Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy
The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with...
Saved in:
Published in | Brain (London, England : 1878) Vol. 134; no. 10; pp. 2912 - 2928 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.10.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures, little is known about changes in whole-brain functional and structural connectivity networks. Regarding functional and structural connectivity, networks are intimately related and share common small-world topological features. We predict that patients with idiopathic generalized epilepsy would exhibit a decoupling between functional and structural networks. In this study, 26 patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures and 26 age- and sex-matched healthy controls were recruited. Resting-state functional magnetic resonance imaging signal correlations and diffusion tensor image tractography were used to generate functional and structural connectivity networks. Graph theoretical analysis revealed that the patients lost optimal topological organization in both functional and structural connectivity networks. Moreover, the patients showed significant increases in nodal topological characteristics in several cortical and subcortical regions, including mesial frontal cortex, putamen, thalamus and amygdala relative to controls, supporting the hypothesis that regions playing important roles in the pathogenesis of epilepsy may display abnormal hub properties in network analysis. Relative to controls, patients showed further decreases in nodal topological characteristics in areas of the default mode network, such as the posterior cingulate gyrus and inferior temporal gyrus. Most importantly, the degree of coupling between functional and structural connectivity networks was decreased, and exhibited a negative correlation with epilepsy duration in patients. Our findings suggest that the decoupling of functional and structural connectivity may reflect the progress of long-term impairment in idiopathic generalized epilepsy, and may be used as a potential biomarker to detect subtle brain abnormalities in epilepsy. Overall, our results demonstrate for the first time that idiopathic generalized epilepsy is reflected in a disrupted topological organization in large-scale brain functional and structural networks, thus providing valuable information for better understanding the pathophysiological mechanisms of generalized tonic-clonic seizures. |
---|---|
AbstractList | The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures, little is known about changes in whole-brain functional and structural connectivity networks. Regarding functional and structural connectivity, networks are intimately related and share common small-world topological features. We predict that patients with idiopathic generalized epilepsy would exhibit a decoupling between functional and structural networks. In this study, 26 patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures and 26 age- and sex-matched healthy controls were recruited. Resting-state functional magnetic resonance imaging signal correlations and diffusion tensor image tractography were used to generate functional and structural connectivity networks. Graph theoretical analysis revealed that the patients lost optimal topological organization in both functional and structural connectivity networks. Moreover, the patients showed significant increases in nodal topological characteristics in several cortical and subcortical regions, including mesial frontal cortex, putamen, thalamus and amygdala relative to controls, supporting the hypothesis that regions playing important roles in the pathogenesis of epilepsy may display abnormal hub properties in network analysis. Relative to controls, patients showed further decreases in nodal topological characteristics in areas of the default mode network, such as the posterior cingulate gyrus and inferior temporal gyrus. Most importantly, the degree of coupling between functional and structural connectivity networks was decreased, and exhibited a negative correlation with epilepsy duration in patients. Our findings suggest that the decoupling of functional and structural connectivity may reflect the progress of long-term impairment in idiopathic generalized epilepsy, and may be used as a potential biomarker to detect subtle brain abnormalities in epilepsy. Overall, our results demonstrate for the first time that idiopathic generalized epilepsy is reflected in a disrupted topological organization in large-scale brain functional and structural networks, thus providing valuable information for better understanding the pathophysiological mechanisms of generalized tonic-clonic seizures. The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures, little is known about changes in whole-brain functional and structural connectivity networks. Regarding functional and structural connectivity, networks are intimately related and share common small-world topological features. We predict that patients with idiopathic generalized epilepsy would exhibit a decoupling between functional and structural networks. In this study, 26 patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures and 26 age- and sex-matched healthy controls were recruited. Resting-state functional magnetic resonance imaging signal correlations and diffusion tensor image tractography were used to generate functional and structural connectivity networks. Graph theoretical analysis revealed that the patients lost optimal topological organization in both functional and structural connectivity networks. Moreover, the patients showed significant increases in nodal topological characteristics in several cortical and subcortical regions, including mesial frontal cortex, putamen, thalamus and amygdala relative to controls, supporting the hypothesis that regions playing important roles in the pathogenesis of epilepsy may display abnormal hub properties in network analysis. Relative to controls, patients showed further decreases in nodal topological characteristics in areas of the default mode network, such as the posterior cingulate gyrus and inferior temporal gyrus. Most importantly, the degree of coupling between functional and structural connectivity networks was decreased, and exhibited a negative correlation with epilepsy duration in patients. Our findings suggest that the decoupling of functional and structural connectivity may reflect the progress of long-term impairment in idiopathic generalized epilepsy, and may be used as a potential biomarker to detect subtle brain abnormalities in epilepsy. Overall, our results demonstrate for the first time that idiopathic generalized epilepsy is reflected in a disrupted topological organization in large-scale brain functional and structural networks, thus providing valuable information for better understanding the pathophysiological mechanisms of generalized tonic-clonic seizures.The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures, little is known about changes in whole-brain functional and structural connectivity networks. Regarding functional and structural connectivity, networks are intimately related and share common small-world topological features. We predict that patients with idiopathic generalized epilepsy would exhibit a decoupling between functional and structural networks. In this study, 26 patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures and 26 age- and sex-matched healthy controls were recruited. Resting-state functional magnetic resonance imaging signal correlations and diffusion tensor image tractography were used to generate functional and structural connectivity networks. Graph theoretical analysis revealed that the patients lost optimal topological organization in both functional and structural connectivity networks. Moreover, the patients showed significant increases in nodal topological characteristics in several cortical and subcortical regions, including mesial frontal cortex, putamen, thalamus and amygdala relative to controls, supporting the hypothesis that regions playing important roles in the pathogenesis of epilepsy may display abnormal hub properties in network analysis. Relative to controls, patients showed further decreases in nodal topological characteristics in areas of the default mode network, such as the posterior cingulate gyrus and inferior temporal gyrus. Most importantly, the degree of coupling between functional and structural connectivity networks was decreased, and exhibited a negative correlation with epilepsy duration in patients. Our findings suggest that the decoupling of functional and structural connectivity may reflect the progress of long-term impairment in idiopathic generalized epilepsy, and may be used as a potential biomarker to detect subtle brain abnormalities in epilepsy. Overall, our results demonstrate for the first time that idiopathic generalized epilepsy is reflected in a disrupted topological organization in large-scale brain functional and structural networks, thus providing valuable information for better understanding the pathophysiological mechanisms of generalized tonic-clonic seizures. |
Author | Liao, Wei Xu, Qiang Jiao, Qing Lu, Guangming Zhang, Zhiqiang Mantini, Dante Wang, Zhengge Chen, Huafu Yuan, Cuiping Chen, Guanghui Ding, Ju-Rong |
Author_xml | – sequence: 1 givenname: Zhiqiang surname: Zhang fullname: Zhang, Zhiqiang organization: Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China – sequence: 2 givenname: Wei surname: Liao fullname: Liao, Wei organization: Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China – sequence: 3 givenname: Huafu surname: Chen fullname: Chen, Huafu email: chenhf@uestc.edu.cn organization: Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China – sequence: 4 givenname: Dante surname: Mantini fullname: Mantini, Dante organization: Laboratory of Neuro-psychophysiology, K. U. Leuven Medical School, Leuven 3000, Belgium – sequence: 5 givenname: Ju-Rong surname: Ding fullname: Ding, Ju-Rong organization: Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China – sequence: 6 givenname: Qiang surname: Xu fullname: Xu, Qiang organization: Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China – sequence: 7 givenname: Zhengge surname: Wang fullname: Wang, Zhengge organization: Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China – sequence: 8 givenname: Cuiping surname: Yuan fullname: Yuan, Cuiping organization: Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China – sequence: 9 givenname: Guanghui surname: Chen fullname: Chen, Guanghui email: chenhf@uestc.edu.cn organization: Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China – sequence: 10 givenname: Qing surname: Jiao fullname: Jiao, Qing organization: Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China – sequence: 11 givenname: Guangming surname: Lu fullname: Lu, Guangming email: cjr.luguangming@vip.163.com organization: Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24606650$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21975588$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFLHTEUhUOx1KftrmuZjXTj1JtMJpNZirQqCN2063Ank3lNzUvGJIPYX2-e70lBaLvJDZfvnJBzjsiBD94Q8pHCZwp9cz5EtP4cHyJjzRuyolxAzWgrDsgKAEQt-xYOyVFKvwAob5h4Rw4Z7bu2lXJF1hcum2jGalq8zjZ4dHXKcdF5iegqHZbZWb-uwlQ5jGtTJ43OVM-PVt7khxDvUlXudrRhxvzT6mptvCli-7vYmtk6M6fH9-TthC6ZD_t5TH58_fL98rq-_XZ1c3lxW2suZS4ndsCkNIw3ZTPIgQJyTmFkLfS8QxjacWqwa6DvkHVj3wg-iqGljPIBx-aYfNr5zjHcLyZltbFJG-fQm7Ak1TOQIKiQ_yVlLySTnaSFPNmTy7Axo5qj3WB8VC8pFuB0D-A2nimi1zb94UolQrRQOLbjdAwpRTMpbTNuU88lT6coqG2l6jldtau0iM5eiV58_4Lvv1Wa-zf5BMyOssk |
CitedBy_id | crossref_primary_10_1111_epi_17921 crossref_primary_10_1002_hbm_25434 crossref_primary_10_3389_fnins_2021_810833 crossref_primary_10_1002_hbm_24584 crossref_primary_10_1111_epi_13205 crossref_primary_10_1111_nmo_13345 crossref_primary_10_1016_j_nicl_2025_103764 crossref_primary_10_3389_fneur_2021_694964 crossref_primary_10_3389_fmed_2020_00193 crossref_primary_10_1371_journal_pone_0068910 crossref_primary_10_1016_j_nicl_2017_03_002 crossref_primary_10_1016_j_jad_2013_03_004 crossref_primary_10_3389_fneur_2014_00218 crossref_primary_10_3389_fneur_2019_01203 crossref_primary_10_1089_brain_2022_0036 crossref_primary_10_1186_s12883_021_02525_w crossref_primary_10_1007_s11682_016_9514_9 crossref_primary_10_1371_journal_pone_0051250 crossref_primary_10_1111_epi_12580 crossref_primary_10_1016_j_clinph_2012_01_011 crossref_primary_10_1371_journal_pcbi_1004642 crossref_primary_10_1111_epi_12227 crossref_primary_10_3389_fneur_2018_00838 crossref_primary_10_3389_fnhum_2022_867563 crossref_primary_10_1002_hbm_23356 crossref_primary_10_1038_s41582_021_00583_9 crossref_primary_10_1111_jon_12898 crossref_primary_10_3389_fneur_2021_710078 crossref_primary_10_3389_fnhum_2021_649074 crossref_primary_10_1371_journal_pone_0178798 crossref_primary_10_1371_journal_pone_0210015 crossref_primary_10_1111_epi_16811 crossref_primary_10_1007_s12264_012_1255_1 crossref_primary_10_1038_s41398_022_01791_7 crossref_primary_10_3389_fnagi_2016_00198 crossref_primary_10_1016_j_nicl_2017_12_020 crossref_primary_10_1038_s41386_020_0753_5 crossref_primary_10_1002_hbm_25447 crossref_primary_10_1093_schbul_sby175 crossref_primary_10_1155_2017_4345205 crossref_primary_10_1016_j_clinph_2014_04_004 crossref_primary_10_1002_hbm_24235 crossref_primary_10_1089_brain_2013_0211 crossref_primary_10_1038_s41398_020_0829_3 crossref_primary_10_1016_j_yebeh_2023_109523 crossref_primary_10_1007_s11071_024_10590_2 crossref_primary_10_1016_j_clinph_2015_06_022 crossref_primary_10_1111_cns_70205 crossref_primary_10_1111_nan_12857 crossref_primary_10_1016_j_jad_2021_04_029 crossref_primary_10_1016_j_nicl_2015_07_014 crossref_primary_10_1016_j_clinph_2014_04_011 crossref_primary_10_1371_journal_pone_0113838 crossref_primary_10_3389_fneur_2020_00253 crossref_primary_10_1073_pnas_1219562110 crossref_primary_10_1088_1741_2560_12_6_066024 crossref_primary_10_1002_hbm_22362 crossref_primary_10_1002_hbm_25873 crossref_primary_10_1371_journal_pone_0212494 crossref_primary_10_1016_j_braindev_2020_07_006 crossref_primary_10_1016_j_resp_2019_05_004 crossref_primary_10_1038_srep26976 crossref_primary_10_1016_j_yebeh_2013_11_019 crossref_primary_10_1007_s00429_013_0619_2 crossref_primary_10_1111_cns_13632 crossref_primary_10_1109_TMI_2020_2973650 crossref_primary_10_1142_S0129065715500276 crossref_primary_10_1093_brain_awv130 crossref_primary_10_1109_TCDS_2020_2965135 crossref_primary_10_1371_journal_pone_0134944 crossref_primary_10_1002_hbm_23323 crossref_primary_10_1007_s10548_017_0594_7 crossref_primary_10_1016_j_neuroimage_2016_08_003 crossref_primary_10_1177_1073858414537560 crossref_primary_10_1016_j_brainresbull_2025_111210 crossref_primary_10_1016_j_msard_2024_105699 crossref_primary_10_1002_hbm_23200 crossref_primary_10_3182_20130902_3_CN_3020_00078 crossref_primary_10_1016_j_yebeh_2023_109503 crossref_primary_10_1016_j_nicl_2019_101655 crossref_primary_10_1016_j_clinph_2020_12_031 crossref_primary_10_1016_j_neuroimage_2021_117831 crossref_primary_10_1016_j_neuropsychologia_2021_107948 crossref_primary_10_1002_epi4_12781 crossref_primary_10_1038_s41598_017_08075_x crossref_primary_10_1371_journal_pone_0132518 crossref_primary_10_1016_j_neuroimage_2013_08_011 crossref_primary_10_3389_fnins_2017_00214 crossref_primary_10_1002_hbm_23593 crossref_primary_10_1007_s11682_014_9336_6 crossref_primary_10_1016_j_neuroimage_2023_120450 crossref_primary_10_1007_s11571_018_09517_6 crossref_primary_10_1089_brain_2014_0291 crossref_primary_10_1016_j_jns_2016_12_054 crossref_primary_10_1016_j_acra_2023_12_043 crossref_primary_10_1111_epi_13622 crossref_primary_10_1016_j_jad_2023_01_116 crossref_primary_10_1371_journal_pone_0041376 crossref_primary_10_1016_j_neuroimage_2020_117642 crossref_primary_10_1093_schbul_sbx048 crossref_primary_10_1016_j_neuroscience_2017_09_009 crossref_primary_10_1038_s41598_025_86908_w crossref_primary_10_1002_mds_26905 crossref_primary_10_1111_epi_12768 crossref_primary_10_3389_fnana_2023_1242757 crossref_primary_10_3389_fnins_2022_814477 crossref_primary_10_1038_s41467_023_41686_9 crossref_primary_10_1016_j_nicl_2014_04_006 crossref_primary_10_1016_j_neuroscience_2021_02_008 crossref_primary_10_1038_s42003_021_02952_y crossref_primary_10_1371_journal_pone_0068609 crossref_primary_10_3389_fneur_2021_715455 crossref_primary_10_1002_hbm_23456 crossref_primary_10_1016_j_neuroimage_2013_04_056 crossref_primary_10_1016_j_pnpbp_2014_07_007 crossref_primary_10_1097_MD_0000000000001737 crossref_primary_10_1007_s11357_024_01106_2 crossref_primary_10_1097_MD_0000000000003893 crossref_primary_10_3389_fnins_2016_00308 crossref_primary_10_3389_fnins_2022_1098735 crossref_primary_10_1016_j_yebeh_2025_110266 crossref_primary_10_1016_j_jpsychires_2020_08_004 crossref_primary_10_1162_netn_a_00207 crossref_primary_10_1016_j_clinph_2016_03_015 crossref_primary_10_3390_brainsci11111535 crossref_primary_10_1016_j_yebeh_2020_107013 crossref_primary_10_1007_s00330_019_06164_1 crossref_primary_10_1109_TNSRE_2019_2900725 crossref_primary_10_1002_hbm_23887 crossref_primary_10_1093_braincomms_fcab196 crossref_primary_10_1007_s10548_018_0649_4 crossref_primary_10_1017_S0033291716001380 crossref_primary_10_1371_journal_pone_0082715 crossref_primary_10_1002_aur_3180 crossref_primary_10_1016_j_nicl_2015_05_008 crossref_primary_10_1111_jon_13012 crossref_primary_10_1038_s42003_024_06877_0 crossref_primary_10_1016_j_nantod_2022_101536 crossref_primary_10_1097_WCO_0b013e3283515db9 crossref_primary_10_1093_brain_awx181 crossref_primary_10_1002_hbm_24608 crossref_primary_10_1016_j_eplepsyres_2024_107400 crossref_primary_10_1007_s13721_019_0192_6 crossref_primary_10_1002_hbm_22664 crossref_primary_10_1093_brain_awz125 crossref_primary_10_1016_j_neuroimage_2016_06_046 crossref_primary_10_1002_hbm_22428 crossref_primary_10_1016_j_neuroimage_2017_08_055 crossref_primary_10_1523_JNEUROSCI_4837_12_2013 crossref_primary_10_1002_hbm_22580 crossref_primary_10_1016_j_yebeh_2014_02_030 crossref_primary_10_1038_s44220_022_00007_7 crossref_primary_10_3389_fncom_2016_00012 crossref_primary_10_1016_j_neuroimage_2022_118970 crossref_primary_10_1016_j_bandc_2024_106221 crossref_primary_10_1016_j_neuroimage_2017_01_079 crossref_primary_10_1371_journal_pone_0138297 crossref_primary_10_1111_epi_12057 crossref_primary_10_1016_j_eplepsyres_2013_10_002 crossref_primary_10_1016_j_eplepsyres_2013_10_008 crossref_primary_10_1371_journal_pone_0092961 crossref_primary_10_1038_s41467_025_57392_7 crossref_primary_10_1093_cercor_bhae300 crossref_primary_10_3390_brainsci13050803 crossref_primary_10_3389_fneur_2020_00645 crossref_primary_10_1016_j_yebeh_2020_107241 crossref_primary_10_1093_brain_awz270 crossref_primary_10_1016_j_neuroimage_2017_07_035 crossref_primary_10_1016_j_jad_2021_01_088 crossref_primary_10_1186_s40535_017_0045_2 crossref_primary_10_1109_TMI_2023_3309874 crossref_primary_10_3389_fnhum_2018_00041 crossref_primary_10_1016_j_jpsychires_2020_08_001 crossref_primary_10_1007_s11357_024_01128_w crossref_primary_10_1016_j_neuroimage_2024_120558 crossref_primary_10_1371_journal_pone_0138119 crossref_primary_10_1002_acn3_173 crossref_primary_10_1016_j_jpsychires_2022_04_034 crossref_primary_10_1016_j_neucli_2023_102888 crossref_primary_10_1111_epi_16759 crossref_primary_10_1016_j_nicl_2017_12_002 crossref_primary_10_3233_JAD_160447 crossref_primary_10_1016_j_jad_2015_08_021 crossref_primary_10_1007_s11682_019_00208_2 crossref_primary_10_1002_hbm_22633 crossref_primary_10_1038_nrn3801 crossref_primary_10_3390_brainsci12121630 crossref_primary_10_3389_fnagi_2015_00006 crossref_primary_10_1038_s41398_024_03210_5 crossref_primary_10_3389_fnins_2018_00916 crossref_primary_10_1177_2514183X19850325 crossref_primary_10_3390_bs8040039 crossref_primary_10_1089_brain_2012_0132 crossref_primary_10_3389_fncom_2017_00077 crossref_primary_10_1016_j_clinph_2013_12_120 crossref_primary_10_1111_j_1528_1167_2012_03555_x crossref_primary_10_1016_j_neuroimage_2021_118649 crossref_primary_10_3390_brainsci12010060 crossref_primary_10_1371_journal_pone_0128787 crossref_primary_10_1016_j_neurobiolaging_2018_11_005 crossref_primary_10_1093_brain_awx145 crossref_primary_10_1038_s41398_020_01053_4 crossref_primary_10_1002_hbm_24804 crossref_primary_10_1016_j_jneumeth_2014_08_010 crossref_primary_10_1002_hbm_24801 crossref_primary_10_1016_j_neuroimage_2019_116285 crossref_primary_10_1177_0271678X18809547 crossref_primary_10_1371_journal_pone_0139228 crossref_primary_10_1002_brb3_1890 crossref_primary_10_1016_j_eplepsyres_2013_06_017 crossref_primary_10_1016_j_neuroimage_2015_05_054 crossref_primary_10_1016_j_nicl_2017_07_008 crossref_primary_10_1016_j_eplepsyres_2013_11_005 crossref_primary_10_1016_j_jpsychires_2018_06_009 crossref_primary_10_1148_radiol_2018170059 crossref_primary_10_1016_S1474_4422_21_00023_5 crossref_primary_10_1093_cercor_bhac432 crossref_primary_10_1093_braincomms_fcad277 crossref_primary_10_1155_2018_9394156 crossref_primary_10_1007_s00330_023_10089_1 crossref_primary_10_1007_s11682_022_00689_8 crossref_primary_10_1016_j_yebeh_2018_07_021 crossref_primary_10_1016_j_pjnns_2015_10_003 crossref_primary_10_1111_epi_12486 crossref_primary_10_1007_s11682_018_9896_y crossref_primary_10_1016_j_brainres_2018_04_042 crossref_primary_10_1002_hbm_23614 crossref_primary_10_1016_j_jad_2015_04_052 crossref_primary_10_3389_fnagi_2023_1073039 crossref_primary_10_1016_j_earlhumdev_2020_105274 crossref_primary_10_1016_j_neuroscience_2019_02_006 crossref_primary_10_1002_jnr_25028 crossref_primary_10_1016_j_eplepsyres_2014_09_004 crossref_primary_10_3389_fnins_2016_00143 crossref_primary_10_1038_s41467_024_46651_8 crossref_primary_10_1016_j_nicl_2022_103245 crossref_primary_10_3389_fnhum_2017_00583 crossref_primary_10_3389_fninf_2022_934480 crossref_primary_10_1016_j_seizure_2020_11_015 crossref_primary_10_1038_s41598_021_84813_6 crossref_primary_10_1016_j_eplepsyres_2022_106969 crossref_primary_10_1016_j_neulet_2017_10_052 crossref_primary_10_1016_j_nicl_2016_05_010 crossref_primary_10_1212_WNL_0000000000207661 crossref_primary_10_1038_s42003_020_01622_9 crossref_primary_10_3233_XST_160559 crossref_primary_10_1155_2015_271674 crossref_primary_10_1093_cercor_bhv026 crossref_primary_10_3389_fnhum_2024_1517565 crossref_primary_10_1371_journal_pone_0305079 crossref_primary_10_1007_s11571_015_9327_3 crossref_primary_10_3389_fncom_2018_00021 crossref_primary_10_1016_S1634_7072_20_43296_9 crossref_primary_10_1088_1741_2560_10_6_066017 crossref_primary_10_1007_s00422_012_0534_2 crossref_primary_10_1523_ENEURO_0475_20_2021 crossref_primary_10_1016_j_nbd_2024_106425 crossref_primary_10_1055_s_0040_1722301 crossref_primary_10_1016_j_yebeh_2015_03_031 crossref_primary_10_1038_s41398_019_0467_9 crossref_primary_10_3389_fnetp_2023_1338864 crossref_primary_10_1002_hbm_22858 crossref_primary_10_1016_j_nicl_2023_103421 crossref_primary_10_1016_j_nicl_2018_01_012 crossref_primary_10_1371_journal_pone_0039701 crossref_primary_10_1136_jnnp_2022_329993 crossref_primary_10_1016_j_mric_2020_09_006 crossref_primary_10_1016_j_neuroimage_2012_12_054 crossref_primary_10_1016_j_yebeh_2023_109084 crossref_primary_10_1016_j_eplepsyres_2015_03_015 crossref_primary_10_1093_cercor_bhad053 crossref_primary_10_1148_radiol_12120185 crossref_primary_10_1162_netn_a_00133 crossref_primary_10_1016_j_nicl_2018_01_028 crossref_primary_10_1088_1741_2552_ac25d8 crossref_primary_10_3389_fnana_2018_00101 crossref_primary_10_3892_etm_2018_7018 crossref_primary_10_1016_j_spen_2021_100919 crossref_primary_10_1089_brain_2014_0308 crossref_primary_10_1002_hbm_22600 crossref_primary_10_3389_fpsyt_2021_664811 crossref_primary_10_1371_journal_pone_0260295 crossref_primary_10_1371_journal_pone_0135247 crossref_primary_10_1111_cns_14048 crossref_primary_10_1111_jon_13046 crossref_primary_10_1002_jmri_28523 crossref_primary_10_1016_j_neuroscience_2022_08_007 crossref_primary_10_1016_j_bbr_2023_114422 crossref_primary_10_1186_s42494_024_00170_7 crossref_primary_10_1007_s11682_019_00228_y crossref_primary_10_3233_JAD_220837 crossref_primary_10_1016_j_nicl_2022_103160 crossref_primary_10_1371_journal_pone_0072654 crossref_primary_10_1016_j_neuroimage_2016_12_068 crossref_primary_10_1016_j_nicl_2015_02_004 crossref_primary_10_1093_cercor_bhac498 crossref_primary_10_3389_fnhum_2014_00704 crossref_primary_10_1007_s11682_021_00566_w crossref_primary_10_1109_TBME_2020_3026055 crossref_primary_10_1371_journal_pone_0081388 crossref_primary_10_1016_j_bspc_2021_102554 crossref_primary_10_1016_j_eplepsyres_2015_12_002 crossref_primary_10_1093_cercor_bhac267 crossref_primary_10_1016_j_pnpbp_2018_11_009 crossref_primary_10_1093_cercor_bhaa098 crossref_primary_10_3389_fnmol_2016_00141 crossref_primary_10_3389_fnagi_2018_00404 crossref_primary_10_1080_15622975_2020_1785006 crossref_primary_10_1038_srep23153 crossref_primary_10_1371_journal_pone_0090068 crossref_primary_10_1111_desc_12703 crossref_primary_10_1631_jzus_B2300880 crossref_primary_10_1016_j_eplepsyres_2014_11_014 crossref_primary_10_1016_j_yebeh_2014_07_025 crossref_primary_10_1162_netn_a_00055 crossref_primary_10_1371_journal_pone_0233833 crossref_primary_10_1016_j_eplepsyres_2021_106595 crossref_primary_10_1016_j_jpsychires_2023_10_037 crossref_primary_10_36472_msd_v11i3_1141 crossref_primary_10_1016_j_clinph_2016_04_013 crossref_primary_10_1093_cercor_bhac168 crossref_primary_10_1016_j_neurol_2024_02_387 crossref_primary_10_1007_s13311_021_01049_y crossref_primary_10_1016_j_nicl_2019_101680 crossref_primary_10_1371_journal_pone_0134352 crossref_primary_10_3389_fnins_2022_833837 crossref_primary_10_1016_j_bbr_2016_12_017 crossref_primary_10_1016_j_neuroimage_2013_12_022 crossref_primary_10_1002_epi4_12638 crossref_primary_10_1016_j_neuroimage_2020_116654 crossref_primary_10_1093_texcom_tgab023 crossref_primary_10_3389_fneur_2017_00456 crossref_primary_10_3389_fneur_2017_00339 crossref_primary_10_1016_j_nicl_2018_11_002 crossref_primary_10_1089_neu_2018_6196 crossref_primary_10_3758_s13415_018_0645_x crossref_primary_10_1002_brb3_512 crossref_primary_10_1007_s00429_015_1116_6 crossref_primary_10_3390_brainsci11030310 crossref_primary_10_1007_s10548_018_0688_x crossref_primary_10_1089_brain_2021_0035 crossref_primary_10_3934_mbe_2023086 crossref_primary_10_1038_s41598_021_92616_y crossref_primary_10_1177_0300060513496170 crossref_primary_10_1371_journal_pone_0063850 crossref_primary_10_1002_nbm_4605 crossref_primary_10_3389_fneur_2019_01039 crossref_primary_10_1016_j_nicl_2014_11_018 crossref_primary_10_1161_CIRCULATIONAHA_116_024807 crossref_primary_10_1016_j_neuroimage_2012_10_007 crossref_primary_10_1103_PhysRevE_99_042407 crossref_primary_10_1016_j_eplepsyres_2022_106909 crossref_primary_10_1016_j_nicl_2021_102808 crossref_primary_10_1007_s11682_021_00595_5 crossref_primary_10_3389_fpsyt_2018_00278 crossref_primary_10_1371_journal_pone_0219904 crossref_primary_10_1016_j_neuroimage_2017_04_009 crossref_primary_10_3174_ajnr_A4346 crossref_primary_10_1016_j_drudis_2024_104247 crossref_primary_10_1016_j_seizure_2020_09_022 crossref_primary_10_1162_imag_a_00346 crossref_primary_10_1016_j_bbr_2024_115255 crossref_primary_10_1111_cns_70174 crossref_primary_10_3389_fneur_2019_01265 crossref_primary_10_1007_s10548_018_0665_4 crossref_primary_10_1016_j_neubiorev_2023_105055 crossref_primary_10_1371_journal_pone_0111262 crossref_primary_10_1080_00325481_2019_1663126 crossref_primary_10_1111_cns_14039 crossref_primary_10_1007_s10548_023_00966_9 crossref_primary_10_1016_j_neuroimage_2020_117705 crossref_primary_10_1016_j_nicl_2021_102930 crossref_primary_10_1007_s11682_024_00862_1 crossref_primary_10_1186_s12868_024_00918_4 crossref_primary_10_1371_journal_pone_0124681 crossref_primary_10_1371_journal_pone_0094115 crossref_primary_10_1002_hbm_25231 crossref_primary_10_3389_fnins_2024_1363255 crossref_primary_10_1093_scan_nsv040 crossref_primary_10_1016_j_clinph_2014_10_010 crossref_primary_10_1186_s13195_023_01292_9 crossref_primary_10_1148_radiol_13131638 crossref_primary_10_5698_1535_7597_18_2_92 crossref_primary_10_1016_j_jad_2015_11_041 crossref_primary_10_3233_JIN_170026 crossref_primary_10_1007_s00429_013_0641_4 crossref_primary_10_1016_j_brainres_2015_04_052 crossref_primary_10_1038_s41598_022_07730_2 crossref_primary_10_1016_j_jad_2024_01_173 crossref_primary_10_1007_s00259_018_4175_0 crossref_primary_10_1007_s11910_017_0746_x crossref_primary_10_1002_hbm_24374 crossref_primary_10_1007_s00429_021_02248_1 crossref_primary_10_1016_j_pnpbp_2024_111211 crossref_primary_10_1016_j_eplepsyres_2022_106916 crossref_primary_10_1097_MD_0000000000004032 crossref_primary_10_1017_S0033291724000801 crossref_primary_10_1002_brb3_2274 crossref_primary_10_1002_hbm_25465 crossref_primary_10_1002_hbm_25464 crossref_primary_10_3389_fneur_2014_00093 crossref_primary_10_1007_s12264_020_00580_w crossref_primary_10_1089_brain_2020_0852 crossref_primary_10_1089_brain_2020_0853 crossref_primary_10_1002_hbm_24369 crossref_primary_10_1007_s00787_024_02631_3 crossref_primary_10_1007_s11434_016_1201_0 crossref_primary_10_1016_j_media_2013_01_003 crossref_primary_10_1016_j_jneumeth_2015_06_016 crossref_primary_10_1002_brb3_3038 crossref_primary_10_1016_j_bandc_2013_07_013 crossref_primary_10_1017_S0317167100018102 crossref_primary_10_1016_j_physd_2013_06_009 crossref_primary_10_1016_j_pscychresns_2017_02_004 crossref_primary_10_1016_j_eplepsyres_2021_106740 crossref_primary_10_1007_s11682_016_9533_6 crossref_primary_10_1088_1741_2552_ad357e crossref_primary_10_1371_journal_pone_0110136 crossref_primary_10_1089_brain_2011_0062 crossref_primary_10_1111_ene_13104 crossref_primary_10_18632_oncotarget_19098 crossref_primary_10_1371_journal_pone_0048181 crossref_primary_10_2217_fnl_14_32 crossref_primary_10_3389_fnhum_2021_589578 crossref_primary_10_1038_s42003_021_01700_6 crossref_primary_10_1111_epi_17011 crossref_primary_10_3174_ajnr_A4308 crossref_primary_10_3389_fneur_2020_00053 crossref_primary_10_1038_s41583_024_00846_6 crossref_primary_10_3389_fnins_2023_1272514 crossref_primary_10_1007_s00330_016_4531_z crossref_primary_10_1016_j_eplepsyres_2016_12_009 crossref_primary_10_1371_journal_pone_0114606 crossref_primary_10_1186_s40064_016_3110_8 crossref_primary_10_3389_fnins_2023_1236696 crossref_primary_10_3389_fnhum_2021_641961 |
Cites_doi | 10.1093/brain/awp028 10.1093/cercor/bhi016 10.1016/j.euroneuro.2010.03.008 10.1093/cercor/bhn041 10.1103/PhysRevE.71.065103 10.1136/jnnp.2010.206342 10.1016/j.neuroimage.2007.12.046 10.1002/hbm.21034 10.1371/journal.pone.0007228 10.1002/hbm.20623 10.1098/rspb.2005.3354 10.1002/nbm.781 10.1093/cercor/bhn059 10.1016/j.biopsych.2010.03.035 10.7551/mitpress/8476.001.0001 10.1016/j.yebeh.2003.11.008 10.1371/journal.pcbi.1000395 10.2307/3033543 10.1103/PhysRevLett.104.118701 10.1212/WNL.0b013e3181c55d02 10.1523/JNEUROSCI.4136-10.2010 10.1177/1073858406293182 10.1093/brain/awn018 10.1038/30918 10.1111/j.2517-6161.1995.tb02031.x 10.1006/nimg.2002.1136 10.1016/j.neuroimage.2009.12.027 10.1073/pnas.98.2.676 10.1111/j.1749-6632.2010.05888.x 10.1046/j.1528-1157.44.s.2.2.x 10.1523/JNEUROSCI.2964-08.2008 10.1002/hbm.20113 10.1093/cercor/bhn102 10.1111/j.1749-6632.2010.05947.x 10.1146/annurev.neuro.051508.135735 10.1073/pnas.0811168106 10.1137/S003614450342480 10.1016/j.clinph.2009.10.013 10.1016/j.brainres.2010.01.042 10.1523/JNEUROSCI.2874-10.2010 10.1073/pnas.0504136102 10.1016/j.biopsych.2010.08.022 10.1152/jn.90777.2008 10.1371/journal.pone.0005226 10.1046/j.1528-1157.2001.10401.x 10.1371/journal.pbio.0060159 10.1016/0920-1211(91)90004-Y 10.1016/j.neuroimage.2007.10.058 10.1016/j.neuroimage.2009.01.055 10.1111/j.1528-1167.2009.02068.x 10.1371/journal.pone.0008081 10.1177/1073858403255624 10.1111/j.0013-9580.2004.68903.x 10.1016/j.eplepsyres.2009.03.015 10.1111/j.1528-1167.2005.00311.x 10.1007/s00429-009-0208-6 10.1523/JNEUROSCI.2308-09.2009 10.1016/j.neuroimage.2010.01.071 10.1006/nimg.2001.0978 10.1016/j.brainres.2010.12.034 10.1093/cercor/bhl149 10.1371/journal.pone.0015219 10.1097/WCO.0b013e32833aa567 10.1111/j.1528-1167.2008.01739.x 10.1371/journal.pcbi.0020095 10.1016/j.neuroimage.2009.10.003 10.1523/JNEUROSCI.4085-10.2011 10.1016/j.neuroimage.2010.07.066 10.1006/nimg.2001.1052 10.1371/journal.pone.0001049 10.1093/cercor/bhr039 10.1038/nn1075 10.1684/j.1950-6945.2003.tb00005.x 10.1007/s10334-010-0205-z 10.1093/brain/awq043 10.1523/JNEUROSCI.3874-05.2006 10.1523/JNEUROSCI.1443-09.2009 10.1016/S1053-8119(03)00204-0 10.1093/brain/awh136 10.1016/S1474-4422(10)70180-0 10.1016/j.expneurol.2009.02.001 10.1016/S1053-8119(03)00294-5 10.1073/pnas.1009073107 10.1371/journal.pone.0017294 10.1007/s00415-009-5187-2 10.1002/hbm.20944 10.1523/JNEUROSCI.6309-09.2010 10.1093/cercor/bhq268 10.1146/annurev-clinpsy-040510-143934 10.1063/1.2966112 10.1002/hbm.20737 10.1016/j.eplepsyres.2008.02.002 10.1523/JNEUROSCI.5062-08.2009 10.1016/j.clinph.2006.12.002 10.1093/cercor/bhq111 10.1523/JNEUROSCI.5587-06.2007 10.1038/nrn2575 10.1016/j.physa.2008.06.048 10.1046/j.1528-1157.2001.36400.x 10.1073/pnas.1003109107 10.1073/pnas.91.11.5033 10.1038/nrneurol.2009.38 10.1093/cercor/bhq291 10.1002/hbm.21076 10.1111/j.1528-1167.2010.02938.x 10.1371/journal.pcbi.0030017 10.1371/journal.pone.0008525 10.1186/1471-2202-10-55 10.1073/pnas.0504935102 10.1016/j.neuroimage.2007.10.060 10.1016/j.yebeh.2008.08.014 10.1523/JNEUROSCI.1929-08.2008 10.1016/j.yebeh.2010.06.009 10.1016/j.neuroimage.2010.04.009 |
ContentType | Journal Article |
Copyright | The Author (2011). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2011 2015 INIST-CNRS |
Copyright_xml | – notice: The Author (2011). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2011 – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK |
DOI | 10.1093/brain/awr223 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 2928 |
ExternalDocumentID | 21975588 24606650 10_1093_brain_awr223 10.1093/brain/awr223 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -E4 -~X .2P .55 .GJ .I3 .XZ .ZR 0R~ 1CY 1TH 23N 2WC 354 3O- 4.4 41~ 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6.Y 6PF 70D AABZA AACZT AAGKA AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AASNB AAUAY AAUQX AAVAP AAVLN AAWDT AAWTL AAYJJ ABEUO ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPTD ABQLI ABQNK ABQTQ ABSAR ABSMQ ABWST ABXVV ABZBJ ACBNA ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUTJ ACUTO ACYHN ACZBC ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZXQ AEGPL AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFSHK AFXAL AFXEN AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AGUTN AHMBA AHXPO AI. AIJHB AJEEA AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM BZKNY C1A C45 CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EIHJH EJD ELUNK EMOBN ENERS F20 F5P F9B FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK G8K GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KC5 KOP KQ8 KSI KSN L7B M-Z M49 MBLQV MBTAY MHKGH ML0 MVM N4W N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBOKY OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TCURE TEORI TJX TLC TMA TR2 VH1 VVN W8F WH7 WOQ X7H X7M XJT XOL YAYTL YKOAZ YQJ YSK YXANX ZCG ZGI ZKB ZKX ZXP ~91 AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ABXZS ADNBA AEMQT AGORE AHMMS AJBYB AJNCP ALXQX CITATION ABDPE ABIME ABNGD ABPIB ABZEO ACUKT ACVCV ADMTO AEHUL AFFQV AGQPQ AHGBF AJDVS IQODW OBFPC CGR CUY CVF ECM EIF NPM 7X8 7TK |
ID | FETCH-LOGICAL-c488t-c4a70288e243c48b8b10a4410d250947a0b5df3a73097a27d9364d6b51214bad3 |
ISSN | 0006-8950 1460-2156 |
IngestDate | Thu Jul 10 23:59:39 EDT 2025 Fri Jul 11 03:49:50 EDT 2025 Mon Jul 21 06:07:45 EDT 2025 Mon Jul 21 09:15:42 EDT 2025 Thu Apr 24 23:03:15 EDT 2025 Tue Jul 01 05:21:26 EDT 2025 Wed Aug 28 03:24:13 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | idiopathic generalized epilepsy coupling functional connectivity network generalized tonic-clonic seizures structural connectivity network Nervous system diseases Epilepsy Central nervous system Idiopathic Cerebral disorder Encephalon Convulsion Central nervous system disease Coupling Neurological disorder |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c488t-c4a70288e243c48b8b10a4410d250947a0b5df3a73097a27d9364d6b51214bad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://academic.oup.com/brain/article-pdf/134/10/2912/17865377/awr223.pdf |
PMID | 21975588 |
PQID | 896828781 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_920806168 proquest_miscellaneous_896828781 pubmed_primary_21975588 pascalfrancis_primary_24606650 crossref_citationtrail_10_1093_brain_awr223 crossref_primary_10_1093_brain_awr223 oup_primary_10_1093_brain_awr223 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-10-01 |
PublicationDateYYYYMMDD | 2011-10-01 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2011 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Sporns ( key 20170624051840_awr223-B87) 2010 Koch ( key 20170624051840_awr223-B54) 2002; 16 Skudlarski ( key 20170624051840_awr223-B85) 2010; 68 Hagmann ( key 20170624051840_awr223-B40) 2008; 6 Tononi ( key 20170624051840_awr223-B95) 1994; 91 Di Martino ( key 20170624051840_awr223-B27) 2008; 18 He ( key 20170624051840_awr223-B43) 2010; 23 Shu ( key 20170624051840_awr223-B83) 2011 Supekar ( key 20170624051840_awr223-B92) 2010; 52 Li ( key 20170624051840_awr223-B57) 2010; 5 Bassett ( key 20170624051840_awr223-B6) 2006; 12 van den Heuvel ( key 20170624051840_awr223-B101) 2008; 28 Gong ( key 20170624051840_awr223-B36) 2009; 29 Bonelli ( key 20170624051840_awr223-B18) 2009; 50 Johansen-Berg ( key 20170624051840_awr223-B52) 2009; 32 Gong ( key 20170624051840_awr223-B35) 2009; 19 Isnard ( key 20170624051840_awr223-B50) 2004; 45 Bernhardt ( key 20170624051840_awr223-B11) 2009; 46 Iturria-Medina ( key 20170624051840_awr223-B51) 2008; 40 Blumenfeld ( key 20170624051840_awr223-B13) 2003; 44 Rubinov ( key 20170624051840_awr223-B77) 2010; 52 Mori ( key 20170624051840_awr223-B69) 2002; 15 Blumenfeld ( key 20170624051840_awr223-B14) 2005; 46 van den Heuvel ( key 20170624051840_awr223-B103) 2009; 29 van Dellen ( key 20170624051840_awr223-B98) 2009; 4 Blumenfeld ( key 20170624051840_awr223-B15) 2003; 9 Gotman ( key 20170624051840_awr223-B37) 2005; 102 He ( key 20170624051840_awr223-B44) 2009; 4 Wen ( key 20170624051840_awr223-B111) 2011; 31 Luo ( key 20170624051840_awr223-B64) 2011 Aghakhani ( key 20170624051840_awr223-B3) 2004; 127 Song ( key 20170624051840_awr223-B86) 2011; 6 Ponten ( key 20170624051840_awr223-B74) 2007; 118 Shu ( key 20170624051840_awr223-B84) 2009; 4 Wang ( key 20170624051840_awr223-B109) 2010; 133 Achard ( key 20170624051840_awr223-B1) 2007; 3 He ( key 20170624051840_awr223-B42) 2007; 17 Humphries ( key 20170624051840_awr223-B48) 2006; 273 Frei ( key 20170624051840_awr223-B34) 2010; 19 Liao ( key 20170624051840_awr223-B59) 2010; 5 Ortinski ( key 20170624051840_awr223-B72) 2004; 5 Li ( key 20170624051840_awr223-B58) 2009; 5 Schindler ( key 20170624051840_awr223-B80) 2008; 18 Behrens ( key 20170624051840_awr223-B8) 2003; 6 Fox ( key 20170624051840_awr223-B31) 2009; 101 Newman ( key 20170624051840_awr223-B70) 2003; 45 Bernhardt ( key 20170624051840_awr223-B10) 2011; 21 Shehata ( key 20170624051840_awr223-B82) 2009; 14 Zhang ( key 20170624051840_awr223-B118) 2010; 1323 Liao ( key 20170624051840_awr223-B60) 2011; 32 Honey ( key 20170624051840_awr223-B46) 2010; 52 Tomasi ( key 20170624051840_awr223-B94) 2011; 21 van den Heuvel ( key 20170624051840_awr223-B99) 2010; 20 Freeman ( key 20170624051840_awr223-B33) 1977; 40 Luo ( key 20170624051840_awr223-B63) 2011; 32 Moeller ( key 20170624051840_awr223-B68) 2008; 39 Tyvaert ( key 20170624051840_awr223-B96) 2009; 73 Seeley ( key 20170624051840_awr223-B81) 2007; 27 Archer ( key 20170624051840_awr223-B5) 2003; 20 Casaubon ( key 20170624051840_awr223-B22) 2003; 5 Fornito ( key 20170624051840_awr223-B29) 2010; 4 Moeller ( key 20170624051840_awr223-B67) 2011; 52 Tian ( key 20170624051840_awr223-B93) 2011; 54 Salvador ( key 20170624051840_awr223-B79) 2005; 15 Chavez ( key 20170624051840_awr223-B25) 2010; 104 Betting ( key 20170624051840_awr223-B12) 2010; 31 Guye ( key 20170624051840_awr223-B39) 2010; 23 Zalesky ( key 20170624051840_awr223-B115) 2010; 50 Andermann ( key 20170624051840_awr223-B4) 2001; 42 Bullmore ( key 20170624051840_awr223-B21) 2009; 10 Engel ( key 20170624051840_awr223-B28) 2001; 42 Mitsueda-Ono ( key 20170624051840_awr223-B66) 2011; 82 Sporns ( key 20170624051840_awr223-B88) 2011; 1224 Vlooswijk ( key 20170624051840_awr223-B104) 2010; 9 Kramer ( key 20170624051840_awr223-B55) 2010; 30 Achard ( key 20170624051840_awr223-B2) 2006; 26 Wang ( key 20170624051840_awr223-B107) 2011; 1374 Fransson ( key 20170624051840_awr223-B32) 2005; 26 van den Heuvel ( key 20170624051840_awr223-B100) 2009; 30 Hagmann ( key 20170624051840_awr223-B41) 2010; 107 Zhang ( key 20170624051840_awr223-B117) 2009; 256 Rubinov ( key 20170624051840_awr223-B78) 2009; 10 Bullmore ( key 20170624051840_awr223-B20) 2011; 7 Sporns ( key 20170624051840_awr223-B90) 2007; 2 ILAE ( key 20170624051840_awr223-B49) 1989; 30 Kramer ( key 20170624051840_awr223-B56) 2008; 79 Greicius ( key 20170624051840_awr223-B38) 2009; 19 Kaiser ( key 20170624051840_awr223-B53) 2006; 2 Fox ( key 20170624051840_awr223-B30) 2005; 102 Yan ( key 20170624051840_awr223-B113) 2011; 21 Buckner ( key 20170624051840_awr223-B19) 2009; 29 Wang ( key 20170624051840_awr223-B106) 2007 Wang ( key 20170624051840_awr223-B108) 2009; 30 Damoiseaux ( key 20170624051840_awr223-B26) 2009; 213 Ponten ( key 20170624051840_awr223-B75) 2009; 217 Tzourio-Mazoyer ( key 20170624051840_awr223-B97) 2002; 15 Cavanna ( key 20170624051840_awr223-B24) 2009; 5 Zielinski ( key 20170624051840_awr223-B119) 2010; 107 Wig ( key 20170624051840_awr223-B112) 2011; 1224 Raichle ( key 20170624051840_awr223-B76) 2001; 98 Horstmann ( key 20170624051840_awr223-B47) 2010; 121 Watts ( key 20170624051840_awr223-B110) 1998; 393 Walser ( key 20170624051840_awr223-B105) 2009; 50 Park ( key 20170624051840_awr223-B73) 2008; 387 Blumenfeld ( key 20170624051840_awr223-B17) 2003; 19 Liu ( key 20170624051840_awr223-B61) 2008; 131 Catani ( key 20170624051840_awr223-B23) 2002; 17 Bassett ( key 20170624051840_awr223-B7) 2008; 28 Onnela ( key 20170624051840_awr223-B71) 2005; 71 Honey ( key 20170624051840_awr223-B45) 2009; 106 Stefan ( key 20170624051840_awr223-B91) 2009; 85 Benjamini ( key 20170624051840_awr223-B9) 1995; 57 van den Heuvel ( key 20170624051840_awr223-B102) 2010; 30 Zalesky ( key 20170624051840_awr223-B116) 2011; 69 McIntyre ( key 20170624051840_awr223-B65) 1991; 10 Yogarajah ( key 20170624051840_awr223-B114) 2008; 40 Blumenfeld ( key 20170624051840_awr223-B16) 2009; 132 Lo ( key 20170624051840_awr223-B62) 2010; 30 |
References_xml | – volume: 132 start-page: 999 year: 2009 ident: key 20170624051840_awr223-B16 article-title: Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures publication-title: Brain doi: 10.1093/brain/awp028 – volume: 15 start-page: 1332 year: 2005 ident: key 20170624051840_awr223-B79 article-title: Neurophysiological architecture of functional magnetic resonance images of human brain publication-title: Cereb Cortex doi: 10.1093/cercor/bhi016 – volume: 20 start-page: 519 year: 2010 ident: key 20170624051840_awr223-B99 article-title: Exploring the brain network: a review on resting-state fMRI functional connectivity publication-title: Eur Neuropsychopharmacol doi: 10.1016/j.euroneuro.2010.03.008 – volume: 18 start-page: 2735 year: 2008 ident: key 20170624051840_awr223-B27 article-title: Functional connectivity of human striatum: a resting state FMRI study publication-title: Cereb Cortex doi: 10.1093/cercor/bhn041 – volume: 71 start-page: 065103 year: 2005 ident: key 20170624051840_awr223-B71 article-title: Intensity and coherence of motifs in weighted complex networks publication-title: Phys Rev E Stat Nonlin Soft Matter Phys doi: 10.1103/PhysRevE.71.065103 – volume: 82 start-page: 652 year: 2011 ident: key 20170624051840_awr223-B66 article-title: Amygdalar enlargement in patients with temporal lobe epilepsy publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2010.206342 – volume: 40 start-page: 1755 year: 2008 ident: key 20170624051840_awr223-B114 article-title: Tractography of the parahippocampal gyrus and material specific memory impairment in unilateral temporal lobe epilepsy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.12.046 – volume: 32 start-page: 438 year: 2011 ident: key 20170624051840_awr223-B63 article-title: Altered functional connectivity in default mode network in absence epilepsy: a resting-state fMRI study publication-title: Hum Brain Mapp doi: 10.1002/hbm.21034 – volume: 4 start-page: e7228 year: 2009 ident: key 20170624051840_awr223-B84 article-title: Altered anatomical network in early blindness revealed by diffusion tensor tractography publication-title: PLoS One doi: 10.1371/journal.pone.0007228 – volume: 30 start-page: 1511 year: 2009 ident: key 20170624051840_awr223-B108 article-title: Parcellation-dependent small-world brain functional networks: a resting-state fMRI study publication-title: Hum Brain Mapp doi: 10.1002/hbm.20623 – volume: 273 start-page: 503 year: 2006 ident: key 20170624051840_awr223-B48 article-title: The brainstem reticular formation is a small-world, not scale-free, network publication-title: Proc Biol Sci doi: 10.1098/rspb.2005.3354 – volume: 15 start-page: 468 year: 2002 ident: key 20170624051840_awr223-B69 article-title: Fiber tracking: principles and strategies - a technical review publication-title: NMR Biomed doi: 10.1002/nbm.781 – volume: 19 start-page: 72 year: 2009 ident: key 20170624051840_awr223-B38 article-title: Resting-state functional connectivity reflects structural connectivity in the default mode network publication-title: Cereb Cortex doi: 10.1093/cercor/bhn059 – volume: 68 start-page: 61 year: 2010 ident: key 20170624051840_awr223-B85 article-title: Brain connectivity is not only lower but different in schizophrenia: a combined anatomical and functional approach publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2010.03.035 – volume-title: Networks of the brain year: 2010 ident: key 20170624051840_awr223-B87 doi: 10.7551/mitpress/8476.001.0001 – volume: 5 start-page: S60 year: 2004 ident: key 20170624051840_awr223-B72 article-title: Cognitive side effects of antiepileptic drugs publication-title: Epilepsy Behav doi: 10.1016/j.yebeh.2003.11.008 – year: 2011 ident: key 20170624051840_awr223-B64 article-title: Resting state basal ganglia network in idiopathic generalized epilepsy publication-title: Human Brain Mapp – volume: 5 start-page: e1000395 year: 2009 ident: key 20170624051840_awr223-B58 article-title: Brain anatomical network and intelligence publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000395 – volume: 40 start-page: 35 year: 1977 ident: key 20170624051840_awr223-B33 article-title: A set of measures of centrality based upon betweenness publication-title: Sociometry doi: 10.2307/3033543 – volume: 104 start-page: 118701 year: 2010 ident: key 20170624051840_awr223-B25 article-title: Functional modularity of background activities in normal and epileptic brain networks publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.104.118701 – volume: 73 start-page: 2018 year: 2009 ident: key 20170624051840_awr223-B96 article-title: Thalamic nuclei activity in idiopathic generalized epilepsy: an EEG-fMRI study publication-title: Neurology doi: 10.1212/WNL.0b013e3181c55d02 – volume: 30 start-page: 16876 year: 2010 ident: key 20170624051840_awr223-B62 article-title: Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer's disease publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4136-10.2010 – volume: 12 start-page: 512 year: 2006 ident: key 20170624051840_awr223-B6 article-title: Small-world brain networks publication-title: Neuroscientist doi: 10.1177/1073858406293182 – volume: 131 start-page: 945 year: 2008 ident: key 20170624051840_awr223-B61 article-title: Disrupted small-world networks in schizophrenia publication-title: Brain doi: 10.1093/brain/awn018 – volume: 393 start-page: 440 year: 1998 ident: key 20170624051840_awr223-B110 article-title: Collective dynamics of 'small-world' networks publication-title: Nature doi: 10.1038/30918 – volume: 57 start-page: 289 year: 1995 ident: key 20170624051840_awr223-B9 article-title: Controlling the false discovery rate—a practical and powerful approach to multiple testing publication-title: R Stat Soc Series B Stat Methodol doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 17 start-page: 77 year: 2002 ident: key 20170624051840_awr223-B23 article-title: Virtual in vivo interactive dissection of white matter fasciculi in the human brain publication-title: Neuroimage doi: 10.1006/nimg.2002.1136 – volume: 50 start-page: 970 year: 2010 ident: key 20170624051840_awr223-B115 article-title: Whole-brain anatomical networks: does the choice of nodes matter? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.027 – volume: 98 start-page: 676 year: 2001 ident: key 20170624051840_awr223-B76 article-title: A default mode of brain function publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.98.2.676 – volume: 1224 start-page: 109 year: 2011 ident: key 20170624051840_awr223-B88 article-title: The human connectome: a complex network publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.2010.05888.x – volume: 44 start-page: 7 year: 2003 ident: key 20170624051840_awr223-B13 article-title: From molecules to networks: cortical/subcortical interactions in the pathophysiology of idiopathic generalized epilepsy publication-title: Epilepsia doi: 10.1046/j.1528-1157.44.s.2.2.x – volume: 28 start-page: 10844 year: 2008 ident: key 20170624051840_awr223-B101 article-title: Microstructural organization of the cingulum tract and the level of default mode functional connectivity publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2964-08.2008 – volume: 26 start-page: 15 year: 2005 ident: key 20170624051840_awr223-B32 article-title: Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis publication-title: Hum Brain Mapp doi: 10.1002/hbm.20113 – volume: 19 start-page: 524 year: 2009 ident: key 20170624051840_awr223-B35 article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography publication-title: Cereb Cortex doi: 10.1093/cercor/bhn102 – volume: 1224 start-page: 126 year: 2011 ident: key 20170624051840_awr223-B112 article-title: Concepts and principles in the analysis of brain networks publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.2010.05947.x – volume: 32 start-page: 75 year: 2009 ident: key 20170624051840_awr223-B52 article-title: Using diffusion imaging to study human connectional anatomy publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.051508.135735 – volume: 106 start-page: 2035 year: 2009 ident: key 20170624051840_awr223-B45 article-title: Predicting human resting-state functional connectivity from structural connectivity publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0811168106 – volume: 45 start-page: 167 year: 2003 ident: key 20170624051840_awr223-B70 article-title: The structure and function of complex networks publication-title: SIAM Review doi: 10.1137/S003614450342480 – volume: 4 start-page: 22 year: 2010 ident: key 20170624051840_awr223-B29 article-title: Network scaling effects in graph analytic studies of human resting-state FMRI data publication-title: Front Syst Neurosci – volume: 121 start-page: 172 year: 2010 ident: key 20170624051840_awr223-B47 article-title: State dependent properties of epileptic brain networks: comparative graph-theoretical analyses of simultaneously recorded EEG and MEG publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.10.013 – volume: 1323 start-page: 152 year: 2010 ident: key 20170624051840_awr223-B118 article-title: Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy publication-title: Brain Res doi: 10.1016/j.brainres.2010.01.042 – volume: 30 start-page: 15915 year: 2010 ident: key 20170624051840_awr223-B102 article-title: Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2874-10.2010 – volume: 102 start-page: 9673 year: 2005 ident: key 20170624051840_awr223-B30 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0504136102 – volume: 69 start-page: 80 year: 2011 ident: key 20170624051840_awr223-B116 article-title: Disrupted axonal fiber connectivity in schizophrenia publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2010.08.022 – volume: 101 start-page: 3270 year: 2009 ident: key 20170624051840_awr223-B31 article-title: The global signal and observed anticorrelated resting state brain networks publication-title: J Neurophysiol doi: 10.1152/jn.90777.2008 – volume: 4 start-page: e5226 year: 2009 ident: key 20170624051840_awr223-B44 article-title: Uncovering intrinsic modular organization of spontaneous brain activity in humans publication-title: PLoS One doi: 10.1371/journal.pone.0005226 – volume: 42 start-page: 796 year: 2001 ident: key 20170624051840_awr223-B28 article-title: A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE task force on classification and terminology publication-title: Epilepsia doi: 10.1046/j.1528-1157.2001.10401.x – volume: 6 start-page: e159 year: 2008 ident: key 20170624051840_awr223-B40 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol doi: 10.1371/journal.pbio.0060159 – volume: 10 start-page: 119 year: 1991 ident: key 20170624051840_awr223-B65 article-title: Distribution of [14C]2-deoxyglucose after various forms and durations of status epilepticus induced by stimulation of a kindled amygdala focus in rats publication-title: Epilepsy Res doi: 10.1016/0920-1211(91)90004-Y – volume: 39 start-page: 1839 year: 2008 ident: key 20170624051840_awr223-B68 article-title: Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.058 – volume: 46 start-page: 373 year: 2009 ident: key 20170624051840_awr223-B11 article-title: Thalamo-cortical network pathology in idiopathic generalized epilepsy: insights from MRI-based morphometric correlation analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.01.055 – volume: 50 start-page: 2035 year: 2009 ident: key 20170624051840_awr223-B105 article-title: Asymmetric seizure termination in primary and secondary generalized tonic-clonic seizures publication-title: Epilepsia doi: 10.1111/j.1528-1167.2009.02068.x – volume: 4 start-page: e8081 year: 2009 ident: key 20170624051840_awr223-B98 article-title: Long-term effects of temporal lobe epilepsy on local neural networks: a graph theoretical analysis of corticography recordings publication-title: PLoS One doi: 10.1371/journal.pone.0008081 – volume: 9 start-page: 301 year: 2003 ident: key 20170624051840_awr223-B15 article-title: Why do seizures cause loss of consciousness? publication-title: Neuroscientist doi: 10.1177/1073858403255624 – volume: 45 start-page: 1079 year: 2004 ident: key 20170624051840_awr223-B50 article-title: Clinical manifestations of insular lobe seizures: a stereo-electroencephalographic study publication-title: Epilepsia doi: 10.1111/j.0013-9580.2004.68903.x – volume: 85 start-page: 187 year: 2009 ident: key 20170624051840_awr223-B91 article-title: Network characteristics of idiopathic generalized epilepsies in combined MEG/EEG publication-title: Epilepsy Res doi: 10.1016/j.eplepsyres.2009.03.015 – volume: 46 start-page: 21 year: 2005 ident: key 20170624051840_awr223-B14 article-title: Cellular and network mechanisms of spike-wave seizures publication-title: Epilepsia doi: 10.1111/j.1528-1167.2005.00311.x – volume: 213 start-page: 525 year: 2009 ident: key 20170624051840_awr223-B26 article-title: Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity publication-title: Brain Struct Funct doi: 10.1007/s00429-009-0208-6 – volume: 29 start-page: 15684 year: 2009 ident: key 20170624051840_awr223-B36 article-title: Age- and gender-related differences in the cortical anatomical network publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2308-09.2009 – volume: 52 start-page: 766 year: 2010 ident: key 20170624051840_awr223-B46 article-title: Can structure predict function in the human brain? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.071 – volume: 15 start-page: 273 year: 2002 ident: key 20170624051840_awr223-B97 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 1374 start-page: 134 year: 2011 ident: key 20170624051840_awr223-B107 article-title: Altered resting state networks in epileptic patients with generalized tonic-clonic seizures publication-title: Brain Res doi: 10.1016/j.brainres.2010.12.034 – volume: 17 start-page: 2407 year: 2007 ident: key 20170624051840_awr223-B42 article-title: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI publication-title: Cereb Cortex doi: 10.1093/cercor/bhl149 – volume: 5 start-page: e15219 year: 2010 ident: key 20170624051840_awr223-B57 article-title: Cerebellum abnormalities in idiopathic generalized epilepsy with generalized tonic-clonic seizures revealed by diffusion tensor imaging publication-title: PLoS One doi: 10.1371/journal.pone.0015219 – volume: 23 start-page: 341 year: 2010 ident: key 20170624051840_awr223-B43 article-title: Graph theoretical modeling of brain connectivity publication-title: Curr Opin Neurol doi: 10.1097/WCO.0b013e32833aa567 – volume: 50 start-page: 217 year: 2009 ident: key 20170624051840_awr223-B18 article-title: Preoperative amygdala fMRI in temporal lobe epilepsy publication-title: Epilepsia doi: 10.1111/j.1528-1167.2008.01739.x – volume: 2 start-page: e95 year: 2006 ident: key 20170624051840_awr223-B53 article-title: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0020095 – volume: 52 start-page: 1059 year: 2010 ident: key 20170624051840_awr223-B77 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 31 start-page: 1204 year: 2011 ident: key 20170624051840_awr223-B111 article-title: Discrete neuroanatomical networks are associated with specific cognitive abilities in old age publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4085-10.2011 – volume: 54 start-page: 191 year: 2011 ident: key 20170624051840_awr223-B93 article-title: Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.066 – volume: 16 start-page: 241 year: 2002 ident: key 20170624051840_awr223-B54 article-title: An investigation of functional and anatomical connectivity using magnetic resonance imaging publication-title: Neuroimage doi: 10.1006/nimg.2001.1052 – volume: 2 start-page: e1049 year: 2007 ident: key 20170624051840_awr223-B90 article-title: Identification and classification of hubs in brain networks publication-title: PLoS One doi: 10.1371/journal.pone.0001049 – year: 2011 ident: key 20170624051840_awr223-B83 article-title: Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis publication-title: Cereb Cortex doi: 10.1093/cercor/bhr039 – volume: 6 start-page: 750 year: 2003 ident: key 20170624051840_awr223-B8 article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging publication-title: Nat Neurosci doi: 10.1038/nn1075 – volume: 5 start-page: 149 year: 2003 ident: key 20170624051840_awr223-B22 article-title: Video-EEG evidence of lateralized clinical features in primary generalized epilepsy with tonic-clonic seizures publication-title: Epileptic Disord doi: 10.1684/j.1950-6945.2003.tb00005.x – volume: 23 start-page: 409 year: 2010 ident: key 20170624051840_awr223-B39 article-title: Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks publication-title: MAGMA doi: 10.1007/s10334-010-0205-z – volume: 133 start-page: 1224 year: 2010 ident: key 20170624051840_awr223-B109 article-title: Dynamic functional reorganization of the motor execution network after stroke publication-title: Brain doi: 10.1093/brain/awq043 – volume: 26 start-page: 63 year: 2006 ident: key 20170624051840_awr223-B2 article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3874-05.2006 – volume: 29 start-page: 7619 year: 2009 ident: key 20170624051840_awr223-B103 article-title: Efficiency of functional brain networks and intellectual performance publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1443-09.2009 – start-page: 3720 year: 2007 ident: key 20170624051840_awr223-B106 article-title: Diffusion toolkit: a software package for diffusion imaging data processing and tractography publication-title: Proc Intl Soc Mag Reson Med – volume: 19 start-page: 1556 year: 2003 ident: key 20170624051840_awr223-B17 article-title: Selective frontal, parietal, and temporal networks in generalized seizures publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00204-0 – volume: 127 start-page: 1127 year: 2004 ident: key 20170624051840_awr223-B3 article-title: fMRI activation during spike and wave discharges in idiopathic generalized epilepsy publication-title: Brain doi: 10.1093/brain/awh136 – volume: 9 start-page: 1018 year: 2010 ident: key 20170624051840_awr223-B104 article-title: Functional MRI in chronic epilepsy: associations with cognitive impairment publication-title: Lancet Neurol doi: 10.1016/S1474-4422(10)70180-0 – volume: 217 start-page: 197 year: 2009 ident: key 20170624051840_awr223-B75 article-title: Indications for network regularization during absence seizures: weighted and unweighted graph theoretical analyses publication-title: Exp Neurol doi: 10.1016/j.expneurol.2009.02.001 – volume: 20 start-page: 1915 year: 2003 ident: key 20170624051840_awr223-B5 article-title: fMRI "deactivation" of the posterior cingulate during generalized spike and wave publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00294-5 – volume: 107 start-page: 19067 year: 2010 ident: key 20170624051840_awr223-B41 article-title: White matter maturation reshapes structural connectivity in the late developing human brain publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1009073107 – volume: 6 start-page: e17294 year: 2011 ident: key 20170624051840_awr223-B86 article-title: Impaired resting-state functional integrations within default mode network of generalized tonic-clonic seizures epilepsy publication-title: PLoS One doi: 10.1371/journal.pone.0017294 – volume: 256 start-page: 1705 year: 2009 ident: key 20170624051840_awr223-B117 article-title: Impaired perceptual networks in temporal lobe epilepsy revealed by resting fMRI publication-title: J Neurol doi: 10.1007/s00415-009-5187-2 – volume: 31 start-page: 1327 year: 2010 ident: key 20170624051840_awr223-B12 article-title: Correlation between quantitative EEG and MRI in idiopathic generalized epilepsy publication-title: Hum Brain Mapp doi: 10.1002/hbm.20944 – volume: 30 start-page: 10076 year: 2010 ident: key 20170624051840_awr223-B55 article-title: Coalescence and fragmentation of cortical networks during focal seizures publication-title: J Neurosci doi: 10.1523/JNEUROSCI.6309-09.2010 – volume: 21 start-page: 2003 year: 2011 ident: key 20170624051840_awr223-B94 article-title: Association between functional connectivity hubs and brain networks publication-title: Cereb Cortex doi: 10.1093/cercor/bhq268 – volume: 7 start-page: 113 year: 2011 ident: key 20170624051840_awr223-B20 article-title: Brain graphs: graphical models of the human brain connectome publication-title: Annu Rev Clin Psychol doi: 10.1146/annurev-clinpsy-040510-143934 – volume: 18 start-page: 033119 year: 2008 ident: key 20170624051840_awr223-B80 article-title: Evolving functional network properties and synchronizability during human epileptic seizures publication-title: Chaos doi: 10.1063/1.2966112 – volume: 30 start-page: 3127 year: 2009 ident: key 20170624051840_awr223-B100 article-title: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain publication-title: Hum Brain Mapp doi: 10.1002/hbm.20737 – volume: 79 start-page: 173 year: 2008 ident: key 20170624051840_awr223-B56 article-title: Emergent network topology at seizure onset in humans publication-title: Epilepsy Res doi: 10.1016/j.eplepsyres.2008.02.002 – volume: 29 start-page: 1860 year: 2009 ident: key 20170624051840_awr223-B19 article-title: Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5062-08.2009 – volume: 118 start-page: 918 year: 2007 ident: key 20170624051840_awr223-B74 article-title: Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2006.12.002 – volume: 21 start-page: 449 year: 2011 ident: key 20170624051840_awr223-B113 article-title: Sex- and brain size-related small-world structural cortical networks in young adults: a DTI tractography study publication-title: Cereb Cortex doi: 10.1093/cercor/bhq111 – volume: 27 start-page: 2349 year: 2007 ident: key 20170624051840_awr223-B81 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5587-06.2007 – volume: 10 start-page: 186 year: 2009 ident: key 20170624051840_awr223-B21 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat Rev Neurosci doi: 10.1038/nrn2575 – volume: 387 start-page: 5958 year: 2008 ident: key 20170624051840_awr223-B73 article-title: Comparison of the small-world topology between anatomical and functional connectivity in the human brain publication-title: Physica A: Stat Mech Appl doi: 10.1016/j.physa.2008.06.048 – volume: 42 start-page: 317 year: 2001 ident: key 20170624051840_awr223-B4 article-title: Idiopathic generalized epilepsy with generalized and other seizures in adolescence publication-title: Epilepsia doi: 10.1046/j.1528-1157.2001.36400.x – volume: 107 start-page: 18191 year: 2010 ident: key 20170624051840_awr223-B119 article-title: Network-level structural covariance in the developing brain publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1003109107 – volume: 91 start-page: 5033 year: 1994 ident: key 20170624051840_awr223-B95 article-title: A measure for brain complexity: relating functional segregation and integration in the nervous system publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.91.11.5033 – volume: 5 start-page: 267 year: 2009 ident: key 20170624051840_awr223-B24 article-title: Brain mechanisms of altered conscious states during epileptic seizures publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2009.38 – volume: 21 start-page: 2147 year: 2011 ident: key 20170624051840_awr223-B10 article-title: Graph-Theoretical Analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy publication-title: Cereb Cortex doi: 10.1093/cercor/bhq291 – volume: 32 start-page: 883 year: 2011 ident: key 20170624051840_awr223-B60 article-title: Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and DTI publication-title: Hum Brain Mapp doi: 10.1002/hbm.21076 – volume: 52 start-page: 515 year: 2011 ident: key 20170624051840_awr223-B67 article-title: Functional connectivity in patients with idiopathic generalized epilepsy publication-title: Epilepsia doi: 10.1111/j.1528-1167.2010.02938.x – volume: 3 start-page: e17 year: 2007 ident: key 20170624051840_awr223-B1 article-title: Efficiency and cost of economical brain functional networks publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0030017 – volume: 5 start-page: e8525 year: 2010 ident: key 20170624051840_awr223-B59 article-title: Altered functional connectivity and small-world in mesial temporal lobe epilepsy publication-title: PLoS One doi: 10.1371/journal.pone.0008525 – volume: 10 start-page: 55 year: 2009 ident: key 20170624051840_awr223-B78 article-title: Symbiotic relationship between brain structure and dynamics publication-title: BMC Neurosci doi: 10.1186/1471-2202-10-55 – volume: 102 start-page: 15236 year: 2005 ident: key 20170624051840_awr223-B37 article-title: Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0504935102 – volume: 40 start-page: 1064 year: 2008 ident: key 20170624051840_awr223-B51 article-title: Studying the human brain anatomical network via diffusion-weighted MRI and graph theory publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.060 – volume: 14 start-page: 121 year: 2009 ident: key 20170624051840_awr223-B82 article-title: Cognitive function, mood, behavioral aspects, and personality traits of adult males with idiopathic epilepsy publication-title: Epilepsy Behav doi: 10.1016/j.yebeh.2008.08.014 – volume: 28 start-page: 9239 year: 2008 ident: key 20170624051840_awr223-B7 article-title: Hierarchical organization of human cortical networks in health and schizophrenia publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1929-08.2008 – volume: 19 start-page: 4 year: 2010 ident: key 20170624051840_awr223-B34 article-title: Controversies in epilepsy: debates held during the Fourth International Workshop on Seizure Prediction publication-title: Epilepsy Behav doi: 10.1016/j.yebeh.2010.06.009 – volume: 52 start-page: 290 year: 2010 ident: key 20170624051840_awr223-B92 article-title: Development of functional and structural connectivity within the default mode network in young children publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.04.009 – volume: 30 start-page: 389 year: 1989 ident: key 20170624051840_awr223-B49 article-title: Proposal for revised classification of epilepsies and epileptic syndromes publication-title: Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia |
SSID | ssj0014326 |
Score | 2.553056 |
Snippet | The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for... |
SourceID | proquest pubmed pascalfrancis crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2912 |
SubjectTerms | Adolescent Adult Biological and medical sciences Brain - physiopathology Brain Mapping Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Diffusion Tensor Imaging Epilepsy, Generalized - physiopathology Female Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy Humans Image Interpretation, Computer-Assisted Magnetic Resonance Imaging Male Medical sciences Multiple sclerosis and variants. Guillain barré syndrome and other inflammatory polyneuropathies. Leukoencephalitis Nerve Net - physiopathology Nervous system (semeiology, syndromes) Neural Pathways - physiopathology Neurology Neurons - physiology Reproducibility of Results Seizures - physiopathology |
Title | Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21975588 https://www.proquest.com/docview/896828781 https://www.proquest.com/docview/920806168 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiGkCvFmeVQ-wGmVNomdxDlWCLSAyqkVFZfIjp020ioJ7EaV-pP4lYwfecEuBS5W1hpbiefb8Xg8D4ReJ4SJXNDcK6gknt7xPZGS1BOCUF_mkUxMVNrJ53h5Rj-eR-ez2Y-R11K7EYf59da4kv_hKvQBX3WU7D9wtp8UOuAZ-AstcBjav-Lxsb7qBo1Rb07WpufZfLAml0Zet83KOTWvtMO3twaGqIXQVSEWlfX_Nu6wpSxrU5o41xWVtZWqvIZpVQMio1lPL37N4G11QKxxgSVsZFzozdFfL8tvAMSL3v-n5MZG-0WVg4OBlYDLlhftYCjXlSy6YHjnlCR7q2vn7rb5U_DjRDDHHkttDtpDZWUxjX0PNJJ4Iqyd6dOh0h_L3tQ5ZCv300ad_7ZH2PxZZq31Rnj1PbQRz7_k3d5FegvdDuFIYo7vHz71N1aUmNJ-_Ye4IAuY4ciMP7KjJ-qPDancb7hmf2ELqew-6RiN5_Q-uueOKvjY4u4BmqnqIbpz4pwxHqELBz-8FX64gx-uCzyCHzbviTv4YXge4IdH8MMd_B6js_fvTt8uPVe3w8thO9hAyxNQW5kKKYEewUTgc1C7fRnqdI0J90UkC8Jhc0kTHiYyJTGVsQDdM6CCS_IE7VV1pZ4hHHJRiKJQIvWlvoEXQpFIgl6nRB4wqeZo0S1nlruk9rq2yiqzzhUkMx-V2cWfozc9dWOTueygw7BEN5AcTNjWE4dUmwQiH-bo-JiBxNbXcLxSdbvOWBrrKhMs2E2ShnCQi4OYzdFTC4Fh_iBNooix5ze_4wt0d_gvvkR7gAD1ClTojTgw2P0JHdHNRg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Altered+functional-structural+coupling+of+large-scale+brain+networks+in+idiopathic+generalized+epilepsy&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Zhang%2C+Zhiqiang&rft.au=Liao%2C+Wei&rft.au=Chen%2C+Huafu&rft.au=Mantini%2C+Dante&rft.date=2011-10-01&rft.pub=Oxford+University+Press&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=134&rft.issue=10&rft.spage=2912&rft.epage=2928&rft_id=info:doi/10.1093%2Fbrain%2Fawr223&rft.externalDocID=10.1093%2Fbrain%2Fawr223 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |