Effect of Rapid Heating and Cooling Conditions on Microstructure Formation in Powder Bed Fusion of Al-Si Hypoeutectic Alloy: A Phase-Field Study

Al alloy parts fabricated by powder bed fusion (PBF) have attracted much attention because of the degrees of freedom in both shapes and mechanical properties. We previously reported that the Si regions in Al-Si alloy that remain after the rapid remelting process in PBF act as intrinsic heterogeneous...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 17; p. 6092
Main Authors Okugawa, Masayuki, Furushiro, Yuya, Koizumi, Yuichiro
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 02.09.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Al alloy parts fabricated by powder bed fusion (PBF) have attracted much attention because of the degrees of freedom in both shapes and mechanical properties. We previously reported that the Si regions in Al-Si alloy that remain after the rapid remelting process in PBF act as intrinsic heterogeneous nucleation sites during the subsequent resolidification. This suggests that the Si particles are crucial for a novel grain refinement strategy. To provide guidelines for grain refinement, the effects of solidification, remelting, and resolidification conditions on microstructures were investigated by multiphase-field simulation. We revealed that the resolidification microstructure is determined by the size and number of Si regions in the initial solidification microstructures and by the threshold size for the nucleation site, depending on the remelting and resolidification conditions. Furthermore, the most refined microstructure with the average grain size of 4.8 µm is predicted to be formed under conditions with a large temperature gradient of Gsol = 106 K/m in the initial solidification, a high heating rate of HR = 105 K/s in the remelting process, and a fast solidification rate of Rresol = 10−1 m/s in the resolidification process. Each of these conditions is necessary to be considered to control the microstructures of Al-Si alloys fabricated via PBF.
AbstractList Al alloy parts fabricated by powder bed fusion (PBF) have attracted much attention because of the degrees of freedom in both shapes and mechanical properties. We previously reported that the Si regions in Al-Si alloy that remain after the rapid remelting process in PBF act as intrinsic heterogeneous nucleation sites during the subsequent resolidification. This suggests that the Si particles are crucial for a novel grain refinement strategy. To provide guidelines for grain refinement, the effects of solidification, remelting, and resolidification conditions on microstructures were investigated by multiphase-field simulation. We revealed that the resolidification microstructure is determined by the size and number of Si regions in the initial solidification microstructures and by the threshold size for the nucleation site, depending on the remelting and resolidification conditions. Furthermore, the most refined microstructure with the average grain size of 4.8 µm is predicted to be formed under conditions with a large temperature gradient of Gsol = 106 K/m in the initial solidification, a high heating rate of HR = 105 K/s in the remelting process, and a fast solidification rate of Rresol = 10−1 m/s in the resolidification process. Each of these conditions is necessary to be considered to control the microstructures of Al-Si alloys fabricated via PBF.
Al alloy parts fabricated by powder bed fusion (PBF) have attracted much attention because of the degrees of freedom in both shapes and mechanical properties. We previously reported that the Si regions in Al-Si alloy that remain after the rapid remelting process in PBF act as intrinsic heterogeneous nucleation sites during the subsequent resolidification. This suggests that the Si particles are crucial for a novel grain refinement strategy. To provide guidelines for grain refinement, the effects of solidification, remelting, and resolidification conditions on microstructures were investigated by multiphase-field simulation. We revealed that the resolidification microstructure is determined by the size and number of Si regions in the initial solidification microstructures and by the threshold size for the nucleation site, depending on the remelting and resolidification conditions. Furthermore, the most refined microstructure with the average grain size of 4.8 µm is predicted to be formed under conditions with a large temperature gradient of Gsol = 106 K/m in the initial solidification, a high heating rate of HR = 105 K/s in the remelting process, and a fast solidification rate of Rresol = 10-1 m/s in the resolidification process. Each of these conditions is necessary to be considered to control the microstructures of Al-Si alloys fabricated via PBF.Al alloy parts fabricated by powder bed fusion (PBF) have attracted much attention because of the degrees of freedom in both shapes and mechanical properties. We previously reported that the Si regions in Al-Si alloy that remain after the rapid remelting process in PBF act as intrinsic heterogeneous nucleation sites during the subsequent resolidification. This suggests that the Si particles are crucial for a novel grain refinement strategy. To provide guidelines for grain refinement, the effects of solidification, remelting, and resolidification conditions on microstructures were investigated by multiphase-field simulation. We revealed that the resolidification microstructure is determined by the size and number of Si regions in the initial solidification microstructures and by the threshold size for the nucleation site, depending on the remelting and resolidification conditions. Furthermore, the most refined microstructure with the average grain size of 4.8 µm is predicted to be formed under conditions with a large temperature gradient of Gsol = 106 K/m in the initial solidification, a high heating rate of HR = 105 K/s in the remelting process, and a fast solidification rate of Rresol = 10-1 m/s in the resolidification process. Each of these conditions is necessary to be considered to control the microstructures of Al-Si alloys fabricated via PBF.
Al alloy parts fabricated by powder bed fusion (PBF) have attracted much attention because of the degrees of freedom in both shapes and mechanical properties. We previously reported that the Si regions in Al-Si alloy that remain after the rapid remelting process in PBF act as intrinsic heterogeneous nucleation sites during the subsequent resolidification. This suggests that the Si particles are crucial for a novel grain refinement strategy. To provide guidelines for grain refinement, the effects of solidification, remelting, and resolidification conditions on microstructures were investigated by multiphase-field simulation. We revealed that the resolidification microstructure is determined by the size and number of Si regions in the initial solidification microstructures and by the threshold size for the nucleation site, depending on the remelting and resolidification conditions. Furthermore, the most refined microstructure with the average grain size of 4.8 µm is predicted to be formed under conditions with a large temperature gradient of G[sub.sol] = 10[sup.6] K/m in the initial solidification, a high heating rate of HR = 10[sup.5] K/s in the remelting process, and a fast solidification rate of R[sub.resol] = 10[sup.−1] m/s in the resolidification process. Each of these conditions is necessary to be considered to control the microstructures of Al-Si alloys fabricated via PBF.
Al alloy parts fabricated by powder bed fusion (PBF) have attracted much attention because of the degrees of freedom in both shapes and mechanical properties. We previously reported that the Si regions in Al-Si alloy that remain after the rapid remelting process in PBF act as intrinsic heterogeneous nucleation sites during the subsequent resolidification. This suggests that the Si particles are crucial for a novel grain refinement strategy. To provide guidelines for grain refinement, the effects of solidification, remelting, and resolidification conditions on microstructures were investigated by multiphase-field simulation. We revealed that the resolidification microstructure is determined by the size and number of Si regions in the initial solidification microstructures and by the threshold size for the nucleation site, depending on the remelting and resolidification conditions. Furthermore, the most refined microstructure with the average grain size of 4.8 µm is predicted to be formed under conditions with a large temperature gradient of G sol = 10 6 K/m in the initial solidification, a high heating rate of HR = 10 5 K/s in the remelting process, and a fast solidification rate of R resol = 10 −1 m/s in the resolidification process. Each of these conditions is necessary to be considered to control the microstructures of Al-Si alloys fabricated via PBF.
Audience Academic
Author Okugawa, Masayuki
Furushiro, Yuya
Koizumi, Yuichiro
AuthorAffiliation 1 Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
2 Anisotropic Design & Additive Manufacturing Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
AuthorAffiliation_xml – name: 1 Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
– name: 2 Anisotropic Design & Additive Manufacturing Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Author_xml – sequence: 1
  givenname: Masayuki
  orcidid: 0000-0002-6844-6856
  surname: Okugawa
  fullname: Okugawa, Masayuki
– sequence: 2
  givenname: Yuya
  surname: Furushiro
  fullname: Furushiro, Yuya
– sequence: 3
  givenname: Yuichiro
  orcidid: 0000-0001-7061-7135
  surname: Koizumi
  fullname: Koizumi, Yuichiro
BookMark eNptUlFrFDEQXqRia-2LvyDgiwhbk91ssvFBOI-eJ1QsVp9DLpm9pmSTa5JV7l_4k816FbWYecgw833fMHzztDrywUNVPSf4vG0Ffj0q0hHOsGgeVSdECFYTQenRX_lxdZbSLS6vbUnfiCfVccswF5S3J9WPi2EAnVEY0Ge1swatQWXrt0h5g5YhuDlfBm9stsEnFDz6aHUMKcdJ5ykCWoU4qrmJrEdX4buBiN6BQaspzcUivHD1tUXr_S7AlMswq0vJhf0btEBXNypBvbLgDLrOk9k_qx4PyiU4u_9Pq6-riy_LdX356f2H5eKy1rTvc61NY7TQIJhmXCiKNVVAh741m04JTRot-oFstGgoV2rTcdb0hgBVDSMYemhPq7cH3d20GcFo8DkqJ3fRjiruZVBW_tvx9kZuwzcpaNdjjovAy3uBGO4mSFmONmlwTnkIU5INJ03fEcG6An3xAHobpujLejOKtIw2vC2o8wNqqxxI64dQ5uoSBkari-uDLfUFpx2nxUpWCPhAmP1IEQapbf5lRSFaJwmW84nIPydSKK8eUH4v_B_wT37SvWw
CitedBy_id crossref_primary_10_3390_ma16041677
crossref_primary_10_1038_s41467_024_51235_7
crossref_primary_10_1016_j_commatsci_2024_112910
crossref_primary_10_3390_ma16155449
crossref_primary_10_3390_met14030271
crossref_primary_10_3390_ma16227228
crossref_primary_10_3390_ma16155223
crossref_primary_10_2320_materia_62_182
crossref_primary_10_1016_j_addma_2024_104079
Cites_doi 10.1016/j.matchar.2017.11.052
10.1016/j.ijsolstr.2017.02.024
10.1016/j.actamat.2020.10.010
10.1177/0954405414567522
10.1016/j.tca.2021.179119
10.1016/j.tca.2022.179183
10.2355/isijinternational.49.1019
10.3390/ma12071007
10.1016/0025-5416(84)90201-5
10.1007/s11837-015-1763-3
10.1016/j.jallcom.2022.165812
10.1016/j.matdes.2022.110976
10.1016/j.actamat.2015.06.056
10.3390/cryst11080856
10.1016/j.calphad.2009.10.009
10.1016/j.optlastec.2022.108263
10.1016/j.scriptamat.2019.12.020
10.1016/S0364-5916(02)00037-8
10.1016/j.msea.2019.138058
10.1103/PhysRevE.73.066122
10.1016/j.msea.2009.02.019
10.1007/s11837-021-04966-7
10.1016/j.matdes.2018.03.025
10.1016/j.scriptamat.2017.10.021
10.1016/j.matdes.2019.107677
10.1108/RPJ-09-2021-0253
10.1088/1757-899X/84/1/012084
10.1016/j.pmatsci.2019.100578
10.1016/j.scriptamat.2017.02.036
10.1016/j.scriptamat.2021.113838
10.1038/nature23894
10.1016/j.actamat.2020.05.012
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma15176092
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (ProQuest)
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC9458070
A745740336
10_3390_ma15176092
GrantInformation_xml – fundername: Japan Aluminium Association
– fundername: Grants-in-Aid for JSPS Research Fellows from MEXT
  grantid: 17J06339; 21H05018; 21H05192; 21H05193
– fundername: Iketani Science and Technology Foundation
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c488t-cd2dc9ce96c679a40c4ae4f83db5a9c12c98f1bc9247aab57628d1e4a2610e8e3
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 18:20:23 EDT 2025
Fri Jul 11 01:52:39 EDT 2025
Fri Jul 25 11:50:31 EDT 2025
Tue Jul 01 05:42:52 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
Tue Jul 01 03:10:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-cd2dc9ce96c679a40c4ae4f83db5a9c12c98f1bc9247aab57628d1e4a2610e8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6844-6856
0000-0001-7061-7135
OpenAccessLink https://www.proquest.com/docview/2711364273?pq-origsite=%requestingapplication%
PMID 36079473
PQID 2711364273
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9458070
proquest_miscellaneous_2712851965
proquest_journals_2711364273
gale_infotracacademiconefile_A745740336
crossref_citationtrail_10_3390_ma15176092
crossref_primary_10_3390_ma15176092
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220902
PublicationDateYYYYMMDD 2022-09-02
PublicationDate_xml – month: 9
  year: 2022
  text: 20220902
  day: 2
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Materials
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Aboulkhair (ref_4) 2019; 106
Yang (ref_12) 2018; 146
Zhao (ref_18) 2022; 56
Liu (ref_2) 2017; 112
Liu (ref_13) 2019; 168
Martin (ref_6) 2017; 549
Zhang (ref_8) 2017; 134
ref_31
Eiken (ref_35) 2015; 98
Eiken (ref_32) 2006; 73
Nomoto (ref_37) 2009; 49
Eiken (ref_36) 2015; 84
Hagihara (ref_1) 2021; 74
Patel (ref_20) 2020; 178
Suzuki (ref_16) 2021; 48
Ding (ref_23) 2019; 764
Bian (ref_3) 2020; 32
Tang (ref_7) 2016; 68
Bontha (ref_24) 2009; 513–514
Zhao (ref_27) 2019; 26
Watanabe (ref_40) 2022; 710
Roth (ref_15) 2021; 43
Kusoglu (ref_11) 2020; 36
ref_29
Okugawa (ref_30) 2022; 919
Liu (ref_17) 2020; 201
Watanabe (ref_39) 2022; 708
Yi (ref_19) 2021; 198
ref_26
Khorasani (ref_38) 2022; 153
Hunt (ref_22) 1984; 65
Schoinochoritis (ref_25) 2017; 231
Prasad (ref_28) 2020; 195
Andersson (ref_33) 2002; 26
Yang (ref_9) 2018; 145
ref_5
Ekubaru (ref_21) 2022; 221
Zhou (ref_14) 2022; 28
Zhang (ref_34) 2010; 34
Takata (ref_10) 2018; 143
References_xml – volume: 48
  start-page: 102383
  year: 2021
  ident: ref_16
  article-title: Control of microstructural characteristics and mechanical properties of AlSi12 alloy by processing conditions of laser powder bed fusion
  publication-title: Addit. Manuf.
– volume: 32
  start-page: 100982
  year: 2020
  ident: ref_3
  article-title: Microstructure refinement for superior ductility of Al–Si alloy by electron beam melting
  publication-title: Addit. Manuf.
– volume: 143
  start-page: 18
  year: 2018
  ident: ref_10
  article-title: Size dependence of microstructure of AlSi10Mg alloy fabricated by selective laser melting
  publication-title: Mater. Characterisation
  doi: 10.1016/j.matchar.2017.11.052
– volume: 112
  start-page: 35
  year: 2017
  ident: ref_2
  article-title: Mean-field polycrystal plasticity modeling with grain size and shape effects for laser additive manufactured FCC metals
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2017.02.024
– volume: 201
  start-page: 316
  year: 2020
  ident: ref_17
  article-title: Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: New microstructure description indices and fracture mechanisms
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.10.010
– ident: ref_26
– volume: 231
  start-page: 96
  year: 2017
  ident: ref_25
  article-title: Simulation of metallic powder bed additive manufacturing processes with the finite element method: A critical review
  publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
  doi: 10.1177/0954405414567522
– volume: 708
  start-page: 179119
  year: 2022
  ident: ref_39
  article-title: Thermophysical properties of liquid Co–Cr–Mo alloys measured by electromagnetic levitation in a static magnetic field
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2021.179119
– volume: 710
  start-page: 179183
  year: 2022
  ident: ref_40
  article-title: Density, surface tension, and viscosity of Co-Cr-Mo melts measured using electrostatic levitation technique
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2022.179183
– volume: 49
  start-page: 1019
  year: 2009
  ident: ref_37
  article-title: Numerical simulation for grain refinement of aluminum alloy by multi-phase-field odel coupled with CALPHAD
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.49.1019
– ident: ref_5
  doi: 10.3390/ma12071007
– volume: 65
  start-page: 75
  year: 1984
  ident: ref_22
  article-title: Steady state columnar and equiaxed growth of dendrites and eutectic
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(84)90201-5
– volume: 68
  start-page: 960
  year: 2016
  ident: ref_7
  article-title: Rapid solidification: Selective laser melting of AlSi10Mg
  publication-title: J. Miner. Met. Mater.
  doi: 10.1007/s11837-015-1763-3
– volume: 919
  start-page: 165812
  year: 2022
  ident: ref_30
  article-title: Equiaxed grain formation by intrinsic heterogeneous nucleation via rapid heating and cooling in additive manufacturing of aluminum-silicon hypoeutectic alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.165812
– volume: 56
  start-page: 102914
  year: 2022
  ident: ref_18
  article-title: Review on the correlation between microstructure and mechanical performance for laser powder bed fusion AlSi10Mg
  publication-title: Addit. Manuf.
– volume: 221
  start-page: 110976
  year: 2022
  ident: ref_21
  article-title: Excellent strength–ductility balance of Sc-Zr-modified Al–Mg alloy by tuning bimodal microstructure via hatch spacing in laser powder bed fusion
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.110976
– volume: 98
  start-page: 152
  year: 2015
  ident: ref_35
  article-title: Impact of P and Sr on solidification sequence and morphology of hypoeutectic Al-Si alloys: Combined thermodynamic computation and phase-field simulation
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.06.056
– ident: ref_29
  doi: 10.3390/cryst11080856
– volume: 34
  start-page: 20
  year: 2010
  ident: ref_34
  article-title: Solvus boundaries of (meta)stable phases in the Al-Mg-Si system: First-principles phonon calculations and thermodynamic modeling
  publication-title: Calphad
  doi: 10.1016/j.calphad.2009.10.009
– volume: 153
  start-page: 108263
  year: 2022
  ident: ref_38
  article-title: The effect of absorption ratio on meltpool features in laser-based powder bed fusion of IN718
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2022.108263
– volume: 178
  start-page: 447
  year: 2020
  ident: ref_20
  article-title: Understanding the refinement of grains in laser surface remelted Al–Cu alloys
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2019.12.020
– volume: 26
  start-page: 273
  year: 2002
  ident: ref_33
  article-title: Thermo-calc & DICTRA, computational tools for materials science
  publication-title: Calphad
  doi: 10.1016/S0364-5916(02)00037-8
– volume: 764
  start-page: 138058
  year: 2019
  ident: ref_23
  article-title: Microstructural control of alloy 718 fabricated by electron beam melting with expanded processing window by adaptive offset method
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138058
– ident: ref_31
– volume: 36
  start-page: 101489
  year: 2020
  ident: ref_11
  article-title: Research trends in laser powder bed fusion of Al alloys within the last decade
  publication-title: Addit. Manuf.
– volume: 73
  start-page: 066122
  year: 2006
  ident: ref_32
  article-title: Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.73.066122
– volume: 26
  start-page: 202
  year: 2019
  ident: ref_27
  article-title: Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy
  publication-title: Addit. Manuf.
– volume: 513–514
  start-page: 311
  year: 2009
  ident: ref_24
  article-title: Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2009.02.019
– volume: 74
  start-page: 1760
  year: 2021
  ident: ref_1
  article-title: Control of Anisotropic Crystallographic Texture in Powder Bed Fusion Additive Manufacturing of Metals and Ceramics—A Review
  publication-title: JOM
  doi: 10.1007/s11837-021-04966-7
– volume: 146
  start-page: 239
  year: 2018
  ident: ref_12
  article-title: Improved corrosion behavior of ultrafine-grained eutectic Al-12Si alloy produced by selective laser melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.03.025
– volume: 145
  start-page: 113
  year: 2018
  ident: ref_9
  article-title: Columnar to equiaxed transition in Al-Mg (-Sc) -Zr alloys produced by selective laser melting
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2017.10.021
– volume: 168
  start-page: 107677
  year: 2019
  ident: ref_13
  article-title: Microstructure of selective laser melted AlSi10Mg alloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107677
– volume: 43
  start-page: 101998
  year: 2021
  ident: ref_15
  article-title: Plasticity and fracture of cast and SLM AlSi10Mg: High-throughput testing and modeling
  publication-title: Addit. Manuf.
– volume: 28
  start-page: 1346
  year: 2022
  ident: ref_14
  article-title: High-cycle fatigue properties of curved-surface AlSi10Mg parts fabricated by powder bed fusion additive manufacturing
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-09-2021-0253
– volume: 84
  start-page: 012084
  year: 2015
  ident: ref_36
  article-title: Eutectic morphology evolution and Sr-modification in Al-Si based alloys studied by 3D phase-field simulation coupled to calphad data
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/84/1/012084
– volume: 106
  start-page: 100578
  year: 2019
  ident: ref_4
  article-title: 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2019.100578
– volume: 134
  start-page: 6
  year: 2017
  ident: ref_8
  article-title: Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2017.02.036
– volume: 198
  start-page: 113838
  year: 2021
  ident: ref_19
  article-title: Improving creep resistance of Al-12 wt.% Ce alloy by microalloying with Sc
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2021.113838
– volume: 549
  start-page: 365
  year: 2017
  ident: ref_6
  article-title: 3D printing of high-strength aluminium alloys
  publication-title: Nature
  doi: 10.1038/nature23894
– volume: 195
  start-page: 392
  year: 2020
  ident: ref_28
  article-title: Towards understanding grain nucleation under additive manufacturing solidification conditions
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.05.012
SSID ssj0000331829
Score 2.3855236
Snippet Al alloy parts fabricated by powder bed fusion (PBF) have attracted much attention because of the degrees of freedom in both shapes and mechanical properties....
SourceID pubmedcentral
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 6092
SubjectTerms Alloys
Aluminum base alloys
Grain refinement
Grain size
Heating rate
Interfaces
Mechanical properties
Melting
Microstructure
Nucleation
Powder beds
Powders
Silicon
Simulation
Solidification
Solids
Specialty metals industry
Title Effect of Rapid Heating and Cooling Conditions on Microstructure Formation in Powder Bed Fusion of Al-Si Hypoeutectic Alloy: A Phase-Field Study
URI https://www.proquest.com/docview/2711364273
https://www.proquest.com/docview/2712851965
https://pubmed.ncbi.nlm.nih.gov/PMC9458070
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdr-rI9jLXbWNYPVDYYezC1ZVmW9jLSUjcMWkK3Qt6MLMmtIbXSjzDyX-xP3l2spE0ZezKyhCx8p_vQnX5HyGfnYiusZZHlFYYZKxlVCTQNt1xqkdpa4W3ks3MxvOQ_xtk4HLjdh7TKpUxcCGrrDZ6RH7Icq49w0Lbfp7cRVo3C6GooobFBNkEES9kjm0cn56OL1SlLnALPMtXhkqbg3x_eaNBxuYgVW9NEz-Xx8xzJJ0qneENeB2uRDjrybpEXrt0mr55gCL4lfzr8YepreqGnjaVDtALbK6pbS4891uS5gidGppHDqG_pGSbhdcCxsztHi-X9Rdq0dOR_W3dHj5ylxQxP0nDiwST62dDhfOrdDIMOjYFXEz__Rgd0dA16MCowEY5iUuL8HbksTn4dD6NQZgEIIuVDZCyzRhmnhBG50jw2XDtey9RWmVYmYUbJOqkMeGq51hU4KEzaxHENzlfspEvfk17rW_eB0IwnDgxE6YS0HLa2joXmdRwbMDIqVmV98nX5y0sTMMixFMakBF8EyVM-kqdPPq3GTjvkjX-O-oKUK3E7wkxGh1sFsB4EtioHOc9yDmwg-mR3Sdwy7NP78pGr-uRg1Q07DMMmunV-thjDwC5VApafrzHFal2I0b3e0zbXC6xuxTMJUvXj_z--Q14yvFaBgSq2S3rAAW4PjJ2Hap9syOJ0P_A1tE7HyV9RwQT0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOQAHxK9YKGAECHGImjiOYyMhtBRCSrtVBa3UW3Bsp420xEvbVbVvwZPwjMxskm23Qtx6ihJbjuUZz4w9M98Q8sq50AprWWB5iW7GUgZlBK-GWy61iG2lMBt5tCPyff71IDlYIX_6XBgMq-xl4lxQW2_wjnydpVh9hIO2_TD5FWDVKPSu9iU0WrbYcrMzOLKdvN_8BPR9zVj2eW8jD7qqAvB_KU8DY5k1yjgljEiV5qHh2vFKxrZMtDIRM0pWUWngYJJqXYI9zqSNHNdw1giddDGMe41c5zFocsxMz74s7nTCGHYIUy0KKrSH6z81aNRUhIot6b3L0v9yROYFFZfdIbc725QOW2a6S1Zcc4_cuoBYeJ_8btGOqa_oNz2pLc3R5mwOqW4s3fBYAegQnugHR36mvqEjDPlrYWqnx45mfbYkrRu668-sO6YfnaXZFO_tcODhOPhe03w28W6KLo7awKexn72jQ7p7BFo3yDDsjmII5OwB2b-S5X9IVhvfuEeEJjxyYI5KJ6TlIEh0KDSvwtCASVOyMhmQt_2SF6ZDPMfCG-MCTj5InuKcPAPyctF30uJ8_LPXG6RcgZsfRjK6y2GA-SCMVjFMeZJyYAMxIGs9cYtOKpwU5zw8IC8WzbCf0UmjG-en8z4MrGAlYPrpElMs5oWI4MstTX00RwZXPJEgwx___-fPyY18b7RdbG_ubD0hNxkmdKCLjK2RVeAG9xTMrNPy2Zy3Kflx1ZvpL4QPP_8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgUhQFGgBAPURPHSWwkhLqPqGOsqgaT9hYc29kqlaRsq6b-F_w9_HXcNUm3Toi3PUVJLMfKne_Dd_c7gLfO-Ta2lntW5BRmzKWXB3hrhBVSx6EtFFUj7w_jwaH4chQdrcGfthaG0ipbmbgQ1LYydEbe4wl1HxGobXtFkxYx2k4_T3951EGKIq1tO42aRfbc_ALdt7NPu9tI63ecpzvftwZe02EA1yLluWcst0YZp2ITJ0oL3wjtRCFDm0damYAbJYsgN-ikJFrnaJtzaQMnNPodvpMuxHlvwXpCXlEH1jd3hqOD5QmPH-J-4arGRA1D5fd-atSvSewrvqIFr-uC6_mZVxReeh_uNZYq69es9QDWXPkQ7l7BL3wEv2vsY1YV7EBPx5YNyAItj5kuLduqqB_QMV4pKk7czaqS7VMCYA1aOzt1LG1rJ9m4ZKPqwrpTtuksS2d0ikcT9yfetzEbzKeVm1HAY2zw0aSaf2R9NjpBHeyllITHKCFy_hgOb4QAT6BTVqV7CiwSgUPjVLpYWoFiRfuxFoXvGzRwcp5HXfjQ_vLMNPjn1IZjkqEfROTJLsnThTfLsdMa9eOfo94T5TISBTiT0U1FA66HQLWyfiIiZI0wjLuw0RI3a2TEWXbJ0V14vXyNu5tCNrp01WwxhqNNrGJcfrLCFMt1ET746ptyfLLACVcikijRn_3_46_gNm6k7OvucO853OFU3UHxMr4BHWQG9wJtrvP8ZcPcDH7c9H76C2VbRZE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Rapid+Heating+and+Cooling+Conditions+on+Microstructure+Formation+in+Powder+Bed+Fusion+of+Al-Si+Hypoeutectic+Alloy%3A+A+Phase-Field+Study&rft.jtitle=Materials&rft.au=Okugawa%2C+Masayuki&rft.au=Furushiro%2C+Yuya&rft.au=Koizumi%2C+Yuichiro&rft.date=2022-09-02&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=15&rft.issue=17&rft_id=info:doi/10.3390%2Fma15176092&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon