Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants
The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly...
Saved in:
Published in | Cell Vol. 186; no. 2; pp. 279 - 286.e8 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
19.01.2023
The Author(s). Published by Elsevier Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies.
[Display omitted]
•BQ.1, BQ.1.1, XBB, and XBB.1 are the most resistant SARS-CoV-2 variants to date•Serum neutralization was markedly reduced, including with the bivalent booster•All clinical monoclonal antibodies were rendered inactive against these variants•The ACE2 affinity of these variants were similar to their parental strains
Recent BQ and XBB subvariants of SARS-CoV-2 demonstrate dramatically increased ability to evade neutralizing antibodies, even those from people who received the bivalent mRNA booster or who are immunized and had previous breakthrough Omicron infection. Additionally, both BQ and XBB are completely resistant to bebtelovimab, meaning there are now no clinically authorized therapeutic antibodies effective against these circulating variants. |
---|---|
AbstractList | The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies. The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13-81-fold and 66-155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies. Recent BQ and XBB subvariants of SARS-CoV-2 demonstrate dramatically increased ability to evade neutralizing antibodies, even those from people who received the bivalent mRNA booster or who are immunized and had previous breakthrough Omicron infection. Additionally, both BQ and XBB are completely resistant to bebtelovimab, meaning there are now no clinically authorized therapeutic antibodies effective against these circulating variants. The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies. [Display omitted] •BQ.1, BQ.1.1, XBB, and XBB.1 are the most resistant SARS-CoV-2 variants to date•Serum neutralization was markedly reduced, including with the bivalent booster•All clinical monoclonal antibodies were rendered inactive against these variants•The ACE2 affinity of these variants were similar to their parental strains Recent BQ and XBB subvariants of SARS-CoV-2 demonstrate dramatically increased ability to evade neutralizing antibodies, even those from people who received the bivalent mRNA booster or who are immunized and had previous breakthrough Omicron infection. Additionally, both BQ and XBB are completely resistant to bebtelovimab, meaning there are now no clinically authorized therapeutic antibodies effective against these circulating variants. The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies.The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies. |
Author | Yu, Jian Liu, Liyuan Liu, Lihong Li, Zhiteng Lauring, Adam S. Liu, Michael Guo, Yicheng Wang, Harris H. Huang, Yiming Sheng, Zizhang Gordon, Aubree Wang, Qian Iketani, Sho Bowen, Anthony D. Ho, David D. Wang, Maple Valdez, Riccardo |
Author_xml | – sequence: 1 givenname: Qian surname: Wang fullname: Wang, Qian organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 2 givenname: Sho surname: Iketani fullname: Iketani, Sho organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 3 givenname: Zhiteng surname: Li fullname: Li, Zhiteng organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 4 givenname: Liyuan surname: Liu fullname: Liu, Liyuan organization: Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 5 givenname: Yicheng surname: Guo fullname: Guo, Yicheng organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 6 givenname: Yiming surname: Huang fullname: Huang, Yiming organization: Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 7 givenname: Anthony D. surname: Bowen fullname: Bowen, Anthony D. organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 8 givenname: Michael surname: Liu fullname: Liu, Michael organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 9 givenname: Maple surname: Wang fullname: Wang, Maple organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 10 givenname: Jian surname: Yu fullname: Yu, Jian organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 11 givenname: Riccardo surname: Valdez fullname: Valdez, Riccardo organization: Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA – sequence: 12 givenname: Adam S. surname: Lauring fullname: Lauring, Adam S. organization: Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA – sequence: 13 givenname: Zizhang surname: Sheng fullname: Sheng, Zizhang organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 14 givenname: Harris H. surname: Wang fullname: Wang, Harris H. organization: Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 15 givenname: Aubree surname: Gordon fullname: Gordon, Aubree organization: Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA – sequence: 16 givenname: Lihong surname: Liu fullname: Liu, Lihong email: ll3411@cumc.columbia.edu organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA – sequence: 17 givenname: David D. orcidid: 0000-0003-1627-149X surname: Ho fullname: Ho, David D. email: dh2994@cumc.columbia.edu organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36580913$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEcxC1URNPCF-CA9shlt34_JISURECRKvEoIG6W7bWLo8062JtI_fZ4lRYBh3Ly4T-_8WjmDJyMafQAPEewQxDxi03n_DB0GGLcIdxBJB-BBYJKtBQJfAIWECrcSi7oKTgrZQMhlIyxJ-CUcCahQmQBPi4Hk7dxvGnMOEWb-tvGH0yJaWx2Oe18nqIvTQpNjmVWXS8_X7fr9K3FzepTZfrm-2rVlL09mByrRXkKHgczFP_s7j0HX9---bK-bK8-vHu_Xl61jko5tTYo7xS1yltLucDBMGwlss6QwGzoOcasJ1IyyAMK1jHKeU9sr1igigdBzsHro-9ub7e-d36cshn0Lsetybc6maj_vozxh75JB60EFVzRavDyziCnn3tfJr2NZS7UjD7tiyaIESGYIvK_UlxlignFeZW--DPW7zz3jVeBPApcTqVkH7SLk5lq4TVlHDSCeh5Xb_T8gZ7H1QjrOm5F8T_ovfuD0Ksj5OsYh-izLi760fk-Zu8m3af4EP4Lc9691w |
CitedBy_id | crossref_primary_10_1128_aac_01556_24 crossref_primary_10_1038_s41392_023_01472_x crossref_primary_10_1093_pnasnexus_pgad403 crossref_primary_10_1002_jmv_29278 crossref_primary_10_1016_j_ajic_2024_08_009 crossref_primary_10_1039_D4LC00505H crossref_primary_10_1016_j_ejmech_2023_115463 crossref_primary_10_1128_mbio_00907_24 crossref_primary_10_1002_jmv_29151 crossref_primary_10_1038_s41541_025_01066_4 crossref_primary_10_1128_spectrum_03831_23 crossref_primary_10_29328_journal_ijcv_1001060 crossref_primary_10_3389_fimmu_2024_1334250 crossref_primary_10_1016_j_ebiom_2024_105438 crossref_primary_10_3389_fimmu_2024_1337520 crossref_primary_10_3389_fmed_2025_1541235 crossref_primary_10_1016_j_heliyon_2024_e34691 crossref_primary_10_1038_s41590_024_02051_0 crossref_primary_10_1038_s41467_023_37926_7 crossref_primary_10_1038_s41467_023_40033_2 crossref_primary_10_1007_s11684_023_1021_y crossref_primary_10_1016_j_jinf_2023_02_039 crossref_primary_10_1038_s41392_024_02007_8 crossref_primary_10_1039_D1CS01170G crossref_primary_10_1038_s41392_023_01724_w crossref_primary_10_1016_j_xcrm_2024_101445 crossref_primary_10_1016_j_jinf_2023_08_013 crossref_primary_10_3390_vaccines12010055 crossref_primary_10_1016_j_jaip_2023_05_005 crossref_primary_10_1016_j_focus_2024_100207 crossref_primary_10_1128_spectrum_01100_23 crossref_primary_10_1371_journal_ppat_1011532 crossref_primary_10_1016_j_aca_2024_343057 crossref_primary_10_1177_11769343241272415 crossref_primary_10_1093_cid_ciad088 crossref_primary_10_1016_j_bspc_2023_105502 crossref_primary_10_1038_s41541_023_00731_w crossref_primary_10_1038_s41551_024_01179_6 crossref_primary_10_1016_j_virol_2023_109850 crossref_primary_10_1016_j_lanwpc_2023_100939 crossref_primary_10_1111_apt_17661 crossref_primary_10_1007_s00277_023_05572_0 crossref_primary_10_1016_j_fufo_2024_100303 crossref_primary_10_1111_vox_13647 crossref_primary_10_3390_v15102073 crossref_primary_10_1097_TP_0000000000004873 crossref_primary_10_3390_v15030715 crossref_primary_10_1007_s00432_023_04961_2 crossref_primary_10_1016_j_virs_2024_08_005 crossref_primary_10_1002_mef2_90 crossref_primary_10_61958_NMFQ4753 crossref_primary_10_1016_S1473_3099_23_00181_0 crossref_primary_10_1128_spectrum_02654_23 crossref_primary_10_3390_vaccines12010036 crossref_primary_10_1016_j_hlife_2024_12_006 crossref_primary_10_3390_ijms241612782 crossref_primary_10_3390_ijms24065944 crossref_primary_10_1016_j_antiviral_2024_106006 crossref_primary_10_1016_j_cell_2023_09_022 crossref_primary_10_1080_22221751_2024_2412990 crossref_primary_10_1128_spectrum_01568_24 crossref_primary_10_1146_annurev_med_052422_020316 crossref_primary_10_3390_vaccines12050459 crossref_primary_10_1371_journal_ppat_1011868 crossref_primary_10_1080_14760584_2023_2232851 crossref_primary_10_1016_j_fct_2023_113898 crossref_primary_10_3390_v16020215 crossref_primary_10_1038_s41598_023_46025_y crossref_primary_10_3390_biom14030245 crossref_primary_10_1016_j_ijid_2023_11_039 crossref_primary_10_3390_v16071077 crossref_primary_10_1093_cid_ciad178 crossref_primary_10_1002_smll_202307045 crossref_primary_10_1016_j_heliyon_2024_e34492 crossref_primary_10_1093_cid_ciae026 crossref_primary_10_15252_embr_202357724 crossref_primary_10_1038_s41392_023_01615_0 crossref_primary_10_3390_biomedicines11061736 crossref_primary_10_1080_22221751_2024_2309968 crossref_primary_10_1128_msphere_00338_24 crossref_primary_10_3389_fimmu_2023_1294288 crossref_primary_10_1016_j_ebiom_2024_105354 crossref_primary_10_1371_journal_ppat_1011856 crossref_primary_10_1016_j_virol_2024_110067 crossref_primary_10_3389_fcimb_2024_1371695 crossref_primary_10_1016_j_isci_2024_110208 crossref_primary_10_3390_ijms241210053 crossref_primary_10_1080_22221751_2023_2210237 crossref_primary_10_3390_vaccines12050464 crossref_primary_10_23736_S2784_8477_24_02145_4 crossref_primary_10_1007_s10875_023_01540_5 crossref_primary_10_3389_fimmu_2023_1209513 crossref_primary_10_1016_S1473_3099_23_00070_1 crossref_primary_10_1002_jmv_29092 crossref_primary_10_3390_ijms251910802 crossref_primary_10_1093_infdis_jiad508 crossref_primary_10_1128_spectrum_05258_22 crossref_primary_10_1038_s41392_023_01495_4 crossref_primary_10_1016_j_jviromet_2024_114945 crossref_primary_10_1038_s41421_023_00535_1 crossref_primary_10_3389_fpubh_2023_1192709 crossref_primary_10_1038_s41467_024_45495_6 crossref_primary_10_1038_s41467_023_39638_4 crossref_primary_10_3390_molecules28134996 crossref_primary_10_1016_j_coviro_2023_101349 crossref_primary_10_1371_journal_pmed_1004157 crossref_primary_10_1016_j_medcli_2023_04_031 crossref_primary_10_1016_j_isci_2024_111557 crossref_primary_10_2147_IDR_S412657 crossref_primary_10_1111_irv_70000 crossref_primary_10_1016_j_heliyon_2024_e24209 crossref_primary_10_1038_s41591_024_02949_0 crossref_primary_10_1016_j_medcle_2023_04_032 crossref_primary_10_1016_j_medj_2024_06_013 crossref_primary_10_1016_j_immuni_2024_02_017 crossref_primary_10_1038_s41421_023_00569_5 crossref_primary_10_1038_s41564_024_01878_5 crossref_primary_10_1016_j_jiph_2023_09_020 crossref_primary_10_1080_14787210_2024_2400548 crossref_primary_10_3389_fmolb_2023_1153046 crossref_primary_10_3390_v15040944 crossref_primary_10_1016_j_chembiol_2024_03_008 crossref_primary_10_1002_rmv_2515 crossref_primary_10_1038_s42003_025_07769_7 crossref_primary_10_1038_s41467_025_55871_5 crossref_primary_10_1016_j_isci_2024_109363 crossref_primary_10_1016_S1473_3099_23_00421_8 crossref_primary_10_1128_mra_01255_23 crossref_primary_10_1038_s41467_023_39267_x crossref_primary_10_3390_v16091458 crossref_primary_10_1038_s41392_024_02025_6 crossref_primary_10_1038_s41598_023_44796_y crossref_primary_10_1080_22221751_2023_2192817 crossref_primary_10_1002_ajh_26887 crossref_primary_10_1099_jgv_0_001854 crossref_primary_10_1073_pnas_2406659122 crossref_primary_10_1002_jmv_29314 crossref_primary_10_1186_s40246_023_00515_2 crossref_primary_10_3390_v16060958 crossref_primary_10_1016_S1473_3099_23_00138_X crossref_primary_10_1111_imr_13431 crossref_primary_10_3389_fgene_2023_1024063 crossref_primary_10_1038_s41467_024_48414_x crossref_primary_10_1038_s42003_024_06951_7 crossref_primary_10_1038_s43856_024_00457_3 crossref_primary_10_1080_21645515_2024_2408863 crossref_primary_10_3389_fimmu_2023_1130539 crossref_primary_10_1016_j_bios_2024_116079 crossref_primary_10_1016_j_ijbiomac_2023_126817 crossref_primary_10_7759_cureus_35261 crossref_primary_10_2147_OPTH_S460224 crossref_primary_10_1016_j_cmi_2025_03_004 crossref_primary_10_1128_spectrum_00660_23 crossref_primary_10_3389_fmed_2023_1322396 crossref_primary_10_1016_j_coviro_2023_101332 crossref_primary_10_1128_aac_00909_24 crossref_primary_10_1016_j_vaccine_2023_02_020 crossref_primary_10_1093_nsr_nwad148 crossref_primary_10_1016_j_celrep_2023_112532 crossref_primary_10_1111_imr_70000 crossref_primary_10_1038_s41467_023_42796_0 crossref_primary_10_1016_j_celrep_2023_112888 crossref_primary_10_2139_ssrn_4289504 crossref_primary_10_3389_fmicb_2023_1228128 crossref_primary_10_1002_eji_202250230 crossref_primary_10_1016_j_ebiom_2023_104916 crossref_primary_10_1186_s40635_023_00536_0 crossref_primary_10_1128_mbio_03036_23 crossref_primary_10_3390_covid4040038 crossref_primary_10_1002_cbin_12130 crossref_primary_10_1038_s41467_024_46982_6 crossref_primary_10_1016_j_ijid_2023_06_010 crossref_primary_10_3390_v16030391 crossref_primary_10_3389_fphar_2023_1214351 crossref_primary_10_1128_cmr_00072_23 crossref_primary_10_3390_vaccines11081320 crossref_primary_10_1016_S1473_3099_23_00454_1 crossref_primary_10_3390_ijms242216073 crossref_primary_10_3390_vaccines12040417 crossref_primary_10_1128_jvi_00678_24 crossref_primary_10_1080_22221751_2023_2191738 crossref_primary_10_1097_JS9_0000000000000246 crossref_primary_10_1002_cti2_1514 crossref_primary_10_3389_fimmu_2023_1239179 crossref_primary_10_3390_v17030362 crossref_primary_10_1038_s41467_024_55087_z crossref_primary_10_1016_j_arabjc_2024_105614 crossref_primary_10_1007_s12519_023_00744_4 crossref_primary_10_1128_jvi_02049_24 crossref_primary_10_3390_ijms241713573 crossref_primary_10_1016_j_chroma_2025_465685 crossref_primary_10_1073_pnas_2305451120 crossref_primary_10_3390_v16020177 crossref_primary_10_1016_S1473_3099_23_00365_1 crossref_primary_10_1016_j_isci_2023_108254 crossref_primary_10_1371_journal_pone_0309808 crossref_primary_10_1016_j_ijbiomac_2023_125997 crossref_primary_10_22207_JPAM_17_2_20 crossref_primary_10_58318_2957_5702_2023_16_18_27 crossref_primary_10_1073_pnas_2313681121 crossref_primary_10_1038_s41598_024_53862_y crossref_primary_10_15406_jhvrv_2023_10_00264 crossref_primary_10_4103_njcp_njcp_208_23 crossref_primary_10_1002_advs_202406980 crossref_primary_10_3389_fmicb_2023_1294056 crossref_primary_10_1016_j_cellin_2023_100144 crossref_primary_10_1016_j_jmgm_2024_108813 crossref_primary_10_1016_j_xops_2023_100390 crossref_primary_10_1038_s41392_025_02154_6 crossref_primary_10_1016_j_jinf_2023_04_010 crossref_primary_10_3390_pathogens13040272 crossref_primary_10_1073_pnas_2221713120 crossref_primary_10_1038_s41598_024_68678_z crossref_primary_10_1016_j_jinf_2023_10_008 crossref_primary_10_1371_journal_ppat_1011901 crossref_primary_10_37737_ace_23005 crossref_primary_10_1016_j_heliyon_2024_e31011 crossref_primary_10_1016_j_xcrm_2023_101258 crossref_primary_10_1126_scitranslmed_adg7404 crossref_primary_10_1038_s41422_023_00880_6 crossref_primary_10_1016_j_isci_2024_108887 crossref_primary_10_1080_22221751_2023_2225638 crossref_primary_10_1021_jacs_3c11760 crossref_primary_10_1093_infdis_jiad019 crossref_primary_10_3390_v15102017 crossref_primary_10_1021_acsptsci_3c00306 crossref_primary_10_1038_s41598_024_80636_3 crossref_primary_10_3389_fimmu_2023_1220477 crossref_primary_10_3390_v16010132 crossref_primary_10_3390_vaccines12050505 crossref_primary_10_1038_s41467_023_39091_3 crossref_primary_10_1016_j_csbj_2023_02_019 crossref_primary_10_1093_rheumatology_kead391 crossref_primary_10_1016_j_immuni_2023_03_005 crossref_primary_10_1016_j_isci_2024_110728 crossref_primary_10_3390_v16060900 crossref_primary_10_1016_j_xcrm_2023_101267 crossref_primary_10_3389_fimmu_2023_1152899 crossref_primary_10_1073_pnas_2315354120 crossref_primary_10_1093_procel_pwae007 crossref_primary_10_1016_j_eclinm_2023_102109 crossref_primary_10_3390_microorganisms11102417 crossref_primary_10_1016_j_ijid_2024_107060 crossref_primary_10_1128_aac_00953_23 crossref_primary_10_3390_vaccines12060675 crossref_primary_10_1126_scitranslmed_adf4549 crossref_primary_10_2147_JMDH_S486098 crossref_primary_10_3389_fpubh_2024_1442291 crossref_primary_10_1016_j_eclinm_2024_102879 crossref_primary_10_15212_ZOONOSES_2023_1009 crossref_primary_10_3390_microorganisms12122591 crossref_primary_10_1016_j_celrep_2023_112443 crossref_primary_10_1186_s12929_023_00955_x crossref_primary_10_1016_j_ijbiomac_2023_124352 crossref_primary_10_3390_ijms25073833 crossref_primary_10_1016_j_gene_2024_148306 crossref_primary_10_1097_MD_0000000000034105 crossref_primary_10_3390_pharmaceutics15051538 crossref_primary_10_1016_j_omtn_2023_02_030 crossref_primary_10_1080_21645515_2023_2242747 crossref_primary_10_1093_infdis_jiae207 crossref_primary_10_1128_spectrum_00846_24 crossref_primary_10_3390_vaccines12060564 crossref_primary_10_1107_S2059798323005041 crossref_primary_10_3389_fcimb_2024_1406091 crossref_primary_10_3389_fmicb_2023_1217567 crossref_primary_10_1002_jmv_29145 crossref_primary_10_1038_s41467_024_46443_0 crossref_primary_10_1093_procel_pwad040 crossref_primary_10_1016_j_isci_2024_110624 crossref_primary_10_1016_j_xcrm_2023_101049 crossref_primary_10_1080_22221751_2024_2387447 crossref_primary_10_1080_22221751_2024_2406300 crossref_primary_10_1016_j_antiviral_2024_105917 crossref_primary_10_4049_jimmunol_2300675 crossref_primary_10_1038_s41421_023_00607_2 crossref_primary_10_1155_2023_6850772 crossref_primary_10_1016_j_antiviral_2023_105638 crossref_primary_10_1016_j_clim_2024_110424 crossref_primary_10_1016_j_jmsacl_2024_08_003 crossref_primary_10_1093_ve_veae074 crossref_primary_10_3389_fimmu_2024_1407149 crossref_primary_10_1038_s41421_024_00648_1 crossref_primary_10_36290_med_2023_032 crossref_primary_10_1080_21645515_2023_2278376 crossref_primary_10_3390_vaccines12030247 crossref_primary_10_1017_dmp_2024_19 crossref_primary_10_1111_trf_17485 crossref_primary_10_1016_j_ajt_2024_03_011 crossref_primary_10_1038_s41598_024_51729_w crossref_primary_10_3389_fimmu_2024_1442160 crossref_primary_10_3389_fimmu_2024_1501200 crossref_primary_10_1111_imr_13393 crossref_primary_10_1038_s42003_024_06015_w crossref_primary_10_1093_jleuko_qiad106 crossref_primary_10_1038_s44298_024_00063_z crossref_primary_10_1002_jmv_28625 crossref_primary_10_1128_jvi_00628_23 crossref_primary_10_1186_s12879_023_08944_z crossref_primary_10_1097_TP_0000000000005140 crossref_primary_10_1016_j_jinf_2023_05_018 crossref_primary_10_3389_fimmu_2023_1163159 crossref_primary_10_3389_fimmu_2024_1374486 crossref_primary_10_1016_j_diagmicrobio_2023_116071 crossref_primary_10_1093_nsr_nwae196 crossref_primary_10_1128_mbio_02407_23 crossref_primary_10_3324_haematol_2023_283015 crossref_primary_10_1038_s41467_024_45404_x crossref_primary_10_2174_0113816128280987240214103432 crossref_primary_10_1093_cid_ciad402 crossref_primary_10_1016_j_jcv_2023_105532 crossref_primary_10_1016_j_lanepe_2023_100623 crossref_primary_10_3343_alm_2023_0256 crossref_primary_10_1002_jmv_70130 crossref_primary_10_1002_jmv_28641 crossref_primary_10_1002_jmv_28884 crossref_primary_10_1186_s12951_025_03100_y crossref_primary_10_1016_j_immuni_2023_10_007 crossref_primary_10_1038_s41392_024_01846_9 crossref_primary_10_17816_EID607427 crossref_primary_10_1016_j_chom_2024_01_014 crossref_primary_10_1016_j_cell_2024_09_043 crossref_primary_10_1038_s41421_023_00575_7 crossref_primary_10_17816_clinpract322036 crossref_primary_10_1016_j_lanepe_2023_100755 crossref_primary_10_1038_s41467_023_41049_4 crossref_primary_10_3390_vaccines12040379 crossref_primary_10_3390_v16020184 crossref_primary_10_1016_j_antiviral_2024_105905 crossref_primary_10_1002_jmv_29738 crossref_primary_10_1186_s12985_024_02531_7 crossref_primary_10_1038_s41467_023_38435_3 crossref_primary_10_1128_spectrum_01793_23 crossref_primary_10_1016_j_crmeth_2024_100856 crossref_primary_10_3389_fimmu_2025_1513175 crossref_primary_10_3389_fmicb_2024_1466980 crossref_primary_10_3390_v16010036 crossref_primary_10_1038_s41467_023_36561_6 crossref_primary_10_1128_jvi_01989_24 crossref_primary_10_3389_fimmu_2023_1130398 crossref_primary_10_1002_mco2_675 crossref_primary_10_1016_j_celrep_2023_113444 crossref_primary_10_1016_j_cmi_2024_04_012 crossref_primary_10_1016_j_antiviral_2025_106092 crossref_primary_10_1021_acsomega_3c08326 crossref_primary_10_1038_s41392_024_02066_x crossref_primary_10_1038_s41541_023_00737_4 crossref_primary_10_1038_s41392_023_01556_8 crossref_primary_10_1128_mbio_01206_23 crossref_primary_10_1128_spectrum_02143_23 crossref_primary_10_1016_j_isci_2023_107689 crossref_primary_10_1111_bjh_19422 crossref_primary_10_1038_s41467_023_42527_5 crossref_primary_10_1016_j_molliq_2024_125059 crossref_primary_10_1038_s41598_023_50822_w crossref_primary_10_1021_acs_jpcb_3c06270 crossref_primary_10_1002_jmv_29877 crossref_primary_10_1002_jmv_29512 crossref_primary_10_1007_s44197_023_00084_6 crossref_primary_10_1016_j_celrep_2024_114520 crossref_primary_10_1016_j_ijantimicag_2023_107082 crossref_primary_10_1038_s41467_024_45050_3 crossref_primary_10_3390_v15051143 crossref_primary_10_1007_s11606_025_09386_w crossref_primary_10_1016_j_lanepe_2023_100612 crossref_primary_10_3389_fpubh_2024_1327093 crossref_primary_10_1016_j_intimp_2023_109968 crossref_primary_10_1038_s41564_023_01505_9 crossref_primary_10_1038_s41392_023_01653_8 crossref_primary_10_1038_s41467_024_45171_9 crossref_primary_10_1002_jmv_29520 crossref_primary_10_1016_j_xcrm_2023_101305 crossref_primary_10_1093_infdis_jiad095 crossref_primary_10_1038_s41586_023_06487_6 crossref_primary_10_3390_microorganisms12071436 crossref_primary_10_1016_j_ebiom_2023_104677 crossref_primary_10_1038_s41392_024_02043_4 crossref_primary_10_1016_S0140_6736_23_01367_3 crossref_primary_10_1177_10781552241284944 crossref_primary_10_1128_jvi_00822_23 crossref_primary_10_1136_bmj_p1074 crossref_primary_10_3389_fmed_2023_1103699 crossref_primary_10_3389_fviro_2023_1128253 crossref_primary_10_1093_bib_bbae183 crossref_primary_10_3390_v15041001 crossref_primary_10_1128_mbio_01587_23 crossref_primary_10_1002_jmv_28565 crossref_primary_10_1038_s41467_024_51770_3 crossref_primary_10_1038_s41392_023_01447_y crossref_primary_10_3389_fmicb_2023_1199561 crossref_primary_10_1039_D4CP01372G crossref_primary_10_1016_j_apsb_2024_12_003 crossref_primary_10_1080_14760584_2023_2211153 crossref_primary_10_3390_v15091940 crossref_primary_10_1093_cid_ciad716 crossref_primary_10_1016_j_ebiom_2023_104545 crossref_primary_10_1016_j_str_2023_11_015 crossref_primary_10_1016_j_isci_2023_106345 crossref_primary_10_1016_j_jvacx_2023_100372 crossref_primary_10_1016_j_immuni_2023_09_003 crossref_primary_10_3201_eid2912_230880 crossref_primary_10_36604_1998_5029_2023_88_59_68 crossref_primary_10_1038_s41467_024_45348_2 crossref_primary_10_1111_bjh_18782 crossref_primary_10_3390_vaccines13010017 crossref_primary_10_3390_v15091933 crossref_primary_10_1002_jmv_29664 crossref_primary_10_3390_microorganisms12071330 crossref_primary_10_1016_j_scitotenv_2023_164524 crossref_primary_10_3389_fped_2024_1325562 crossref_primary_10_1080_21645515_2024_2388344 crossref_primary_10_3390_v15091937 crossref_primary_10_1021_acs_jpcb_4c01341 crossref_primary_10_3390_v15122397 crossref_primary_10_1002_mco2_239 crossref_primary_10_1007_s40290_023_00473_z crossref_primary_10_1016_j_virusres_2024_199520 crossref_primary_10_1016_j_jneuroim_2023_578199 crossref_primary_10_3389_fimmu_2024_1494432 crossref_primary_10_3389_fimmu_2023_1258268 crossref_primary_10_2217_fvl_2023_0019 crossref_primary_10_1016_j_vaccine_2025_126853 crossref_primary_10_3390_v15030763 crossref_primary_10_1371_journal_ppat_1012246 crossref_primary_10_1002_mef2_70004 crossref_primary_10_1016_j_trre_2023_100788 crossref_primary_10_3390_biomedicines11061540 crossref_primary_10_1002_advs_202411737 crossref_primary_10_1038_s41598_023_43911_3 crossref_primary_10_1021_acs_jcim_3c00778 crossref_primary_10_1038_s41467_023_39567_2 crossref_primary_10_1080_22221751_2023_2297553 crossref_primary_10_1016_j_celrep_2023_113193 crossref_primary_10_1186_s12929_023_00936_0 crossref_primary_10_1016_j_cell_2023_04_007 crossref_primary_10_1016_j_ebiom_2025_105662 crossref_primary_10_1016_j_actatropica_2023_107042 crossref_primary_10_3390_covid3100108 crossref_primary_10_1016_j_lanwpc_2023_100759 crossref_primary_10_1080_22221751_2023_2249121 crossref_primary_10_1128_jvi_01137_23 crossref_primary_10_12677_acm_2024_1451694 crossref_primary_10_1371_journal_ppat_1012599 crossref_primary_10_1038_s41467_024_50903_y crossref_primary_10_1371_journal_pone_0292099 crossref_primary_10_12677_ACM_2023_1371631 crossref_primary_10_1038_s41586_024_07385_1 crossref_primary_10_3390_microorganisms11092336 crossref_primary_10_1007_s11262_023_02048_1 crossref_primary_10_1002_jmv_28900 crossref_primary_10_15789_2220_7619_AFO_17591 crossref_primary_10_1021_acs_jcim_3c01857 crossref_primary_10_3390_ijms24054609 crossref_primary_10_1038_s41423_023_00988_0 crossref_primary_10_1038_s41467_024_46536_w crossref_primary_10_3390_biom15020301 crossref_primary_10_1126_scitranslmed_ado9026 crossref_primary_10_1007_s10719_024_10150_1 crossref_primary_10_1038_s41598_023_44484_x crossref_primary_10_1128_msphere_00105_24 crossref_primary_10_3389_fmed_2024_1414331 crossref_primary_10_1016_j_ijregi_2024_100379 crossref_primary_10_1016_j_jiph_2024_04_003 crossref_primary_10_52547_payesh_22_1_105 crossref_primary_10_1016_j_bios_2024_116426 crossref_primary_10_1016_j_omtm_2024_101380 crossref_primary_10_47184_td_2023_04_05 crossref_primary_10_1038_s41586_023_06753_7 crossref_primary_10_1248_bpb_b23_00639 crossref_primary_10_1038_s41467_024_46490_7 crossref_primary_10_1080_21645515_2024_2448405 crossref_primary_10_1126_sciadv_adq3342 crossref_primary_10_1016_j_celrep_2023_113292 crossref_primary_10_1016_j_vaccine_2024_126308 crossref_primary_10_1186_s12951_024_02329_3 crossref_primary_10_2217_fvl_2023_0048 crossref_primary_10_1016_S1473_3099_23_00208_6 crossref_primary_10_1016_j_ijbiomac_2024_133706 crossref_primary_10_1371_journal_ppat_1012456 crossref_primary_10_1016_j_heliyon_2024_e29939 crossref_primary_10_7759_cureus_57898 crossref_primary_10_1016_j_heliyon_2024_e26423 crossref_primary_10_1038_s41598_024_67828_7 crossref_primary_10_1016_S2213_2600_23_00306_5 crossref_primary_10_3390_vaccines12020144 crossref_primary_10_1002_jmv_28805 crossref_primary_10_3390_v15061398 crossref_primary_10_1186_s12939_024_02110_w crossref_primary_10_7759_cureus_48824 crossref_primary_10_1016_j_virol_2025_110508 crossref_primary_10_1080_22221751_2023_2270069 crossref_primary_10_1016_j_infpip_2024_100383 crossref_primary_10_1016_j_celrep_2023_112075 crossref_primary_10_1016_j_micinf_2024_105461 crossref_primary_10_1126_sciadv_adj9945 crossref_primary_10_26634_jcir_12_1_20676 crossref_primary_10_3389_fimmu_2023_1204543 crossref_primary_10_1038_s41746_024_01287_2 crossref_primary_10_1016_j_puhip_2024_100494 crossref_primary_10_3390_vaccines12090989 crossref_primary_10_1038_s41467_024_54734_9 crossref_primary_10_1080_22221751_2024_2404166 crossref_primary_10_3389_fendo_2023_1227059 crossref_primary_10_1038_s41421_023_00609_0 crossref_primary_10_1016_j_isci_2024_110174 crossref_primary_10_3390_ijms25084281 crossref_primary_10_3389_fcimb_2024_1381877 crossref_primary_10_1016_j_jfma_2024_08_021 crossref_primary_10_1016_j_it_2023_03_010 crossref_primary_10_1038_s41551_025_01353_4 crossref_primary_10_3390_microorganisms12050846 crossref_primary_10_4110_in_2023_23_e43 crossref_primary_10_1172_JCI166844 crossref_primary_10_3390_vaccines13030262 crossref_primary_10_3390_vaccines12020129 crossref_primary_10_3389_fimmu_2023_1259386 crossref_primary_10_1002_jmv_70242 crossref_primary_10_1093_ofid_ofae038 crossref_primary_10_1002_jmv_29917 crossref_primary_10_1038_s41586_023_06750_w crossref_primary_10_1002_mco2_539 crossref_primary_10_1002_jmv_29801 crossref_primary_10_1002_mco2_779 crossref_primary_10_1007_s11427_023_2393_3 crossref_primary_10_1038_s41590_024_01743_x crossref_primary_10_1038_s41598_024_62874_7 crossref_primary_10_3389_fimmu_2023_1170759 crossref_primary_10_1016_j_it_2024_06_003 crossref_primary_10_1016_j_virol_2023_06_005 crossref_primary_10_1038_s41467_024_49096_1 crossref_primary_10_1002_ajh_27198 crossref_primary_10_1111_pbi_14458 crossref_primary_10_3390_pathogens12091108 crossref_primary_10_1021_acsomega_4c03023 crossref_primary_10_3390_diagnostics13223467 crossref_primary_10_1016_j_chom_2023_11_012 crossref_primary_10_3389_fimmu_2024_1382944 crossref_primary_10_1002_mco2_642 crossref_primary_10_1038_s41467_024_52194_9 crossref_primary_10_3389_fcimb_2023_1179552 crossref_primary_10_1016_j_virusres_2024_199358 crossref_primary_10_3390_v16050697 crossref_primary_10_1002_advs_202402975 crossref_primary_10_1016_j_cell_2023_12_025 crossref_primary_10_3390_microorganisms11040912 crossref_primary_10_3390_vaccines11020232 crossref_primary_10_1016_j_cell_2023_12_026 crossref_primary_10_1080_22221751_2023_2245921 crossref_primary_10_1128_jcm_00042_24 crossref_primary_10_3390_biomedicines11061677 crossref_primary_10_1007_s10822_023_00526_0 crossref_primary_10_1097_MD_0000000000040341 crossref_primary_10_1039_D3CC02721J crossref_primary_10_1002_jmv_29822 crossref_primary_10_1128_jvi_00286_23 crossref_primary_10_1038_s41590_024_01744_w crossref_primary_10_1016_j_virol_2024_110241 crossref_primary_10_3389_fimmu_2023_1133225 crossref_primary_10_1016_j_celrep_2024_114235 crossref_primary_10_1016_j_bsheal_2025_01_001 |
Cites_doi | 10.1126/scitranslmed.abn6859 10.1038/nmeth.1923 10.1038/s41586-022-05053-w 10.1016/j.chom.2022.03.035 10.1001/jama.2021.19499 10.1056/NEJMoa2202826 10.1093/ofid/ofac464 10.1038/s41564-022-01198-6 10.1038/s41422-021-00555-0 10.1038/s41467-022-31259-7 10.1038/s41586-022-04581-9 10.1038/s41586-020-2852-1 10.1371/journal.pone.0128036 10.1038/s41591-022-01840-0 10.1038/s41586-021-04389-z 10.1038/s41586-021-04388-0 10.1038/s41586-020-2548-6 10.1093/ve/veab064 10.1126/sciimmunol.add5446 10.1038/s41586-022-04466-x 10.1126/science.1097211 10.1038/nbt.1754 10.1038/s41586-021-03398-2 10.14806/ej.17.1.200 10.1038/s41586-022-04594-4 10.1016/j.immuni.2022.04.003 10.1128/msphere.00179-22 10.1038/s41586-022-04980-y 10.1001/jamainternmed.2022.4299 10.1016/j.celrep.2022.110812 10.1038/s41586-020-2571-7 10.1056/NEJMc2212117 10.1016/j.chom.2022.09.002 10.1038/s41422-022-00677-z 10.1001/jama.2022.11691 10.1038/d41586-022-03445-6 10.1038/s41586-022-05644-7 10.1126/science.abc0870 10.1016/j.chom.2022.09.018 10.1126/science.abb2507 10.1001/jama.2022.17876 10.1126/science.abm8143 10.1038/s41586-020-2349-y 10.1038/s41422-021-00514-9 10.1016/j.cell.2022.05.014 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. 2022 The Author(s) 2022 |
Copyright_xml | – notice: 2022 The Author(s) – notice: Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2022 The Author(s) 2022 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2022.12.018 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 286.e8 |
ExternalDocumentID | PMC9747694 36580913 10_1016_j_cell_2022_12_018 S0092867422015318 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: T32 AI100852 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAFWJ AAHBH AAKRW AAKUH AALRI AAMRU AAVLU AAXUO ABCQX ABJNI ABMAC ABOCM ACGFO ACGFS ACNCT ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A O-L O9- OK1 P2P RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT WH7 YZZ ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAIKJ AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKBMS AKYEP APXCP CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- RIG UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c488t-bf9ec94b9ebb4672fa52b81bca3f5bfd6225d388506f1fbc5466d3bd95f496f73 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 18:39:32 EDT 2025 Fri Aug 22 20:41:16 EDT 2025 Fri Jul 11 02:14:39 EDT 2025 Mon Jul 21 05:45:33 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Tue Jul 01 05:18:16 EDT 2025 Sun Apr 06 06:53:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | COVID-19 receptor binding affinity SARS-CoV-2 neutralizing monoclonal antibody XBB antibody evasion XBB.1 BQ.1 BQ.1.1 mRNA vaccine |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c488t-bf9ec94b9ebb4672fa52b81bca3f5bfd6225d388506f1fbc5466d3bd95f496f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally Lead contact |
ORCID | 0000-0003-1627-149X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867422015318 |
PMID | 36580913 |
PQID | 2759957966 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9747694 proquest_miscellaneous_3153775938 proquest_miscellaneous_2759957966 pubmed_primary_36580913 crossref_citationtrail_10_1016_j_cell_2022_12_018 crossref_primary_10_1016_j_cell_2022_12_018 elsevier_sciencedirect_doi_10_1016_j_cell_2022_12_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-19 |
PublicationDateYYYYMMDD | 2023-01-19 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2023 |
Publisher | Elsevier Inc The Author(s). Published by Elsevier Inc |
Publisher_xml | – name: Elsevier Inc – name: The Author(s). Published by Elsevier Inc |
References | Nutalai, Zhou, Tuekprakhon, Ginn, Supasa, Liu, Huo, Mentzer, Duyvesteyn, Dijokaite-Guraliuc (bib11) 2022; 185 Lin, Gu, Xu, Wheeler, Young, Sunny, Moore, Zeng (bib30) 2022; 328 Wang, Muecksch, Cho, Gaebler, Hoffmann, Ramos, Zong, Cipolla, Johnson, Schmidt (bib25) 2022; 55 Planas, Saunders, Maes, Guivel-Benhassine, Planchais, Buchrieser, Bolland, Porrot, Staropoli, Lemoine (bib50) 2022; 602 Price, Olson, Newhams, Halasa, Boom, Sahni, Pannaraj, Irby, Bline, Maddux (bib32) 2022; 386 Wang, Guo, Iketani, Nair, Li, Mohri, Wang, Yu, Bowen, Chang (bib2) 2022; 608 Wang, Jia, Bao, Wang, Cao, Chi, Hu, Li, Zhou, Jiang (bib14) 2022; 603 Cao, Jian, Wang, Yu, Song, Yisimayi, Wang, An, Chen, Zhang (bib48) 2022 Wang, Bowen, Valdez, Gherasim, Gordon, Liu, Ho (bib28) 2022 Havers, Pham, Taylor, Whitaker, Patel, Anglin, Kambhampati, Milucky, Zell, Moline (bib31) 2022; 182 Ayoubkhani, Bosworth, King, Pouwels, Glickman, Nafilyan, Zaccardi, Khunti, Alwan, Walker (bib35) 2022; 9 Cao, Song, Wang, Liu, Yue, Jian, Yu, Yisimayi, Wang, Wang (bib47) 2022; 30 Park, De Marco, Starr, Liu, Pinto, Walls, Zatta, Zepeda, Bowen, Sprouse (bib10) 2022; 375 Zost, Gilchuk, Case, Binshtein, Chen, Nkolola, Schäfer, Reidy, Trivette, Nargi (bib16) 2020; 584 Wang, Iketani, Li, Guo, Yeh, Liu, Yu, Sheng, Huang, Liu, Ho (bib4) 2022; 30 Simon, Kota, Bloomquist, Hanley, Forgacs, Pahwa, Pallikkuth, Miller, Schaenman, Yeaman (bib41) 2022; 7 Tenforde, Self, Adams, Gaglani, Ginde, McNeal, Ghamande, Douin, Talbot, Casey (bib29) 2021; 326 Luo, Zhang, Kreutzberger, Eaton, Edwards, Jing, Dai, Sempowski, Cronin, Parks (bib20) 2022; 7 O'Toole, Scher, Underwood, Jackson, Hill, McCrone, Colquhoun, Ruis, Abu-Dahab, Taylor (bib6) 2021; 7 Pinto, Park, Beltramello, Walls, Tortorici, Bianchi, Jaconi, Culap, Zatta, De Marco (bib18) 2020; 583 Robinson, Thorvaldsdóttir, Winckler, Guttman, Lander, Getz, Mesirov (bib40) 2011; 29 Liu, Iketani, Guo, Chan, Wang, Liu, Luo, Chu, Huang, Nair (bib1) 2022; 602 Barnes, Jette, Abernathy, Dam, Esswein, Gristick, Malyutin, Sharaf, Huey-Tubman, Lee (bib9) 2020; 588 Westendorf, Žentelis, Wang, Foster, Vaillancourt, Wiggin, Lovett, van der Lee, Hendle, Pustilnik (bib17) 2022; 39 Du, Liu, Zhang, Xiao, Yasimayi, Huang, Wang, Cao, Xie, Xiao (bib22) 2021; 31 Baym, Kryazhimskiy, Lieberman, Chung, Desai, Kishony (bib43) 2015; 10 Wang, Chen, Tan, Yue, Zhou, Xu, Lin, Yang, Zhou, Deng (bib23) 2022; 30 Hong, Han, Li, Xu, Wang, Xu, Li, Wang, Zhang, Huang, Cong (bib26) 2022; 604 Al-Aly, Bowe, Xie (bib34) 2022; 28 Liu, Wang, Nair, Yu, Rapp, Wang, Luo, Chan, Sahi, Figueroa (bib42) 2020; 584 Wang, Li, Ho, Guo, Yeh, Mohri, Liu, Wang, Yu, Shah (bib5) 2022 Hachmann, Miller, Collier, Barouch (bib49) 2022; 387 Langmead, Salzberg (bib39) 2012; 9 Cao, Yisimayi, Jian, Song, Xiao, Wang, Du, Wang, Li, Chen (bib21) 2022; 608 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib44) 2020; 367 Cao, Yisimayi, Jian, Song, Xiao, Wang, Li, Chen, Yu, Wang (bib46) 2022; 608 Cao, Yisimayi, Bai, Huang, Li, Zhang, Yuan, An, Wang, Xiao (bib12) 2021; 31 Wang, Nair, Liu, Iketani, Luo, Guo, Wang, Yu, Zhang, Kwong (bib36) 2021; 593 Wang, Fu, Bao, Jia, Zhang, Zhou, Wu, Wu, Zhang, Gao (bib13) 2022; 32 Azzolini, Levi, Sarti, Pozzi, Mollura, Mantovani, Rescigno (bib33) 2022; 328 Iketani, Liu, Guo, Liu, Chan, Huang, Wang, Luo, Yu, Chu (bib3) 2022; 604 Smith, Lapedes, de Jong, Bestebroer, Rimmelzwaan, Osterhaus, Fouchier (bib8) 2004; 305 Liu, Iketani, Guo, Reddem, Casner, Nair, Yu, Chan, Wang, Cerutti (bib24) 2022; 14 Martin (bib38) 2011; 17 Fenwick, Turelli, Ni, Perez, Lau, Herate, Marlin, Lana, Pellaton, Raclot (bib19) 2022; 7 Zhou, Zhou, Tang, Chan, Luo, Peng, Yuan, Liu, Mok, Chen (bib15) 2022; 13 Starr, Greaney, Stewart, Walls, Hannon, Veesler, Bloom (bib27) 2022 Chan, Dorosky, Sharma, Abbasi, Dye, Kranz, Herbert, Procko (bib37) 2020; 369 Wilks, Mühlemann, Shen, Türeli, LeGresley, Netzl, Caniza, Chacaltana-Huarcaya, Corman, Daniell (bib45) 2022 Callaway (bib7) 2022; 611 Planas (10.1016/j.cell.2022.12.018_bib50) 2022; 602 Liu (10.1016/j.cell.2022.12.018_bib1) 2022; 602 Wrapp (10.1016/j.cell.2022.12.018_bib44) 2020; 367 Liu (10.1016/j.cell.2022.12.018_bib42) 2020; 584 Westendorf (10.1016/j.cell.2022.12.018_bib17) 2022; 39 Pinto (10.1016/j.cell.2022.12.018_bib18) 2020; 583 Robinson (10.1016/j.cell.2022.12.018_bib40) 2011; 29 Fenwick (10.1016/j.cell.2022.12.018_bib19) 2022; 7 Martin (10.1016/j.cell.2022.12.018_bib38) 2011; 17 Langmead (10.1016/j.cell.2022.12.018_bib39) 2012; 9 Wang (10.1016/j.cell.2022.12.018_bib2) 2022; 608 Wang (10.1016/j.cell.2022.12.018_bib14) 2022; 603 Cao (10.1016/j.cell.2022.12.018_bib12) 2021; 31 Azzolini (10.1016/j.cell.2022.12.018_bib33) 2022; 328 Nutalai (10.1016/j.cell.2022.12.018_bib11) 2022; 185 Cao (10.1016/j.cell.2022.12.018_bib21) 2022; 608 Lin (10.1016/j.cell.2022.12.018_bib30) 2022; 328 Baym (10.1016/j.cell.2022.12.018_bib43) 2015; 10 Barnes (10.1016/j.cell.2022.12.018_bib9) 2020; 588 Luo (10.1016/j.cell.2022.12.018_bib20) 2022; 7 Starr (10.1016/j.cell.2022.12.018_bib27) 2022 Ayoubkhani (10.1016/j.cell.2022.12.018_bib35) 2022; 9 Wang (10.1016/j.cell.2022.12.018_bib36) 2021; 593 Callaway (10.1016/j.cell.2022.12.018_bib7) 2022; 611 O'Toole (10.1016/j.cell.2022.12.018_bib6) 2021; 7 Wang (10.1016/j.cell.2022.12.018_bib23) 2022; 30 Wang (10.1016/j.cell.2022.12.018_bib25) 2022; 55 Wang (10.1016/j.cell.2022.12.018_bib5) 2022 Park (10.1016/j.cell.2022.12.018_bib10) 2022; 375 Iketani (10.1016/j.cell.2022.12.018_bib3) 2022; 604 Cao (10.1016/j.cell.2022.12.018_bib47) 2022; 30 Smith (10.1016/j.cell.2022.12.018_bib8) 2004; 305 Chan (10.1016/j.cell.2022.12.018_bib37) 2020; 369 Price (10.1016/j.cell.2022.12.018_bib32) 2022; 386 Zhou (10.1016/j.cell.2022.12.018_bib15) 2022; 13 Cao (10.1016/j.cell.2022.12.018_bib48) 2022 Wilks (10.1016/j.cell.2022.12.018_bib45) 2022 Al-Aly (10.1016/j.cell.2022.12.018_bib34) 2022; 28 Wang (10.1016/j.cell.2022.12.018_bib4) 2022; 30 Wang (10.1016/j.cell.2022.12.018_bib13) 2022; 32 Hong (10.1016/j.cell.2022.12.018_bib26) 2022; 604 Liu (10.1016/j.cell.2022.12.018_bib24) 2022; 14 Tenforde (10.1016/j.cell.2022.12.018_bib29) 2021; 326 Wang (10.1016/j.cell.2022.12.018_bib28) 2022 Simon (10.1016/j.cell.2022.12.018_bib41) 2022; 7 Hachmann (10.1016/j.cell.2022.12.018_bib49) 2022; 387 Cao (10.1016/j.cell.2022.12.018_bib46) 2022; 608 Zost (10.1016/j.cell.2022.12.018_bib16) 2020; 584 Du (10.1016/j.cell.2022.12.018_bib22) 2021; 31 Havers (10.1016/j.cell.2022.12.018_bib31) 2022; 182 |
References_xml | – volume: 375 start-page: 449 year: 2022 end-page: 454 ident: bib10 article-title: Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry publication-title: Science – volume: 28 start-page: 1461 year: 2022 end-page: 1467 ident: bib34 article-title: Long COVID after breakthrough SARS-CoV-2 infection publication-title: Nat. Med. – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: bib39 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods – volume: 55 start-page: 998 year: 2022 end-page: 1012.e8 ident: bib25 article-title: Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins publication-title: Immunity – volume: 7 start-page: 1376 year: 2022 end-page: 1389 ident: bib19 article-title: Patient-derived monoclonal antibody neutralizes SARS-CoV-2 Omicron variants and confers full protection in monkeys publication-title: Nat. Microbiol. – volume: 7 start-page: e0017922 year: 2022 ident: bib41 article-title: PARIS and SPARTA: Finding the Achilles' Heel of SARS-CoV-2 publication-title: mSphere – volume: 30 start-page: 1527 year: 2022 end-page: 1539 ident: bib47 article-title: Characterization of the enhanced infectivity and antibody evasion of Omicron BA.2.75 publication-title: Cell Host Microbe – volume: 7 start-page: veab064 year: 2021 ident: bib6 article-title: Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool publication-title: Virus Evol. – volume: 608 start-page: 593 year: 2022 end-page: 602 ident: bib21 article-title: BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection publication-title: Nature – volume: 9 start-page: ofac464 year: 2022 ident: bib35 article-title: Risk of Long COVID in People Infected With Severe Acute Respiratory Syndrome Coronavirus 2 After 2 Doses of a Coronavirus Disease 2019 Vaccine: Community-Based, Matched Cohort Study publication-title: Open Forum Infect. Dis. – volume: 30 start-page: 887 year: 2022 end-page: 895.e4 ident: bib23 article-title: 35B5 antibody potently neutralizes SARS-CoV-2 Omicron by disrupting the N-glycan switch via a conserved spike epitope publication-title: Cell Host Microbe – volume: 305 start-page: 371 year: 2004 end-page: 376 ident: bib8 article-title: Mapping the antigenic and genetic evolution of influenza virus publication-title: Science – volume: 584 start-page: 450 year: 2020 end-page: 456 ident: bib42 article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike publication-title: Nature – volume: 608 start-page: 593 year: 2022 end-page: 602 ident: bib46 article-title: BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection publication-title: Nature – volume: 602 start-page: 671 year: 2022 end-page: 675 ident: bib50 article-title: Considerable escape of SARS-CoV-2 Omicron to antibody neutralization publication-title: Nature – volume: 387 start-page: 1904 year: 2022 end-page: 1906 ident: bib49 article-title: Neutralization Escape by SARS-CoV-2 Omicron Subvariant BA.4.6 publication-title: N Engl J Med – volume: 588 start-page: 682 year: 2020 end-page: 687 ident: bib9 article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies publication-title: Nature – volume: 29 start-page: 24 year: 2011 end-page: 26 ident: bib40 article-title: Integrative genomics viewer publication-title: Nat. Biotechnol. – volume: 14 start-page: eabn6859 year: 2022 ident: bib24 article-title: An antibody class with a common CDRH3 motif broadly neutralizes sarbecoviruses publication-title: Sci. Transl. Med. – year: 2022 ident: bib28 article-title: Antibody responses to Omicron BA.4/BA.5 bivalent mRNA vaccine booster shot publication-title: bioRxiv – volume: 30 start-page: 1512 year: 2022 end-page: 1517 ident: bib4 article-title: Antigenic characterization of the SARS-CoV-2 Omicron subvariant BA.2.75 publication-title: Cell Host Microbe – volume: 31 start-page: 732 year: 2021 end-page: 741 ident: bib12 article-title: Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines publication-title: Cell Res. – volume: 584 start-page: 443 year: 2020 end-page: 449 ident: bib16 article-title: Potently neutralizing and protective human antibodies against SARS-CoV-2 publication-title: Nature – volume: 7 start-page: eadd5446 year: 2022 ident: bib20 article-title: An antibody from single human VH-rearranging mouse neutralizes all SARS-CoV-2 variants through BA.5 by inhibiting membrane fusion publication-title: Sci. Immunol. – volume: 369 start-page: 1261 year: 2020 end-page: 1265 ident: bib37 article-title: Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2 publication-title: Science – volume: 328 start-page: 676 year: 2022 end-page: 678 ident: bib33 article-title: Association Between BNT162b2 Vaccination and Long COVID After Infections Not Requiring Hospitalization in Health Care Workers publication-title: JAMA – volume: 328 start-page: 1415 year: 2022 end-page: 1426 ident: bib30 article-title: Association of Primary and Booster Vaccination and Prior Infection With SARS-CoV-2 Infection and Severe COVID-19 Outcomes publication-title: JAMA – volume: 326 start-page: 2043 year: 2021 end-page: 2054 ident: bib29 article-title: Association Between mRNA Vaccination and COVID-19 Hospitalization and Disease Severity publication-title: JAMA – volume: 608 start-page: 603 year: 2022 end-page: 608 ident: bib2 article-title: Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4, & BA.5 publication-title: Nature – volume: 17 start-page: 10 year: 2011 end-page: 12 ident: bib38 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet. journal – volume: 32 start-page: 691 year: 2022 end-page: 694 ident: bib13 article-title: Selection and structural bases of potent broadly neutralizing antibodies from 3-dose vaccinees that are highly effective against diverse SARS-CoV-2 variants, including Omicron sublineages publication-title: Cell Res. – volume: 386 start-page: 1899 year: 2022 end-page: 1909 ident: bib32 article-title: BNT162b2 Protection against the Omicron Variant in Children and Adolescents publication-title: N. Engl. J. Med. – volume: 583 start-page: 290 year: 2020 end-page: 295 ident: bib18 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature – volume: 611 start-page: 213 year: 2022 end-page: 214 ident: bib7 article-title: COVID 'variant soup' is making winter surges hard to predict publication-title: Nature – volume: 185 start-page: 2116 year: 2022 end-page: 2131.e18 ident: bib11 article-title: Potent cross-reactive antibodies following Omicron breakthrough in vaccinees publication-title: Cell – volume: 13 start-page: 3589 year: 2022 ident: bib15 article-title: A broadly neutralizing antibody protects Syrian hamsters against SARS-CoV-2 Omicron challenge publication-title: Nat. Commun. – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: bib44 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 603 start-page: 919 year: 2022 end-page: 925 ident: bib14 article-title: Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants publication-title: Nature – volume: 182 start-page: 1071 year: 2022 end-page: 1081 ident: bib31 article-title: COVID-19-Associated Hospitalizations Among Vaccinated and Unvaccinated Adults 18 Years or Older in 13 US States, January 2021 to April 2022 publication-title: JAMA Intern. Med. – volume: 593 start-page: 130 year: 2021 end-page: 135 ident: bib36 article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 publication-title: Nature – volume: 604 start-page: 553 year: 2022 end-page: 556 ident: bib3 article-title: Antibody evasion properties of SARS-CoV-2 Omicron sublineages publication-title: Nature – volume: 39 start-page: 110812 year: 2022 ident: bib17 article-title: LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants publication-title: Cell Rep. – volume: 31 start-page: 1130 year: 2021 end-page: 1133 ident: bib22 article-title: Structures of SARS-CoV-2 B.1.351 neutralizing antibodies provide insights into cocktail design against concerning variants publication-title: Cell Res. – start-page: 00694 year: 2022 end-page: 00696 ident: bib5 article-title: Resistance of SARS-CoV-2 omicron subvariant BA.4.6 to antibody neutralisation publication-title: Lancet Infect. Dis. – year: 2022 ident: bib45 article-title: Mapping SARS-CoV-2 antigenic relationships and serological responses publication-title: bioRxiv – year: 2022 ident: bib27 article-title: Deep mutational scans for ACE2 binding, RBD expression, and antibody escape in the SARS-CoV-2 Omicron BA.1 and BA.2 receptor-binding domains publication-title: bioRxiv – volume: 604 start-page: 546 year: 2022 end-page: 552 ident: bib26 article-title: Molecular basis of receptor binding and antibody neutralization of Omicron publication-title: Nature – volume: 10 start-page: e0128036 year: 2015 ident: bib43 article-title: Inexpensive multiplexed library preparation for megabase-sized genomes publication-title: PLoS One – volume: 602 start-page: 676 year: 2022 end-page: 681 ident: bib1 article-title: Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2 publication-title: Nature – year: 2022 ident: bib48 article-title: Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution publication-title: Nature – volume: 14 start-page: eabn6859 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib24 article-title: An antibody class with a common CDRH3 motif broadly neutralizes sarbecoviruses publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abn6859 – year: 2022 ident: 10.1016/j.cell.2022.12.018_bib45 article-title: Mapping SARS-CoV-2 antigenic relationships and serological responses publication-title: bioRxiv – volume: 9 start-page: 357 year: 2012 ident: 10.1016/j.cell.2022.12.018_bib39 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 608 start-page: 603 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib2 article-title: Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4, & BA.5 publication-title: Nature doi: 10.1038/s41586-022-05053-w – volume: 30 start-page: 887 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib23 article-title: 35B5 antibody potently neutralizes SARS-CoV-2 Omicron by disrupting the N-glycan switch via a conserved spike epitope publication-title: Cell Host Microbe doi: 10.1016/j.chom.2022.03.035 – volume: 326 start-page: 2043 year: 2021 ident: 10.1016/j.cell.2022.12.018_bib29 article-title: Association Between mRNA Vaccination and COVID-19 Hospitalization and Disease Severity publication-title: JAMA doi: 10.1001/jama.2021.19499 – volume: 386 start-page: 1899 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib32 article-title: BNT162b2 Protection against the Omicron Variant in Children and Adolescents publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2202826 – start-page: 00694 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib5 article-title: Resistance of SARS-CoV-2 omicron subvariant BA.4.6 to antibody neutralisation publication-title: Lancet Infect. Dis. – volume: 9 start-page: ofac464 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib35 article-title: Risk of Long COVID in People Infected With Severe Acute Respiratory Syndrome Coronavirus 2 After 2 Doses of a Coronavirus Disease 2019 Vaccine: Community-Based, Matched Cohort Study publication-title: Open Forum Infect. Dis. doi: 10.1093/ofid/ofac464 – volume: 7 start-page: 1376 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib19 article-title: Patient-derived monoclonal antibody neutralizes SARS-CoV-2 Omicron variants and confers full protection in monkeys publication-title: Nat. Microbiol. doi: 10.1038/s41564-022-01198-6 – volume: 31 start-page: 1130 year: 2021 ident: 10.1016/j.cell.2022.12.018_bib22 article-title: Structures of SARS-CoV-2 B.1.351 neutralizing antibodies provide insights into cocktail design against concerning variants publication-title: Cell Res. doi: 10.1038/s41422-021-00555-0 – volume: 13 start-page: 3589 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib15 article-title: A broadly neutralizing antibody protects Syrian hamsters against SARS-CoV-2 Omicron challenge publication-title: Nat. Commun. doi: 10.1038/s41467-022-31259-7 – volume: 604 start-page: 546 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib26 article-title: Molecular basis of receptor binding and antibody neutralization of Omicron publication-title: Nature doi: 10.1038/s41586-022-04581-9 – volume: 588 start-page: 682 year: 2020 ident: 10.1016/j.cell.2022.12.018_bib9 article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies publication-title: Nature doi: 10.1038/s41586-020-2852-1 – year: 2022 ident: 10.1016/j.cell.2022.12.018_bib27 article-title: Deep mutational scans for ACE2 binding, RBD expression, and antibody escape in the SARS-CoV-2 Omicron BA.1 and BA.2 receptor-binding domains publication-title: bioRxiv – volume: 10 start-page: e0128036 year: 2015 ident: 10.1016/j.cell.2022.12.018_bib43 article-title: Inexpensive multiplexed library preparation for megabase-sized genomes publication-title: PLoS One doi: 10.1371/journal.pone.0128036 – volume: 28 start-page: 1461 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib34 article-title: Long COVID after breakthrough SARS-CoV-2 infection publication-title: Nat. Med. doi: 10.1038/s41591-022-01840-0 – volume: 602 start-page: 671 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib50 article-title: Considerable escape of SARS-CoV-2 Omicron to antibody neutralization publication-title: Nature doi: 10.1038/s41586-021-04389-z – volume: 602 start-page: 676 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib1 article-title: Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-021-04388-0 – volume: 584 start-page: 443 year: 2020 ident: 10.1016/j.cell.2022.12.018_bib16 article-title: Potently neutralizing and protective human antibodies against SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-020-2548-6 – volume: 7 start-page: veab064 year: 2021 ident: 10.1016/j.cell.2022.12.018_bib6 article-title: Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool publication-title: Virus Evol. doi: 10.1093/ve/veab064 – volume: 7 start-page: eadd5446 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib20 article-title: An antibody from single human VH-rearranging mouse neutralizes all SARS-CoV-2 variants through BA.5 by inhibiting membrane fusion publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.add5446 – volume: 603 start-page: 919 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib14 article-title: Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants publication-title: Nature doi: 10.1038/s41586-022-04466-x – volume: 305 start-page: 371 year: 2004 ident: 10.1016/j.cell.2022.12.018_bib8 article-title: Mapping the antigenic and genetic evolution of influenza virus publication-title: Science doi: 10.1126/science.1097211 – volume: 29 start-page: 24 year: 2011 ident: 10.1016/j.cell.2022.12.018_bib40 article-title: Integrative genomics viewer publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1754 – year: 2022 ident: 10.1016/j.cell.2022.12.018_bib28 article-title: Antibody responses to Omicron BA.4/BA.5 bivalent mRNA vaccine booster shot publication-title: bioRxiv – volume: 593 start-page: 130 year: 2021 ident: 10.1016/j.cell.2022.12.018_bib36 article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 publication-title: Nature doi: 10.1038/s41586-021-03398-2 – volume: 17 start-page: 10 year: 2011 ident: 10.1016/j.cell.2022.12.018_bib38 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet. journal doi: 10.14806/ej.17.1.200 – volume: 604 start-page: 553 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib3 article-title: Antibody evasion properties of SARS-CoV-2 Omicron sublineages publication-title: Nature doi: 10.1038/s41586-022-04594-4 – volume: 55 start-page: 998 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib25 article-title: Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins publication-title: Immunity doi: 10.1016/j.immuni.2022.04.003 – volume: 7 start-page: e0017922 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib41 article-title: PARIS and SPARTA: Finding the Achilles' Heel of SARS-CoV-2 publication-title: mSphere doi: 10.1128/msphere.00179-22 – volume: 608 start-page: 593 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib46 article-title: BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection publication-title: Nature doi: 10.1038/s41586-022-04980-y – volume: 182 start-page: 1071 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib31 article-title: COVID-19-Associated Hospitalizations Among Vaccinated and Unvaccinated Adults 18 Years or Older in 13 US States, January 2021 to April 2022 publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2022.4299 – volume: 39 start-page: 110812 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib17 article-title: LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.110812 – volume: 584 start-page: 450 year: 2020 ident: 10.1016/j.cell.2022.12.018_bib42 article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike publication-title: Nature doi: 10.1038/s41586-020-2571-7 – volume: 387 start-page: 1904 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib49 article-title: Neutralization Escape by SARS-CoV-2 Omicron Subvariant BA.4.6 publication-title: N Engl J Med doi: 10.1056/NEJMc2212117 – volume: 30 start-page: 1512 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib4 article-title: Antigenic characterization of the SARS-CoV-2 Omicron subvariant BA.2.75 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2022.09.002 – volume: 32 start-page: 691 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib13 article-title: Selection and structural bases of potent broadly neutralizing antibodies from 3-dose vaccinees that are highly effective against diverse SARS-CoV-2 variants, including Omicron sublineages publication-title: Cell Res. doi: 10.1038/s41422-022-00677-z – volume: 328 start-page: 676 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib33 article-title: Association Between BNT162b2 Vaccination and Long COVID After Infections Not Requiring Hospitalization in Health Care Workers publication-title: JAMA doi: 10.1001/jama.2022.11691 – volume: 611 start-page: 213 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib7 article-title: COVID 'variant soup' is making winter surges hard to predict publication-title: Nature doi: 10.1038/d41586-022-03445-6 – year: 2022 ident: 10.1016/j.cell.2022.12.018_bib48 article-title: Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution publication-title: Nature doi: 10.1038/s41586-022-05644-7 – volume: 608 start-page: 593 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib21 article-title: BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection publication-title: Nature doi: 10.1038/s41586-022-04980-y – volume: 369 start-page: 1261 year: 2020 ident: 10.1016/j.cell.2022.12.018_bib37 article-title: Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2 publication-title: Science doi: 10.1126/science.abc0870 – volume: 30 start-page: 1527 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib47 article-title: Characterization of the enhanced infectivity and antibody evasion of Omicron BA.2.75 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2022.09.018 – volume: 367 start-page: 1260 year: 2020 ident: 10.1016/j.cell.2022.12.018_bib44 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 328 start-page: 1415 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib30 article-title: Association of Primary and Booster Vaccination and Prior Infection With SARS-CoV-2 Infection and Severe COVID-19 Outcomes publication-title: JAMA doi: 10.1001/jama.2022.17876 – volume: 375 start-page: 449 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib10 article-title: Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry publication-title: Science doi: 10.1126/science.abm8143 – volume: 583 start-page: 290 year: 2020 ident: 10.1016/j.cell.2022.12.018_bib18 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature doi: 10.1038/s41586-020-2349-y – volume: 31 start-page: 732 year: 2021 ident: 10.1016/j.cell.2022.12.018_bib12 article-title: Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines publication-title: Cell Res. doi: 10.1038/s41422-021-00514-9 – volume: 185 start-page: 2116 year: 2022 ident: 10.1016/j.cell.2022.12.018_bib11 article-title: Potent cross-reactive antibodies following Omicron breakthrough in vaccinees publication-title: Cell doi: 10.1016/j.cell.2022.05.014 |
SSID | ssj0008555 |
Score | 2.7419217 |
Snippet | The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 279 |
SubjectTerms | antibodies Antibodies, Monoclonal Antibodies, Neutralizing Antibodies, Viral antibody evasion BQ.1 BQ.1.1 COVID-19 COVID-19 - immunology COVID-19 - virology COVID-19 infection COVID-19 Vaccines Humans Immune Evasion mRNA vaccine neutralization neutralizing monoclonal antibody receptor binding affinity SARS-CoV-2 SARS-CoV-2 - classification SARS-CoV-2 - genetics Severe acute respiratory syndrome coronavirus 2 vaccines XBB XBB.1 |
Title | Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants |
URI | https://dx.doi.org/10.1016/j.cell.2022.12.018 https://www.ncbi.nlm.nih.gov/pubmed/36580913 https://www.proquest.com/docview/2759957966 https://www.proquest.com/docview/3153775938 https://pubmed.ncbi.nlm.nih.gov/PMC9747694 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZTuMw0KqQVuIFActRjpVX4g1FEDtO4se22gqtBFpO9c3KxLYogqSCFom_ZyZHteV64DUeR8547szB2EHsI_DO0j_1UAdR6rIAcm8DbT0AakALmuqdT8_ik-vo70iNOmzQ1sJQWmUj-2uZXknr5slRg82jyXhMNb5apDG6dqjDkJKo4FdGaVXEN-rPpXGqVD3FQCPnI3RTOFPneFFwHH1EIaqQIA3--Fg5vTc-3-ZQ_qeUhqtspbEmea8-8BrruGKd_ajnS778ZP966Lc-oHLiiL8xlPaFu-eM4mN8QkH4R-qmykvPkdMJ6rJ3cRkMyptA8P457rF81O_zpxk8o0dNCTMb7Hr452pwEjQjFIIcOXMagNcu1xFoB4AiUfhMCUBLNc-kV-BtjOxsZUpt63zoIVdRHFsJVisf6dgncpMtFWXhthkHcGkGyqLBhl6OzLXLBADal5DkMjs-7rKwxZ3Jm_7iNObi3rSJZHeG8G0I3yYUBvHdZYfzPZO6u8aX0Kq9ErNAIwbF_5f7frf3Z5B5aDkrXDl7MiKhfmsJunyfw0gkrgThJL5nq77z-Vkl2m_UWLXLkgVqmANQ8-7FlWJ8WzXxJj8u1tHON79ply3T4HsKBoV6jy1NH2duH82jKfyq6P8VDuoPYQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw8DSGELwgPkf5NBJvyNpix0n82FZMHWwTsA31zcrFtiiCpNraSfv33DVJRfnYA6_xOXLO9537AHiTxRRj8PxPPbEyLUIpsYpeWh8RSQN6tFzvfHScTc7S91Mz3YJxXwvDaZWd7G9l-kpad092O2zuzmczrvG1qsjItSMdRpRU3ICbZA3kzJ0H09FaHBfGtGMMLLE-gXeVM22SF0fHyUlUahUT5Mkff9dOf1qfvydR_qKV9u_B3c6cFMP2xPdhK9QP4FY7YPLqIXwckuP6g7STIATOsPFXIlyWHCATc47Cn3M7VdFEQazOUCfDzydy3HyRSow-0R4vpqORuFjiJbnUnDHzCM72352OJ7KboSArYs2FxGhDZVO0AZFkooqlUUimalXqaDD6jPjZ64L71sUkYmXSLPMavTUxtVnM9WPYrps6PAGBGIoSjSeLjdwcXdlQKkQyMDGvdLm3N4Ckx52rugbjPOfiu-szyb45xrdjfLtEOcL3AN6u98zb9hrXQpv-StwGkTiS_9fue93fnyPu4eWyDs3ywqmcG67l5PP9G0YTdeUEp-k9O-2dr8-qyYDjzqoDyDeoYQ3A3bs3V-rZ11UXb3bkMps-_c9vegW3J6dHh-7w4PjDM7hDK5wXJxP7HLYX58vwgmylBb5c8cJPsyQSgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alarming+antibody+evasion+properties+of+rising+SARS-CoV-2+BQ+and+XBB+subvariants&rft.jtitle=Cell&rft.au=Wang%2C+Qian&rft.au=Iketani%2C+Sho&rft.au=Li%2C+Zhiteng&rft.au=Liu%2C+Liyuan&rft.date=2023-01-19&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=186&rft.issue=2&rft.spage=279&rft_id=info:doi/10.1016%2Fj.cell.2022.12.018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |