Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants

The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 186; no. 2; pp. 279 - 286.e8
Main Authors Wang, Qian, Iketani, Sho, Li, Zhiteng, Liu, Liyuan, Guo, Yicheng, Huang, Yiming, Bowen, Anthony D., Liu, Michael, Wang, Maple, Yu, Jian, Valdez, Riccardo, Lauring, Adam S., Sheng, Zizhang, Wang, Harris H., Gordon, Aubree, Liu, Lihong, Ho, David D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 19.01.2023
The Author(s). Published by Elsevier Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies. [Display omitted] •BQ.1, BQ.1.1, XBB, and XBB.1 are the most resistant SARS-CoV-2 variants to date•Serum neutralization was markedly reduced, including with the bivalent booster•All clinical monoclonal antibodies were rendered inactive against these variants•The ACE2 affinity of these variants were similar to their parental strains Recent BQ and XBB subvariants of SARS-CoV-2 demonstrate dramatically increased ability to evade neutralizing antibodies, even those from people who received the bivalent mRNA booster or who are immunized and had previous breakthrough Omicron infection. Additionally, both BQ and XBB are completely resistant to bebtelovimab, meaning there are now no clinically authorized therapeutic antibodies effective against these circulating variants.
AbstractList The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies.
The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13-81-fold and 66-155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies. Recent BQ and XBB subvariants of SARS-CoV-2 demonstrate dramatically increased ability to evade neutralizing antibodies, even those from people who received the bivalent mRNA booster or who are immunized and had previous breakthrough Omicron infection. Additionally, both BQ and XBB are completely resistant to bebtelovimab, meaning there are now no clinically authorized therapeutic antibodies effective against these circulating variants.
The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies. [Display omitted] •BQ.1, BQ.1.1, XBB, and XBB.1 are the most resistant SARS-CoV-2 variants to date•Serum neutralization was markedly reduced, including with the bivalent booster•All clinical monoclonal antibodies were rendered inactive against these variants•The ACE2 affinity of these variants were similar to their parental strains Recent BQ and XBB subvariants of SARS-CoV-2 demonstrate dramatically increased ability to evade neutralizing antibodies, even those from people who received the bivalent mRNA booster or who are immunized and had previous breakthrough Omicron infection. Additionally, both BQ and XBB are completely resistant to bebtelovimab, meaning there are now no clinically authorized therapeutic antibodies effective against these circulating variants.
The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies.The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies.
Author Yu, Jian
Liu, Liyuan
Liu, Lihong
Li, Zhiteng
Lauring, Adam S.
Liu, Michael
Guo, Yicheng
Wang, Harris H.
Huang, Yiming
Sheng, Zizhang
Gordon, Aubree
Wang, Qian
Iketani, Sho
Bowen, Anthony D.
Ho, David D.
Wang, Maple
Valdez, Riccardo
Author_xml – sequence: 1
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 2
  givenname: Sho
  surname: Iketani
  fullname: Iketani, Sho
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 3
  givenname: Zhiteng
  surname: Li
  fullname: Li, Zhiteng
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 4
  givenname: Liyuan
  surname: Liu
  fullname: Liu, Liyuan
  organization: Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 5
  givenname: Yicheng
  surname: Guo
  fullname: Guo, Yicheng
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 6
  givenname: Yiming
  surname: Huang
  fullname: Huang, Yiming
  organization: Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 7
  givenname: Anthony D.
  surname: Bowen
  fullname: Bowen, Anthony D.
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 8
  givenname: Michael
  surname: Liu
  fullname: Liu, Michael
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 9
  givenname: Maple
  surname: Wang
  fullname: Wang, Maple
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 10
  givenname: Jian
  surname: Yu
  fullname: Yu, Jian
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 11
  givenname: Riccardo
  surname: Valdez
  fullname: Valdez, Riccardo
  organization: Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
– sequence: 12
  givenname: Adam S.
  surname: Lauring
  fullname: Lauring, Adam S.
  organization: Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
– sequence: 13
  givenname: Zizhang
  surname: Sheng
  fullname: Sheng, Zizhang
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 14
  givenname: Harris H.
  surname: Wang
  fullname: Wang, Harris H.
  organization: Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 15
  givenname: Aubree
  surname: Gordon
  fullname: Gordon, Aubree
  organization: Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
– sequence: 16
  givenname: Lihong
  surname: Liu
  fullname: Liu, Lihong
  email: ll3411@cumc.columbia.edu
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
– sequence: 17
  givenname: David D.
  orcidid: 0000-0003-1627-149X
  surname: Ho
  fullname: Ho, David D.
  email: dh2994@cumc.columbia.edu
  organization: Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36580913$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEcxC1URNPCF-CA9shlt34_JISURECRKvEoIG6W7bWLo8062JtI_fZ4lRYBh3Ly4T-_8WjmDJyMafQAPEewQxDxi03n_DB0GGLcIdxBJB-BBYJKtBQJfAIWECrcSi7oKTgrZQMhlIyxJ-CUcCahQmQBPi4Hk7dxvGnMOEWb-tvGH0yJaWx2Oe18nqIvTQpNjmVWXS8_X7fr9K3FzepTZfrm-2rVlL09mByrRXkKHgczFP_s7j0HX9---bK-bK8-vHu_Xl61jko5tTYo7xS1yltLucDBMGwlss6QwGzoOcasJ1IyyAMK1jHKeU9sr1igigdBzsHro-9ub7e-d36cshn0Lsetybc6maj_vozxh75JB60EFVzRavDyziCnn3tfJr2NZS7UjD7tiyaIESGYIvK_UlxlignFeZW--DPW7zz3jVeBPApcTqVkH7SLk5lq4TVlHDSCeh5Xb_T8gZ7H1QjrOm5F8T_ovfuD0Ksj5OsYh-izLi760fk-Zu8m3af4EP4Lc9691w
CitedBy_id crossref_primary_10_1128_aac_01556_24
crossref_primary_10_1038_s41392_023_01472_x
crossref_primary_10_1093_pnasnexus_pgad403
crossref_primary_10_1002_jmv_29278
crossref_primary_10_1016_j_ajic_2024_08_009
crossref_primary_10_1039_D4LC00505H
crossref_primary_10_1016_j_ejmech_2023_115463
crossref_primary_10_1128_mbio_00907_24
crossref_primary_10_1002_jmv_29151
crossref_primary_10_1038_s41541_025_01066_4
crossref_primary_10_1128_spectrum_03831_23
crossref_primary_10_29328_journal_ijcv_1001060
crossref_primary_10_3389_fimmu_2024_1334250
crossref_primary_10_1016_j_ebiom_2024_105438
crossref_primary_10_3389_fimmu_2024_1337520
crossref_primary_10_3389_fmed_2025_1541235
crossref_primary_10_1016_j_heliyon_2024_e34691
crossref_primary_10_1038_s41590_024_02051_0
crossref_primary_10_1038_s41467_023_37926_7
crossref_primary_10_1038_s41467_023_40033_2
crossref_primary_10_1007_s11684_023_1021_y
crossref_primary_10_1016_j_jinf_2023_02_039
crossref_primary_10_1038_s41392_024_02007_8
crossref_primary_10_1039_D1CS01170G
crossref_primary_10_1038_s41392_023_01724_w
crossref_primary_10_1016_j_xcrm_2024_101445
crossref_primary_10_1016_j_jinf_2023_08_013
crossref_primary_10_3390_vaccines12010055
crossref_primary_10_1016_j_jaip_2023_05_005
crossref_primary_10_1016_j_focus_2024_100207
crossref_primary_10_1128_spectrum_01100_23
crossref_primary_10_1371_journal_ppat_1011532
crossref_primary_10_1016_j_aca_2024_343057
crossref_primary_10_1177_11769343241272415
crossref_primary_10_1093_cid_ciad088
crossref_primary_10_1016_j_bspc_2023_105502
crossref_primary_10_1038_s41541_023_00731_w
crossref_primary_10_1038_s41551_024_01179_6
crossref_primary_10_1016_j_virol_2023_109850
crossref_primary_10_1016_j_lanwpc_2023_100939
crossref_primary_10_1111_apt_17661
crossref_primary_10_1007_s00277_023_05572_0
crossref_primary_10_1016_j_fufo_2024_100303
crossref_primary_10_1111_vox_13647
crossref_primary_10_3390_v15102073
crossref_primary_10_1097_TP_0000000000004873
crossref_primary_10_3390_v15030715
crossref_primary_10_1007_s00432_023_04961_2
crossref_primary_10_1016_j_virs_2024_08_005
crossref_primary_10_1002_mef2_90
crossref_primary_10_61958_NMFQ4753
crossref_primary_10_1016_S1473_3099_23_00181_0
crossref_primary_10_1128_spectrum_02654_23
crossref_primary_10_3390_vaccines12010036
crossref_primary_10_1016_j_hlife_2024_12_006
crossref_primary_10_3390_ijms241612782
crossref_primary_10_3390_ijms24065944
crossref_primary_10_1016_j_antiviral_2024_106006
crossref_primary_10_1016_j_cell_2023_09_022
crossref_primary_10_1080_22221751_2024_2412990
crossref_primary_10_1128_spectrum_01568_24
crossref_primary_10_1146_annurev_med_052422_020316
crossref_primary_10_3390_vaccines12050459
crossref_primary_10_1371_journal_ppat_1011868
crossref_primary_10_1080_14760584_2023_2232851
crossref_primary_10_1016_j_fct_2023_113898
crossref_primary_10_3390_v16020215
crossref_primary_10_1038_s41598_023_46025_y
crossref_primary_10_3390_biom14030245
crossref_primary_10_1016_j_ijid_2023_11_039
crossref_primary_10_3390_v16071077
crossref_primary_10_1093_cid_ciad178
crossref_primary_10_1002_smll_202307045
crossref_primary_10_1016_j_heliyon_2024_e34492
crossref_primary_10_1093_cid_ciae026
crossref_primary_10_15252_embr_202357724
crossref_primary_10_1038_s41392_023_01615_0
crossref_primary_10_3390_biomedicines11061736
crossref_primary_10_1080_22221751_2024_2309968
crossref_primary_10_1128_msphere_00338_24
crossref_primary_10_3389_fimmu_2023_1294288
crossref_primary_10_1016_j_ebiom_2024_105354
crossref_primary_10_1371_journal_ppat_1011856
crossref_primary_10_1016_j_virol_2024_110067
crossref_primary_10_3389_fcimb_2024_1371695
crossref_primary_10_1016_j_isci_2024_110208
crossref_primary_10_3390_ijms241210053
crossref_primary_10_1080_22221751_2023_2210237
crossref_primary_10_3390_vaccines12050464
crossref_primary_10_23736_S2784_8477_24_02145_4
crossref_primary_10_1007_s10875_023_01540_5
crossref_primary_10_3389_fimmu_2023_1209513
crossref_primary_10_1016_S1473_3099_23_00070_1
crossref_primary_10_1002_jmv_29092
crossref_primary_10_3390_ijms251910802
crossref_primary_10_1093_infdis_jiad508
crossref_primary_10_1128_spectrum_05258_22
crossref_primary_10_1038_s41392_023_01495_4
crossref_primary_10_1016_j_jviromet_2024_114945
crossref_primary_10_1038_s41421_023_00535_1
crossref_primary_10_3389_fpubh_2023_1192709
crossref_primary_10_1038_s41467_024_45495_6
crossref_primary_10_1038_s41467_023_39638_4
crossref_primary_10_3390_molecules28134996
crossref_primary_10_1016_j_coviro_2023_101349
crossref_primary_10_1371_journal_pmed_1004157
crossref_primary_10_1016_j_medcli_2023_04_031
crossref_primary_10_1016_j_isci_2024_111557
crossref_primary_10_2147_IDR_S412657
crossref_primary_10_1111_irv_70000
crossref_primary_10_1016_j_heliyon_2024_e24209
crossref_primary_10_1038_s41591_024_02949_0
crossref_primary_10_1016_j_medcle_2023_04_032
crossref_primary_10_1016_j_medj_2024_06_013
crossref_primary_10_1016_j_immuni_2024_02_017
crossref_primary_10_1038_s41421_023_00569_5
crossref_primary_10_1038_s41564_024_01878_5
crossref_primary_10_1016_j_jiph_2023_09_020
crossref_primary_10_1080_14787210_2024_2400548
crossref_primary_10_3389_fmolb_2023_1153046
crossref_primary_10_3390_v15040944
crossref_primary_10_1016_j_chembiol_2024_03_008
crossref_primary_10_1002_rmv_2515
crossref_primary_10_1038_s42003_025_07769_7
crossref_primary_10_1038_s41467_025_55871_5
crossref_primary_10_1016_j_isci_2024_109363
crossref_primary_10_1016_S1473_3099_23_00421_8
crossref_primary_10_1128_mra_01255_23
crossref_primary_10_1038_s41467_023_39267_x
crossref_primary_10_3390_v16091458
crossref_primary_10_1038_s41392_024_02025_6
crossref_primary_10_1038_s41598_023_44796_y
crossref_primary_10_1080_22221751_2023_2192817
crossref_primary_10_1002_ajh_26887
crossref_primary_10_1099_jgv_0_001854
crossref_primary_10_1073_pnas_2406659122
crossref_primary_10_1002_jmv_29314
crossref_primary_10_1186_s40246_023_00515_2
crossref_primary_10_3390_v16060958
crossref_primary_10_1016_S1473_3099_23_00138_X
crossref_primary_10_1111_imr_13431
crossref_primary_10_3389_fgene_2023_1024063
crossref_primary_10_1038_s41467_024_48414_x
crossref_primary_10_1038_s42003_024_06951_7
crossref_primary_10_1038_s43856_024_00457_3
crossref_primary_10_1080_21645515_2024_2408863
crossref_primary_10_3389_fimmu_2023_1130539
crossref_primary_10_1016_j_bios_2024_116079
crossref_primary_10_1016_j_ijbiomac_2023_126817
crossref_primary_10_7759_cureus_35261
crossref_primary_10_2147_OPTH_S460224
crossref_primary_10_1016_j_cmi_2025_03_004
crossref_primary_10_1128_spectrum_00660_23
crossref_primary_10_3389_fmed_2023_1322396
crossref_primary_10_1016_j_coviro_2023_101332
crossref_primary_10_1128_aac_00909_24
crossref_primary_10_1016_j_vaccine_2023_02_020
crossref_primary_10_1093_nsr_nwad148
crossref_primary_10_1016_j_celrep_2023_112532
crossref_primary_10_1111_imr_70000
crossref_primary_10_1038_s41467_023_42796_0
crossref_primary_10_1016_j_celrep_2023_112888
crossref_primary_10_2139_ssrn_4289504
crossref_primary_10_3389_fmicb_2023_1228128
crossref_primary_10_1002_eji_202250230
crossref_primary_10_1016_j_ebiom_2023_104916
crossref_primary_10_1186_s40635_023_00536_0
crossref_primary_10_1128_mbio_03036_23
crossref_primary_10_3390_covid4040038
crossref_primary_10_1002_cbin_12130
crossref_primary_10_1038_s41467_024_46982_6
crossref_primary_10_1016_j_ijid_2023_06_010
crossref_primary_10_3390_v16030391
crossref_primary_10_3389_fphar_2023_1214351
crossref_primary_10_1128_cmr_00072_23
crossref_primary_10_3390_vaccines11081320
crossref_primary_10_1016_S1473_3099_23_00454_1
crossref_primary_10_3390_ijms242216073
crossref_primary_10_3390_vaccines12040417
crossref_primary_10_1128_jvi_00678_24
crossref_primary_10_1080_22221751_2023_2191738
crossref_primary_10_1097_JS9_0000000000000246
crossref_primary_10_1002_cti2_1514
crossref_primary_10_3389_fimmu_2023_1239179
crossref_primary_10_3390_v17030362
crossref_primary_10_1038_s41467_024_55087_z
crossref_primary_10_1016_j_arabjc_2024_105614
crossref_primary_10_1007_s12519_023_00744_4
crossref_primary_10_1128_jvi_02049_24
crossref_primary_10_3390_ijms241713573
crossref_primary_10_1016_j_chroma_2025_465685
crossref_primary_10_1073_pnas_2305451120
crossref_primary_10_3390_v16020177
crossref_primary_10_1016_S1473_3099_23_00365_1
crossref_primary_10_1016_j_isci_2023_108254
crossref_primary_10_1371_journal_pone_0309808
crossref_primary_10_1016_j_ijbiomac_2023_125997
crossref_primary_10_22207_JPAM_17_2_20
crossref_primary_10_58318_2957_5702_2023_16_18_27
crossref_primary_10_1073_pnas_2313681121
crossref_primary_10_1038_s41598_024_53862_y
crossref_primary_10_15406_jhvrv_2023_10_00264
crossref_primary_10_4103_njcp_njcp_208_23
crossref_primary_10_1002_advs_202406980
crossref_primary_10_3389_fmicb_2023_1294056
crossref_primary_10_1016_j_cellin_2023_100144
crossref_primary_10_1016_j_jmgm_2024_108813
crossref_primary_10_1016_j_xops_2023_100390
crossref_primary_10_1038_s41392_025_02154_6
crossref_primary_10_1016_j_jinf_2023_04_010
crossref_primary_10_3390_pathogens13040272
crossref_primary_10_1073_pnas_2221713120
crossref_primary_10_1038_s41598_024_68678_z
crossref_primary_10_1016_j_jinf_2023_10_008
crossref_primary_10_1371_journal_ppat_1011901
crossref_primary_10_37737_ace_23005
crossref_primary_10_1016_j_heliyon_2024_e31011
crossref_primary_10_1016_j_xcrm_2023_101258
crossref_primary_10_1126_scitranslmed_adg7404
crossref_primary_10_1038_s41422_023_00880_6
crossref_primary_10_1016_j_isci_2024_108887
crossref_primary_10_1080_22221751_2023_2225638
crossref_primary_10_1021_jacs_3c11760
crossref_primary_10_1093_infdis_jiad019
crossref_primary_10_3390_v15102017
crossref_primary_10_1021_acsptsci_3c00306
crossref_primary_10_1038_s41598_024_80636_3
crossref_primary_10_3389_fimmu_2023_1220477
crossref_primary_10_3390_v16010132
crossref_primary_10_3390_vaccines12050505
crossref_primary_10_1038_s41467_023_39091_3
crossref_primary_10_1016_j_csbj_2023_02_019
crossref_primary_10_1093_rheumatology_kead391
crossref_primary_10_1016_j_immuni_2023_03_005
crossref_primary_10_1016_j_isci_2024_110728
crossref_primary_10_3390_v16060900
crossref_primary_10_1016_j_xcrm_2023_101267
crossref_primary_10_3389_fimmu_2023_1152899
crossref_primary_10_1073_pnas_2315354120
crossref_primary_10_1093_procel_pwae007
crossref_primary_10_1016_j_eclinm_2023_102109
crossref_primary_10_3390_microorganisms11102417
crossref_primary_10_1016_j_ijid_2024_107060
crossref_primary_10_1128_aac_00953_23
crossref_primary_10_3390_vaccines12060675
crossref_primary_10_1126_scitranslmed_adf4549
crossref_primary_10_2147_JMDH_S486098
crossref_primary_10_3389_fpubh_2024_1442291
crossref_primary_10_1016_j_eclinm_2024_102879
crossref_primary_10_15212_ZOONOSES_2023_1009
crossref_primary_10_3390_microorganisms12122591
crossref_primary_10_1016_j_celrep_2023_112443
crossref_primary_10_1186_s12929_023_00955_x
crossref_primary_10_1016_j_ijbiomac_2023_124352
crossref_primary_10_3390_ijms25073833
crossref_primary_10_1016_j_gene_2024_148306
crossref_primary_10_1097_MD_0000000000034105
crossref_primary_10_3390_pharmaceutics15051538
crossref_primary_10_1016_j_omtn_2023_02_030
crossref_primary_10_1080_21645515_2023_2242747
crossref_primary_10_1093_infdis_jiae207
crossref_primary_10_1128_spectrum_00846_24
crossref_primary_10_3390_vaccines12060564
crossref_primary_10_1107_S2059798323005041
crossref_primary_10_3389_fcimb_2024_1406091
crossref_primary_10_3389_fmicb_2023_1217567
crossref_primary_10_1002_jmv_29145
crossref_primary_10_1038_s41467_024_46443_0
crossref_primary_10_1093_procel_pwad040
crossref_primary_10_1016_j_isci_2024_110624
crossref_primary_10_1016_j_xcrm_2023_101049
crossref_primary_10_1080_22221751_2024_2387447
crossref_primary_10_1080_22221751_2024_2406300
crossref_primary_10_1016_j_antiviral_2024_105917
crossref_primary_10_4049_jimmunol_2300675
crossref_primary_10_1038_s41421_023_00607_2
crossref_primary_10_1155_2023_6850772
crossref_primary_10_1016_j_antiviral_2023_105638
crossref_primary_10_1016_j_clim_2024_110424
crossref_primary_10_1016_j_jmsacl_2024_08_003
crossref_primary_10_1093_ve_veae074
crossref_primary_10_3389_fimmu_2024_1407149
crossref_primary_10_1038_s41421_024_00648_1
crossref_primary_10_36290_med_2023_032
crossref_primary_10_1080_21645515_2023_2278376
crossref_primary_10_3390_vaccines12030247
crossref_primary_10_1017_dmp_2024_19
crossref_primary_10_1111_trf_17485
crossref_primary_10_1016_j_ajt_2024_03_011
crossref_primary_10_1038_s41598_024_51729_w
crossref_primary_10_3389_fimmu_2024_1442160
crossref_primary_10_3389_fimmu_2024_1501200
crossref_primary_10_1111_imr_13393
crossref_primary_10_1038_s42003_024_06015_w
crossref_primary_10_1093_jleuko_qiad106
crossref_primary_10_1038_s44298_024_00063_z
crossref_primary_10_1002_jmv_28625
crossref_primary_10_1128_jvi_00628_23
crossref_primary_10_1186_s12879_023_08944_z
crossref_primary_10_1097_TP_0000000000005140
crossref_primary_10_1016_j_jinf_2023_05_018
crossref_primary_10_3389_fimmu_2023_1163159
crossref_primary_10_3389_fimmu_2024_1374486
crossref_primary_10_1016_j_diagmicrobio_2023_116071
crossref_primary_10_1093_nsr_nwae196
crossref_primary_10_1128_mbio_02407_23
crossref_primary_10_3324_haematol_2023_283015
crossref_primary_10_1038_s41467_024_45404_x
crossref_primary_10_2174_0113816128280987240214103432
crossref_primary_10_1093_cid_ciad402
crossref_primary_10_1016_j_jcv_2023_105532
crossref_primary_10_1016_j_lanepe_2023_100623
crossref_primary_10_3343_alm_2023_0256
crossref_primary_10_1002_jmv_70130
crossref_primary_10_1002_jmv_28641
crossref_primary_10_1002_jmv_28884
crossref_primary_10_1186_s12951_025_03100_y
crossref_primary_10_1016_j_immuni_2023_10_007
crossref_primary_10_1038_s41392_024_01846_9
crossref_primary_10_17816_EID607427
crossref_primary_10_1016_j_chom_2024_01_014
crossref_primary_10_1016_j_cell_2024_09_043
crossref_primary_10_1038_s41421_023_00575_7
crossref_primary_10_17816_clinpract322036
crossref_primary_10_1016_j_lanepe_2023_100755
crossref_primary_10_1038_s41467_023_41049_4
crossref_primary_10_3390_vaccines12040379
crossref_primary_10_3390_v16020184
crossref_primary_10_1016_j_antiviral_2024_105905
crossref_primary_10_1002_jmv_29738
crossref_primary_10_1186_s12985_024_02531_7
crossref_primary_10_1038_s41467_023_38435_3
crossref_primary_10_1128_spectrum_01793_23
crossref_primary_10_1016_j_crmeth_2024_100856
crossref_primary_10_3389_fimmu_2025_1513175
crossref_primary_10_3389_fmicb_2024_1466980
crossref_primary_10_3390_v16010036
crossref_primary_10_1038_s41467_023_36561_6
crossref_primary_10_1128_jvi_01989_24
crossref_primary_10_3389_fimmu_2023_1130398
crossref_primary_10_1002_mco2_675
crossref_primary_10_1016_j_celrep_2023_113444
crossref_primary_10_1016_j_cmi_2024_04_012
crossref_primary_10_1016_j_antiviral_2025_106092
crossref_primary_10_1021_acsomega_3c08326
crossref_primary_10_1038_s41392_024_02066_x
crossref_primary_10_1038_s41541_023_00737_4
crossref_primary_10_1038_s41392_023_01556_8
crossref_primary_10_1128_mbio_01206_23
crossref_primary_10_1128_spectrum_02143_23
crossref_primary_10_1016_j_isci_2023_107689
crossref_primary_10_1111_bjh_19422
crossref_primary_10_1038_s41467_023_42527_5
crossref_primary_10_1016_j_molliq_2024_125059
crossref_primary_10_1038_s41598_023_50822_w
crossref_primary_10_1021_acs_jpcb_3c06270
crossref_primary_10_1002_jmv_29877
crossref_primary_10_1002_jmv_29512
crossref_primary_10_1007_s44197_023_00084_6
crossref_primary_10_1016_j_celrep_2024_114520
crossref_primary_10_1016_j_ijantimicag_2023_107082
crossref_primary_10_1038_s41467_024_45050_3
crossref_primary_10_3390_v15051143
crossref_primary_10_1007_s11606_025_09386_w
crossref_primary_10_1016_j_lanepe_2023_100612
crossref_primary_10_3389_fpubh_2024_1327093
crossref_primary_10_1016_j_intimp_2023_109968
crossref_primary_10_1038_s41564_023_01505_9
crossref_primary_10_1038_s41392_023_01653_8
crossref_primary_10_1038_s41467_024_45171_9
crossref_primary_10_1002_jmv_29520
crossref_primary_10_1016_j_xcrm_2023_101305
crossref_primary_10_1093_infdis_jiad095
crossref_primary_10_1038_s41586_023_06487_6
crossref_primary_10_3390_microorganisms12071436
crossref_primary_10_1016_j_ebiom_2023_104677
crossref_primary_10_1038_s41392_024_02043_4
crossref_primary_10_1016_S0140_6736_23_01367_3
crossref_primary_10_1177_10781552241284944
crossref_primary_10_1128_jvi_00822_23
crossref_primary_10_1136_bmj_p1074
crossref_primary_10_3389_fmed_2023_1103699
crossref_primary_10_3389_fviro_2023_1128253
crossref_primary_10_1093_bib_bbae183
crossref_primary_10_3390_v15041001
crossref_primary_10_1128_mbio_01587_23
crossref_primary_10_1002_jmv_28565
crossref_primary_10_1038_s41467_024_51770_3
crossref_primary_10_1038_s41392_023_01447_y
crossref_primary_10_3389_fmicb_2023_1199561
crossref_primary_10_1039_D4CP01372G
crossref_primary_10_1016_j_apsb_2024_12_003
crossref_primary_10_1080_14760584_2023_2211153
crossref_primary_10_3390_v15091940
crossref_primary_10_1093_cid_ciad716
crossref_primary_10_1016_j_ebiom_2023_104545
crossref_primary_10_1016_j_str_2023_11_015
crossref_primary_10_1016_j_isci_2023_106345
crossref_primary_10_1016_j_jvacx_2023_100372
crossref_primary_10_1016_j_immuni_2023_09_003
crossref_primary_10_3201_eid2912_230880
crossref_primary_10_36604_1998_5029_2023_88_59_68
crossref_primary_10_1038_s41467_024_45348_2
crossref_primary_10_1111_bjh_18782
crossref_primary_10_3390_vaccines13010017
crossref_primary_10_3390_v15091933
crossref_primary_10_1002_jmv_29664
crossref_primary_10_3390_microorganisms12071330
crossref_primary_10_1016_j_scitotenv_2023_164524
crossref_primary_10_3389_fped_2024_1325562
crossref_primary_10_1080_21645515_2024_2388344
crossref_primary_10_3390_v15091937
crossref_primary_10_1021_acs_jpcb_4c01341
crossref_primary_10_3390_v15122397
crossref_primary_10_1002_mco2_239
crossref_primary_10_1007_s40290_023_00473_z
crossref_primary_10_1016_j_virusres_2024_199520
crossref_primary_10_1016_j_jneuroim_2023_578199
crossref_primary_10_3389_fimmu_2024_1494432
crossref_primary_10_3389_fimmu_2023_1258268
crossref_primary_10_2217_fvl_2023_0019
crossref_primary_10_1016_j_vaccine_2025_126853
crossref_primary_10_3390_v15030763
crossref_primary_10_1371_journal_ppat_1012246
crossref_primary_10_1002_mef2_70004
crossref_primary_10_1016_j_trre_2023_100788
crossref_primary_10_3390_biomedicines11061540
crossref_primary_10_1002_advs_202411737
crossref_primary_10_1038_s41598_023_43911_3
crossref_primary_10_1021_acs_jcim_3c00778
crossref_primary_10_1038_s41467_023_39567_2
crossref_primary_10_1080_22221751_2023_2297553
crossref_primary_10_1016_j_celrep_2023_113193
crossref_primary_10_1186_s12929_023_00936_0
crossref_primary_10_1016_j_cell_2023_04_007
crossref_primary_10_1016_j_ebiom_2025_105662
crossref_primary_10_1016_j_actatropica_2023_107042
crossref_primary_10_3390_covid3100108
crossref_primary_10_1016_j_lanwpc_2023_100759
crossref_primary_10_1080_22221751_2023_2249121
crossref_primary_10_1128_jvi_01137_23
crossref_primary_10_12677_acm_2024_1451694
crossref_primary_10_1371_journal_ppat_1012599
crossref_primary_10_1038_s41467_024_50903_y
crossref_primary_10_1371_journal_pone_0292099
crossref_primary_10_12677_ACM_2023_1371631
crossref_primary_10_1038_s41586_024_07385_1
crossref_primary_10_3390_microorganisms11092336
crossref_primary_10_1007_s11262_023_02048_1
crossref_primary_10_1002_jmv_28900
crossref_primary_10_15789_2220_7619_AFO_17591
crossref_primary_10_1021_acs_jcim_3c01857
crossref_primary_10_3390_ijms24054609
crossref_primary_10_1038_s41423_023_00988_0
crossref_primary_10_1038_s41467_024_46536_w
crossref_primary_10_3390_biom15020301
crossref_primary_10_1126_scitranslmed_ado9026
crossref_primary_10_1007_s10719_024_10150_1
crossref_primary_10_1038_s41598_023_44484_x
crossref_primary_10_1128_msphere_00105_24
crossref_primary_10_3389_fmed_2024_1414331
crossref_primary_10_1016_j_ijregi_2024_100379
crossref_primary_10_1016_j_jiph_2024_04_003
crossref_primary_10_52547_payesh_22_1_105
crossref_primary_10_1016_j_bios_2024_116426
crossref_primary_10_1016_j_omtm_2024_101380
crossref_primary_10_47184_td_2023_04_05
crossref_primary_10_1038_s41586_023_06753_7
crossref_primary_10_1248_bpb_b23_00639
crossref_primary_10_1038_s41467_024_46490_7
crossref_primary_10_1080_21645515_2024_2448405
crossref_primary_10_1126_sciadv_adq3342
crossref_primary_10_1016_j_celrep_2023_113292
crossref_primary_10_1016_j_vaccine_2024_126308
crossref_primary_10_1186_s12951_024_02329_3
crossref_primary_10_2217_fvl_2023_0048
crossref_primary_10_1016_S1473_3099_23_00208_6
crossref_primary_10_1016_j_ijbiomac_2024_133706
crossref_primary_10_1371_journal_ppat_1012456
crossref_primary_10_1016_j_heliyon_2024_e29939
crossref_primary_10_7759_cureus_57898
crossref_primary_10_1016_j_heliyon_2024_e26423
crossref_primary_10_1038_s41598_024_67828_7
crossref_primary_10_1016_S2213_2600_23_00306_5
crossref_primary_10_3390_vaccines12020144
crossref_primary_10_1002_jmv_28805
crossref_primary_10_3390_v15061398
crossref_primary_10_1186_s12939_024_02110_w
crossref_primary_10_7759_cureus_48824
crossref_primary_10_1016_j_virol_2025_110508
crossref_primary_10_1080_22221751_2023_2270069
crossref_primary_10_1016_j_infpip_2024_100383
crossref_primary_10_1016_j_celrep_2023_112075
crossref_primary_10_1016_j_micinf_2024_105461
crossref_primary_10_1126_sciadv_adj9945
crossref_primary_10_26634_jcir_12_1_20676
crossref_primary_10_3389_fimmu_2023_1204543
crossref_primary_10_1038_s41746_024_01287_2
crossref_primary_10_1016_j_puhip_2024_100494
crossref_primary_10_3390_vaccines12090989
crossref_primary_10_1038_s41467_024_54734_9
crossref_primary_10_1080_22221751_2024_2404166
crossref_primary_10_3389_fendo_2023_1227059
crossref_primary_10_1038_s41421_023_00609_0
crossref_primary_10_1016_j_isci_2024_110174
crossref_primary_10_3390_ijms25084281
crossref_primary_10_3389_fcimb_2024_1381877
crossref_primary_10_1016_j_jfma_2024_08_021
crossref_primary_10_1016_j_it_2023_03_010
crossref_primary_10_1038_s41551_025_01353_4
crossref_primary_10_3390_microorganisms12050846
crossref_primary_10_4110_in_2023_23_e43
crossref_primary_10_1172_JCI166844
crossref_primary_10_3390_vaccines13030262
crossref_primary_10_3390_vaccines12020129
crossref_primary_10_3389_fimmu_2023_1259386
crossref_primary_10_1002_jmv_70242
crossref_primary_10_1093_ofid_ofae038
crossref_primary_10_1002_jmv_29917
crossref_primary_10_1038_s41586_023_06750_w
crossref_primary_10_1002_mco2_539
crossref_primary_10_1002_jmv_29801
crossref_primary_10_1002_mco2_779
crossref_primary_10_1007_s11427_023_2393_3
crossref_primary_10_1038_s41590_024_01743_x
crossref_primary_10_1038_s41598_024_62874_7
crossref_primary_10_3389_fimmu_2023_1170759
crossref_primary_10_1016_j_it_2024_06_003
crossref_primary_10_1016_j_virol_2023_06_005
crossref_primary_10_1038_s41467_024_49096_1
crossref_primary_10_1002_ajh_27198
crossref_primary_10_1111_pbi_14458
crossref_primary_10_3390_pathogens12091108
crossref_primary_10_1021_acsomega_4c03023
crossref_primary_10_3390_diagnostics13223467
crossref_primary_10_1016_j_chom_2023_11_012
crossref_primary_10_3389_fimmu_2024_1382944
crossref_primary_10_1002_mco2_642
crossref_primary_10_1038_s41467_024_52194_9
crossref_primary_10_3389_fcimb_2023_1179552
crossref_primary_10_1016_j_virusres_2024_199358
crossref_primary_10_3390_v16050697
crossref_primary_10_1002_advs_202402975
crossref_primary_10_1016_j_cell_2023_12_025
crossref_primary_10_3390_microorganisms11040912
crossref_primary_10_3390_vaccines11020232
crossref_primary_10_1016_j_cell_2023_12_026
crossref_primary_10_1080_22221751_2023_2245921
crossref_primary_10_1128_jcm_00042_24
crossref_primary_10_3390_biomedicines11061677
crossref_primary_10_1007_s10822_023_00526_0
crossref_primary_10_1097_MD_0000000000040341
crossref_primary_10_1039_D3CC02721J
crossref_primary_10_1002_jmv_29822
crossref_primary_10_1128_jvi_00286_23
crossref_primary_10_1038_s41590_024_01744_w
crossref_primary_10_1016_j_virol_2024_110241
crossref_primary_10_3389_fimmu_2023_1133225
crossref_primary_10_1016_j_celrep_2024_114235
crossref_primary_10_1016_j_bsheal_2025_01_001
Cites_doi 10.1126/scitranslmed.abn6859
10.1038/nmeth.1923
10.1038/s41586-022-05053-w
10.1016/j.chom.2022.03.035
10.1001/jama.2021.19499
10.1056/NEJMoa2202826
10.1093/ofid/ofac464
10.1038/s41564-022-01198-6
10.1038/s41422-021-00555-0
10.1038/s41467-022-31259-7
10.1038/s41586-022-04581-9
10.1038/s41586-020-2852-1
10.1371/journal.pone.0128036
10.1038/s41591-022-01840-0
10.1038/s41586-021-04389-z
10.1038/s41586-021-04388-0
10.1038/s41586-020-2548-6
10.1093/ve/veab064
10.1126/sciimmunol.add5446
10.1038/s41586-022-04466-x
10.1126/science.1097211
10.1038/nbt.1754
10.1038/s41586-021-03398-2
10.14806/ej.17.1.200
10.1038/s41586-022-04594-4
10.1016/j.immuni.2022.04.003
10.1128/msphere.00179-22
10.1038/s41586-022-04980-y
10.1001/jamainternmed.2022.4299
10.1016/j.celrep.2022.110812
10.1038/s41586-020-2571-7
10.1056/NEJMc2212117
10.1016/j.chom.2022.09.002
10.1038/s41422-022-00677-z
10.1001/jama.2022.11691
10.1038/d41586-022-03445-6
10.1038/s41586-022-05644-7
10.1126/science.abc0870
10.1016/j.chom.2022.09.018
10.1126/science.abb2507
10.1001/jama.2022.17876
10.1126/science.abm8143
10.1038/s41586-020-2349-y
10.1038/s41422-021-00514-9
10.1016/j.cell.2022.05.014
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
2022 The Author(s) 2022
Copyright_xml – notice: 2022 The Author(s)
– notice: Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2022 The Author(s) 2022
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2022.12.018
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 286.e8
ExternalDocumentID PMC9747694
36580913
10_1016_j_cell_2022_12_018
S0092867422015318
Genre Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: T32 AI100852
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABOCM
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
O-L
O9-
OK1
P2P
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
WH7
YZZ
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAIKJ
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIDAL
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
RIG
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c488t-bf9ec94b9ebb4672fa52b81bca3f5bfd6225d388506f1fbc5466d3bd95f496f73
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 18:39:32 EDT 2025
Fri Aug 22 20:41:16 EDT 2025
Fri Jul 11 02:14:39 EDT 2025
Mon Jul 21 05:45:33 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Tue Jul 01 05:18:16 EDT 2025
Sun Apr 06 06:53:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords COVID-19
receptor binding affinity
SARS-CoV-2
neutralizing monoclonal antibody
XBB
antibody evasion
XBB.1
BQ.1
BQ.1.1
mRNA vaccine
Language English
License This is an open access article under the CC BY license.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-bf9ec94b9ebb4672fa52b81bca3f5bfd6225d388506f1fbc5466d3bd95f496f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally
Lead contact
ORCID 0000-0003-1627-149X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867422015318
PMID 36580913
PQID 2759957966
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9747694
proquest_miscellaneous_3153775938
proquest_miscellaneous_2759957966
pubmed_primary_36580913
crossref_citationtrail_10_1016_j_cell_2022_12_018
crossref_primary_10_1016_j_cell_2022_12_018
elsevier_sciencedirect_doi_10_1016_j_cell_2022_12_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-19
PublicationDateYYYYMMDD 2023-01-19
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2023
Publisher Elsevier Inc
The Author(s). Published by Elsevier Inc
Publisher_xml – name: Elsevier Inc
– name: The Author(s). Published by Elsevier Inc
References Nutalai, Zhou, Tuekprakhon, Ginn, Supasa, Liu, Huo, Mentzer, Duyvesteyn, Dijokaite-Guraliuc (bib11) 2022; 185
Lin, Gu, Xu, Wheeler, Young, Sunny, Moore, Zeng (bib30) 2022; 328
Wang, Muecksch, Cho, Gaebler, Hoffmann, Ramos, Zong, Cipolla, Johnson, Schmidt (bib25) 2022; 55
Planas, Saunders, Maes, Guivel-Benhassine, Planchais, Buchrieser, Bolland, Porrot, Staropoli, Lemoine (bib50) 2022; 602
Price, Olson, Newhams, Halasa, Boom, Sahni, Pannaraj, Irby, Bline, Maddux (bib32) 2022; 386
Wang, Guo, Iketani, Nair, Li, Mohri, Wang, Yu, Bowen, Chang (bib2) 2022; 608
Wang, Jia, Bao, Wang, Cao, Chi, Hu, Li, Zhou, Jiang (bib14) 2022; 603
Cao, Jian, Wang, Yu, Song, Yisimayi, Wang, An, Chen, Zhang (bib48) 2022
Wang, Bowen, Valdez, Gherasim, Gordon, Liu, Ho (bib28) 2022
Havers, Pham, Taylor, Whitaker, Patel, Anglin, Kambhampati, Milucky, Zell, Moline (bib31) 2022; 182
Ayoubkhani, Bosworth, King, Pouwels, Glickman, Nafilyan, Zaccardi, Khunti, Alwan, Walker (bib35) 2022; 9
Cao, Song, Wang, Liu, Yue, Jian, Yu, Yisimayi, Wang, Wang (bib47) 2022; 30
Park, De Marco, Starr, Liu, Pinto, Walls, Zatta, Zepeda, Bowen, Sprouse (bib10) 2022; 375
Zost, Gilchuk, Case, Binshtein, Chen, Nkolola, Schäfer, Reidy, Trivette, Nargi (bib16) 2020; 584
Wang, Iketani, Li, Guo, Yeh, Liu, Yu, Sheng, Huang, Liu, Ho (bib4) 2022; 30
Simon, Kota, Bloomquist, Hanley, Forgacs, Pahwa, Pallikkuth, Miller, Schaenman, Yeaman (bib41) 2022; 7
Tenforde, Self, Adams, Gaglani, Ginde, McNeal, Ghamande, Douin, Talbot, Casey (bib29) 2021; 326
Luo, Zhang, Kreutzberger, Eaton, Edwards, Jing, Dai, Sempowski, Cronin, Parks (bib20) 2022; 7
O'Toole, Scher, Underwood, Jackson, Hill, McCrone, Colquhoun, Ruis, Abu-Dahab, Taylor (bib6) 2021; 7
Pinto, Park, Beltramello, Walls, Tortorici, Bianchi, Jaconi, Culap, Zatta, De Marco (bib18) 2020; 583
Robinson, Thorvaldsdóttir, Winckler, Guttman, Lander, Getz, Mesirov (bib40) 2011; 29
Liu, Iketani, Guo, Chan, Wang, Liu, Luo, Chu, Huang, Nair (bib1) 2022; 602
Barnes, Jette, Abernathy, Dam, Esswein, Gristick, Malyutin, Sharaf, Huey-Tubman, Lee (bib9) 2020; 588
Westendorf, Žentelis, Wang, Foster, Vaillancourt, Wiggin, Lovett, van der Lee, Hendle, Pustilnik (bib17) 2022; 39
Du, Liu, Zhang, Xiao, Yasimayi, Huang, Wang, Cao, Xie, Xiao (bib22) 2021; 31
Baym, Kryazhimskiy, Lieberman, Chung, Desai, Kishony (bib43) 2015; 10
Wang, Chen, Tan, Yue, Zhou, Xu, Lin, Yang, Zhou, Deng (bib23) 2022; 30
Hong, Han, Li, Xu, Wang, Xu, Li, Wang, Zhang, Huang, Cong (bib26) 2022; 604
Al-Aly, Bowe, Xie (bib34) 2022; 28
Liu, Wang, Nair, Yu, Rapp, Wang, Luo, Chan, Sahi, Figueroa (bib42) 2020; 584
Wang, Li, Ho, Guo, Yeh, Mohri, Liu, Wang, Yu, Shah (bib5) 2022
Hachmann, Miller, Collier, Barouch (bib49) 2022; 387
Langmead, Salzberg (bib39) 2012; 9
Cao, Yisimayi, Jian, Song, Xiao, Wang, Du, Wang, Li, Chen (bib21) 2022; 608
Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib44) 2020; 367
Cao, Yisimayi, Jian, Song, Xiao, Wang, Li, Chen, Yu, Wang (bib46) 2022; 608
Cao, Yisimayi, Bai, Huang, Li, Zhang, Yuan, An, Wang, Xiao (bib12) 2021; 31
Wang, Nair, Liu, Iketani, Luo, Guo, Wang, Yu, Zhang, Kwong (bib36) 2021; 593
Wang, Fu, Bao, Jia, Zhang, Zhou, Wu, Wu, Zhang, Gao (bib13) 2022; 32
Azzolini, Levi, Sarti, Pozzi, Mollura, Mantovani, Rescigno (bib33) 2022; 328
Iketani, Liu, Guo, Liu, Chan, Huang, Wang, Luo, Yu, Chu (bib3) 2022; 604
Smith, Lapedes, de Jong, Bestebroer, Rimmelzwaan, Osterhaus, Fouchier (bib8) 2004; 305
Liu, Iketani, Guo, Reddem, Casner, Nair, Yu, Chan, Wang, Cerutti (bib24) 2022; 14
Martin (bib38) 2011; 17
Fenwick, Turelli, Ni, Perez, Lau, Herate, Marlin, Lana, Pellaton, Raclot (bib19) 2022; 7
Zhou, Zhou, Tang, Chan, Luo, Peng, Yuan, Liu, Mok, Chen (bib15) 2022; 13
Starr, Greaney, Stewart, Walls, Hannon, Veesler, Bloom (bib27) 2022
Chan, Dorosky, Sharma, Abbasi, Dye, Kranz, Herbert, Procko (bib37) 2020; 369
Wilks, Mühlemann, Shen, Türeli, LeGresley, Netzl, Caniza, Chacaltana-Huarcaya, Corman, Daniell (bib45) 2022
Callaway (bib7) 2022; 611
Planas (10.1016/j.cell.2022.12.018_bib50) 2022; 602
Liu (10.1016/j.cell.2022.12.018_bib1) 2022; 602
Wrapp (10.1016/j.cell.2022.12.018_bib44) 2020; 367
Liu (10.1016/j.cell.2022.12.018_bib42) 2020; 584
Westendorf (10.1016/j.cell.2022.12.018_bib17) 2022; 39
Pinto (10.1016/j.cell.2022.12.018_bib18) 2020; 583
Robinson (10.1016/j.cell.2022.12.018_bib40) 2011; 29
Fenwick (10.1016/j.cell.2022.12.018_bib19) 2022; 7
Martin (10.1016/j.cell.2022.12.018_bib38) 2011; 17
Langmead (10.1016/j.cell.2022.12.018_bib39) 2012; 9
Wang (10.1016/j.cell.2022.12.018_bib2) 2022; 608
Wang (10.1016/j.cell.2022.12.018_bib14) 2022; 603
Cao (10.1016/j.cell.2022.12.018_bib12) 2021; 31
Azzolini (10.1016/j.cell.2022.12.018_bib33) 2022; 328
Nutalai (10.1016/j.cell.2022.12.018_bib11) 2022; 185
Cao (10.1016/j.cell.2022.12.018_bib21) 2022; 608
Lin (10.1016/j.cell.2022.12.018_bib30) 2022; 328
Baym (10.1016/j.cell.2022.12.018_bib43) 2015; 10
Barnes (10.1016/j.cell.2022.12.018_bib9) 2020; 588
Luo (10.1016/j.cell.2022.12.018_bib20) 2022; 7
Starr (10.1016/j.cell.2022.12.018_bib27) 2022
Ayoubkhani (10.1016/j.cell.2022.12.018_bib35) 2022; 9
Wang (10.1016/j.cell.2022.12.018_bib36) 2021; 593
Callaway (10.1016/j.cell.2022.12.018_bib7) 2022; 611
O'Toole (10.1016/j.cell.2022.12.018_bib6) 2021; 7
Wang (10.1016/j.cell.2022.12.018_bib23) 2022; 30
Wang (10.1016/j.cell.2022.12.018_bib25) 2022; 55
Wang (10.1016/j.cell.2022.12.018_bib5) 2022
Park (10.1016/j.cell.2022.12.018_bib10) 2022; 375
Iketani (10.1016/j.cell.2022.12.018_bib3) 2022; 604
Cao (10.1016/j.cell.2022.12.018_bib47) 2022; 30
Smith (10.1016/j.cell.2022.12.018_bib8) 2004; 305
Chan (10.1016/j.cell.2022.12.018_bib37) 2020; 369
Price (10.1016/j.cell.2022.12.018_bib32) 2022; 386
Zhou (10.1016/j.cell.2022.12.018_bib15) 2022; 13
Cao (10.1016/j.cell.2022.12.018_bib48) 2022
Wilks (10.1016/j.cell.2022.12.018_bib45) 2022
Al-Aly (10.1016/j.cell.2022.12.018_bib34) 2022; 28
Wang (10.1016/j.cell.2022.12.018_bib4) 2022; 30
Wang (10.1016/j.cell.2022.12.018_bib13) 2022; 32
Hong (10.1016/j.cell.2022.12.018_bib26) 2022; 604
Liu (10.1016/j.cell.2022.12.018_bib24) 2022; 14
Tenforde (10.1016/j.cell.2022.12.018_bib29) 2021; 326
Wang (10.1016/j.cell.2022.12.018_bib28) 2022
Simon (10.1016/j.cell.2022.12.018_bib41) 2022; 7
Hachmann (10.1016/j.cell.2022.12.018_bib49) 2022; 387
Cao (10.1016/j.cell.2022.12.018_bib46) 2022; 608
Zost (10.1016/j.cell.2022.12.018_bib16) 2020; 584
Du (10.1016/j.cell.2022.12.018_bib22) 2021; 31
Havers (10.1016/j.cell.2022.12.018_bib31) 2022; 182
References_xml – volume: 375
  start-page: 449
  year: 2022
  end-page: 454
  ident: bib10
  article-title: Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry
  publication-title: Science
– volume: 28
  start-page: 1461
  year: 2022
  end-page: 1467
  ident: bib34
  article-title: Long COVID after breakthrough SARS-CoV-2 infection
  publication-title: Nat. Med.
– volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  ident: bib39
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
– volume: 55
  start-page: 998
  year: 2022
  end-page: 1012.e8
  ident: bib25
  article-title: Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins
  publication-title: Immunity
– volume: 7
  start-page: 1376
  year: 2022
  end-page: 1389
  ident: bib19
  article-title: Patient-derived monoclonal antibody neutralizes SARS-CoV-2 Omicron variants and confers full protection in monkeys
  publication-title: Nat. Microbiol.
– volume: 7
  start-page: e0017922
  year: 2022
  ident: bib41
  article-title: PARIS and SPARTA: Finding the Achilles' Heel of SARS-CoV-2
  publication-title: mSphere
– volume: 30
  start-page: 1527
  year: 2022
  end-page: 1539
  ident: bib47
  article-title: Characterization of the enhanced infectivity and antibody evasion of Omicron BA.2.75
  publication-title: Cell Host Microbe
– volume: 7
  start-page: veab064
  year: 2021
  ident: bib6
  article-title: Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool
  publication-title: Virus Evol.
– volume: 608
  start-page: 593
  year: 2022
  end-page: 602
  ident: bib21
  article-title: BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection
  publication-title: Nature
– volume: 9
  start-page: ofac464
  year: 2022
  ident: bib35
  article-title: Risk of Long COVID in People Infected With Severe Acute Respiratory Syndrome Coronavirus 2 After 2 Doses of a Coronavirus Disease 2019 Vaccine: Community-Based, Matched Cohort Study
  publication-title: Open Forum Infect. Dis.
– volume: 30
  start-page: 887
  year: 2022
  end-page: 895.e4
  ident: bib23
  article-title: 35B5 antibody potently neutralizes SARS-CoV-2 Omicron by disrupting the N-glycan switch via a conserved spike epitope
  publication-title: Cell Host Microbe
– volume: 305
  start-page: 371
  year: 2004
  end-page: 376
  ident: bib8
  article-title: Mapping the antigenic and genetic evolution of influenza virus
  publication-title: Science
– volume: 584
  start-page: 450
  year: 2020
  end-page: 456
  ident: bib42
  article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike
  publication-title: Nature
– volume: 608
  start-page: 593
  year: 2022
  end-page: 602
  ident: bib46
  article-title: BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection
  publication-title: Nature
– volume: 602
  start-page: 671
  year: 2022
  end-page: 675
  ident: bib50
  article-title: Considerable escape of SARS-CoV-2 Omicron to antibody neutralization
  publication-title: Nature
– volume: 387
  start-page: 1904
  year: 2022
  end-page: 1906
  ident: bib49
  article-title: Neutralization Escape by SARS-CoV-2 Omicron Subvariant BA.4.6
  publication-title: N Engl J Med
– volume: 588
  start-page: 682
  year: 2020
  end-page: 687
  ident: bib9
  article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies
  publication-title: Nature
– volume: 29
  start-page: 24
  year: 2011
  end-page: 26
  ident: bib40
  article-title: Integrative genomics viewer
  publication-title: Nat. Biotechnol.
– volume: 14
  start-page: eabn6859
  year: 2022
  ident: bib24
  article-title: An antibody class with a common CDRH3 motif broadly neutralizes sarbecoviruses
  publication-title: Sci. Transl. Med.
– year: 2022
  ident: bib28
  article-title: Antibody responses to Omicron BA.4/BA.5 bivalent mRNA vaccine booster shot
  publication-title: bioRxiv
– volume: 30
  start-page: 1512
  year: 2022
  end-page: 1517
  ident: bib4
  article-title: Antigenic characterization of the SARS-CoV-2 Omicron subvariant BA.2.75
  publication-title: Cell Host Microbe
– volume: 31
  start-page: 732
  year: 2021
  end-page: 741
  ident: bib12
  article-title: Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines
  publication-title: Cell Res.
– volume: 584
  start-page: 443
  year: 2020
  end-page: 449
  ident: bib16
  article-title: Potently neutralizing and protective human antibodies against SARS-CoV-2
  publication-title: Nature
– volume: 7
  start-page: eadd5446
  year: 2022
  ident: bib20
  article-title: An antibody from single human VH-rearranging mouse neutralizes all SARS-CoV-2 variants through BA.5 by inhibiting membrane fusion
  publication-title: Sci. Immunol.
– volume: 369
  start-page: 1261
  year: 2020
  end-page: 1265
  ident: bib37
  article-title: Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2
  publication-title: Science
– volume: 328
  start-page: 676
  year: 2022
  end-page: 678
  ident: bib33
  article-title: Association Between BNT162b2 Vaccination and Long COVID After Infections Not Requiring Hospitalization in Health Care Workers
  publication-title: JAMA
– volume: 328
  start-page: 1415
  year: 2022
  end-page: 1426
  ident: bib30
  article-title: Association of Primary and Booster Vaccination and Prior Infection With SARS-CoV-2 Infection and Severe COVID-19 Outcomes
  publication-title: JAMA
– volume: 326
  start-page: 2043
  year: 2021
  end-page: 2054
  ident: bib29
  article-title: Association Between mRNA Vaccination and COVID-19 Hospitalization and Disease Severity
  publication-title: JAMA
– volume: 608
  start-page: 603
  year: 2022
  end-page: 608
  ident: bib2
  article-title: Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4, & BA.5
  publication-title: Nature
– volume: 17
  start-page: 10
  year: 2011
  end-page: 12
  ident: bib38
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: EMBnet. journal
– volume: 32
  start-page: 691
  year: 2022
  end-page: 694
  ident: bib13
  article-title: Selection and structural bases of potent broadly neutralizing antibodies from 3-dose vaccinees that are highly effective against diverse SARS-CoV-2 variants, including Omicron sublineages
  publication-title: Cell Res.
– volume: 386
  start-page: 1899
  year: 2022
  end-page: 1909
  ident: bib32
  article-title: BNT162b2 Protection against the Omicron Variant in Children and Adolescents
  publication-title: N. Engl. J. Med.
– volume: 583
  start-page: 290
  year: 2020
  end-page: 295
  ident: bib18
  article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody
  publication-title: Nature
– volume: 611
  start-page: 213
  year: 2022
  end-page: 214
  ident: bib7
  article-title: COVID 'variant soup' is making winter surges hard to predict
  publication-title: Nature
– volume: 185
  start-page: 2116
  year: 2022
  end-page: 2131.e18
  ident: bib11
  article-title: Potent cross-reactive antibodies following Omicron breakthrough in vaccinees
  publication-title: Cell
– volume: 13
  start-page: 3589
  year: 2022
  ident: bib15
  article-title: A broadly neutralizing antibody protects Syrian hamsters against SARS-CoV-2 Omicron challenge
  publication-title: Nat. Commun.
– volume: 367
  start-page: 1260
  year: 2020
  end-page: 1263
  ident: bib44
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
– volume: 603
  start-page: 919
  year: 2022
  end-page: 925
  ident: bib14
  article-title: Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants
  publication-title: Nature
– volume: 182
  start-page: 1071
  year: 2022
  end-page: 1081
  ident: bib31
  article-title: COVID-19-Associated Hospitalizations Among Vaccinated and Unvaccinated Adults 18 Years or Older in 13 US States, January 2021 to April 2022
  publication-title: JAMA Intern. Med.
– volume: 593
  start-page: 130
  year: 2021
  end-page: 135
  ident: bib36
  article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7
  publication-title: Nature
– volume: 604
  start-page: 553
  year: 2022
  end-page: 556
  ident: bib3
  article-title: Antibody evasion properties of SARS-CoV-2 Omicron sublineages
  publication-title: Nature
– volume: 39
  start-page: 110812
  year: 2022
  ident: bib17
  article-title: LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants
  publication-title: Cell Rep.
– volume: 31
  start-page: 1130
  year: 2021
  end-page: 1133
  ident: bib22
  article-title: Structures of SARS-CoV-2 B.1.351 neutralizing antibodies provide insights into cocktail design against concerning variants
  publication-title: Cell Res.
– start-page: 00694
  year: 2022
  end-page: 00696
  ident: bib5
  article-title: Resistance of SARS-CoV-2 omicron subvariant BA.4.6 to antibody neutralisation
  publication-title: Lancet Infect. Dis.
– year: 2022
  ident: bib45
  article-title: Mapping SARS-CoV-2 antigenic relationships and serological responses
  publication-title: bioRxiv
– year: 2022
  ident: bib27
  article-title: Deep mutational scans for ACE2 binding, RBD expression, and antibody escape in the SARS-CoV-2 Omicron BA.1 and BA.2 receptor-binding domains
  publication-title: bioRxiv
– volume: 604
  start-page: 546
  year: 2022
  end-page: 552
  ident: bib26
  article-title: Molecular basis of receptor binding and antibody neutralization of Omicron
  publication-title: Nature
– volume: 10
  start-page: e0128036
  year: 2015
  ident: bib43
  article-title: Inexpensive multiplexed library preparation for megabase-sized genomes
  publication-title: PLoS One
– volume: 602
  start-page: 676
  year: 2022
  end-page: 681
  ident: bib1
  article-title: Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2
  publication-title: Nature
– year: 2022
  ident: bib48
  article-title: Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution
  publication-title: Nature
– volume: 14
  start-page: eabn6859
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib24
  article-title: An antibody class with a common CDRH3 motif broadly neutralizes sarbecoviruses
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abn6859
– year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib45
  article-title: Mapping SARS-CoV-2 antigenic relationships and serological responses
  publication-title: bioRxiv
– volume: 9
  start-page: 357
  year: 2012
  ident: 10.1016/j.cell.2022.12.018_bib39
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 608
  start-page: 603
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib2
  article-title: Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4, & BA.5
  publication-title: Nature
  doi: 10.1038/s41586-022-05053-w
– volume: 30
  start-page: 887
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib23
  article-title: 35B5 antibody potently neutralizes SARS-CoV-2 Omicron by disrupting the N-glycan switch via a conserved spike epitope
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2022.03.035
– volume: 326
  start-page: 2043
  year: 2021
  ident: 10.1016/j.cell.2022.12.018_bib29
  article-title: Association Between mRNA Vaccination and COVID-19 Hospitalization and Disease Severity
  publication-title: JAMA
  doi: 10.1001/jama.2021.19499
– volume: 386
  start-page: 1899
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib32
  article-title: BNT162b2 Protection against the Omicron Variant in Children and Adolescents
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2202826
– start-page: 00694
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib5
  article-title: Resistance of SARS-CoV-2 omicron subvariant BA.4.6 to antibody neutralisation
  publication-title: Lancet Infect. Dis.
– volume: 9
  start-page: ofac464
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib35
  article-title: Risk of Long COVID in People Infected With Severe Acute Respiratory Syndrome Coronavirus 2 After 2 Doses of a Coronavirus Disease 2019 Vaccine: Community-Based, Matched Cohort Study
  publication-title: Open Forum Infect. Dis.
  doi: 10.1093/ofid/ofac464
– volume: 7
  start-page: 1376
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib19
  article-title: Patient-derived monoclonal antibody neutralizes SARS-CoV-2 Omicron variants and confers full protection in monkeys
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-022-01198-6
– volume: 31
  start-page: 1130
  year: 2021
  ident: 10.1016/j.cell.2022.12.018_bib22
  article-title: Structures of SARS-CoV-2 B.1.351 neutralizing antibodies provide insights into cocktail design against concerning variants
  publication-title: Cell Res.
  doi: 10.1038/s41422-021-00555-0
– volume: 13
  start-page: 3589
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib15
  article-title: A broadly neutralizing antibody protects Syrian hamsters against SARS-CoV-2 Omicron challenge
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31259-7
– volume: 604
  start-page: 546
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib26
  article-title: Molecular basis of receptor binding and antibody neutralization of Omicron
  publication-title: Nature
  doi: 10.1038/s41586-022-04581-9
– volume: 588
  start-page: 682
  year: 2020
  ident: 10.1016/j.cell.2022.12.018_bib9
  article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies
  publication-title: Nature
  doi: 10.1038/s41586-020-2852-1
– year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib27
  article-title: Deep mutational scans for ACE2 binding, RBD expression, and antibody escape in the SARS-CoV-2 Omicron BA.1 and BA.2 receptor-binding domains
  publication-title: bioRxiv
– volume: 10
  start-page: e0128036
  year: 2015
  ident: 10.1016/j.cell.2022.12.018_bib43
  article-title: Inexpensive multiplexed library preparation for megabase-sized genomes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0128036
– volume: 28
  start-page: 1461
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib34
  article-title: Long COVID after breakthrough SARS-CoV-2 infection
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-01840-0
– volume: 602
  start-page: 671
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib50
  article-title: Considerable escape of SARS-CoV-2 Omicron to antibody neutralization
  publication-title: Nature
  doi: 10.1038/s41586-021-04389-z
– volume: 602
  start-page: 676
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib1
  article-title: Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-021-04388-0
– volume: 584
  start-page: 443
  year: 2020
  ident: 10.1016/j.cell.2022.12.018_bib16
  article-title: Potently neutralizing and protective human antibodies against SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-020-2548-6
– volume: 7
  start-page: veab064
  year: 2021
  ident: 10.1016/j.cell.2022.12.018_bib6
  article-title: Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool
  publication-title: Virus Evol.
  doi: 10.1093/ve/veab064
– volume: 7
  start-page: eadd5446
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib20
  article-title: An antibody from single human VH-rearranging mouse neutralizes all SARS-CoV-2 variants through BA.5 by inhibiting membrane fusion
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.add5446
– volume: 603
  start-page: 919
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib14
  article-title: Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants
  publication-title: Nature
  doi: 10.1038/s41586-022-04466-x
– volume: 305
  start-page: 371
  year: 2004
  ident: 10.1016/j.cell.2022.12.018_bib8
  article-title: Mapping the antigenic and genetic evolution of influenza virus
  publication-title: Science
  doi: 10.1126/science.1097211
– volume: 29
  start-page: 24
  year: 2011
  ident: 10.1016/j.cell.2022.12.018_bib40
  article-title: Integrative genomics viewer
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1754
– year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib28
  article-title: Antibody responses to Omicron BA.4/BA.5 bivalent mRNA vaccine booster shot
  publication-title: bioRxiv
– volume: 593
  start-page: 130
  year: 2021
  ident: 10.1016/j.cell.2022.12.018_bib36
  article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7
  publication-title: Nature
  doi: 10.1038/s41586-021-03398-2
– volume: 17
  start-page: 10
  year: 2011
  ident: 10.1016/j.cell.2022.12.018_bib38
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: EMBnet. journal
  doi: 10.14806/ej.17.1.200
– volume: 604
  start-page: 553
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib3
  article-title: Antibody evasion properties of SARS-CoV-2 Omicron sublineages
  publication-title: Nature
  doi: 10.1038/s41586-022-04594-4
– volume: 55
  start-page: 998
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib25
  article-title: Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins
  publication-title: Immunity
  doi: 10.1016/j.immuni.2022.04.003
– volume: 7
  start-page: e0017922
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib41
  article-title: PARIS and SPARTA: Finding the Achilles' Heel of SARS-CoV-2
  publication-title: mSphere
  doi: 10.1128/msphere.00179-22
– volume: 608
  start-page: 593
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib46
  article-title: BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection
  publication-title: Nature
  doi: 10.1038/s41586-022-04980-y
– volume: 182
  start-page: 1071
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib31
  article-title: COVID-19-Associated Hospitalizations Among Vaccinated and Unvaccinated Adults 18 Years or Older in 13 US States, January 2021 to April 2022
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2022.4299
– volume: 39
  start-page: 110812
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib17
  article-title: LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.110812
– volume: 584
  start-page: 450
  year: 2020
  ident: 10.1016/j.cell.2022.12.018_bib42
  article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike
  publication-title: Nature
  doi: 10.1038/s41586-020-2571-7
– volume: 387
  start-page: 1904
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib49
  article-title: Neutralization Escape by SARS-CoV-2 Omicron Subvariant BA.4.6
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2212117
– volume: 30
  start-page: 1512
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib4
  article-title: Antigenic characterization of the SARS-CoV-2 Omicron subvariant BA.2.75
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2022.09.002
– volume: 32
  start-page: 691
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib13
  article-title: Selection and structural bases of potent broadly neutralizing antibodies from 3-dose vaccinees that are highly effective against diverse SARS-CoV-2 variants, including Omicron sublineages
  publication-title: Cell Res.
  doi: 10.1038/s41422-022-00677-z
– volume: 328
  start-page: 676
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib33
  article-title: Association Between BNT162b2 Vaccination and Long COVID After Infections Not Requiring Hospitalization in Health Care Workers
  publication-title: JAMA
  doi: 10.1001/jama.2022.11691
– volume: 611
  start-page: 213
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib7
  article-title: COVID 'variant soup' is making winter surges hard to predict
  publication-title: Nature
  doi: 10.1038/d41586-022-03445-6
– year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib48
  article-title: Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution
  publication-title: Nature
  doi: 10.1038/s41586-022-05644-7
– volume: 608
  start-page: 593
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib21
  article-title: BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection
  publication-title: Nature
  doi: 10.1038/s41586-022-04980-y
– volume: 369
  start-page: 1261
  year: 2020
  ident: 10.1016/j.cell.2022.12.018_bib37
  article-title: Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2
  publication-title: Science
  doi: 10.1126/science.abc0870
– volume: 30
  start-page: 1527
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib47
  article-title: Characterization of the enhanced infectivity and antibody evasion of Omicron BA.2.75
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2022.09.018
– volume: 367
  start-page: 1260
  year: 2020
  ident: 10.1016/j.cell.2022.12.018_bib44
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
  doi: 10.1126/science.abb2507
– volume: 328
  start-page: 1415
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib30
  article-title: Association of Primary and Booster Vaccination and Prior Infection With SARS-CoV-2 Infection and Severe COVID-19 Outcomes
  publication-title: JAMA
  doi: 10.1001/jama.2022.17876
– volume: 375
  start-page: 449
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib10
  article-title: Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry
  publication-title: Science
  doi: 10.1126/science.abm8143
– volume: 583
  start-page: 290
  year: 2020
  ident: 10.1016/j.cell.2022.12.018_bib18
  article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody
  publication-title: Nature
  doi: 10.1038/s41586-020-2349-y
– volume: 31
  start-page: 732
  year: 2021
  ident: 10.1016/j.cell.2022.12.018_bib12
  article-title: Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines
  publication-title: Cell Res.
  doi: 10.1038/s41422-021-00514-9
– volume: 185
  start-page: 2116
  year: 2022
  ident: 10.1016/j.cell.2022.12.018_bib11
  article-title: Potent cross-reactive antibodies following Omicron breakthrough in vaccinees
  publication-title: Cell
  doi: 10.1016/j.cell.2022.05.014
SSID ssj0008555
Score 2.7419217
Snippet The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 279
SubjectTerms antibodies
Antibodies, Monoclonal
Antibodies, Neutralizing
Antibodies, Viral
antibody evasion
BQ.1
BQ.1.1
COVID-19
COVID-19 - immunology
COVID-19 - virology
COVID-19 infection
COVID-19 Vaccines
Humans
Immune Evasion
mRNA vaccine
neutralization
neutralizing monoclonal antibody
receptor binding affinity
SARS-CoV-2
SARS-CoV-2 - classification
SARS-CoV-2 - genetics
Severe acute respiratory syndrome coronavirus 2
vaccines
XBB
XBB.1
Title Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants
URI https://dx.doi.org/10.1016/j.cell.2022.12.018
https://www.ncbi.nlm.nih.gov/pubmed/36580913
https://www.proquest.com/docview/2759957966
https://www.proquest.com/docview/3153775938
https://pubmed.ncbi.nlm.nih.gov/PMC9747694
Volume 186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZTuMw0KqQVuIFActRjpVX4g1FEDtO4se22gqtBFpO9c3KxLYogqSCFom_ZyZHteV64DUeR8547szB2EHsI_DO0j_1UAdR6rIAcm8DbT0AakALmuqdT8_ik-vo70iNOmzQ1sJQWmUj-2uZXknr5slRg82jyXhMNb5apDG6dqjDkJKo4FdGaVXEN-rPpXGqVD3FQCPnI3RTOFPneFFwHH1EIaqQIA3--Fg5vTc-3-ZQ_qeUhqtspbEmea8-8BrruGKd_ajnS778ZP966Lc-oHLiiL8xlPaFu-eM4mN8QkH4R-qmykvPkdMJ6rJ3cRkMyptA8P457rF81O_zpxk8o0dNCTMb7Hr452pwEjQjFIIcOXMagNcu1xFoB4AiUfhMCUBLNc-kV-BtjOxsZUpt63zoIVdRHFsJVisf6dgncpMtFWXhthkHcGkGyqLBhl6OzLXLBADal5DkMjs-7rKwxZ3Jm_7iNObi3rSJZHeG8G0I3yYUBvHdZYfzPZO6u8aX0Kq9ErNAIwbF_5f7frf3Z5B5aDkrXDl7MiKhfmsJunyfw0gkrgThJL5nq77z-Vkl2m_UWLXLkgVqmANQ8-7FlWJ8WzXxJj8u1tHON79ply3T4HsKBoV6jy1NH2duH82jKfyq6P8VDuoPYQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw8DSGELwgPkf5NBJvyNpix0n82FZMHWwTsA31zcrFtiiCpNraSfv33DVJRfnYA6_xOXLO9537AHiTxRRj8PxPPbEyLUIpsYpeWh8RSQN6tFzvfHScTc7S91Mz3YJxXwvDaZWd7G9l-kpad092O2zuzmczrvG1qsjItSMdRpRU3ICbZA3kzJ0H09FaHBfGtGMMLLE-gXeVM22SF0fHyUlUahUT5Mkff9dOf1qfvydR_qKV9u_B3c6cFMP2xPdhK9QP4FY7YPLqIXwckuP6g7STIATOsPFXIlyWHCATc47Cn3M7VdFEQazOUCfDzydy3HyRSow-0R4vpqORuFjiJbnUnDHzCM72352OJ7KboSArYs2FxGhDZVO0AZFkooqlUUimalXqaDD6jPjZ64L71sUkYmXSLPMavTUxtVnM9WPYrps6PAGBGIoSjSeLjdwcXdlQKkQyMDGvdLm3N4Ckx52rugbjPOfiu-szyb45xrdjfLtEOcL3AN6u98zb9hrXQpv-StwGkTiS_9fue93fnyPu4eWyDs3ywqmcG67l5PP9G0YTdeUEp-k9O-2dr8-qyYDjzqoDyDeoYQ3A3bs3V-rZ11UXb3bkMps-_c9vegW3J6dHh-7w4PjDM7hDK5wXJxP7HLYX58vwgmylBb5c8cJPsyQSgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alarming+antibody+evasion+properties+of+rising+SARS-CoV-2+BQ+and+XBB+subvariants&rft.jtitle=Cell&rft.au=Wang%2C+Qian&rft.au=Iketani%2C+Sho&rft.au=Li%2C+Zhiteng&rft.au=Liu%2C+Liyuan&rft.date=2023-01-19&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=186&rft.issue=2&rft.spage=279&rft_id=info:doi/10.1016%2Fj.cell.2022.12.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon