive α, the modification results in a smaller stellar mass in comparison to general relativity, while the neutron stars will contain larger amount of matter for negative α. Moreover, there seems to be an upper limit for the central density of the neutron stars with α>0, beyond which the effective f(T) fluid would have a steplike phase transition in density and pressure profiles, collapsing the numerical system. We obtain the mass–radius relations of the realistic models of neutron stars and subject them to the joint constraints from the observed massive pulsars PSR J0030+0451, PSR J0740+6620, and PSR J2215+5135, and gravitational wave events GW170817 and GW190814. For the neutron star model in f(T) gravity to be able to accommodate all the mentioned data, the model parameter α needs to be smaller than -4.295, -6.476, -4.4, and -2.12 (in the unit of G2M⊙2/c4) for SLy, BSk19, BSk20, and BSk21 equations of state, respectively. If one considers the unknown compact object in the event GW190814 not to be a neutron star and hence excludes this dataset, the constraints can be loosened to α<-0.594, -3.5, 0.4 and 1.9 (in the unit of G2M⊙2/c4), respectively.
We investigate the nonrotating neutron stars in f ( T ) gravity with f ( T ) = T + α T 2 , where T is the torsion scalar in the teleparallel formalism of gravity. In particular, we utilize the SLy and BSk family of equations of state for perfect fluid to describe the neutron stellar matter and search for the effects of the f ( T ) modification on the models of neutron stars. For positive α , the modification results in a smaller stellar mass in comparison to general relativity, while the neutron stars will contain larger amount of matter for negative α . Moreover, there seems to be an upper limit for the central density of the neutron stars with α > 0 , beyond which the effective f ( T ) fluid would have a steplike phase transition in density and pressure profiles, collapsing the numerical system. We obtain the mass–radius relations of the realistic models of neutron stars and subject them to the joint constraints from the observed massive pulsars PSR J0030+0451, PSR J0740+6620, and PSR J2215+5135, and gravitational wave events GW170817 and GW190814. For the neutron star model in f ( T ) gravity to be able to accommodate all the mentioned data, the model parameter α needs to be smaller than - 4.295 , - 6.476 , - 4.4 , and - 2.12 (in the unit of G 2 M ⊙ 2 / c 4 ) for SLy, BSk19, BSk20, and BSk21 equations of state, respectively. If one considers the unknown compact object in the event GW190814 not to be a neutron star and hence excludes this dataset, the constraints can be loosened to α < - 0.594 , - 3.5 , 0.4 and 1.9 (in the unit of G 2 M ⊙ 2 / c 4 ), respectively.
Abstract We investigate the nonrotating neutron stars in f(T) gravity with $$f(T)=T+\alpha {T}^2$$ f ( T ) = T + α T 2 , where T is the torsion scalar in the teleparallel formalism of gravity. In particular, we utilize the SLy and BSk family of equations of state for perfect fluid to describe the neutron stellar matter and search for the effects of the f(T) modification on the models of neutron stars. For positive $$\alpha $$ α , the modification results in a smaller stellar mass in comparison to general relativity, while the neutron stars will contain larger amount of matter for negative $$\alpha $$ α . Moreover, there seems to be an upper limit for the central density of the neutron stars with $$\alpha >0$$ α > 0 , beyond which the effective f(T) fluid would have a steplike phase transition in density and pressure profiles, collapsing the numerical system. We obtain the mass–radius relations of the realistic models of neutron stars and subject them to the joint constraints from the observed massive pulsars PSR J0030+0451, PSR J0740+6620, and PSR J2215+5135, and gravitational wave events GW170817 and GW190814. For the neutron star model in f(T) gravity to be able to accommodate all the mentioned data, the model parameter $$\alpha $$ α needs to be smaller than $$-\,4.295$$ - 4.295 , $$-\,6.476$$ - 6.476 , $$-\,4.4$$ - 4.4 , and $$-\,2.12$$ - 2.12 (in the unit of $${G}^2M_\odot ^2/c^4$$ G 2 M ⊙ 2 / c 4 ) for SLy, BSk19, BSk20, and BSk21 equations of state, respectively. If one considers the unknown compact object in the event GW190814 not to be a neutron star and hence excludes this dataset, the constraints can be loosened to $$\alpha <-\,0.594$$ α < - 0.594 , $$-\,3.5$$ - 3.5 , 0.4 and 1.9 (in the unit of $${G}^2M_\odot ^2/c^4$$ G 2 M ⊙ 2 / c 4 ), respectively.
We investigate the nonrotating neutron stars in f ( T ) gravity with $$f(T)=T+\alpha {T}^2$$ f ( T ) = T + α T 2 , where T is the torsion scalar in the teleparallel formalism of gravity. In particular, we utilize the SLy and BSk family of equations of state for perfect fluid to describe the neutron stellar matter and search for the effects of the f ( T ) modification on the models of neutron stars. For positive $$\alpha $$ α , the modification results in a smaller stellar mass in comparison to general relativity, while the neutron stars will contain larger amount of matter for negative $$\alpha $$ α . Moreover, there seems to be an upper limit for the central density of the neutron stars with $$\alpha >0$$ α > 0 , beyond which the effective f ( T ) fluid would have a steplike phase transition in density and pressure profiles, collapsing the numerical system. We obtain the mass–radius relations of the realistic models of neutron stars and subject them to the joint constraints from the observed massive pulsars PSR J0030+0451, PSR J0740+6620, and PSR J2215+5135, and gravitational wave events GW170817 and GW190814. For the neutron star model in f ( T ) gravity to be able to accommodate all the mentioned data, the model parameter $$\alpha $$ α needs to be smaller than $$-\,4.295$$ - 4.295 , $$-\,6.476$$ - 6.476 , $$-\,4.4$$ - 4.4 , and $$-\,2.12$$ - 2.12 (in the unit of $${G}^2M_\odot ^2/c^4$$ G 2 M ⊙ 2 / c 4 ) for SLy, BSk19, BSk20, and BSk21 equations of state, respectively. If one considers the unknown compact object in the event GW190814 not to be a neutron star and hence excludes this dataset, the constraints can be loosened to $$\alpha <-\,0.594$$ α < - 0.594 , $$-\,3.5$$ - 3.5 , 0.4 and 1.9 (in the unit of $${G}^2M_\odot ^2/c^4$$ G 2 M ⊙ 2 / c 4 ), respectively.
We investigate the nonrotating neutron stars in f(T) gravity with [Formula omitted], where T is the torsion scalar in the teleparallel formalism of gravity. In particular, we utilize the SLy and BSk family of equations of state for perfect fluid to describe the neutron stellar matter and search for the effects of the f(T) modification on the models of neutron stars. For positive [Formula omitted], the modification results in a smaller stellar mass in comparison to general relativity, while the neutron stars will contain larger amount of matter for negative [Formula omitted]. Moreover, there seems to be an upper limit for the central density of the neutron stars with [Formula omitted], beyond which the effective f(T) fluid would have a steplike phase transition in density and pressure profiles, collapsing the numerical system. We obtain the mass-radius relations of the realistic models of neutron stars and subject them to the joint constraints from the observed massive pulsars PSR J0030+0451, PSR J0740+6620, and PSR J2215+5135, and gravitational wave events GW170817 and GW190814. For the neutron star model in f(T) gravity to be able to accommodate all the mentioned data, the model parameter [Formula omitted] needs to be smaller than [Formula omitted], [Formula omitted], [Formula omitted], and [Formula omitted] (in the unit of [Formula omitted]) for SLy, BSk19, BSk20, and BSk21 equations of state, respectively. If one considers the unknown compact object in the event GW190814 not to be a neutron star and hence excludes this dataset, the constraints can be loosened to [Formula omitted], [Formula omitted], 0.4 and 1.9 (in the unit of [Formula omitted]), respectively.
ArticleNumber 308
Audience Academic
Author Lin, Rui-Hui
Chen, Xiao-Ning
Zhai, Xiang-Hua
Author_xml – sequence: 1
  givenname: Rui-Hui
  surname: Lin
  fullname: Lin, Rui-Hui
  organization: Division of Mathematics and Theoretical Physics, Shanghai Normal University
– sequence: 2
  givenname: Xiao-Ning
  surname: Chen
  fullname: Chen, Xiao-Ning
  organization: Division of Mathematics and Theoretical Physics, Shanghai Normal University
– sequence: 3
  givenname: Xiang-Hua
  surname: Zhai
  fullname: Zhai, Xiang-Hua
  email: zhaixh@shnu.edu.cn
  organization: Division of Mathematics and Theoretical Physics, Shanghai Normal University
BookMark eNqFkU9rHSEUxaWk0CTtZ-hANsliEq86ji6yCKFtAoFCSdfi-OfhY56-qC-Qbx_fm5aUbqIL5XB_x3s9J-gopugQ-gr4EoDhK7ddm6sCGA-kx4T0gAkXPfmAjoFR1vOmH_1z_4ROSlljjAnD4hj1v5yeQ6nBdNHtak6xK1XnbpOsm0sXYufPHy-6VdbPob58Rh-9nov78uc8Rb-_f3u8vesffv64v7156A0TovaWDZpMmlkCFkCOHKgEQSc2ES20a2uYvLR2lOPkuRskAPGGjOAw5RMl9BTdL7426bXa5rDR-UUlHdRBSHmldG49z05ZR42XgK2UlrXXJ445lwbADUbrSTavs8Vrm9PTzpWq1mmXY2tfEc4EJSOnolVdLlUr3UxD9Klmbdq2bhNM-3Efmn7DpZQYM7q3vV4Ak1Mp2XllQtU1pNjAMCvAah-P2sejlnhUi0cd4lH7Ecf_-L9jvk-KhSyNiCuX3wZ6D30FZNOnqQ
CitedBy_id crossref_primary_10_1016_j_astropartphys_2024_103053
crossref_primary_10_1140_epjc_s10052_022_10688_0
crossref_primary_10_1016_j_nuclphysb_2025_116819
crossref_primary_10_1142_S0219887824502037
crossref_primary_10_1088_1475_7516_2023_04_044
crossref_primary_10_1140_epjc_s10052_023_11525_8
crossref_primary_10_3390_universe9050202
crossref_primary_10_1088_1475_7516_2024_09_011
crossref_primary_10_1088_1475_7516_2024_05_057
crossref_primary_10_1016_j_dark_2025_101851
crossref_primary_10_1016_j_aop_2023_169460
crossref_primary_10_1140_epjp_s13360_024_05395_6
crossref_primary_10_1088_1475_7516_2023_01_005
crossref_primary_10_1016_j_physleta_2024_129676
crossref_primary_10_1016_j_newast_2024_102347
crossref_primary_10_1016_j_cjph_2023_08_005
crossref_primary_10_1093_ptep_ptae043
crossref_primary_10_1140_epjc_s10052_022_10358_1
crossref_primary_10_1142_S0217751X24501318
crossref_primary_10_1007_s10714_024_03341_6
crossref_primary_10_1140_epjp_s13360_025_06003_x
crossref_primary_10_1016_j_cjph_2023_12_018
Cites_doi 10.1016/0370-2693(80)90670-X
10.1103/PhysRevD.98.064057
10.1103/PhysRevD.100.084023
10.3847/1538-4357/ab5a7f
10.12942/lrr-2010-3
10.1103/PhysRevD.81.127301
10.1051/0004-6361:20011402
10.1103/PhysRevD.80.104016
10.3390/universe7050153
10.1103/PhysRevLett.32.324
10.1103/PhysRevD.93.023501
10.3847/2041-8213/ac089b
10.1103/PhysRevD.99.024022
10.1103/PhysRevD.85.104036
10.1103/PhysRevD.95.044032
10.1016/j.physrep.2011.09.003
10.1103/PhysRevLett.121.161101
10.3847/2041-8213/ab50c5
10.1016/j.physrep.2020.07.001
10.1103/physrevd.86.044009
10.1007/JHEP01(2016)131
10.1103/PhysRevD.98.064047
10.1016/j.physletb.2021.136222
10.1016/j.physletb.2020.135910
10.48550/arXiv.1411.3293
10.3847/2041-8213/ab960f
10.1007/s10509-015-2610-2
10.1103/PhysRevD.90.024062
10.1140/epjc/s10052-019-7427-7
10.3847/1538-4357/aabde6
10.1002/andp.201200272
10.1098/rspa.1962.0206
10.1103/PhysRevD.101.024053
10.1103/PhysRevD.94.124025
10.1103/PhysRevD.73.124017
10.1051/0004-6361/201321697
10.1088/1361-6382/aa8971
10.1088/0034-4885/79/10/106901
10.3390/universe5070173
10.1103/physrevd.83.064035
10.1088/0264-9381/15/10/017
10.48550/arXiv.2202.08958.arXiv.2202.08958
10.1016/j.physletb.2011.06.049
10.1088/1361-6382/aa7830
10.1088/1475-7516/2013/12/040
10.1140/epjc/s10052-020-08551-1
10.1088/0264-9381/33/11/115009
10.1088/1475-7516/2011/07/020
10.1103/PhysRevD.79.124019
10.1103/physrevd.83.104030
10.1103/PhysRevD.53.1938
10.1103/RevModPhys.82.451
10.1016/j.physrep.2017.06.001
10.1051/0004-6361:20041722
10.1103/PhysRevD.102.084019
10.1007/978-94-007-5143-9
10.1098/rspa.1962.0161
10.1103/PhysRevD.91.064019
10.1103/PhysRev.116.1322
10.1088/0264-9381/28/24/245020
10.3390/universe7050121
10.1103/PhysRevD.98.064056
10.1209/0295-5075/134/59001
10.1016/j.physrep.2011.04.001
10.1038/s41550-019-0880-2
10.1103/PhysRev.136.B571
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2022 Springer
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.1140/epjc/s10052-022-10268-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
Solid State and Superconductivity Abstracts
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6052
EndPage 16
ExternalDocumentID oai_doaj_org_article_de3cf910d99d4488b60669c11e5caab9
A699900439
10_1140_epjc_s10052_022_10268_2
GroupedDBID -5F
-5G
-A0
-BR
-~X
.86
0R~
199
29G
2JY
30V
4.4
408
409
40D
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95.
95~
AAFWJ
AAKKN
ABDBF
ABEEZ
ABMNI
ACACY
ACGFS
ACNCT
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AENEX
AFBBN
AFGXO
AFKRA
AFPKN
AFWTZ
AGWIL
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
AZFZN
B0M
BA0
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DL5
DU5
EAD
EAP
EAS
EBS
EMK
EPL
ER.
ESX
FEDTE
GQ6
GQ8
GROUPED_DOAJ
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HVGLF
HZ~
I-F
I09
IAO
IGS
IHE
ISR
IXC
IZIGR
IZQ
I~X
KDC
KOV
LAS
MA-
NB0
O9-
O93
OK1
P62
P9T
PIMPY
QOS
R89
R9I
RED
RID
RNS
RPX
RSV
S27
S3B
SDH
SOJ
SPH
SZN
T13
TN5
TSK
TSV
TUC
TUS
U2A
VC2
WK8
Z45
Z7Y
~8M
-Y2
1SB
29Q
2P1
AAYXX
ABFSG
ABQSL
ABTEG
ACSTC
ADHKG
ADKPE
AEZWR
AFFNX
AFHIU
AGJBK
AGQPQ
AHSBF
AHWEU
AI.
AIXLP
BGNMA
CAG
CITATION
COF
EJD
H13
H~9
M4Y
N2Q
NU0
PHGZM
PHGZT
PROAC
PT5
ROL
RZK
S1Z
VH1
PMFND
7U5
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c488t-d45a2ba4d21d11976139183b4b2a8aeeee5bf9dd797bf6e59112fc271e036b323
IEDL.DBID C6C
ISSN 1434-6052
1434-6044
IngestDate Wed Aug 27 01:14:54 EDT 2025
Sat Jul 26 00:35:04 EDT 2025
Tue Jun 10 20:30:18 EDT 2025
Tue Jul 01 01:41:02 EDT 2025
Thu Apr 24 23:12:42 EDT 2025
Fri Feb 21 02:45:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-d45a2ba4d21d11976139183b4b2a8aeeee5bf9dd797bf6e59112fc271e036b323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1140/epjc/s10052-022-10268-2
PQID 2648327638
PQPubID 2034659
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_de3cf910d99d4488b60669c11e5caab9
proquest_journals_2648327638
gale_infotracacademiconefile_A699900439
crossref_citationtrail_10_1140_epjc_s10052_022_10268_2
crossref_primary_10_1140_epjc_s10052_022_10268_2
springer_journals_10_1140_epjc_s10052_022_10268_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Particles and Fields
PublicationTitle The European physical journal. C, Particles and fields
PublicationTitleAbbrev Eur. Phys. J. C
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References SotaniHKokkotasKDPhys. Rev. D20179540440322017PhRvD..95d4032S10.1103/PhysRevD.95.044032
G.G.L. Nashed, W. El Hanafy, S.K. Ibrahim, (2014). https://doi.org/10.48550/arXiv.1411.3293. arXiv:1411.3293
GolovnevAGuzmánMJUniverse2021751212021Univ....7..121G10.3390/universe7050121
SotiriouTPFaraoniVRev. Mod. Phys.2010824512010RvMP...82..451S10.1103/RevModPhys.82.451
CromartieHTNat. Astron.201941722020NatAs...4...72C10.1038/s41550-019-0880-2
NojiriSOdintsovSOikonomouVPhys. Rep.201769212017PhR...692....1N368391310.1016/j.physrep.2017.06.001
IlijićScvSossichMPhys. Rev. D2018980640472018PhRvD..98f4047I393868210.1103/PhysRevD.98.064047
AbbottBPPhys. Rev. Lett.2018121161611012018PhRvL.121p1101A10.1103/PhysRevLett.121.161101
KrššákMSaridakisENClass. Quantum Gravity201633111150092016CQGra..33k5009K10.1088/0264-9381/33/11/115009
FerraroRFioriniFPhys. Lett. B20117021752011PhLB..702...75F281899510.1016/j.physletb.2011.06.049
De FeliceATsujikawaSLiving Rev. Relativ.20101332010LRR....13....3D10.12942/lrr-2010-3
AstashenokAVOdintsovSDde la Cruz-DombrizAClass. Quantum Gravity201734202050082017CQGra..34t5008A10.1088/1361-6382/aa8971
PotekhinAYFantinaAFChamelNPearsonJMGorielySAstron. Astrophys.2013560A482013A&A...560A..48P10.1051/0004-6361/201321697
TamaniniNBöhmerCGPhys. Rev. D20128640440092012PhRvD..86d4009T10.1103/physrevd.86.044009
CaiRGCaoLMHuYPOhtaNPhys. Rev. D2009801040162009PhRvD..80j4016C10.1103/PhysRevD.80.104016
GolovnevAKoivistoTSandstadMClass. Quantum Gravity201734141450132017CQGra..34n5013G10.1088/1361-6382/aa7830
HaywardSAPhys. Rev. D19965319381996PhRvD..53.1938H138001210.1103/PhysRevD.53.1938
HaenselPPotekhinAYAstron. Astrophys.20044281912004A&A...428..191H10.1051/0004-6361:20041722
ZubairMAbbasGAstrophys. Space Sci.20163611272016Ap&SS.361...27Z10.1007/s10509-015-2610-2
HaywardSAClass. Quantum Gravity19981531471998CQGra..15.3147H10.1088/0264-9381/15/10/017
CapozzielloSDe LaurentisMPhys. Rep.20115091672011PhR...509..167C286969010.1016/j.physrep.2011.09.003
MisnerCWSharpDHPhys. Rev.1964136B5711964PhRv..136..571M10.1103/PhysRev.136.B571
AbbottRAstrophys. J. Lett.20208962L442020ApJ...896L..44A10.3847/2041-8213/ab960f
RezazadehKAbdolmalekiAKaramiKJHEP2016011312016JHEP...01..131R10.1007/JHEP01(2016)131
CaiYFCapozzielloSDe LaurentisMSaridakisENRep. Prog. Phys.201679101069012016RPPh...79j6901C10.1088/0034-4885/79/10/106901
JiménezJBHeisenbergLKoivistoTSUniverse2019571732019Univ....5..173B10.3390/universe5070173
DeBenedictisAIlijićScvPhys. Rev. D2016941240252016PhRvD..94l4025D376366810.1103/PhysRevD.94.124025
SahaPDebnathUEur. Phys. J. C201979119192019EPJC...79..919S10.1140/epjc/s10052-019-7427-7
LinaresMShahbazTCasaresJAstrophys. J.20188591542018ApJ...859...54L10.3847/1538-4357/aabde6
AstashenokAVCapozzielloSOdintsovSDJCAP2013120402013JCAP...12..040A10.1088/1475-7516/2013/12/040
PfeiferCSchusterSUniverse2021751532021Univ....7..153P10.3390/universe7050153
LinderEVPhys. Rev. D2010811273012010PhRvD..81l7301L10.1103/PhysRevD.81.127301
IlijićSSossichMPhys. Rev. D202010280840192020PhRvD.102h4019I417833910.1103/PhysRevD.102.084019
OlmoGJRubiera-GarciaDWojnarAPhys. Rep.202087612020PhR...876....1O414839510.1016/j.physrep.2020.07.001
MillerMCAstrophys. J. Lett.20219182L282021ApJ...918L..28M10.3847/2041-8213/ac089b
ArapogluASDelidumanCEksiKYJCAP2011070202011JCAP...07..020A10.1088/1475-7516/2011/07/020
FerraroRFioriniFPhys. Rev. D2015910640192015PhRvD..91f4019F341531310.1103/PhysRevD.91.064019
LinRHZhaiXHPhys. Rev. D20199920240222019PhRvD..99b4022L398148910.1103/PhysRevD.99.024022
ZhangHHuYLiXZPhys. Rev. D20149020240622014PhRvD..90b4062Z10.1103/PhysRevD.90.024062
HaradaJPhys. Rev. D20201010240532020PhRvD.101b4053H406865810.1103/PhysRevD.101.024053
SachsRKProc. R. Soc. Lond. A19622701031962RSPSA.270..103S10.1098/rspa.1962.0206
ArnowittRLDeserSMisnerCWPhys. Rev.195911613221959PhRv..116.1322A11366710.1103/PhysRev.116.1322
MalufJWAnnalen der Physik201352553392013AnP...525..339M305535910.1002/andp.201200272
LiBSotiriouTPBarrowJDPhys. Rev. D20118360640352011PhRvD..83f4035L10.1103/physrevd.83.064035
Newton SinghKRahamanFBanerjeeAPhys. Rev. D201910080840232019PhRvD.100h4023N403102310.1103/PhysRevD.100.084023
BambaKMyrzakulovRNojiriSOdintsovSDPhys. Rev. D2012851040362012PhRvD..85j4036B10.1103/PhysRevD.85.104036
RhoadesCEJrRuffiniRPhys. Rev. Lett.1974323241974PhRvL..32..324R10.1103/PhysRevLett.32.324
AldrovandiRPereiraJGTeleparallel Gravity: An Introduction2013BerlinSpringer10.1007/978-94-007-5143-91259.83002
Zel’dovichYBEkspZhTeor. Fiz.1961411609
DouchinFHaenselPAstron. Astrophys.20013801512001A&A...380..151D10.1051/0004-6361:20011402
BengocheaGRFerraroRPhys. Rev. D2009791240192009PhRvD..79l4019B10.1103/PhysRevD.79.124019
NashedGGLCapozzielloSEur. Phys. J. C202080109692020EPJC...80..969N10.1140/epjc/s10052-020-08551-1
StarobinskyAAAdv. Ser. Astrophys. Cosmol.1987313010.1016/0370-2693(80)90670-X
AstashenokAVCapozzielloSOdintsovSDOikonomouVKPhys. Lett. B202181613622210.1016/j.physletb.2021.136222
A. DeBenedictis, S. Iliji’c, M. Sossich, (2022). https://doi.org/10.48550/arXiv.2202.08958.arXiv.2202.08958
DeBenedictisAIlijićSPhys. Rev. D20189860640562018PhRvD..98f4056D393869110.1103/PhysRevD.98.064056
AstashenokAVCapozzielloSOdintsovSDOikonomouVKEPL20211345590012021EL....13459001A10.1209/0295-5075/134/59001
CaiYFKhurshudyanMSaridakisENAstrophys. J.2020888622020ApJ...888...62C10.3847/1538-4357/ab5a7f
BoehmerCGMussaATamaniniNClass. Quantum Gravity2011282450202011CQGra..28x5020B10.1088/0264-9381/28/24/245020
NojiriSOdintsovSDPhys. Rep.2011505592011PhR...505...59N282637410.1016/j.physrep.2011.04.001
PodkowkaDMMendesRFPPoissonEPhys. Rev. D20189860640572018PhRvD..98f4057P10.1103/PhysRevD.98.064057
CapozzielloSDe LaurentisMFarinelliROdintsovSDPhys. Rev. D20169320235012016PhRvD..93b3501C348182910.1103/PhysRevD.93.023501
MillerMCAstrophys. J. Lett.20198871L242019ApJ...887L..24M10.3847/2041-8213/ab50c5
ObukhovYNRubilarGFPhys. Rev. D2006731240172006PhRvD..73l4017O223181610.1103/PhysRevD.73.124017
SotiriouTPLiBBarrowJDPhys. Rev. D201183101040302011PhRvD..83j4030S10.1103/physrevd.83.104030
AstashenokAVCapozzielloSOdintsovSDOikonomouVKPhys. Lett. B2020811135910417128810.1016/j.physletb.2020.135910
BondiHvan der BurgMGJMetznerAWKProc. R. Soc. Lond. A1962269211962RSPSA.269...21B10.1098/rspa.1962.0161
GJ Olmo (10268_CR38) 2020; 876
H Bondi (10268_CR55) 1962; 269
CE Rhoades Jr (10268_CR39) 1974; 32
K Newton Singh (10268_CR28) 2019; 100
AY Potekhin (10268_CR51) 2013; 560
CW Misner (10268_CR57) 1964; 136
EV Linder (10268_CR10) 2010; 81
Scv Ilijić (10268_CR33) 2018; 98
H Sotani (10268_CR64) 2017; 95
A DeBenedictis (10268_CR31) 2018; 98
YN Obukhov (10268_CR18) 2006; 73
P Haensel (10268_CR50) 2004; 428
F Douchin (10268_CR49) 2001; 380
MC Miller (10268_CR63) 2021; 918
JW Maluf (10268_CR8) 2013; 525
AV Astashenok (10268_CR37) 2017; 34
S Ilijić (10268_CR32) 2020; 102
M Zubair (10268_CR27) 2016; 361
HT Cromartie (10268_CR42) 2019; 4
YF Cai (10268_CR11) 2016; 79
10268_CR25
DM Podkowka (10268_CR53) 2018; 98
P Saha (10268_CR29) 2019; 79
RK Sachs (10268_CR56) 1962; 270
AA Starobinsky (10268_CR44) 1987; 3
TP Sotiriou (10268_CR13) 2011; 83
H Zhang (10268_CR60) 2014; 90
K Rezazadeh (10268_CR46) 2016; 01
YB Zel’dovich (10268_CR52) 1961; 41
B Li (10268_CR14) 2011; 83
AS Arapoglu (10268_CR34) 2011; 07
M Linares (10268_CR40) 2018; 859
AV Astashenok (10268_CR66) 2021; 816
CG Boehmer (10268_CR26) 2011; 28
S Nojiri (10268_CR4) 2011; 505
AV Astashenok (10268_CR67) 2020; 811
R Abbott (10268_CR43) 2020; 896
A De Felice (10268_CR1) 2010; 13
AV Astashenok (10268_CR35) 2013; 12
R Ferraro (10268_CR15) 2015; 91
A Golovnev (10268_CR20) 2017; 34
S Capozziello (10268_CR36) 2016; 93
SA Hayward (10268_CR58) 1996; 53
K Bamba (10268_CR47) 2012; 85
BP Abbott (10268_CR62) 2018; 121
C Pfeifer (10268_CR24) 2021; 7
JB Jiménez (10268_CR5) 2019; 5
R Aldrovandi (10268_CR7) 2013
A Golovnev (10268_CR23) 2021; 7
YF Cai (10268_CR48) 2020; 888
A DeBenedictis (10268_CR22) 2016; 94
AV Astashenok (10268_CR65) 2021; 134
R Ferraro (10268_CR16) 2011; 702
RH Lin (10268_CR21) 2019; 99
SA Hayward (10268_CR61) 1998; 15
M Krššák (10268_CR19) 2016; 33
GR Bengochea (10268_CR9) 2009; 79
10268_CR45
S Nojiri (10268_CR12) 2017; 692
J Harada (10268_CR6) 2020; 101
N Tamanini (10268_CR17) 2012; 86
RL Arnowitt (10268_CR54) 1959; 116
GGL Nashed (10268_CR30) 2020; 80
MC Miller (10268_CR41) 2019; 887
RG Cai (10268_CR59) 2009; 80
TP Sotiriou (10268_CR2) 2010; 82
S Capozziello (10268_CR3) 2011; 509
References_xml – reference: KrššákMSaridakisENClass. Quantum Gravity201633111150092016CQGra..33k5009K10.1088/0264-9381/33/11/115009
– reference: RhoadesCEJrRuffiniRPhys. Rev. Lett.1974323241974PhRvL..32..324R10.1103/PhysRevLett.32.324
– reference: ZhangHHuYLiXZPhys. Rev. D20149020240622014PhRvD..90b4062Z10.1103/PhysRevD.90.024062
– reference: BengocheaGRFerraroRPhys. Rev. D2009791240192009PhRvD..79l4019B10.1103/PhysRevD.79.124019
– reference: CapozzielloSDe LaurentisMPhys. Rep.20115091672011PhR...509..167C286969010.1016/j.physrep.2011.09.003
– reference: MisnerCWSharpDHPhys. Rev.1964136B5711964PhRv..136..571M10.1103/PhysRev.136.B571
– reference: AbbottBPPhys. Rev. Lett.2018121161611012018PhRvL.121p1101A10.1103/PhysRevLett.121.161101
– reference: ObukhovYNRubilarGFPhys. Rev. D2006731240172006PhRvD..73l4017O223181610.1103/PhysRevD.73.124017
– reference: BoehmerCGMussaATamaniniNClass. Quantum Gravity2011282450202011CQGra..28x5020B10.1088/0264-9381/28/24/245020
– reference: AstashenokAVCapozzielloSOdintsovSDOikonomouVKPhys. Lett. B202181613622210.1016/j.physletb.2021.136222
– reference: JiménezJBHeisenbergLKoivistoTSUniverse2019571732019Univ....5..173B10.3390/universe5070173
– reference: DeBenedictisAIlijićScvPhys. Rev. D2016941240252016PhRvD..94l4025D376366810.1103/PhysRevD.94.124025
– reference: IlijićScvSossichMPhys. Rev. D2018980640472018PhRvD..98f4047I393868210.1103/PhysRevD.98.064047
– reference: HaywardSAPhys. Rev. D19965319381996PhRvD..53.1938H138001210.1103/PhysRevD.53.1938
– reference: GolovnevAGuzmánMJUniverse2021751212021Univ....7..121G10.3390/universe7050121
– reference: DeBenedictisAIlijićSPhys. Rev. D20189860640562018PhRvD..98f4056D393869110.1103/PhysRevD.98.064056
– reference: AstashenokAVOdintsovSDde la Cruz-DombrizAClass. Quantum Gravity201734202050082017CQGra..34t5008A10.1088/1361-6382/aa8971
– reference: CromartieHTNat. Astron.201941722020NatAs...4...72C10.1038/s41550-019-0880-2
– reference: LinderEVPhys. Rev. D2010811273012010PhRvD..81l7301L10.1103/PhysRevD.81.127301
– reference: AstashenokAVCapozzielloSOdintsovSDOikonomouVKEPL20211345590012021EL....13459001A10.1209/0295-5075/134/59001
– reference: A. DeBenedictis, S. Iliji’c, M. Sossich, (2022). https://doi.org/10.48550/arXiv.2202.08958.arXiv.2202.08958
– reference: FerraroRFioriniFPhys. Lett. B20117021752011PhLB..702...75F281899510.1016/j.physletb.2011.06.049
– reference: TamaniniNBöhmerCGPhys. Rev. D20128640440092012PhRvD..86d4009T10.1103/physrevd.86.044009
– reference: HaenselPPotekhinAYAstron. Astrophys.20044281912004A&A...428..191H10.1051/0004-6361:20041722
– reference: NashedGGLCapozzielloSEur. Phys. J. C202080109692020EPJC...80..969N10.1140/epjc/s10052-020-08551-1
– reference: ZubairMAbbasGAstrophys. Space Sci.20163611272016Ap&SS.361...27Z10.1007/s10509-015-2610-2
– reference: G.G.L. Nashed, W. El Hanafy, S.K. Ibrahim, (2014). https://doi.org/10.48550/arXiv.1411.3293. arXiv:1411.3293
– reference: NojiriSOdintsovSDPhys. Rep.2011505592011PhR...505...59N282637410.1016/j.physrep.2011.04.001
– reference: CaiYFCapozzielloSDe LaurentisMSaridakisENRep. Prog. Phys.201679101069012016RPPh...79j6901C10.1088/0034-4885/79/10/106901
– reference: IlijićSSossichMPhys. Rev. D202010280840192020PhRvD.102h4019I417833910.1103/PhysRevD.102.084019
– reference: Newton SinghKRahamanFBanerjeeAPhys. Rev. D201910080840232019PhRvD.100h4023N403102310.1103/PhysRevD.100.084023
– reference: BondiHvan der BurgMGJMetznerAWKProc. R. Soc. Lond. A1962269211962RSPSA.269...21B10.1098/rspa.1962.0161
– reference: AstashenokAVCapozzielloSOdintsovSDOikonomouVKPhys. Lett. B2020811135910417128810.1016/j.physletb.2020.135910
– reference: PfeiferCSchusterSUniverse2021751532021Univ....7..153P10.3390/universe7050153
– reference: HaradaJPhys. Rev. D20201010240532020PhRvD.101b4053H406865810.1103/PhysRevD.101.024053
– reference: LiBSotiriouTPBarrowJDPhys. Rev. D20118360640352011PhRvD..83f4035L10.1103/physrevd.83.064035
– reference: FerraroRFioriniFPhys. Rev. D2015910640192015PhRvD..91f4019F341531310.1103/PhysRevD.91.064019
– reference: SotiriouTPFaraoniVRev. Mod. Phys.2010824512010RvMP...82..451S10.1103/RevModPhys.82.451
– reference: GolovnevAKoivistoTSandstadMClass. Quantum Gravity201734141450132017CQGra..34n5013G10.1088/1361-6382/aa7830
– reference: MillerMCAstrophys. J. Lett.20198871L242019ApJ...887L..24M10.3847/2041-8213/ab50c5
– reference: SachsRKProc. R. Soc. Lond. A19622701031962RSPSA.270..103S10.1098/rspa.1962.0206
– reference: LinRHZhaiXHPhys. Rev. D20199920240222019PhRvD..99b4022L398148910.1103/PhysRevD.99.024022
– reference: MalufJWAnnalen der Physik201352553392013AnP...525..339M305535910.1002/andp.201200272
– reference: SahaPDebnathUEur. Phys. J. C201979119192019EPJC...79..919S10.1140/epjc/s10052-019-7427-7
– reference: DouchinFHaenselPAstron. Astrophys.20013801512001A&A...380..151D10.1051/0004-6361:20011402
– reference: PodkowkaDMMendesRFPPoissonEPhys. Rev. D20189860640572018PhRvD..98f4057P10.1103/PhysRevD.98.064057
– reference: CaiRGCaoLMHuYPOhtaNPhys. Rev. D2009801040162009PhRvD..80j4016C10.1103/PhysRevD.80.104016
– reference: BambaKMyrzakulovRNojiriSOdintsovSDPhys. Rev. D2012851040362012PhRvD..85j4036B10.1103/PhysRevD.85.104036
– reference: CaiYFKhurshudyanMSaridakisENAstrophys. J.2020888622020ApJ...888...62C10.3847/1538-4357/ab5a7f
– reference: SotiriouTPLiBBarrowJDPhys. Rev. D201183101040302011PhRvD..83j4030S10.1103/physrevd.83.104030
– reference: PotekhinAYFantinaAFChamelNPearsonJMGorielySAstron. Astrophys.2013560A482013A&A...560A..48P10.1051/0004-6361/201321697
– reference: Zel’dovichYBEkspZhTeor. Fiz.1961411609
– reference: OlmoGJRubiera-GarciaDWojnarAPhys. Rep.202087612020PhR...876....1O414839510.1016/j.physrep.2020.07.001
– reference: AldrovandiRPereiraJGTeleparallel Gravity: An Introduction2013BerlinSpringer10.1007/978-94-007-5143-91259.83002
– reference: NojiriSOdintsovSOikonomouVPhys. Rep.201769212017PhR...692....1N368391310.1016/j.physrep.2017.06.001
– reference: SotaniHKokkotasKDPhys. Rev. D20179540440322017PhRvD..95d4032S10.1103/PhysRevD.95.044032
– reference: MillerMCAstrophys. J. Lett.20219182L282021ApJ...918L..28M10.3847/2041-8213/ac089b
– reference: ArapogluASDelidumanCEksiKYJCAP2011070202011JCAP...07..020A10.1088/1475-7516/2011/07/020
– reference: ArnowittRLDeserSMisnerCWPhys. Rev.195911613221959PhRv..116.1322A11366710.1103/PhysRev.116.1322
– reference: AbbottRAstrophys. J. Lett.20208962L442020ApJ...896L..44A10.3847/2041-8213/ab960f
– reference: HaywardSAClass. Quantum Gravity19981531471998CQGra..15.3147H10.1088/0264-9381/15/10/017
– reference: LinaresMShahbazTCasaresJAstrophys. J.20188591542018ApJ...859...54L10.3847/1538-4357/aabde6
– reference: CapozzielloSDe LaurentisMFarinelliROdintsovSDPhys. Rev. D20169320235012016PhRvD..93b3501C348182910.1103/PhysRevD.93.023501
– reference: RezazadehKAbdolmalekiAKaramiKJHEP2016011312016JHEP...01..131R10.1007/JHEP01(2016)131
– reference: AstashenokAVCapozzielloSOdintsovSDJCAP2013120402013JCAP...12..040A10.1088/1475-7516/2013/12/040
– reference: De FeliceATsujikawaSLiving Rev. Relativ.20101332010LRR....13....3D10.12942/lrr-2010-3
– reference: StarobinskyAAAdv. Ser. Astrophys. Cosmol.1987313010.1016/0370-2693(80)90670-X
– volume: 3
  start-page: 130
  year: 1987
  ident: 10268_CR44
  publication-title: Adv. Ser. Astrophys. Cosmol.
  doi: 10.1016/0370-2693(80)90670-X
– volume: 98
  start-page: 064057
  issue: 6
  year: 2018
  ident: 10268_CR53
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.064057
– volume: 100
  start-page: 084023
  issue: 8
  year: 2019
  ident: 10268_CR28
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.084023
– volume: 888
  start-page: 62
  year: 2020
  ident: 10268_CR48
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/ab5a7f
– volume: 13
  start-page: 3
  year: 2010
  ident: 10268_CR1
  publication-title: Living Rev. Relativ.
  doi: 10.12942/lrr-2010-3
– volume: 81
  start-page: 127301
  year: 2010
  ident: 10268_CR10
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.127301
– volume: 380
  start-page: 151
  year: 2001
  ident: 10268_CR49
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20011402
– volume: 80
  start-page: 104016
  year: 2009
  ident: 10268_CR59
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.104016
– volume: 7
  start-page: 153
  issue: 5
  year: 2021
  ident: 10268_CR24
  publication-title: Universe
  doi: 10.3390/universe7050153
– volume: 32
  start-page: 324
  year: 1974
  ident: 10268_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.32.324
– volume: 93
  start-page: 023501
  issue: 2
  year: 2016
  ident: 10268_CR36
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.023501
– volume: 918
  start-page: L28
  issue: 2
  year: 2021
  ident: 10268_CR63
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ac089b
– volume: 99
  start-page: 024022
  issue: 2
  year: 2019
  ident: 10268_CR21
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.024022
– volume: 85
  start-page: 104036
  year: 2012
  ident: 10268_CR47
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.104036
– volume: 95
  start-page: 044032
  issue: 4
  year: 2017
  ident: 10268_CR64
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.044032
– volume: 509
  start-page: 167
  year: 2011
  ident: 10268_CR3
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2011.09.003
– volume: 121
  start-page: 161101
  issue: 16
  year: 2018
  ident: 10268_CR62
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.161101
– volume: 887
  start-page: L24
  issue: 1
  year: 2019
  ident: 10268_CR41
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ab50c5
– volume: 876
  start-page: 1
  year: 2020
  ident: 10268_CR38
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2020.07.001
– volume: 86
  start-page: 044009
  issue: 4
  year: 2012
  ident: 10268_CR17
  publication-title: Phys. Rev. D
  doi: 10.1103/physrevd.86.044009
– volume: 01
  start-page: 131
  year: 2016
  ident: 10268_CR46
  publication-title: JHEP
  doi: 10.1007/JHEP01(2016)131
– volume: 98
  start-page: 064047
  year: 2018
  ident: 10268_CR33
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.064047
– volume: 816
  start-page: 136222
  year: 2021
  ident: 10268_CR66
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2021.136222
– volume: 811
  start-page: 135910
  year: 2020
  ident: 10268_CR67
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135910
– ident: 10268_CR45
  doi: 10.48550/arXiv.1411.3293
– volume: 896
  start-page: L44
  issue: 2
  year: 2020
  ident: 10268_CR43
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ab960f
– volume: 361
  start-page: 27
  issue: 1
  year: 2016
  ident: 10268_CR27
  publication-title: Astrophys. Space Sci.
  doi: 10.1007/s10509-015-2610-2
– volume: 41
  start-page: 1609
  year: 1961
  ident: 10268_CR52
  publication-title: Teor. Fiz.
– volume: 90
  start-page: 024062
  issue: 2
  year: 2014
  ident: 10268_CR60
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.024062
– volume: 79
  start-page: 919
  issue: 11
  year: 2019
  ident: 10268_CR29
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-7427-7
– volume: 859
  start-page: 54
  issue: 1
  year: 2018
  ident: 10268_CR40
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/aabde6
– volume: 525
  start-page: 339
  issue: 5
  year: 2013
  ident: 10268_CR8
  publication-title: Annalen der Physik
  doi: 10.1002/andp.201200272
– volume: 270
  start-page: 103
  year: 1962
  ident: 10268_CR56
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1962.0206
– volume: 101
  start-page: 024053
  year: 2020
  ident: 10268_CR6
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.024053
– volume: 94
  start-page: 124025
  year: 2016
  ident: 10268_CR22
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.124025
– volume: 73
  start-page: 124017
  year: 2006
  ident: 10268_CR18
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.73.124017
– volume: 560
  start-page: A48
  year: 2013
  ident: 10268_CR51
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201321697
– volume: 34
  start-page: 205008
  issue: 20
  year: 2017
  ident: 10268_CR37
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/aa8971
– volume: 79
  start-page: 106901
  issue: 10
  year: 2016
  ident: 10268_CR11
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/79/10/106901
– volume: 5
  start-page: 173
  issue: 7
  year: 2019
  ident: 10268_CR5
  publication-title: Universe
  doi: 10.3390/universe5070173
– volume: 83
  start-page: 064035
  issue: 6
  year: 2011
  ident: 10268_CR14
  publication-title: Phys. Rev. D
  doi: 10.1103/physrevd.83.064035
– volume: 15
  start-page: 3147
  year: 1998
  ident: 10268_CR61
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/15/10/017
– ident: 10268_CR25
  doi: 10.48550/arXiv.2202.08958.arXiv.2202.08958
– volume: 702
  start-page: 75
  issue: 1
  year: 2011
  ident: 10268_CR16
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2011.06.049
– volume: 34
  start-page: 145013
  issue: 14
  year: 2017
  ident: 10268_CR20
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/aa7830
– volume: 12
  start-page: 040
  year: 2013
  ident: 10268_CR35
  publication-title: JCAP
  doi: 10.1088/1475-7516/2013/12/040
– volume: 80
  start-page: 969
  issue: 10
  year: 2020
  ident: 10268_CR30
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-08551-1
– volume: 33
  start-page: 115009
  issue: 11
  year: 2016
  ident: 10268_CR19
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/33/11/115009
– volume: 07
  start-page: 020
  year: 2011
  ident: 10268_CR34
  publication-title: JCAP
  doi: 10.1088/1475-7516/2011/07/020
– volume: 79
  start-page: 124019
  year: 2009
  ident: 10268_CR9
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.79.124019
– volume: 83
  start-page: 104030
  issue: 10
  year: 2011
  ident: 10268_CR13
  publication-title: Phys. Rev. D
  doi: 10.1103/physrevd.83.104030
– volume: 53
  start-page: 1938
  year: 1996
  ident: 10268_CR58
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.53.1938
– volume: 82
  start-page: 451
  year: 2010
  ident: 10268_CR2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.451
– volume: 692
  start-page: 1
  year: 2017
  ident: 10268_CR12
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2017.06.001
– volume: 428
  start-page: 191
  year: 2004
  ident: 10268_CR50
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20041722
– volume: 102
  start-page: 084019
  issue: 8
  year: 2020
  ident: 10268_CR32
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.084019
– volume-title: Teleparallel Gravity: An Introduction
  year: 2013
  ident: 10268_CR7
  doi: 10.1007/978-94-007-5143-9
– volume: 269
  start-page: 21
  year: 1962
  ident: 10268_CR55
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1962.0161
– volume: 91
  start-page: 064019
  year: 2015
  ident: 10268_CR15
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.064019
– volume: 116
  start-page: 1322
  year: 1959
  ident: 10268_CR54
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.116.1322
– volume: 28
  start-page: 245020
  year: 2011
  ident: 10268_CR26
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/28/24/245020
– volume: 7
  start-page: 121
  issue: 5
  year: 2021
  ident: 10268_CR23
  publication-title: Universe
  doi: 10.3390/universe7050121
– volume: 98
  start-page: 064056
  issue: 6
  year: 2018
  ident: 10268_CR31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.064056
– volume: 134
  start-page: 59001
  issue: 5
  year: 2021
  ident: 10268_CR65
  publication-title: EPL
  doi: 10.1209/0295-5075/134/59001
– volume: 505
  start-page: 59
  year: 2011
  ident: 10268_CR4
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2011.04.001
– volume: 4
  start-page: 72
  issue: 1
  year: 2019
  ident: 10268_CR42
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-019-0880-2
– volume: 136
  start-page: B571
  year: 1964
  ident: 10268_CR57
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B571
SSID ssj0002408
Score 2.477274
Snippet We investigate the nonrotating neutron stars in f ( T ) gravity with f ( T ) = T + α T 2 , where T is the torsion scalar in the teleparallel formalism of...
We investigate the nonrotating neutron stars in f ( T ) gravity with $$f(T)=T+\alpha {T}^2$$ f ( T ) = T + α T 2 , where T is the torsion scalar in the...
We investigate the nonrotating neutron stars in f(T) gravity with [Formula omitted], where T is the torsion scalar in the teleparallel formalism of gravity. In...
We investigate the nonrotating neutron stars in f(T) gravity with f(T)=T+αT2, where T is the torsion scalar in the teleparallel formalism of gravity. In...
Abstract We investigate the nonrotating neutron stars in f(T) gravity with $$f(T)=T+\alpha {T}^2$$ f ( T ) = T + α T 2 , where T is the torsion scalar in the...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Astronomy
Astrophysics and Cosmology
Density
Elementary Particles
Equations of state
Gravitational waves
Hadrons
Heavy Ions
Mathematical models
Measurement Science and Instrumentation
Neutron stars
Neutrons
Nuclear Energy
Nuclear Physics
Phase transitions
Physics
Physics and Astronomy
Pulsars
Quantum Field Theories
Quantum Field Theory
Regular Article - Theoretical Physics
Relativity
Stellar mass
String Theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyInzid0oOgHsLaNGnXo4pjCHqQDXYL-QRF6tjH_-97aTqVHXaxxzaB5Pde3kfzPgi55j531rCSqswwygunKChhTsEByr0ALtKhHdDLazGa8OepmP5q9YUxYU154Aa4vnW58aDTbFVZcCUGGi3uymSZE0YpHVL30iptnakog7FwV4zmAg-i72YfBrPlUsEohq-DVi2AQf7oolCyf1Mwb9yQBsUzPCD70WJM7puVHpIdVx-R3RC5aRbHhL45rGEIH5ParfDHdgIG3zwJLW4WyXud-NvxXYJthsDgPiGT4dP4cURjDwRqYLNLarlQTCtuWWbxxg-0bwWnUHPN1EA5eIT2lbVlVWpfOAGyi3nAPnOgmnTO8lPSqb9qd0YSZiyzHgC04IJxxVReeitMKUpemUKnXVK0aEgTC4Rjn4pP2SQvpxJhlA2MEmCUAUbJuiRdT5w1NTK2T3lAuNfDsch1eAGkl5H0chvpu-QGiSXxKMJCjYoZBbBdLGol7wuwfvGqE0b2WnrKeEYXEmP7cgbyddAlWUvjn89bdnD-Hzu4IHsM-TFEAvVIZzlfuUswcpb6KvDzNzLt9Jg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR3LSgMxMPhA8CI-sb7Yg6AeQnezSbZ7EhWrCHoQBW8hT1FkW9v6_86kaYsU7B43ybKZ92QmM4Sc8lB6Z1lFdWEZ5dJrCkqYU3CAyiCAikxsB_T4JO9f-cObeEsHbsOUVjmRiVFQu57FM_I2ZmKVDLihc9n_ptg1CqOrqYXGMlktQNMgnXe6d1NJjOW74u2iklOZc57yu8CnaPv-p8X7c7lgFBPaQc9KIJk_2ikW8Z8X1XMx06iKuptkI9mQ2dUY6VtkyTfbZC3mctrhDqHPHqsawmDW-B886s7ABBxksenNMPtosnD-cpFh4yEwwXfJa_f25eaepq4I1AKzjajjQjOjuWOFwxgg6OMa-NJww3RHe3iECbVzVV2ZIL0AacYCYKPwoKxMyco9stL0Gr9PMmYdc6FjpAOnjGumyyo4YStR8dpKk7eInEBD2VQyHDtXfKnxdeZcIRjVGIwKwKgiGBVrkXy6sD-umrF4yTWCezody17HF73Bu0pcpJwvbQADx9W1A78S_hwsptoWhRdWa1O3yBkiSyFzwo9ane4YwHaxzJW6kmAPY_ATZh5N8KkS1w7VjMZapJjgeDa8YAcH_3_ykKwzpLSY9XNEVkaDH38MBs3InESq_QUzGO1q
  priority: 102
  providerName: ProQuest
Title Realistic neutron star models in f(T) gravity
URI https://link.springer.com/article/10.1140/epjc/s10052-022-10268-2
https://www.proquest.com/docview/2648327638
https://doaj.org/article/de3cf910d99d4488b60669c11e5caab9
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSgMxcPCB4EV8Yn2UPQjqIdjNJtnusRarCIqIBW8hT1BkLbb-vzPptiqCgntY2E0CyUzmkcwL4EjEInjHS2Zyx5lQwTAUwoLhAaiIEneRTeWAbm7V1VBcP8rHBTibxcJ8td-j7n8WRs-O4tw6kjNyPEd5qBC1i7As80Il66zqz1kv5etqnLh-GfxNBKVM_T_58Q_DaJI3g3VYaxTFrDfF7AYshHoTVpLDphtvAbsPlLoQG7M6vNN9doZ63luWKtuMs6c6iycPpxlVF0I9exuGg4uH_hVrSh8whxQ1YV5Iw60RnueeDH0odCskPissN10T8JE2Vt6XVWmjChJZFo8I8jygRLIFL3ZgqX6twy5k3HnuY9cqjycvYbgpyuilK2UpKqdspwVqBg3tmrzgVJ7iRU9jljuawKinYNQIRp3AqHkLOvOBo2lqjL-HnBO4590pt3X6gSjXDaloHwoXUYvxVeXx8IgzR7WocnkepDPGVi04JmRpokCcqDNNIAEul3JZ6Z5CpZcsnNjzYIZP3ZDmWJNLX8GRrXZbkM9w_Nn8xwr2_jFmH1Y5bb_k73MAS5O393CIqszEtmGxO7hsw_L5xe3dPX71uWinLd1OlwP4HvLeB7h27Tg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IJ5ioYAPIOBgNXEcZ3NAqIVWW9quULWVejN-ViCUXXa3QvwpfiMzTrIVqkRPzTG2o3j8eR72PABeyVgE70TFTe4ElyoYjkJYcjSAilgiimwqB3Q8UeNT-fmsPNuAP30sDLlV9jwxMWo_c3RGvk2eWIXA3TD6MP_JqWoU3a72JTRaWByG37_QZFu-P_iE6_taiP296ccx76oKcIdgXXEvSyOskV7knu7QUJ7ViGsrrTAjE_Apbay9r-rKRhVK5AYi4mzygMzeFpToAFn-pqSI1gFs7u5NvpyseT8lDEvxTIXkKpOy8yhDK2Y7zL87itjLSsHJhR4lu0KQ_iMPU9mAq8Lhyi1tEn779-Bup7WynRZm92EjNA_gVvIedcuHwE8C5VHERtaECzpcZ6h0Llgqs7Nk3xoW307fMSp1hEr_Izi9EYo9hkEza8ITYMJ54ePIKo9moDTCFFX0pavKStZO2WwIqqeGdl2ScqqV8UO3AdSZJjLqlowayagTGbUYQrYeOG_zdFw_ZJfIve5OibbTi9niXHf7VvtQuIgqla9rj5Ys_jnqaLXL81A6Y2w9hDe0WJrYAf6oM11UA06XEmvpHYUaOF23Ys-tfj11xyeW-hLVQ8j7Nb5svmYGT___yZdwezw9PtJHB5PDZ3BHEOqSz9EWDFaLi_Ac1amVfdFhmMHXm942fwE96Svy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRSAuiKdYKOADCDhYmzi2szkgVChLS6FCqJV6M35WIJRddrdC_DV-HTNOshWqRE_NMbajePx5HvY8AJ7KVMXgRc1t6QWXOlqOQlhyNICqpBBFLpcD-nSgd4_kh2N1vAF_hlgYcqsceGJm1GHm6Yx8TJ5YlcDdMBmn3i3i88709fwnpwpSdNM6lNPoILIff_9C8235am8H1_qZENN3h293eV9hgHsE7ooHqaxwVgZRBrpPQ9nWIMaddMJObMRHudSEUDe1Szoq5Awi4czKiIzfVZT0ANn_lbrCDhSlPn2_lgKUOixHNlWS60LK3rcM7ZlxnH_3FLtXKMHJmR5lvEa4_iMZcwGB82Li3H1tFoPTm3Cj11_Zdge4W7AR29twNfuR-uUd4F8iZVTERtbGUzpmZ6h-LlguuLNk31qWXhy-ZFT0CNX_u3B0KfS6B5vtrI33gQkfREgTpwMahNIKW9UpKF-rWjZeu2IEeqCG8X26cqqa8cN0odSFITKajowGyWgyGY0YQbEeOO8ydlw85A2Re92dUm7nF7PFiel3sAmx8gmVq9A0AW1a_HPU1hpfllF5a10zgue0WIYYA_6ot318A06XUmyZbY26OF28Ys-tYT1NzzGW5gzfIyiHNT5rvmAGD_7_ySdwDTeL-bh3sP8QrgsCXXY-2oLN1eI0PkK9auUeZwAz-HrZO-YvOgAuwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realistic+neutron+star+models+in+f%28T%29+gravity&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Lin%2C+Rui-Hui&rft.au=Chen%2C+Xiao-Ning&rft.au=Zhai%2C+Xiang-Hua&rft.date=2022-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1434-6052&rft.volume=82&rft.issue=4&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-022-10268-2&rft.externalDocID=10_1140_epjc_s10052_022_10268_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6052&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6052&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6052&client=summon