Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy

The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 134; no. 10; pp. 2912 - 2928
Main Authors Zhang, Zhiqiang, Liao, Wei, Chen, Huafu, Mantini, Dante, Ding, Ju-Rong, Xu, Qiang, Wang, Zhengge, Yuan, Cuiping, Chen, Guanghui, Jiao, Qing, Lu, Guangming
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.10.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures, little is known about changes in whole-brain functional and structural connectivity networks. Regarding functional and structural connectivity, networks are intimately related and share common small-world topological features. We predict that patients with idiopathic generalized epilepsy would exhibit a decoupling between functional and structural networks. In this study, 26 patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures and 26 age- and sex-matched healthy controls were recruited. Resting-state functional magnetic resonance imaging signal correlations and diffusion tensor image tractography were used to generate functional and structural connectivity networks. Graph theoretical analysis revealed that the patients lost optimal topological organization in both functional and structural connectivity networks. Moreover, the patients showed significant increases in nodal topological characteristics in several cortical and subcortical regions, including mesial frontal cortex, putamen, thalamus and amygdala relative to controls, supporting the hypothesis that regions playing important roles in the pathogenesis of epilepsy may display abnormal hub properties in network analysis. Relative to controls, patients showed further decreases in nodal topological characteristics in areas of the default mode network, such as the posterior cingulate gyrus and inferior temporal gyrus. Most importantly, the degree of coupling between functional and structural connectivity networks was decreased, and exhibited a negative correlation with epilepsy duration in patients. Our findings suggest that the decoupling of functional and structural connectivity may reflect the progress of long-term impairment in idiopathic generalized epilepsy, and may be used as a potential biomarker to detect subtle brain abnormalities in epilepsy. Overall, our results demonstrate for the first time that idiopathic generalized epilepsy is reflected in a disrupted topological organization in large-scale brain functional and structural networks, thus providing valuable information for better understanding the pathophysiological mechanisms of generalized tonic-clonic seizures.
AbstractList The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures, little is known about changes in whole-brain functional and structural connectivity networks. Regarding functional and structural connectivity, networks are intimately related and share common small-world topological features. We predict that patients with idiopathic generalized epilepsy would exhibit a decoupling between functional and structural networks. In this study, 26 patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures and 26 age- and sex-matched healthy controls were recruited. Resting-state functional magnetic resonance imaging signal correlations and diffusion tensor image tractography were used to generate functional and structural connectivity networks. Graph theoretical analysis revealed that the patients lost optimal topological organization in both functional and structural connectivity networks. Moreover, the patients showed significant increases in nodal topological characteristics in several cortical and subcortical regions, including mesial frontal cortex, putamen, thalamus and amygdala relative to controls, supporting the hypothesis that regions playing important roles in the pathogenesis of epilepsy may display abnormal hub properties in network analysis. Relative to controls, patients showed further decreases in nodal topological characteristics in areas of the default mode network, such as the posterior cingulate gyrus and inferior temporal gyrus. Most importantly, the degree of coupling between functional and structural connectivity networks was decreased, and exhibited a negative correlation with epilepsy duration in patients. Our findings suggest that the decoupling of functional and structural connectivity may reflect the progress of long-term impairment in idiopathic generalized epilepsy, and may be used as a potential biomarker to detect subtle brain abnormalities in epilepsy. Overall, our results demonstrate for the first time that idiopathic generalized epilepsy is reflected in a disrupted topological organization in large-scale brain functional and structural networks, thus providing valuable information for better understanding the pathophysiological mechanisms of generalized tonic-clonic seizures.
The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures, little is known about changes in whole-brain functional and structural connectivity networks. Regarding functional and structural connectivity, networks are intimately related and share common small-world topological features. We predict that patients with idiopathic generalized epilepsy would exhibit a decoupling between functional and structural networks. In this study, 26 patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures and 26 age- and sex-matched healthy controls were recruited. Resting-state functional magnetic resonance imaging signal correlations and diffusion tensor image tractography were used to generate functional and structural connectivity networks. Graph theoretical analysis revealed that the patients lost optimal topological organization in both functional and structural connectivity networks. Moreover, the patients showed significant increases in nodal topological characteristics in several cortical and subcortical regions, including mesial frontal cortex, putamen, thalamus and amygdala relative to controls, supporting the hypothesis that regions playing important roles in the pathogenesis of epilepsy may display abnormal hub properties in network analysis. Relative to controls, patients showed further decreases in nodal topological characteristics in areas of the default mode network, such as the posterior cingulate gyrus and inferior temporal gyrus. Most importantly, the degree of coupling between functional and structural connectivity networks was decreased, and exhibited a negative correlation with epilepsy duration in patients. Our findings suggest that the decoupling of functional and structural connectivity may reflect the progress of long-term impairment in idiopathic generalized epilepsy, and may be used as a potential biomarker to detect subtle brain abnormalities in epilepsy. Overall, our results demonstrate for the first time that idiopathic generalized epilepsy is reflected in a disrupted topological organization in large-scale brain functional and structural networks, thus providing valuable information for better understanding the pathophysiological mechanisms of generalized tonic-clonic seizures.The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures, little is known about changes in whole-brain functional and structural connectivity networks. Regarding functional and structural connectivity, networks are intimately related and share common small-world topological features. We predict that patients with idiopathic generalized epilepsy would exhibit a decoupling between functional and structural networks. In this study, 26 patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures and 26 age- and sex-matched healthy controls were recruited. Resting-state functional magnetic resonance imaging signal correlations and diffusion tensor image tractography were used to generate functional and structural connectivity networks. Graph theoretical analysis revealed that the patients lost optimal topological organization in both functional and structural connectivity networks. Moreover, the patients showed significant increases in nodal topological characteristics in several cortical and subcortical regions, including mesial frontal cortex, putamen, thalamus and amygdala relative to controls, supporting the hypothesis that regions playing important roles in the pathogenesis of epilepsy may display abnormal hub properties in network analysis. Relative to controls, patients showed further decreases in nodal topological characteristics in areas of the default mode network, such as the posterior cingulate gyrus and inferior temporal gyrus. Most importantly, the degree of coupling between functional and structural connectivity networks was decreased, and exhibited a negative correlation with epilepsy duration in patients. Our findings suggest that the decoupling of functional and structural connectivity may reflect the progress of long-term impairment in idiopathic generalized epilepsy, and may be used as a potential biomarker to detect subtle brain abnormalities in epilepsy. Overall, our results demonstrate for the first time that idiopathic generalized epilepsy is reflected in a disrupted topological organization in large-scale brain functional and structural networks, thus providing valuable information for better understanding the pathophysiological mechanisms of generalized tonic-clonic seizures.
Author Liao, Wei
Xu, Qiang
Jiao, Qing
Lu, Guangming
Zhang, Zhiqiang
Mantini, Dante
Wang, Zhengge
Chen, Huafu
Yuan, Cuiping
Chen, Guanghui
Ding, Ju-Rong
Author_xml – sequence: 1
  givenname: Zhiqiang
  surname: Zhang
  fullname: Zhang, Zhiqiang
  organization: Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China
– sequence: 2
  givenname: Wei
  surname: Liao
  fullname: Liao, Wei
  organization: Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
– sequence: 3
  givenname: Huafu
  surname: Chen
  fullname: Chen, Huafu
  email: chenhf@uestc.edu.cn
  organization: Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
– sequence: 4
  givenname: Dante
  surname: Mantini
  fullname: Mantini, Dante
  organization: Laboratory of Neuro-psychophysiology, K. U. Leuven Medical School, Leuven 3000, Belgium
– sequence: 5
  givenname: Ju-Rong
  surname: Ding
  fullname: Ding, Ju-Rong
  organization: Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
– sequence: 6
  givenname: Qiang
  surname: Xu
  fullname: Xu, Qiang
  organization: Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
– sequence: 7
  givenname: Zhengge
  surname: Wang
  fullname: Wang, Zhengge
  organization: Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China
– sequence: 8
  givenname: Cuiping
  surname: Yuan
  fullname: Yuan, Cuiping
  organization: Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China
– sequence: 9
  givenname: Guanghui
  surname: Chen
  fullname: Chen, Guanghui
  email: chenhf@uestc.edu.cn
  organization: Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China
– sequence: 10
  givenname: Qing
  surname: Jiao
  fullname: Jiao, Qing
  organization: Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China
– sequence: 11
  givenname: Guangming
  surname: Lu
  fullname: Lu, Guangming
  email: cjr.luguangming@vip.163.com
  organization: Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24606650$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21975588$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFLHTEUhUOx1KftrmuZjXTj1JtMJpNZirQqCN2063Ank3lNzUvGJIPYX2-e70lBaLvJDZfvnJBzjsiBD94Q8pHCZwp9cz5EtP4cHyJjzRuyolxAzWgrDsgKAEQt-xYOyVFKvwAob5h4Rw4Z7bu2lXJF1hcum2jGalq8zjZ4dHXKcdF5iegqHZbZWb-uwlQ5jGtTJ43OVM-PVt7khxDvUlXudrRhxvzT6mptvCli-7vYmtk6M6fH9-TthC6ZD_t5TH58_fL98rq-_XZ1c3lxW2suZS4ndsCkNIw3ZTPIgQJyTmFkLfS8QxjacWqwa6DvkHVj3wg-iqGljPIBx-aYfNr5zjHcLyZltbFJG-fQm7Ak1TOQIKiQ_yVlLySTnaSFPNmTy7Axo5qj3WB8VC8pFuB0D-A2nimi1zb94UolQrRQOLbjdAwpRTMpbTNuU88lT6coqG2l6jldtau0iM5eiV58_4Lvv1Wa-zf5BMyOssk
CitedBy_id crossref_primary_10_1111_epi_17921
crossref_primary_10_1002_hbm_25434
crossref_primary_10_3389_fnins_2021_810833
crossref_primary_10_1002_hbm_24584
crossref_primary_10_1111_epi_13205
crossref_primary_10_1111_nmo_13345
crossref_primary_10_1016_j_nicl_2025_103764
crossref_primary_10_3389_fneur_2021_694964
crossref_primary_10_3389_fmed_2020_00193
crossref_primary_10_1371_journal_pone_0068910
crossref_primary_10_1016_j_nicl_2017_03_002
crossref_primary_10_1016_j_jad_2013_03_004
crossref_primary_10_3389_fneur_2014_00218
crossref_primary_10_3389_fneur_2019_01203
crossref_primary_10_1089_brain_2022_0036
crossref_primary_10_1186_s12883_021_02525_w
crossref_primary_10_1007_s11682_016_9514_9
crossref_primary_10_1371_journal_pone_0051250
crossref_primary_10_1111_epi_12580
crossref_primary_10_1016_j_clinph_2012_01_011
crossref_primary_10_1371_journal_pcbi_1004642
crossref_primary_10_1111_epi_12227
crossref_primary_10_3389_fneur_2018_00838
crossref_primary_10_3389_fnhum_2022_867563
crossref_primary_10_1002_hbm_23356
crossref_primary_10_1038_s41582_021_00583_9
crossref_primary_10_1111_jon_12898
crossref_primary_10_3389_fneur_2021_710078
crossref_primary_10_3389_fnhum_2021_649074
crossref_primary_10_1371_journal_pone_0178798
crossref_primary_10_1371_journal_pone_0210015
crossref_primary_10_1111_epi_16811
crossref_primary_10_1007_s12264_012_1255_1
crossref_primary_10_1038_s41398_022_01791_7
crossref_primary_10_3389_fnagi_2016_00198
crossref_primary_10_1016_j_nicl_2017_12_020
crossref_primary_10_1038_s41386_020_0753_5
crossref_primary_10_1002_hbm_25447
crossref_primary_10_1093_schbul_sby175
crossref_primary_10_1155_2017_4345205
crossref_primary_10_1016_j_clinph_2014_04_004
crossref_primary_10_1002_hbm_24235
crossref_primary_10_1089_brain_2013_0211
crossref_primary_10_1038_s41398_020_0829_3
crossref_primary_10_1016_j_yebeh_2023_109523
crossref_primary_10_1007_s11071_024_10590_2
crossref_primary_10_1016_j_clinph_2015_06_022
crossref_primary_10_1111_cns_70205
crossref_primary_10_1111_nan_12857
crossref_primary_10_1016_j_jad_2021_04_029
crossref_primary_10_1016_j_nicl_2015_07_014
crossref_primary_10_1016_j_clinph_2014_04_011
crossref_primary_10_1371_journal_pone_0113838
crossref_primary_10_3389_fneur_2020_00253
crossref_primary_10_1073_pnas_1219562110
crossref_primary_10_1088_1741_2560_12_6_066024
crossref_primary_10_1002_hbm_22362
crossref_primary_10_1002_hbm_25873
crossref_primary_10_1371_journal_pone_0212494
crossref_primary_10_1016_j_braindev_2020_07_006
crossref_primary_10_1016_j_resp_2019_05_004
crossref_primary_10_1038_srep26976
crossref_primary_10_1016_j_yebeh_2013_11_019
crossref_primary_10_1007_s00429_013_0619_2
crossref_primary_10_1111_cns_13632
crossref_primary_10_1109_TMI_2020_2973650
crossref_primary_10_1142_S0129065715500276
crossref_primary_10_1093_brain_awv130
crossref_primary_10_1109_TCDS_2020_2965135
crossref_primary_10_1371_journal_pone_0134944
crossref_primary_10_1002_hbm_23323
crossref_primary_10_1007_s10548_017_0594_7
crossref_primary_10_1016_j_neuroimage_2016_08_003
crossref_primary_10_1177_1073858414537560
crossref_primary_10_1016_j_brainresbull_2025_111210
crossref_primary_10_1016_j_msard_2024_105699
crossref_primary_10_1002_hbm_23200
crossref_primary_10_3182_20130902_3_CN_3020_00078
crossref_primary_10_1016_j_yebeh_2023_109503
crossref_primary_10_1016_j_nicl_2019_101655
crossref_primary_10_1016_j_clinph_2020_12_031
crossref_primary_10_1016_j_neuroimage_2021_117831
crossref_primary_10_1016_j_neuropsychologia_2021_107948
crossref_primary_10_1002_epi4_12781
crossref_primary_10_1038_s41598_017_08075_x
crossref_primary_10_1371_journal_pone_0132518
crossref_primary_10_1016_j_neuroimage_2013_08_011
crossref_primary_10_3389_fnins_2017_00214
crossref_primary_10_1002_hbm_23593
crossref_primary_10_1007_s11682_014_9336_6
crossref_primary_10_1016_j_neuroimage_2023_120450
crossref_primary_10_1007_s11571_018_09517_6
crossref_primary_10_1089_brain_2014_0291
crossref_primary_10_1016_j_jns_2016_12_054
crossref_primary_10_1016_j_acra_2023_12_043
crossref_primary_10_1111_epi_13622
crossref_primary_10_1016_j_jad_2023_01_116
crossref_primary_10_1371_journal_pone_0041376
crossref_primary_10_1016_j_neuroimage_2020_117642
crossref_primary_10_1093_schbul_sbx048
crossref_primary_10_1016_j_neuroscience_2017_09_009
crossref_primary_10_1038_s41598_025_86908_w
crossref_primary_10_1002_mds_26905
crossref_primary_10_1111_epi_12768
crossref_primary_10_3389_fnana_2023_1242757
crossref_primary_10_3389_fnins_2022_814477
crossref_primary_10_1038_s41467_023_41686_9
crossref_primary_10_1016_j_nicl_2014_04_006
crossref_primary_10_1016_j_neuroscience_2021_02_008
crossref_primary_10_1038_s42003_021_02952_y
crossref_primary_10_1371_journal_pone_0068609
crossref_primary_10_3389_fneur_2021_715455
crossref_primary_10_1002_hbm_23456
crossref_primary_10_1016_j_neuroimage_2013_04_056
crossref_primary_10_1016_j_pnpbp_2014_07_007
crossref_primary_10_1097_MD_0000000000001737
crossref_primary_10_1007_s11357_024_01106_2
crossref_primary_10_1097_MD_0000000000003893
crossref_primary_10_3389_fnins_2016_00308
crossref_primary_10_3389_fnins_2022_1098735
crossref_primary_10_1016_j_yebeh_2025_110266
crossref_primary_10_1016_j_jpsychires_2020_08_004
crossref_primary_10_1162_netn_a_00207
crossref_primary_10_1016_j_clinph_2016_03_015
crossref_primary_10_3390_brainsci11111535
crossref_primary_10_1016_j_yebeh_2020_107013
crossref_primary_10_1007_s00330_019_06164_1
crossref_primary_10_1109_TNSRE_2019_2900725
crossref_primary_10_1002_hbm_23887
crossref_primary_10_1093_braincomms_fcab196
crossref_primary_10_1007_s10548_018_0649_4
crossref_primary_10_1017_S0033291716001380
crossref_primary_10_1371_journal_pone_0082715
crossref_primary_10_1002_aur_3180
crossref_primary_10_1016_j_nicl_2015_05_008
crossref_primary_10_1111_jon_13012
crossref_primary_10_1038_s42003_024_06877_0
crossref_primary_10_1016_j_nantod_2022_101536
crossref_primary_10_1097_WCO_0b013e3283515db9
crossref_primary_10_1093_brain_awx181
crossref_primary_10_1002_hbm_24608
crossref_primary_10_1016_j_eplepsyres_2024_107400
crossref_primary_10_1007_s13721_019_0192_6
crossref_primary_10_1002_hbm_22664
crossref_primary_10_1093_brain_awz125
crossref_primary_10_1016_j_neuroimage_2016_06_046
crossref_primary_10_1002_hbm_22428
crossref_primary_10_1016_j_neuroimage_2017_08_055
crossref_primary_10_1523_JNEUROSCI_4837_12_2013
crossref_primary_10_1002_hbm_22580
crossref_primary_10_1016_j_yebeh_2014_02_030
crossref_primary_10_1038_s44220_022_00007_7
crossref_primary_10_3389_fncom_2016_00012
crossref_primary_10_1016_j_neuroimage_2022_118970
crossref_primary_10_1016_j_bandc_2024_106221
crossref_primary_10_1016_j_neuroimage_2017_01_079
crossref_primary_10_1371_journal_pone_0138297
crossref_primary_10_1111_epi_12057
crossref_primary_10_1016_j_eplepsyres_2013_10_002
crossref_primary_10_1016_j_eplepsyres_2013_10_008
crossref_primary_10_1371_journal_pone_0092961
crossref_primary_10_1038_s41467_025_57392_7
crossref_primary_10_1093_cercor_bhae300
crossref_primary_10_3390_brainsci13050803
crossref_primary_10_3389_fneur_2020_00645
crossref_primary_10_1016_j_yebeh_2020_107241
crossref_primary_10_1093_brain_awz270
crossref_primary_10_1016_j_neuroimage_2017_07_035
crossref_primary_10_1016_j_jad_2021_01_088
crossref_primary_10_1186_s40535_017_0045_2
crossref_primary_10_1109_TMI_2023_3309874
crossref_primary_10_3389_fnhum_2018_00041
crossref_primary_10_1016_j_jpsychires_2020_08_001
crossref_primary_10_1007_s11357_024_01128_w
crossref_primary_10_1016_j_neuroimage_2024_120558
crossref_primary_10_1371_journal_pone_0138119
crossref_primary_10_1002_acn3_173
crossref_primary_10_1016_j_jpsychires_2022_04_034
crossref_primary_10_1016_j_neucli_2023_102888
crossref_primary_10_1111_epi_16759
crossref_primary_10_1016_j_nicl_2017_12_002
crossref_primary_10_3233_JAD_160447
crossref_primary_10_1016_j_jad_2015_08_021
crossref_primary_10_1007_s11682_019_00208_2
crossref_primary_10_1002_hbm_22633
crossref_primary_10_1038_nrn3801
crossref_primary_10_3390_brainsci12121630
crossref_primary_10_3389_fnagi_2015_00006
crossref_primary_10_1038_s41398_024_03210_5
crossref_primary_10_3389_fnins_2018_00916
crossref_primary_10_1177_2514183X19850325
crossref_primary_10_3390_bs8040039
crossref_primary_10_1089_brain_2012_0132
crossref_primary_10_3389_fncom_2017_00077
crossref_primary_10_1016_j_clinph_2013_12_120
crossref_primary_10_1111_j_1528_1167_2012_03555_x
crossref_primary_10_1016_j_neuroimage_2021_118649
crossref_primary_10_3390_brainsci12010060
crossref_primary_10_1371_journal_pone_0128787
crossref_primary_10_1016_j_neurobiolaging_2018_11_005
crossref_primary_10_1093_brain_awx145
crossref_primary_10_1038_s41398_020_01053_4
crossref_primary_10_1002_hbm_24804
crossref_primary_10_1016_j_jneumeth_2014_08_010
crossref_primary_10_1002_hbm_24801
crossref_primary_10_1016_j_neuroimage_2019_116285
crossref_primary_10_1177_0271678X18809547
crossref_primary_10_1371_journal_pone_0139228
crossref_primary_10_1002_brb3_1890
crossref_primary_10_1016_j_eplepsyres_2013_06_017
crossref_primary_10_1016_j_neuroimage_2015_05_054
crossref_primary_10_1016_j_nicl_2017_07_008
crossref_primary_10_1016_j_eplepsyres_2013_11_005
crossref_primary_10_1016_j_jpsychires_2018_06_009
crossref_primary_10_1148_radiol_2018170059
crossref_primary_10_1016_S1474_4422_21_00023_5
crossref_primary_10_1093_cercor_bhac432
crossref_primary_10_1093_braincomms_fcad277
crossref_primary_10_1155_2018_9394156
crossref_primary_10_1007_s00330_023_10089_1
crossref_primary_10_1007_s11682_022_00689_8
crossref_primary_10_1016_j_yebeh_2018_07_021
crossref_primary_10_1016_j_pjnns_2015_10_003
crossref_primary_10_1111_epi_12486
crossref_primary_10_1007_s11682_018_9896_y
crossref_primary_10_1016_j_brainres_2018_04_042
crossref_primary_10_1002_hbm_23614
crossref_primary_10_1016_j_jad_2015_04_052
crossref_primary_10_3389_fnagi_2023_1073039
crossref_primary_10_1016_j_earlhumdev_2020_105274
crossref_primary_10_1016_j_neuroscience_2019_02_006
crossref_primary_10_1002_jnr_25028
crossref_primary_10_1016_j_eplepsyres_2014_09_004
crossref_primary_10_3389_fnins_2016_00143
crossref_primary_10_1038_s41467_024_46651_8
crossref_primary_10_1016_j_nicl_2022_103245
crossref_primary_10_3389_fnhum_2017_00583
crossref_primary_10_3389_fninf_2022_934480
crossref_primary_10_1016_j_seizure_2020_11_015
crossref_primary_10_1038_s41598_021_84813_6
crossref_primary_10_1016_j_eplepsyres_2022_106969
crossref_primary_10_1016_j_neulet_2017_10_052
crossref_primary_10_1016_j_nicl_2016_05_010
crossref_primary_10_1212_WNL_0000000000207661
crossref_primary_10_1038_s42003_020_01622_9
crossref_primary_10_3233_XST_160559
crossref_primary_10_1155_2015_271674
crossref_primary_10_1093_cercor_bhv026
crossref_primary_10_3389_fnhum_2024_1517565
crossref_primary_10_1371_journal_pone_0305079
crossref_primary_10_1007_s11571_015_9327_3
crossref_primary_10_3389_fncom_2018_00021
crossref_primary_10_1016_S1634_7072_20_43296_9
crossref_primary_10_1088_1741_2560_10_6_066017
crossref_primary_10_1007_s00422_012_0534_2
crossref_primary_10_1523_ENEURO_0475_20_2021
crossref_primary_10_1016_j_nbd_2024_106425
crossref_primary_10_1055_s_0040_1722301
crossref_primary_10_1016_j_yebeh_2015_03_031
crossref_primary_10_1038_s41398_019_0467_9
crossref_primary_10_3389_fnetp_2023_1338864
crossref_primary_10_1002_hbm_22858
crossref_primary_10_1016_j_nicl_2023_103421
crossref_primary_10_1016_j_nicl_2018_01_012
crossref_primary_10_1371_journal_pone_0039701
crossref_primary_10_1136_jnnp_2022_329993
crossref_primary_10_1016_j_mric_2020_09_006
crossref_primary_10_1016_j_neuroimage_2012_12_054
crossref_primary_10_1016_j_yebeh_2023_109084
crossref_primary_10_1016_j_eplepsyres_2015_03_015
crossref_primary_10_1093_cercor_bhad053
crossref_primary_10_1148_radiol_12120185
crossref_primary_10_1162_netn_a_00133
crossref_primary_10_1016_j_nicl_2018_01_028
crossref_primary_10_1088_1741_2552_ac25d8
crossref_primary_10_3389_fnana_2018_00101
crossref_primary_10_3892_etm_2018_7018
crossref_primary_10_1016_j_spen_2021_100919
crossref_primary_10_1089_brain_2014_0308
crossref_primary_10_1002_hbm_22600
crossref_primary_10_3389_fpsyt_2021_664811
crossref_primary_10_1371_journal_pone_0260295
crossref_primary_10_1371_journal_pone_0135247
crossref_primary_10_1111_cns_14048
crossref_primary_10_1111_jon_13046
crossref_primary_10_1002_jmri_28523
crossref_primary_10_1016_j_neuroscience_2022_08_007
crossref_primary_10_1016_j_bbr_2023_114422
crossref_primary_10_1186_s42494_024_00170_7
crossref_primary_10_1007_s11682_019_00228_y
crossref_primary_10_3233_JAD_220837
crossref_primary_10_1016_j_nicl_2022_103160
crossref_primary_10_1371_journal_pone_0072654
crossref_primary_10_1016_j_neuroimage_2016_12_068
crossref_primary_10_1016_j_nicl_2015_02_004
crossref_primary_10_1093_cercor_bhac498
crossref_primary_10_3389_fnhum_2014_00704
crossref_primary_10_1007_s11682_021_00566_w
crossref_primary_10_1109_TBME_2020_3026055
crossref_primary_10_1371_journal_pone_0081388
crossref_primary_10_1016_j_bspc_2021_102554
crossref_primary_10_1016_j_eplepsyres_2015_12_002
crossref_primary_10_1093_cercor_bhac267
crossref_primary_10_1016_j_pnpbp_2018_11_009
crossref_primary_10_1093_cercor_bhaa098
crossref_primary_10_3389_fnmol_2016_00141
crossref_primary_10_3389_fnagi_2018_00404
crossref_primary_10_1080_15622975_2020_1785006
crossref_primary_10_1038_srep23153
crossref_primary_10_1371_journal_pone_0090068
crossref_primary_10_1111_desc_12703
crossref_primary_10_1631_jzus_B2300880
crossref_primary_10_1016_j_eplepsyres_2014_11_014
crossref_primary_10_1016_j_yebeh_2014_07_025
crossref_primary_10_1162_netn_a_00055
crossref_primary_10_1371_journal_pone_0233833
crossref_primary_10_1016_j_eplepsyres_2021_106595
crossref_primary_10_1016_j_jpsychires_2023_10_037
crossref_primary_10_36472_msd_v11i3_1141
crossref_primary_10_1016_j_clinph_2016_04_013
crossref_primary_10_1093_cercor_bhac168
crossref_primary_10_1016_j_neurol_2024_02_387
crossref_primary_10_1007_s13311_021_01049_y
crossref_primary_10_1016_j_nicl_2019_101680
crossref_primary_10_1371_journal_pone_0134352
crossref_primary_10_3389_fnins_2022_833837
crossref_primary_10_1016_j_bbr_2016_12_017
crossref_primary_10_1016_j_neuroimage_2013_12_022
crossref_primary_10_1002_epi4_12638
crossref_primary_10_1016_j_neuroimage_2020_116654
crossref_primary_10_1093_texcom_tgab023
crossref_primary_10_3389_fneur_2017_00456
crossref_primary_10_3389_fneur_2017_00339
crossref_primary_10_1016_j_nicl_2018_11_002
crossref_primary_10_1089_neu_2018_6196
crossref_primary_10_3758_s13415_018_0645_x
crossref_primary_10_1002_brb3_512
crossref_primary_10_1007_s00429_015_1116_6
crossref_primary_10_3390_brainsci11030310
crossref_primary_10_1007_s10548_018_0688_x
crossref_primary_10_1089_brain_2021_0035
crossref_primary_10_3934_mbe_2023086
crossref_primary_10_1038_s41598_021_92616_y
crossref_primary_10_1177_0300060513496170
crossref_primary_10_1371_journal_pone_0063850
crossref_primary_10_1002_nbm_4605
crossref_primary_10_3389_fneur_2019_01039
crossref_primary_10_1016_j_nicl_2014_11_018
crossref_primary_10_1161_CIRCULATIONAHA_116_024807
crossref_primary_10_1016_j_neuroimage_2012_10_007
crossref_primary_10_1103_PhysRevE_99_042407
crossref_primary_10_1016_j_eplepsyres_2022_106909
crossref_primary_10_1016_j_nicl_2021_102808
crossref_primary_10_1007_s11682_021_00595_5
crossref_primary_10_3389_fpsyt_2018_00278
crossref_primary_10_1371_journal_pone_0219904
crossref_primary_10_1016_j_neuroimage_2017_04_009
crossref_primary_10_3174_ajnr_A4346
crossref_primary_10_1016_j_drudis_2024_104247
crossref_primary_10_1016_j_seizure_2020_09_022
crossref_primary_10_1162_imag_a_00346
crossref_primary_10_1016_j_bbr_2024_115255
crossref_primary_10_1111_cns_70174
crossref_primary_10_3389_fneur_2019_01265
crossref_primary_10_1007_s10548_018_0665_4
crossref_primary_10_1016_j_neubiorev_2023_105055
crossref_primary_10_1371_journal_pone_0111262
crossref_primary_10_1080_00325481_2019_1663126
crossref_primary_10_1111_cns_14039
crossref_primary_10_1007_s10548_023_00966_9
crossref_primary_10_1016_j_neuroimage_2020_117705
crossref_primary_10_1016_j_nicl_2021_102930
crossref_primary_10_1007_s11682_024_00862_1
crossref_primary_10_1186_s12868_024_00918_4
crossref_primary_10_1371_journal_pone_0124681
crossref_primary_10_1371_journal_pone_0094115
crossref_primary_10_1002_hbm_25231
crossref_primary_10_3389_fnins_2024_1363255
crossref_primary_10_1093_scan_nsv040
crossref_primary_10_1016_j_clinph_2014_10_010
crossref_primary_10_1186_s13195_023_01292_9
crossref_primary_10_1148_radiol_13131638
crossref_primary_10_5698_1535_7597_18_2_92
crossref_primary_10_1016_j_jad_2015_11_041
crossref_primary_10_3233_JIN_170026
crossref_primary_10_1007_s00429_013_0641_4
crossref_primary_10_1016_j_brainres_2015_04_052
crossref_primary_10_1038_s41598_022_07730_2
crossref_primary_10_1016_j_jad_2024_01_173
crossref_primary_10_1007_s00259_018_4175_0
crossref_primary_10_1007_s11910_017_0746_x
crossref_primary_10_1002_hbm_24374
crossref_primary_10_1007_s00429_021_02248_1
crossref_primary_10_1016_j_pnpbp_2024_111211
crossref_primary_10_1016_j_eplepsyres_2022_106916
crossref_primary_10_1097_MD_0000000000004032
crossref_primary_10_1017_S0033291724000801
crossref_primary_10_1002_brb3_2274
crossref_primary_10_1002_hbm_25465
crossref_primary_10_1002_hbm_25464
crossref_primary_10_3389_fneur_2014_00093
crossref_primary_10_1007_s12264_020_00580_w
crossref_primary_10_1089_brain_2020_0852
crossref_primary_10_1089_brain_2020_0853
crossref_primary_10_1002_hbm_24369
crossref_primary_10_1007_s00787_024_02631_3
crossref_primary_10_1007_s11434_016_1201_0
crossref_primary_10_1016_j_media_2013_01_003
crossref_primary_10_1016_j_jneumeth_2015_06_016
crossref_primary_10_1002_brb3_3038
crossref_primary_10_1016_j_bandc_2013_07_013
crossref_primary_10_1017_S0317167100018102
crossref_primary_10_1016_j_physd_2013_06_009
crossref_primary_10_1016_j_pscychresns_2017_02_004
crossref_primary_10_1016_j_eplepsyres_2021_106740
crossref_primary_10_1007_s11682_016_9533_6
crossref_primary_10_1088_1741_2552_ad357e
crossref_primary_10_1371_journal_pone_0110136
crossref_primary_10_1089_brain_2011_0062
crossref_primary_10_1111_ene_13104
crossref_primary_10_18632_oncotarget_19098
crossref_primary_10_1371_journal_pone_0048181
crossref_primary_10_2217_fnl_14_32
crossref_primary_10_3389_fnhum_2021_589578
crossref_primary_10_1038_s42003_021_01700_6
crossref_primary_10_1111_epi_17011
crossref_primary_10_3174_ajnr_A4308
crossref_primary_10_3389_fneur_2020_00053
crossref_primary_10_1038_s41583_024_00846_6
crossref_primary_10_3389_fnins_2023_1272514
crossref_primary_10_1007_s00330_016_4531_z
crossref_primary_10_1016_j_eplepsyres_2016_12_009
crossref_primary_10_1371_journal_pone_0114606
crossref_primary_10_1186_s40064_016_3110_8
crossref_primary_10_3389_fnins_2023_1236696
crossref_primary_10_3389_fnhum_2021_641961
Cites_doi 10.1093/brain/awp028
10.1093/cercor/bhi016
10.1016/j.euroneuro.2010.03.008
10.1093/cercor/bhn041
10.1103/PhysRevE.71.065103
10.1136/jnnp.2010.206342
10.1016/j.neuroimage.2007.12.046
10.1002/hbm.21034
10.1371/journal.pone.0007228
10.1002/hbm.20623
10.1098/rspb.2005.3354
10.1002/nbm.781
10.1093/cercor/bhn059
10.1016/j.biopsych.2010.03.035
10.7551/mitpress/8476.001.0001
10.1016/j.yebeh.2003.11.008
10.1371/journal.pcbi.1000395
10.2307/3033543
10.1103/PhysRevLett.104.118701
10.1212/WNL.0b013e3181c55d02
10.1523/JNEUROSCI.4136-10.2010
10.1177/1073858406293182
10.1093/brain/awn018
10.1038/30918
10.1111/j.2517-6161.1995.tb02031.x
10.1006/nimg.2002.1136
10.1016/j.neuroimage.2009.12.027
10.1073/pnas.98.2.676
10.1111/j.1749-6632.2010.05888.x
10.1046/j.1528-1157.44.s.2.2.x
10.1523/JNEUROSCI.2964-08.2008
10.1002/hbm.20113
10.1093/cercor/bhn102
10.1111/j.1749-6632.2010.05947.x
10.1146/annurev.neuro.051508.135735
10.1073/pnas.0811168106
10.1137/S003614450342480
10.1016/j.clinph.2009.10.013
10.1016/j.brainres.2010.01.042
10.1523/JNEUROSCI.2874-10.2010
10.1073/pnas.0504136102
10.1016/j.biopsych.2010.08.022
10.1152/jn.90777.2008
10.1371/journal.pone.0005226
10.1046/j.1528-1157.2001.10401.x
10.1371/journal.pbio.0060159
10.1016/0920-1211(91)90004-Y
10.1016/j.neuroimage.2007.10.058
10.1016/j.neuroimage.2009.01.055
10.1111/j.1528-1167.2009.02068.x
10.1371/journal.pone.0008081
10.1177/1073858403255624
10.1111/j.0013-9580.2004.68903.x
10.1016/j.eplepsyres.2009.03.015
10.1111/j.1528-1167.2005.00311.x
10.1007/s00429-009-0208-6
10.1523/JNEUROSCI.2308-09.2009
10.1016/j.neuroimage.2010.01.071
10.1006/nimg.2001.0978
10.1016/j.brainres.2010.12.034
10.1093/cercor/bhl149
10.1371/journal.pone.0015219
10.1097/WCO.0b013e32833aa567
10.1111/j.1528-1167.2008.01739.x
10.1371/journal.pcbi.0020095
10.1016/j.neuroimage.2009.10.003
10.1523/JNEUROSCI.4085-10.2011
10.1016/j.neuroimage.2010.07.066
10.1006/nimg.2001.1052
10.1371/journal.pone.0001049
10.1093/cercor/bhr039
10.1038/nn1075
10.1684/j.1950-6945.2003.tb00005.x
10.1007/s10334-010-0205-z
10.1093/brain/awq043
10.1523/JNEUROSCI.3874-05.2006
10.1523/JNEUROSCI.1443-09.2009
10.1016/S1053-8119(03)00204-0
10.1093/brain/awh136
10.1016/S1474-4422(10)70180-0
10.1016/j.expneurol.2009.02.001
10.1016/S1053-8119(03)00294-5
10.1073/pnas.1009073107
10.1371/journal.pone.0017294
10.1007/s00415-009-5187-2
10.1002/hbm.20944
10.1523/JNEUROSCI.6309-09.2010
10.1093/cercor/bhq268
10.1146/annurev-clinpsy-040510-143934
10.1063/1.2966112
10.1002/hbm.20737
10.1016/j.eplepsyres.2008.02.002
10.1523/JNEUROSCI.5062-08.2009
10.1016/j.clinph.2006.12.002
10.1093/cercor/bhq111
10.1523/JNEUROSCI.5587-06.2007
10.1038/nrn2575
10.1016/j.physa.2008.06.048
10.1046/j.1528-1157.2001.36400.x
10.1073/pnas.1003109107
10.1073/pnas.91.11.5033
10.1038/nrneurol.2009.38
10.1093/cercor/bhq291
10.1002/hbm.21076
10.1111/j.1528-1167.2010.02938.x
10.1371/journal.pcbi.0030017
10.1371/journal.pone.0008525
10.1186/1471-2202-10-55
10.1073/pnas.0504935102
10.1016/j.neuroimage.2007.10.060
10.1016/j.yebeh.2008.08.014
10.1523/JNEUROSCI.1929-08.2008
10.1016/j.yebeh.2010.06.009
10.1016/j.neuroimage.2010.04.009
ContentType Journal Article
Copyright The Author (2011). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2011
2015 INIST-CNRS
Copyright_xml – notice: The Author (2011). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2011
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
DOI 10.1093/brain/awr223
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE
MEDLINE - Academic
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 2928
ExternalDocumentID 21975588
24606650
10_1093_brain_awr223
10.1093/brain/awr223
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
1CY
1TH
23N
2WC
354
3O-
4.4
41~
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6.Y
6PF
70D
AABZA
AACZT
AAGKA
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAWTL
AAYJJ
ABEUO
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPTD
ABQLI
ABQNK
ABQTQ
ABSAR
ABSMQ
ABWST
ABXVV
ABZBJ
ACBNA
ACFRR
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFSHK
AFXAL
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
ELUNK
EMOBN
ENERS
F20
F5P
F9B
FECEO
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
G8K
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
MBLQV
MBTAY
MHKGH
ML0
MVM
N4W
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBOKY
OCZFY
ODMLO
OHH
OHT
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCN
TCURE
TEORI
TJX
TLC
TMA
TR2
VH1
VVN
W8F
WH7
WOQ
X7H
X7M
XJT
XOL
YAYTL
YKOAZ
YQJ
YSK
YXANX
ZCG
ZGI
ZKB
ZKX
ZXP
~91
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ABXZS
ADNBA
AEMQT
AGORE
AHMMS
AJBYB
AJNCP
ALXQX
CITATION
ABDPE
ABIME
ABNGD
ABPIB
ABZEO
ACUKT
ACVCV
ADMTO
AEHUL
AFFQV
AGQPQ
AHGBF
AJDVS
IQODW
OBFPC
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
ID FETCH-LOGICAL-c488t-c4a70288e243c48b8b10a4410d250947a0b5df3a73097a27d9364d6b51214bad3
ISSN 0006-8950
1460-2156
IngestDate Thu Jul 10 23:59:39 EDT 2025
Fri Jul 11 03:49:50 EDT 2025
Mon Jul 21 06:07:45 EDT 2025
Mon Jul 21 09:15:42 EDT 2025
Thu Apr 24 23:03:15 EDT 2025
Tue Jul 01 05:21:26 EDT 2025
Wed Aug 28 03:24:13 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords idiopathic generalized epilepsy
coupling
functional connectivity network
generalized tonic-clonic seizures
structural connectivity network
Nervous system diseases
Epilepsy
Central nervous system
Idiopathic
Cerebral disorder
Encephalon
Convulsion
Central nervous system disease
Coupling
Neurological disorder
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c488t-c4a70288e243c48b8b10a4410d250947a0b5df3a73097a27d9364d6b51214bad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://academic.oup.com/brain/article-pdf/134/10/2912/17865377/awr223.pdf
PMID 21975588
PQID 896828781
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_920806168
proquest_miscellaneous_896828781
pubmed_primary_21975588
pascalfrancis_primary_24606650
crossref_citationtrail_10_1093_brain_awr223
crossref_primary_10_1093_brain_awr223
oup_primary_10_1093_brain_awr223
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2011
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Sporns ( key 20170624051840_awr223-B87) 2010
Koch ( key 20170624051840_awr223-B54) 2002; 16
Skudlarski ( key 20170624051840_awr223-B85) 2010; 68
Hagmann ( key 20170624051840_awr223-B40) 2008; 6
Tononi ( key 20170624051840_awr223-B95) 1994; 91
Di Martino ( key 20170624051840_awr223-B27) 2008; 18
He ( key 20170624051840_awr223-B43) 2010; 23
Shu ( key 20170624051840_awr223-B83) 2011
Supekar ( key 20170624051840_awr223-B92) 2010; 52
Li ( key 20170624051840_awr223-B57) 2010; 5
Bassett ( key 20170624051840_awr223-B6) 2006; 12
van den Heuvel ( key 20170624051840_awr223-B101) 2008; 28
Gong ( key 20170624051840_awr223-B36) 2009; 29
Bonelli ( key 20170624051840_awr223-B18) 2009; 50
Johansen-Berg ( key 20170624051840_awr223-B52) 2009; 32
Gong ( key 20170624051840_awr223-B35) 2009; 19
Isnard ( key 20170624051840_awr223-B50) 2004; 45
Bernhardt ( key 20170624051840_awr223-B11) 2009; 46
Iturria-Medina ( key 20170624051840_awr223-B51) 2008; 40
Blumenfeld ( key 20170624051840_awr223-B13) 2003; 44
Rubinov ( key 20170624051840_awr223-B77) 2010; 52
Mori ( key 20170624051840_awr223-B69) 2002; 15
Blumenfeld ( key 20170624051840_awr223-B14) 2005; 46
van den Heuvel ( key 20170624051840_awr223-B103) 2009; 29
van Dellen ( key 20170624051840_awr223-B98) 2009; 4
Blumenfeld ( key 20170624051840_awr223-B15) 2003; 9
Gotman ( key 20170624051840_awr223-B37) 2005; 102
He ( key 20170624051840_awr223-B44) 2009; 4
Wen ( key 20170624051840_awr223-B111) 2011; 31
Luo ( key 20170624051840_awr223-B64) 2011
Aghakhani ( key 20170624051840_awr223-B3) 2004; 127
Song ( key 20170624051840_awr223-B86) 2011; 6
Ponten ( key 20170624051840_awr223-B74) 2007; 118
Shu ( key 20170624051840_awr223-B84) 2009; 4
Wang ( key 20170624051840_awr223-B109) 2010; 133
Achard ( key 20170624051840_awr223-B1) 2007; 3
He ( key 20170624051840_awr223-B42) 2007; 17
Humphries ( key 20170624051840_awr223-B48) 2006; 273
Frei ( key 20170624051840_awr223-B34) 2010; 19
Liao ( key 20170624051840_awr223-B59) 2010; 5
Ortinski ( key 20170624051840_awr223-B72) 2004; 5
Li ( key 20170624051840_awr223-B58) 2009; 5
Schindler ( key 20170624051840_awr223-B80) 2008; 18
Behrens ( key 20170624051840_awr223-B8) 2003; 6
Fox ( key 20170624051840_awr223-B31) 2009; 101
Newman ( key 20170624051840_awr223-B70) 2003; 45
Bernhardt ( key 20170624051840_awr223-B10) 2011; 21
Shehata ( key 20170624051840_awr223-B82) 2009; 14
Zhang ( key 20170624051840_awr223-B118) 2010; 1323
Liao ( key 20170624051840_awr223-B60) 2011; 32
Honey ( key 20170624051840_awr223-B46) 2010; 52
Tomasi ( key 20170624051840_awr223-B94) 2011; 21
van den Heuvel ( key 20170624051840_awr223-B99) 2010; 20
Freeman ( key 20170624051840_awr223-B33) 1977; 40
Luo ( key 20170624051840_awr223-B63) 2011; 32
Moeller ( key 20170624051840_awr223-B68) 2008; 39
Tyvaert ( key 20170624051840_awr223-B96) 2009; 73
Seeley ( key 20170624051840_awr223-B81) 2007; 27
Archer ( key 20170624051840_awr223-B5) 2003; 20
Casaubon ( key 20170624051840_awr223-B22) 2003; 5
Fornito ( key 20170624051840_awr223-B29) 2010; 4
Moeller ( key 20170624051840_awr223-B67) 2011; 52
Tian ( key 20170624051840_awr223-B93) 2011; 54
Salvador ( key 20170624051840_awr223-B79) 2005; 15
Chavez ( key 20170624051840_awr223-B25) 2010; 104
Betting ( key 20170624051840_awr223-B12) 2010; 31
Guye ( key 20170624051840_awr223-B39) 2010; 23
Zalesky ( key 20170624051840_awr223-B115) 2010; 50
Andermann ( key 20170624051840_awr223-B4) 2001; 42
Bullmore ( key 20170624051840_awr223-B21) 2009; 10
Engel ( key 20170624051840_awr223-B28) 2001; 42
Mitsueda-Ono ( key 20170624051840_awr223-B66) 2011; 82
Sporns ( key 20170624051840_awr223-B88) 2011; 1224
Vlooswijk ( key 20170624051840_awr223-B104) 2010; 9
Kramer ( key 20170624051840_awr223-B55) 2010; 30
Achard ( key 20170624051840_awr223-B2) 2006; 26
Wang ( key 20170624051840_awr223-B107) 2011; 1374
Fransson ( key 20170624051840_awr223-B32) 2005; 26
van den Heuvel ( key 20170624051840_awr223-B100) 2009; 30
Hagmann ( key 20170624051840_awr223-B41) 2010; 107
Zhang ( key 20170624051840_awr223-B117) 2009; 256
Rubinov ( key 20170624051840_awr223-B78) 2009; 10
Bullmore ( key 20170624051840_awr223-B20) 2011; 7
Sporns ( key 20170624051840_awr223-B90) 2007; 2
ILAE ( key 20170624051840_awr223-B49) 1989; 30
Kramer ( key 20170624051840_awr223-B56) 2008; 79
Greicius ( key 20170624051840_awr223-B38) 2009; 19
Kaiser ( key 20170624051840_awr223-B53) 2006; 2
Fox ( key 20170624051840_awr223-B30) 2005; 102
Yan ( key 20170624051840_awr223-B113) 2011; 21
Buckner ( key 20170624051840_awr223-B19) 2009; 29
Wang ( key 20170624051840_awr223-B106) 2007
Wang ( key 20170624051840_awr223-B108) 2009; 30
Damoiseaux ( key 20170624051840_awr223-B26) 2009; 213
Ponten ( key 20170624051840_awr223-B75) 2009; 217
Tzourio-Mazoyer ( key 20170624051840_awr223-B97) 2002; 15
Cavanna ( key 20170624051840_awr223-B24) 2009; 5
Zielinski ( key 20170624051840_awr223-B119) 2010; 107
Wig ( key 20170624051840_awr223-B112) 2011; 1224
Raichle ( key 20170624051840_awr223-B76) 2001; 98
Horstmann ( key 20170624051840_awr223-B47) 2010; 121
Watts ( key 20170624051840_awr223-B110) 1998; 393
Walser ( key 20170624051840_awr223-B105) 2009; 50
Park ( key 20170624051840_awr223-B73) 2008; 387
Blumenfeld ( key 20170624051840_awr223-B17) 2003; 19
Liu ( key 20170624051840_awr223-B61) 2008; 131
Catani ( key 20170624051840_awr223-B23) 2002; 17
Bassett ( key 20170624051840_awr223-B7) 2008; 28
Onnela ( key 20170624051840_awr223-B71) 2005; 71
Honey ( key 20170624051840_awr223-B45) 2009; 106
Stefan ( key 20170624051840_awr223-B91) 2009; 85
Benjamini ( key 20170624051840_awr223-B9) 1995; 57
van den Heuvel ( key 20170624051840_awr223-B102) 2010; 30
Zalesky ( key 20170624051840_awr223-B116) 2011; 69
McIntyre ( key 20170624051840_awr223-B65) 1991; 10
Yogarajah ( key 20170624051840_awr223-B114) 2008; 40
Blumenfeld ( key 20170624051840_awr223-B16) 2009; 132
Lo ( key 20170624051840_awr223-B62) 2010; 30
References_xml – volume: 132
  start-page: 999
  year: 2009
  ident: key 20170624051840_awr223-B16
  article-title: Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures
  publication-title: Brain
  doi: 10.1093/brain/awp028
– volume: 15
  start-page: 1332
  year: 2005
  ident: key 20170624051840_awr223-B79
  article-title: Neurophysiological architecture of functional magnetic resonance images of human brain
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhi016
– volume: 20
  start-page: 519
  year: 2010
  ident: key 20170624051840_awr223-B99
  article-title: Exploring the brain network: a review on resting-state fMRI functional connectivity
  publication-title: Eur Neuropsychopharmacol
  doi: 10.1016/j.euroneuro.2010.03.008
– volume: 18
  start-page: 2735
  year: 2008
  ident: key 20170624051840_awr223-B27
  article-title: Functional connectivity of human striatum: a resting state FMRI study
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn041
– volume: 71
  start-page: 065103
  year: 2005
  ident: key 20170624051840_awr223-B71
  article-title: Intensity and coherence of motifs in weighted complex networks
  publication-title: Phys Rev E Stat Nonlin Soft Matter Phys
  doi: 10.1103/PhysRevE.71.065103
– volume: 82
  start-page: 652
  year: 2011
  ident: key 20170624051840_awr223-B66
  article-title: Amygdalar enlargement in patients with temporal lobe epilepsy
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.2010.206342
– volume: 40
  start-page: 1755
  year: 2008
  ident: key 20170624051840_awr223-B114
  article-title: Tractography of the parahippocampal gyrus and material specific memory impairment in unilateral temporal lobe epilepsy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.12.046
– volume: 32
  start-page: 438
  year: 2011
  ident: key 20170624051840_awr223-B63
  article-title: Altered functional connectivity in default mode network in absence epilepsy: a resting-state fMRI study
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21034
– volume: 4
  start-page: e7228
  year: 2009
  ident: key 20170624051840_awr223-B84
  article-title: Altered anatomical network in early blindness revealed by diffusion tensor tractography
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0007228
– volume: 30
  start-page: 1511
  year: 2009
  ident: key 20170624051840_awr223-B108
  article-title: Parcellation-dependent small-world brain functional networks: a resting-state fMRI study
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20623
– volume: 273
  start-page: 503
  year: 2006
  ident: key 20170624051840_awr223-B48
  article-title: The brainstem reticular formation is a small-world, not scale-free, network
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.2005.3354
– volume: 15
  start-page: 468
  year: 2002
  ident: key 20170624051840_awr223-B69
  article-title: Fiber tracking: principles and strategies - a technical review
  publication-title: NMR Biomed
  doi: 10.1002/nbm.781
– volume: 19
  start-page: 72
  year: 2009
  ident: key 20170624051840_awr223-B38
  article-title: Resting-state functional connectivity reflects structural connectivity in the default mode network
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn059
– volume: 68
  start-page: 61
  year: 2010
  ident: key 20170624051840_awr223-B85
  article-title: Brain connectivity is not only lower but different in schizophrenia: a combined anatomical and functional approach
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2010.03.035
– volume-title: Networks of the brain
  year: 2010
  ident: key 20170624051840_awr223-B87
  doi: 10.7551/mitpress/8476.001.0001
– volume: 5
  start-page: S60
  year: 2004
  ident: key 20170624051840_awr223-B72
  article-title: Cognitive side effects of antiepileptic drugs
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2003.11.008
– year: 2011
  ident: key 20170624051840_awr223-B64
  article-title: Resting state basal ganglia network in idiopathic generalized epilepsy
  publication-title: Human Brain Mapp
– volume: 5
  start-page: e1000395
  year: 2009
  ident: key 20170624051840_awr223-B58
  article-title: Brain anatomical network and intelligence
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000395
– volume: 40
  start-page: 35
  year: 1977
  ident: key 20170624051840_awr223-B33
  article-title: A set of measures of centrality based upon betweenness
  publication-title: Sociometry
  doi: 10.2307/3033543
– volume: 104
  start-page: 118701
  year: 2010
  ident: key 20170624051840_awr223-B25
  article-title: Functional modularity of background activities in normal and epileptic brain networks
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.104.118701
– volume: 73
  start-page: 2018
  year: 2009
  ident: key 20170624051840_awr223-B96
  article-title: Thalamic nuclei activity in idiopathic generalized epilepsy: an EEG-fMRI study
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181c55d02
– volume: 30
  start-page: 16876
  year: 2010
  ident: key 20170624051840_awr223-B62
  article-title: Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer's disease
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4136-10.2010
– volume: 12
  start-page: 512
  year: 2006
  ident: key 20170624051840_awr223-B6
  article-title: Small-world brain networks
  publication-title: Neuroscientist
  doi: 10.1177/1073858406293182
– volume: 131
  start-page: 945
  year: 2008
  ident: key 20170624051840_awr223-B61
  article-title: Disrupted small-world networks in schizophrenia
  publication-title: Brain
  doi: 10.1093/brain/awn018
– volume: 393
  start-page: 440
  year: 1998
  ident: key 20170624051840_awr223-B110
  article-title: Collective dynamics of 'small-world' networks
  publication-title: Nature
  doi: 10.1038/30918
– volume: 57
  start-page: 289
  year: 1995
  ident: key 20170624051840_awr223-B9
  article-title: Controlling the false discovery rate—a practical and powerful approach to multiple testing
  publication-title: R Stat Soc Series B Stat Methodol
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 17
  start-page: 77
  year: 2002
  ident: key 20170624051840_awr223-B23
  article-title: Virtual in vivo interactive dissection of white matter fasciculi in the human brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1136
– volume: 50
  start-page: 970
  year: 2010
  ident: key 20170624051840_awr223-B115
  article-title: Whole-brain anatomical networks: does the choice of nodes matter?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.027
– volume: 98
  start-page: 676
  year: 2001
  ident: key 20170624051840_awr223-B76
  article-title: A default mode of brain function
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.98.2.676
– volume: 1224
  start-page: 109
  year: 2011
  ident: key 20170624051840_awr223-B88
  article-title: The human connectome: a complex network
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.2010.05888.x
– volume: 44
  start-page: 7
  year: 2003
  ident: key 20170624051840_awr223-B13
  article-title: From molecules to networks: cortical/subcortical interactions in the pathophysiology of idiopathic generalized epilepsy
  publication-title: Epilepsia
  doi: 10.1046/j.1528-1157.44.s.2.2.x
– volume: 28
  start-page: 10844
  year: 2008
  ident: key 20170624051840_awr223-B101
  article-title: Microstructural organization of the cingulum tract and the level of default mode functional connectivity
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2964-08.2008
– volume: 26
  start-page: 15
  year: 2005
  ident: key 20170624051840_awr223-B32
  article-title: Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20113
– volume: 19
  start-page: 524
  year: 2009
  ident: key 20170624051840_awr223-B35
  article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn102
– volume: 1224
  start-page: 126
  year: 2011
  ident: key 20170624051840_awr223-B112
  article-title: Concepts and principles in the analysis of brain networks
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.2010.05947.x
– volume: 32
  start-page: 75
  year: 2009
  ident: key 20170624051840_awr223-B52
  article-title: Using diffusion imaging to study human connectional anatomy
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.051508.135735
– volume: 106
  start-page: 2035
  year: 2009
  ident: key 20170624051840_awr223-B45
  article-title: Predicting human resting-state functional connectivity from structural connectivity
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0811168106
– volume: 45
  start-page: 167
  year: 2003
  ident: key 20170624051840_awr223-B70
  article-title: The structure and function of complex networks
  publication-title: SIAM Review
  doi: 10.1137/S003614450342480
– volume: 4
  start-page: 22
  year: 2010
  ident: key 20170624051840_awr223-B29
  article-title: Network scaling effects in graph analytic studies of human resting-state FMRI data
  publication-title: Front Syst Neurosci
– volume: 121
  start-page: 172
  year: 2010
  ident: key 20170624051840_awr223-B47
  article-title: State dependent properties of epileptic brain networks: comparative graph-theoretical analyses of simultaneously recorded EEG and MEG
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.10.013
– volume: 1323
  start-page: 152
  year: 2010
  ident: key 20170624051840_awr223-B118
  article-title: Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2010.01.042
– volume: 30
  start-page: 15915
  year: 2010
  ident: key 20170624051840_awr223-B102
  article-title: Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2874-10.2010
– volume: 102
  start-page: 9673
  year: 2005
  ident: key 20170624051840_awr223-B30
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0504136102
– volume: 69
  start-page: 80
  year: 2011
  ident: key 20170624051840_awr223-B116
  article-title: Disrupted axonal fiber connectivity in schizophrenia
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2010.08.022
– volume: 101
  start-page: 3270
  year: 2009
  ident: key 20170624051840_awr223-B31
  article-title: The global signal and observed anticorrelated resting state brain networks
  publication-title: J Neurophysiol
  doi: 10.1152/jn.90777.2008
– volume: 4
  start-page: e5226
  year: 2009
  ident: key 20170624051840_awr223-B44
  article-title: Uncovering intrinsic modular organization of spontaneous brain activity in humans
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005226
– volume: 42
  start-page: 796
  year: 2001
  ident: key 20170624051840_awr223-B28
  article-title: A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE task force on classification and terminology
  publication-title: Epilepsia
  doi: 10.1046/j.1528-1157.2001.10401.x
– volume: 6
  start-page: e159
  year: 2008
  ident: key 20170624051840_awr223-B40
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0060159
– volume: 10
  start-page: 119
  year: 1991
  ident: key 20170624051840_awr223-B65
  article-title: Distribution of [14C]2-deoxyglucose after various forms and durations of status epilepticus induced by stimulation of a kindled amygdala focus in rats
  publication-title: Epilepsy Res
  doi: 10.1016/0920-1211(91)90004-Y
– volume: 39
  start-page: 1839
  year: 2008
  ident: key 20170624051840_awr223-B68
  article-title: Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.10.058
– volume: 46
  start-page: 373
  year: 2009
  ident: key 20170624051840_awr223-B11
  article-title: Thalamo-cortical network pathology in idiopathic generalized epilepsy: insights from MRI-based morphometric correlation analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.01.055
– volume: 50
  start-page: 2035
  year: 2009
  ident: key 20170624051840_awr223-B105
  article-title: Asymmetric seizure termination in primary and secondary generalized tonic-clonic seizures
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2009.02068.x
– volume: 4
  start-page: e8081
  year: 2009
  ident: key 20170624051840_awr223-B98
  article-title: Long-term effects of temporal lobe epilepsy on local neural networks: a graph theoretical analysis of corticography recordings
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008081
– volume: 9
  start-page: 301
  year: 2003
  ident: key 20170624051840_awr223-B15
  article-title: Why do seizures cause loss of consciousness?
  publication-title: Neuroscientist
  doi: 10.1177/1073858403255624
– volume: 45
  start-page: 1079
  year: 2004
  ident: key 20170624051840_awr223-B50
  article-title: Clinical manifestations of insular lobe seizures: a stereo-electroencephalographic study
  publication-title: Epilepsia
  doi: 10.1111/j.0013-9580.2004.68903.x
– volume: 85
  start-page: 187
  year: 2009
  ident: key 20170624051840_awr223-B91
  article-title: Network characteristics of idiopathic generalized epilepsies in combined MEG/EEG
  publication-title: Epilepsy Res
  doi: 10.1016/j.eplepsyres.2009.03.015
– volume: 46
  start-page: 21
  year: 2005
  ident: key 20170624051840_awr223-B14
  article-title: Cellular and network mechanisms of spike-wave seizures
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2005.00311.x
– volume: 213
  start-page: 525
  year: 2009
  ident: key 20170624051840_awr223-B26
  article-title: Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-009-0208-6
– volume: 29
  start-page: 15684
  year: 2009
  ident: key 20170624051840_awr223-B36
  article-title: Age- and gender-related differences in the cortical anatomical network
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2308-09.2009
– volume: 52
  start-page: 766
  year: 2010
  ident: key 20170624051840_awr223-B46
  article-title: Can structure predict function in the human brain?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.01.071
– volume: 15
  start-page: 273
  year: 2002
  ident: key 20170624051840_awr223-B97
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 1374
  start-page: 134
  year: 2011
  ident: key 20170624051840_awr223-B107
  article-title: Altered resting state networks in epileptic patients with generalized tonic-clonic seizures
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2010.12.034
– volume: 17
  start-page: 2407
  year: 2007
  ident: key 20170624051840_awr223-B42
  article-title: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhl149
– volume: 5
  start-page: e15219
  year: 2010
  ident: key 20170624051840_awr223-B57
  article-title: Cerebellum abnormalities in idiopathic generalized epilepsy with generalized tonic-clonic seizures revealed by diffusion tensor imaging
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0015219
– volume: 23
  start-page: 341
  year: 2010
  ident: key 20170624051840_awr223-B43
  article-title: Graph theoretical modeling of brain connectivity
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0b013e32833aa567
– volume: 50
  start-page: 217
  year: 2009
  ident: key 20170624051840_awr223-B18
  article-title: Preoperative amygdala fMRI in temporal lobe epilepsy
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2008.01739.x
– volume: 2
  start-page: e95
  year: 2006
  ident: key 20170624051840_awr223-B53
  article-title: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0020095
– volume: 52
  start-page: 1059
  year: 2010
  ident: key 20170624051840_awr223-B77
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 31
  start-page: 1204
  year: 2011
  ident: key 20170624051840_awr223-B111
  article-title: Discrete neuroanatomical networks are associated with specific cognitive abilities in old age
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4085-10.2011
– volume: 54
  start-page: 191
  year: 2011
  ident: key 20170624051840_awr223-B93
  article-title: Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.066
– volume: 16
  start-page: 241
  year: 2002
  ident: key 20170624051840_awr223-B54
  article-title: An investigation of functional and anatomical connectivity using magnetic resonance imaging
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.1052
– volume: 2
  start-page: e1049
  year: 2007
  ident: key 20170624051840_awr223-B90
  article-title: Identification and classification of hubs in brain networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001049
– year: 2011
  ident: key 20170624051840_awr223-B83
  article-title: Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhr039
– volume: 6
  start-page: 750
  year: 2003
  ident: key 20170624051840_awr223-B8
  article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging
  publication-title: Nat Neurosci
  doi: 10.1038/nn1075
– volume: 5
  start-page: 149
  year: 2003
  ident: key 20170624051840_awr223-B22
  article-title: Video-EEG evidence of lateralized clinical features in primary generalized epilepsy with tonic-clonic seizures
  publication-title: Epileptic Disord
  doi: 10.1684/j.1950-6945.2003.tb00005.x
– volume: 23
  start-page: 409
  year: 2010
  ident: key 20170624051840_awr223-B39
  article-title: Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks
  publication-title: MAGMA
  doi: 10.1007/s10334-010-0205-z
– volume: 133
  start-page: 1224
  year: 2010
  ident: key 20170624051840_awr223-B109
  article-title: Dynamic functional reorganization of the motor execution network after stroke
  publication-title: Brain
  doi: 10.1093/brain/awq043
– volume: 26
  start-page: 63
  year: 2006
  ident: key 20170624051840_awr223-B2
  article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3874-05.2006
– volume: 29
  start-page: 7619
  year: 2009
  ident: key 20170624051840_awr223-B103
  article-title: Efficiency of functional brain networks and intellectual performance
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1443-09.2009
– start-page: 3720
  year: 2007
  ident: key 20170624051840_awr223-B106
  article-title: Diffusion toolkit: a software package for diffusion imaging data processing and tractography
  publication-title: Proc Intl Soc Mag Reson Med
– volume: 19
  start-page: 1556
  year: 2003
  ident: key 20170624051840_awr223-B17
  article-title: Selective frontal, parietal, and temporal networks in generalized seizures
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00204-0
– volume: 127
  start-page: 1127
  year: 2004
  ident: key 20170624051840_awr223-B3
  article-title: fMRI activation during spike and wave discharges in idiopathic generalized epilepsy
  publication-title: Brain
  doi: 10.1093/brain/awh136
– volume: 9
  start-page: 1018
  year: 2010
  ident: key 20170624051840_awr223-B104
  article-title: Functional MRI in chronic epilepsy: associations with cognitive impairment
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(10)70180-0
– volume: 217
  start-page: 197
  year: 2009
  ident: key 20170624051840_awr223-B75
  article-title: Indications for network regularization during absence seizures: weighted and unweighted graph theoretical analyses
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2009.02.001
– volume: 20
  start-page: 1915
  year: 2003
  ident: key 20170624051840_awr223-B5
  article-title: fMRI "deactivation" of the posterior cingulate during generalized spike and wave
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00294-5
– volume: 107
  start-page: 19067
  year: 2010
  ident: key 20170624051840_awr223-B41
  article-title: White matter maturation reshapes structural connectivity in the late developing human brain
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1009073107
– volume: 6
  start-page: e17294
  year: 2011
  ident: key 20170624051840_awr223-B86
  article-title: Impaired resting-state functional integrations within default mode network of generalized tonic-clonic seizures epilepsy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0017294
– volume: 256
  start-page: 1705
  year: 2009
  ident: key 20170624051840_awr223-B117
  article-title: Impaired perceptual networks in temporal lobe epilepsy revealed by resting fMRI
  publication-title: J Neurol
  doi: 10.1007/s00415-009-5187-2
– volume: 31
  start-page: 1327
  year: 2010
  ident: key 20170624051840_awr223-B12
  article-title: Correlation between quantitative EEG and MRI in idiopathic generalized epilepsy
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20944
– volume: 30
  start-page: 10076
  year: 2010
  ident: key 20170624051840_awr223-B55
  article-title: Coalescence and fragmentation of cortical networks during focal seizures
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.6309-09.2010
– volume: 21
  start-page: 2003
  year: 2011
  ident: key 20170624051840_awr223-B94
  article-title: Association between functional connectivity hubs and brain networks
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhq268
– volume: 7
  start-page: 113
  year: 2011
  ident: key 20170624051840_awr223-B20
  article-title: Brain graphs: graphical models of the human brain connectome
  publication-title: Annu Rev Clin Psychol
  doi: 10.1146/annurev-clinpsy-040510-143934
– volume: 18
  start-page: 033119
  year: 2008
  ident: key 20170624051840_awr223-B80
  article-title: Evolving functional network properties and synchronizability during human epileptic seizures
  publication-title: Chaos
  doi: 10.1063/1.2966112
– volume: 30
  start-page: 3127
  year: 2009
  ident: key 20170624051840_awr223-B100
  article-title: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20737
– volume: 79
  start-page: 173
  year: 2008
  ident: key 20170624051840_awr223-B56
  article-title: Emergent network topology at seizure onset in humans
  publication-title: Epilepsy Res
  doi: 10.1016/j.eplepsyres.2008.02.002
– volume: 29
  start-page: 1860
  year: 2009
  ident: key 20170624051840_awr223-B19
  article-title: Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5062-08.2009
– volume: 118
  start-page: 918
  year: 2007
  ident: key 20170624051840_awr223-B74
  article-title: Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.12.002
– volume: 21
  start-page: 449
  year: 2011
  ident: key 20170624051840_awr223-B113
  article-title: Sex- and brain size-related small-world structural cortical networks in young adults: a DTI tractography study
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhq111
– volume: 27
  start-page: 2349
  year: 2007
  ident: key 20170624051840_awr223-B81
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5587-06.2007
– volume: 10
  start-page: 186
  year: 2009
  ident: key 20170624051840_awr223-B21
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2575
– volume: 387
  start-page: 5958
  year: 2008
  ident: key 20170624051840_awr223-B73
  article-title: Comparison of the small-world topology between anatomical and functional connectivity in the human brain
  publication-title: Physica A: Stat Mech Appl
  doi: 10.1016/j.physa.2008.06.048
– volume: 42
  start-page: 317
  year: 2001
  ident: key 20170624051840_awr223-B4
  article-title: Idiopathic generalized epilepsy with generalized and other seizures in adolescence
  publication-title: Epilepsia
  doi: 10.1046/j.1528-1157.2001.36400.x
– volume: 107
  start-page: 18191
  year: 2010
  ident: key 20170624051840_awr223-B119
  article-title: Network-level structural covariance in the developing brain
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1003109107
– volume: 91
  start-page: 5033
  year: 1994
  ident: key 20170624051840_awr223-B95
  article-title: A measure for brain complexity: relating functional segregation and integration in the nervous system
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.91.11.5033
– volume: 5
  start-page: 267
  year: 2009
  ident: key 20170624051840_awr223-B24
  article-title: Brain mechanisms of altered conscious states during epileptic seizures
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2009.38
– volume: 21
  start-page: 2147
  year: 2011
  ident: key 20170624051840_awr223-B10
  article-title: Graph-Theoretical Analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhq291
– volume: 32
  start-page: 883
  year: 2011
  ident: key 20170624051840_awr223-B60
  article-title: Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and DTI
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21076
– volume: 52
  start-page: 515
  year: 2011
  ident: key 20170624051840_awr223-B67
  article-title: Functional connectivity in patients with idiopathic generalized epilepsy
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2010.02938.x
– volume: 3
  start-page: e17
  year: 2007
  ident: key 20170624051840_awr223-B1
  article-title: Efficiency and cost of economical brain functional networks
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0030017
– volume: 5
  start-page: e8525
  year: 2010
  ident: key 20170624051840_awr223-B59
  article-title: Altered functional connectivity and small-world in mesial temporal lobe epilepsy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008525
– volume: 10
  start-page: 55
  year: 2009
  ident: key 20170624051840_awr223-B78
  article-title: Symbiotic relationship between brain structure and dynamics
  publication-title: BMC Neurosci
  doi: 10.1186/1471-2202-10-55
– volume: 102
  start-page: 15236
  year: 2005
  ident: key 20170624051840_awr223-B37
  article-title: Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0504935102
– volume: 40
  start-page: 1064
  year: 2008
  ident: key 20170624051840_awr223-B51
  article-title: Studying the human brain anatomical network via diffusion-weighted MRI and graph theory
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.10.060
– volume: 14
  start-page: 121
  year: 2009
  ident: key 20170624051840_awr223-B82
  article-title: Cognitive function, mood, behavioral aspects, and personality traits of adult males with idiopathic epilepsy
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2008.08.014
– volume: 28
  start-page: 9239
  year: 2008
  ident: key 20170624051840_awr223-B7
  article-title: Hierarchical organization of human cortical networks in health and schizophrenia
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1929-08.2008
– volume: 19
  start-page: 4
  year: 2010
  ident: key 20170624051840_awr223-B34
  article-title: Controversies in epilepsy: debates held during the Fourth International Workshop on Seizure Prediction
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2010.06.009
– volume: 52
  start-page: 290
  year: 2010
  ident: key 20170624051840_awr223-B92
  article-title: Development of functional and structural connectivity within the default mode network in young children
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.04.009
– volume: 30
  start-page: 389
  year: 1989
  ident: key 20170624051840_awr223-B49
  article-title: Proposal for revised classification of epilepsies and epileptic syndromes
  publication-title: Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia
SSID ssj0014326
Score 2.553056
Snippet The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for...
SourceID proquest
pubmed
pascalfrancis
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2912
SubjectTerms Adolescent
Adult
Biological and medical sciences
Brain - physiopathology
Brain Mapping
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Diffusion Tensor Imaging
Epilepsy, Generalized - physiopathology
Female
Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy
Humans
Image Interpretation, Computer-Assisted
Magnetic Resonance Imaging
Male
Medical sciences
Multiple sclerosis and variants. Guillain barré syndrome and other inflammatory polyneuropathies. Leukoencephalitis
Nerve Net - physiopathology
Nervous system (semeiology, syndromes)
Neural Pathways - physiopathology
Neurology
Neurons - physiology
Reproducibility of Results
Seizures - physiopathology
Title Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy
URI https://www.ncbi.nlm.nih.gov/pubmed/21975588
https://www.proquest.com/docview/896828781
https://www.proquest.com/docview/920806168
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiGkCvFmeVQ-wGmVNomdxDlWCLSAyqkVFZfIjp020ioJ7EaV-pP4lYwfecEuBS5W1hpbiefb8Xg8D4ReJ4SJXNDcK6gknt7xPZGS1BOCUF_mkUxMVNrJ53h5Rj-eR-ez2Y-R11K7EYf59da4kv_hKvQBX3WU7D9wtp8UOuAZ-AstcBjav-Lxsb7qBo1Rb07WpufZfLAml0Zet83KOTWvtMO3twaGqIXQVSEWlfX_Nu6wpSxrU5o41xWVtZWqvIZpVQMio1lPL37N4G11QKxxgSVsZFzozdFfL8tvAMSL3v-n5MZG-0WVg4OBlYDLlhftYCjXlSy6YHjnlCR7q2vn7rb5U_DjRDDHHkttDtpDZWUxjX0PNJJ4Iqyd6dOh0h_L3tQ5ZCv300ad_7ZH2PxZZq31Rnj1PbQRz7_k3d5FegvdDuFIYo7vHz71N1aUmNJ-_Ye4IAuY4ciMP7KjJ-qPDancb7hmf2ELqew-6RiN5_Q-uueOKvjY4u4BmqnqIbpz4pwxHqELBz-8FX64gx-uCzyCHzbviTv4YXge4IdH8MMd_B6js_fvTt8uPVe3w8thO9hAyxNQW5kKKYEewUTgc1C7fRnqdI0J90UkC8Jhc0kTHiYyJTGVsQDdM6CCS_IE7VV1pZ4hHHJRiKJQIvWlvoEXQpFIgl6nRB4wqeZo0S1nlruk9rq2yiqzzhUkMx-V2cWfozc9dWOTueygw7BEN5AcTNjWE4dUmwQiH-bo-JiBxNbXcLxSdbvOWBrrKhMs2E2ShnCQi4OYzdFTC4Fh_iBNooix5ze_4wt0d_gvvkR7gAD1ClTojTgw2P0JHdHNRg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Altered+functional-structural+coupling+of+large-scale+brain+networks+in+idiopathic+generalized+epilepsy&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Zhang%2C+Zhiqiang&rft.au=Liao%2C+Wei&rft.au=Chen%2C+Huafu&rft.au=Mantini%2C+Dante&rft.date=2011-10-01&rft.pub=Oxford+University+Press&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=134&rft.issue=10&rft.spage=2912&rft.epage=2928&rft_id=info:doi/10.1093%2Fbrain%2Fawr223&rft.externalDocID=10.1093%2Fbrain%2Fawr223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon