Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation
The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H⁺-ATPase (V-ATPase) and the vacuolar H⁺-pyrophosphatas...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 107; no. 7; pp. 3251 - 3256 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
16.02.2010
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H⁺-ATPase (V-ATPase) and the vacuolar H⁺-pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The vha-a2 vha-a3 double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the vha-a2 vha-a3 mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn²⁺/H⁺-antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na⁺/H⁺-antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the vha-a2 vha-a3 double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth. |
---|---|
AbstractList | The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H
+
-ATPase (V-ATPase) and the vacuolar H
+
-pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The
vha-a2 vha-a3
double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the
vha-a2 vha-a3
mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn
2+
/H
+
-antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na
+
/H
+
-antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the
vha-a2 vha-a3
double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth. The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H^(+)-ATPase (V-ATPase) and the vacuolar H^(+)-pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The vha-a2 vha-a3 double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the vha-a2 vha-a3 mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn2+/H^(+)-antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na+/H^(+)-antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the vha-a2 vha-a3 double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth. [PUBLICATION ABSTRACT] The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H(+)-ATPase (V-ATPase) and the vacuolar H(+)-pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The vha-a2 vha-a3 double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the vha-a2 vha-a3 mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn(2+)/H(+)-antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na(+)/H(+)-antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the vha-a2 vha-a3 double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth. The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H⁺-ATPase (VATPase) and the vacuolar H⁺-pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The vha-a2 vha-a3 double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the vha-a2 vha-a3 mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn²⁺/H⁺ -antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na⁺/H⁺-antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the vhaa2 vha-a3 double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosóme (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth. The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H⁺-ATPase (V-ATPase) and the vacuolar H⁺-pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The vha-a2 vha-a3 double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the vha-a2 vha-a3 mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn²⁺/H⁺-antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na⁺/H⁺-antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the vha-a2 vha-a3 double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth. |
Author | Görlich, Esther Schumacher, Karin Al-Rasheid, Khaled A.S Beyhl, Diana Stierhof, York-Dieter Hedrich, Rainer Krebs, Melanie Marten, Irene |
Author_xml | – sequence: 1 fullname: Krebs, Melanie – sequence: 2 fullname: Beyhl, Diana – sequence: 3 fullname: Görlich, Esther – sequence: 4 fullname: Al-Rasheid, Khaled A.S – sequence: 5 fullname: Marten, Irene – sequence: 6 fullname: Stierhof, York-Dieter – sequence: 7 fullname: Hedrich, Rainer – sequence: 8 fullname: Schumacher, Karin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20133698$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUtvGyEUhVGVqnHSrrtqi7qfBAZmgE0lK-pLitRKTbpFwICDZQ8THpH878PYqZOugHu_ezi65wycjGG0ALzH6AIjRi6nUaULJDBBpKuFV2CB66vpqUAnYIFQyxpOW3oKzlJaI4REx9EbcNoiTEgv-ALsllFpP4Qp-QT_Nsub3ypZqEz2Dz7voMow31mYwximjUoZVira--KjHaALEVrnvPF2zHAsOe4vKYeoVhbqUosh77EUBl-2VdeUbdmo7MP4Frx2apPsu6fzHNx--3pz9aO5_vX959XyujGU89yooRM951YM3CrLuGsJNW5wuqODEbqniItetA5r3WPdMtZqbrTmvNcCOcbJOfhy0J2K3trBVItRbeQU_VbFnQzKy_87o7-Tq_AgW07nrVaBz08CMdwXm7JchxLH6lnWPVKCWUcqdHmATAwpReuOH2Ak56jkHJV8jqpOfHzp68j_y-YFME8-yzHJJGn3xj4cgPW88iNBUUd6TkXtfzr0nQpSraJP8vbPLI8wR11POHkEhm-xvw |
CitedBy_id | crossref_primary_10_1016_j_phytochem_2018_08_007 crossref_primary_10_3389_fpls_2019_00384 crossref_primary_10_3390_ijms24109014 crossref_primary_10_1093_plphys_kiab099 crossref_primary_10_1093_pcp_pct138 crossref_primary_10_1186_s12870_016_0797_1 crossref_primary_10_1073_pnas_1501318112 crossref_primary_10_1111_j_1469_8137_2011_03977_x crossref_primary_10_3390_ijms22095020 crossref_primary_10_1111_nph_15280 crossref_primary_10_1093_jxb_erq409 crossref_primary_10_7554_eLife_44213 crossref_primary_10_1105_tpc_111_089581 crossref_primary_10_1038_srep16205 crossref_primary_10_1146_annurev_arplant_043014_114648 crossref_primary_10_1111_ppl_12064 crossref_primary_10_1007_s00344_020_10092_6 crossref_primary_10_1038_s41598_017_06744_5 crossref_primary_10_1093_pcp_pcq096 crossref_primary_10_1093_pcp_pcz002 crossref_primary_10_1111_plb_12704 crossref_primary_10_3390_ijms20205125 crossref_primary_10_1002_cbf_3798 crossref_primary_10_1105_tpc_111_085415 crossref_primary_10_3389_fpls_2016_00415 crossref_primary_10_1134_S1990747818050045 crossref_primary_10_1111_tpj_12854 crossref_primary_10_1016_j_cellsig_2011_03_003 crossref_primary_10_1007_s11427_024_2620_7 crossref_primary_10_1016_j_scienta_2015_09_019 crossref_primary_10_1093_jxb_erx050 crossref_primary_10_1111_nph_16231 crossref_primary_10_1104_pp_113_216572 crossref_primary_10_1016_j_envexpbot_2016_04_002 crossref_primary_10_1111_pce_12109 crossref_primary_10_1016_j_plantsci_2018_05_011 crossref_primary_10_1038_s41598_018_35578_y crossref_primary_10_1038_ncomms11710 crossref_primary_10_1146_annurev_arplant_042811_105608 crossref_primary_10_1371_journal_pgen_1009674 crossref_primary_10_1128_EC_05198_11 crossref_primary_10_1007_s00232_023_00279_9 crossref_primary_10_1016_j_ceca_2011_01_004 crossref_primary_10_1104_pp_110_169730 crossref_primary_10_1016_j_pbi_2014_08_002 crossref_primary_10_1016_j_tplants_2014_02_001 crossref_primary_10_1071_FP16187 crossref_primary_10_1093_jxb_erx261 crossref_primary_10_1093_plphys_kiae226 crossref_primary_10_3390_plants10040685 crossref_primary_10_1111_nph_16358 crossref_primary_10_1111_tpj_12023 crossref_primary_10_1093_jxb_ers250 crossref_primary_10_1080_07352689_2016_1245056 crossref_primary_10_1093_jxb_erx266 crossref_primary_10_3390_ijms22010002 crossref_primary_10_1021_acs_jafc_3c01698 crossref_primary_10_3389_fpls_2021_658836 crossref_primary_10_1016_j_plantsci_2011_11_011 crossref_primary_10_3389_fpls_2018_00737 crossref_primary_10_1016_j_plantsci_2017_10_016 crossref_primary_10_3390_genes11060701 crossref_primary_10_1093_pcp_pcq062 crossref_primary_10_1016_j_jplph_2015_02_010 crossref_primary_10_1111_j_1365_3040_2011_02462_x crossref_primary_10_1007_s00425_016_2488_4 crossref_primary_10_1016_j_ygeno_2020_07_006 crossref_primary_10_3389_fmolb_2019_00132 crossref_primary_10_1016_j_plantsci_2012_09_003 crossref_primary_10_1371_journal_pone_0201480 crossref_primary_10_1128_EC_05286_11 crossref_primary_10_1111_pce_12691 crossref_primary_10_1111_ppl_12260 crossref_primary_10_1111_tpj_15191 crossref_primary_10_1016_j_molp_2023_07_003 crossref_primary_10_1186_1746_4811_9_4 crossref_primary_10_1038_s41588_023_01297_y crossref_primary_10_1186_s12870_018_1413_3 crossref_primary_10_1007_s10535_018_0790_7 crossref_primary_10_1186_1939_8433_6_27 crossref_primary_10_1111_j_1365_313X_2012_05004_x crossref_primary_10_1093_mp_ssr017 crossref_primary_10_1016_j_jplph_2012_12_014 crossref_primary_10_1111_tpj_12138 crossref_primary_10_1016_j_pbi_2018_09_003 crossref_primary_10_1016_j_plaphy_2016_03_031 crossref_primary_10_1371_journal_pone_0073972 crossref_primary_10_3389_fpls_2023_1096091 crossref_primary_10_1021_acs_jafc_8b01995 crossref_primary_10_1042_BJ20120976 crossref_primary_10_1111_tpj_15971 crossref_primary_10_1146_annurev_arplant_042811_105532 crossref_primary_10_1016_j_tplants_2014_03_008 crossref_primary_10_3389_fpls_2014_00460 crossref_primary_10_7554_eLife_60568 crossref_primary_10_1016_j_plantsci_2024_112105 crossref_primary_10_1038_nplants_2015_94 crossref_primary_10_1093_plphys_kiab313 crossref_primary_10_1111_j_1365_313X_2010_04376_x crossref_primary_10_1093_jxb_eru230 crossref_primary_10_1038_srep31319 crossref_primary_10_1104_pp_111_175257 crossref_primary_10_3390_ijms20102421 crossref_primary_10_1007_s11105_011_0353_y crossref_primary_10_1111_pce_12557 crossref_primary_10_1104_pp_112_195701 crossref_primary_10_1016_j_jplph_2021_153525 crossref_primary_10_3389_fpls_2020_599944 crossref_primary_10_1111_jmi_12881 crossref_primary_10_1021_acs_jafc_9b02491 crossref_primary_10_1105_tpc_113_116897 crossref_primary_10_1093_jxb_erw102 crossref_primary_10_1080_15592324_2017_1382796 crossref_primary_10_1186_s13059_023_02947_4 crossref_primary_10_1093_jxb_eraa150 crossref_primary_10_1093_jxb_erw109 crossref_primary_10_1371_journal_pone_0144716 crossref_primary_10_1007_s11738_018_2745_1 crossref_primary_10_1016_j_plaphy_2011_09_011 crossref_primary_10_1007_s12010_018_2738_y crossref_primary_10_3389_fpls_2021_672873 crossref_primary_10_1007_s11627_019_10005_7 crossref_primary_10_1016_j_xplc_2019_100013 crossref_primary_10_1016_j_jplph_2010_03_020 crossref_primary_10_1016_j_plaphy_2016_12_024 crossref_primary_10_1146_annurev_arplant_102820_114551 crossref_primary_10_1083_jcb_202203139 crossref_primary_10_1093_pcp_pcaa156 crossref_primary_10_1371_journal_pone_0069046 crossref_primary_10_1016_j_celrep_2013_12_009 crossref_primary_10_1016_j_semcdb_2017_07_008 crossref_primary_10_1093_aob_mct205 crossref_primary_10_1038_s41477_020_0621_7 crossref_primary_10_4161_psb_6_9_16529 crossref_primary_10_3389_fpls_2018_01892 crossref_primary_10_1016_j_molp_2018_03_017 crossref_primary_10_1073_pnas_1717204115 crossref_primary_10_1016_j_plantsci_2019_04_003 crossref_primary_10_1111_ppl_13447 crossref_primary_10_1093_mp_sst079 crossref_primary_10_1111_tpj_12456 crossref_primary_10_1016_j_plantsci_2010_11_013 crossref_primary_10_1016_j_molp_2023_10_007 crossref_primary_10_1021_acs_jproteome_8b00213 crossref_primary_10_1093_aobpla_plu023 crossref_primary_10_21769_BioProtoc_810 crossref_primary_10_1111_tpj_15251 crossref_primary_10_1021_acs_jafc_3c08485 crossref_primary_10_14348_molcells_2016_0083 crossref_primary_10_1016_j_jprot_2011_11_037 crossref_primary_10_1371_journal_pbio_2003451 crossref_primary_10_1038_s42003_024_05847_w crossref_primary_10_15252_embj_2021108713 crossref_primary_10_3389_fpls_2020_01079 crossref_primary_10_1093_hr_uhac016 crossref_primary_10_3389_fphys_2016_00243 crossref_primary_10_1016_j_envexpbot_2023_105302 crossref_primary_10_1021_acssuschemeng_6b01124 crossref_primary_10_1038_cr_2012_161 crossref_primary_10_1093_plcell_koac325 crossref_primary_10_1111_tpj_16357 crossref_primary_10_1152_physrev_00038_2011 crossref_primary_10_1371_journal_pgen_1004375 crossref_primary_10_3389_fpls_2017_01564 crossref_primary_10_1007_s11103_018_0794_x crossref_primary_10_1104_pp_114_249268 crossref_primary_10_3390_ijms22042203 crossref_primary_10_3390_ijms24043623 crossref_primary_10_1105_tpc_113_114827 crossref_primary_10_1186_1471_2229_13_23 crossref_primary_10_3389_fpls_2020_00655 crossref_primary_10_3390_plants11243439 crossref_primary_10_3389_fpls_2022_1004477 crossref_primary_10_1104_pp_15_00744 crossref_primary_10_7554_eLife_70701 crossref_primary_10_1007_s11103_017_0696_3 crossref_primary_10_3390_biology10121255 crossref_primary_10_1016_j_pbi_2011_04_005 crossref_primary_10_1073_pnas_1717839115 crossref_primary_10_1186_s12284_019_0321_y crossref_primary_10_1007_s00425_013_1981_2 crossref_primary_10_1007_s00425_017_2762_0 crossref_primary_10_1105_tpc_112_108829 crossref_primary_10_1071_FP17133 crossref_primary_10_1111_tpj_13297 crossref_primary_10_3390_ijms241813896 crossref_primary_10_1007_s11738_014_1613_x crossref_primary_10_1111_pbi_12381 crossref_primary_10_1007_s00425_012_1827_3 crossref_primary_10_1007_s00344_014_9439_8 crossref_primary_10_1242_jcs_209270 crossref_primary_10_1111_nph_14948 crossref_primary_10_1111_nph_12642 crossref_primary_10_1111_j_1365_313X_2012_05106_x crossref_primary_10_1016_j_scitotenv_2021_151910 crossref_primary_10_1016_j_tplants_2016_11_012 crossref_primary_10_1007_s00299_017_2241_x crossref_primary_10_1016_j_molp_2015_05_006 crossref_primary_10_1016_j_plaphy_2011_05_012 crossref_primary_10_1016_j_pbi_2014_09_005 crossref_primary_10_1111_pce_12706 crossref_primary_10_1111_j_1365_313X_2011_04672_x crossref_primary_10_1073_pnas_1420944112 crossref_primary_10_1105_tpc_113_110411 crossref_primary_10_1016_j_envexpbot_2014_11_002 crossref_primary_10_1007_s42770_019_00092_4 crossref_primary_10_3390_plants9121661 crossref_primary_10_1016_j_envexpbot_2013_03_001 crossref_primary_10_1104_pp_110_168963 crossref_primary_10_1134_S1021443715050064 crossref_primary_10_1016_j_tplants_2012_06_009 crossref_primary_10_1093_pcp_pcu173 crossref_primary_10_1007_s11105_015_0969_4 crossref_primary_10_1016_j_cub_2015_03_053 crossref_primary_10_1371_journal_pone_0048183 crossref_primary_10_1016_j_pbi_2010_07_003 crossref_primary_10_1016_j_rsci_2016_09_004 crossref_primary_10_3390_ijms20194686 crossref_primary_10_1016_j_stress_2023_100328 crossref_primary_10_1074_jbc_M111_310367 crossref_primary_10_1016_j_jplph_2014_03_016 crossref_primary_10_1007_s11738_014_1744_0 crossref_primary_10_1094_MPMI_07_10_0147 |
Cites_doi | 10.1126/science.1439795 10.1093/jxb/erm066 10.1038/nature05013 10.1126/science.285.5431.1256 10.1111/j.1365-313X.2009.03820.x 10.1093/jxb/erl183 10.1128/MCB.00430-07 10.1111/j.1365-313X.2004.02324.x 10.1016/j.tplants.2007.10.007 10.1101/gad.13.24.3259 10.1016/j.bbabio.2008.03.013 10.1073/pnas.0504437102 10.1111/j.1365-313X.2004.02282.x 10.1104/pp.83.3.490 10.1074/jbc.273.33.21054 10.1105/tpc.105.037978 10.1074/jbc.M307982200 10.1105/tpc.12.12.2383 10.1105/tpc.108.058362 10.1074/mcp.M600250-MCP200 10.1093/pcp/pci015 10.1126/science.1115711 10.1104/pp.105.061218 10.1093/jxb/erj110 10.1111/j.1365-313X.2004.02283.x 10.1074/jbc.272.42.26145 10.1002/j.1460-2075.1989.tb08430.x 10.1016/S0005-2736(00)00130-9 10.1105/tpc.104.027078 10.1016/0003-2697(81)90082-8 10.1023/A:1025737117382 10.1104/pp.78.1.163 10.1042/BJ20081115 10.1046/j.1365-313X.2003.01871.x 10.1104/pp.116.2.589 10.1104/pp.103.034025 10.1093/jxb/erj114 10.1126/science.1086391 10.1105/tpc.007385 10.1016/j.febslet.2005.06.046 10.1016/j.febslet.2007.03.050 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Feb 16, 2010 |
Copyright_xml | – notice: Copyright National Academy of Sciences Feb 16, 2010 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.0913035107 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 3256 |
ExternalDocumentID | 1966999131 10_1073_pnas_0913035107 20133698 107_7_3251 40536849 US201301805638 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ H13 KM PQEST X XHC ADACV CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c488t-ad59688e9d8eae78f234cfdfb54dc9b64089692f1bb61b2772b8cbb886b90f783 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:28:04 EDT 2024 Thu Oct 10 17:55:44 EDT 2024 Fri Aug 23 00:41:34 EDT 2024 Sat Sep 28 08:01:14 EDT 2024 Wed Nov 11 00:30:42 EST 2020 Fri Feb 02 07:04:54 EST 2024 Wed Dec 27 19:16:30 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c488t-ad59688e9d8eae78f234cfdfb54dc9b64089692f1bb61b2772b8cbb886b90f783 |
Notes | This Direct Submission article had a prearranged editor. Edited* by Maarten J. Chrispeels, University of California at San Diego, La Jolla, CA, and approved December 28, 2009 (received for review November 11, 2009) Author contributions: M.K., K.A.S.A.-R., R.H., and K.S. designed research; M.K., D.B., E.G., and Y.-D.S. performed research; M.K., D.B., I.M., R.H., and K.S. analyzed data; and M.K. and K.S. wrote the paper. |
OpenAccessLink | https://europepmc.org/articles/pmc2840351?pdf=render |
PMID | 20133698 |
PQID | 201431753 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_journals_201431753 crossref_primary_10_1073_pnas_0913035107 pubmed_primary_20133698 jstor_primary_40536849 fao_agris_US201301805638 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2840351 pnas_primary_107_7_3251 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2010-02-16 |
PublicationDateYYYYMMDD | 2010-02-16 |
PublicationDate_xml | – month: 02 year: 2010 text: 2010-02-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2010 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 17519352 - J Exp Bot. 2007;58(9):2297-306 9694857 - J Biol Chem. 1998 Aug 14;273(33):21054-60 16665277 - Plant Physiol. 1987 Mar;83(3):490-6 17875927 - Mol Cell Biol. 2007 Nov;27(22):7781-90 16210544 - Science. 2005 Oct 7;310(5745):121-5 2479537 - EMBO J. 1989 Oct;8(10):2835-41 12566577 - Plant Cell. 2003 Feb;15(2):347-64 15610354 - Plant J. 2005 Jan;41(1):117-24 14535887 - Plant J. 2003 Oct;36(2):229-39 9334180 - J Biol Chem. 1997 Oct 17;272(42):26145-52 14570921 - J Biol Chem. 2004 Jan 2;279(1):207-15 18178509 - Trends Plant Sci. 2008 Jan;13(1):4-6 18423392 - Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):599-604 12893945 - Science. 2003 Aug 1;301(5633):653-7 6116463 - Anal Biochem. 1981 May 15;113(2):313-7 9489011 - Plant Physiol. 1998 Feb;116(2):589-97 16513813 - J Exp Bot. 2006;57(5):1181-99 15686523 - Plant J. 2005 Feb;41(4):606-14 16461582 - Plant Cell. 2006 Mar;18(3):715-30 17151019 - Mol Cell Proteomics. 2007 Mar;6(3):394-412 14635783 - J Bioenerg Biomembr. 2003 Aug;35(4):377-88 16055687 - Plant Physiol. 2005 Aug;138(4):2048-60 19298454 - Plant J. 2009 Jun;58(5):715-23 1439795 - Science. 1992 Nov 6;258(5084):873-4 15610355 - Plant J. 2005 Jan;41(1):125-32 18441211 - Plant Cell. 2008 Apr;20(4):1088-100 15653794 - Plant Cell Physiol. 2004 Dec;45(12):1749-58 10748246 - Biochim Biophys Acta. 2000 May 1;1465(1-2):37-51 10455050 - Science. 1999 Aug 20;285(5431):1256-8 17110589 - J Exp Bot. 2007;58(1):83-102 16249341 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):16107-12 15539469 - Plant Cell. 2004 Dec;16(12):3285-303 16878138 - Nature. 2006 Aug 24;442(7105):939-42 16547128 - J Exp Bot. 2006;57(6):1333-40 16664191 - Plant Physiol. 1985 May;78(1):163-7 15051861 - Plant Physiol. 2004 Apr;134(4):1514-26 11148285 - Plant Cell. 2000 Dec;12(12):2383-2394 17412324 - FEBS Lett. 2007 May 25;581(12):2204-14 10617574 - Genes Dev. 1999 Dec 15;13(24):3259-70 18778247 - Biochem J. 2008 Oct 1;415(1):11-9 16038907 - FEBS Lett. 2005 Aug 1;579(19):4165-74 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_39_2 doi: 10.1126/science.1439795 – ident: e_1_3_3_2_2 doi: 10.1093/jxb/erm066 – ident: e_1_3_3_4_2 doi: 10.1038/nature05013 – ident: e_1_3_3_6_2 doi: 10.1126/science.285.5431.1256 – ident: e_1_3_3_37_2 doi: 10.1111/j.1365-313X.2009.03820.x – ident: e_1_3_3_1_2 doi: 10.1093/jxb/erl183 – ident: e_1_3_3_29_2 doi: 10.1128/MCB.00430-07 – ident: e_1_3_3_38_2 doi: 10.1111/j.1365-313X.2004.02324.x – ident: e_1_3_3_23_2 doi: 10.1016/j.tplants.2007.10.007 – ident: e_1_3_3_17_2 doi: 10.1101/gad.13.24.3259 – ident: e_1_3_3_10_2 doi: 10.1016/j.bbabio.2008.03.013 – ident: e_1_3_3_33_2 doi: 10.1073/pnas.0504437102 – ident: e_1_3_3_15_2 doi: 10.1111/j.1365-313X.2004.02282.x – ident: e_1_3_3_3_2 doi: 10.1104/pp.83.3.490 – ident: e_1_3_3_36_2 doi: 10.1074/jbc.273.33.21054 – ident: e_1_3_3_20_2 doi: 10.1105/tpc.105.037978 – ident: e_1_3_3_28_2 doi: 10.1074/jbc.M307982200 – ident: e_1_3_3_22_2 doi: 10.1105/tpc.12.12.2383 – ident: e_1_3_3_18_2 doi: 10.1105/tpc.108.058362 – ident: e_1_3_3_12_2 doi: 10.1074/mcp.M600250-MCP200 – ident: e_1_3_3_27_2 doi: 10.1093/pcp/pci015 – ident: e_1_3_3_19_2 doi: 10.1126/science.1115711 – ident: e_1_3_3_25_2 doi: 10.1104/pp.105.061218 – ident: e_1_3_3_40_2 doi: 10.1093/jxb/erj110 – ident: e_1_3_3_16_2 doi: 10.1111/j.1365-313X.2004.02283.x – ident: e_1_3_3_35_2 doi: 10.1074/jbc.272.42.26145 – ident: e_1_3_3_8_2 doi: 10.1002/j.1460-2075.1989.tb08430.x – ident: e_1_3_3_11_2 doi: 10.1016/S0005-2736(00)00130-9 – ident: e_1_3_3_13_2 doi: 10.1105/tpc.104.027078 – ident: e_1_3_3_41_2 doi: 10.1016/0003-2697(81)90082-8 – ident: e_1_3_3_31_2 doi: 10.1023/A:1025737117382 – ident: e_1_3_3_5_2 doi: 10.1104/pp.78.1.163 – ident: e_1_3_3_30_2 doi: 10.1042/BJ20081115 – ident: e_1_3_3_7_2 doi: 10.1046/j.1365-313X.2003.01871.x – ident: e_1_3_3_14_2 doi: 10.1104/pp.116.2.589 – ident: e_1_3_3_32_2 doi: 10.1104/pp.103.034025 – ident: e_1_3_3_34_2 doi: 10.1093/jxb/erj114 – ident: e_1_3_3_21_2 doi: 10.1126/science.1086391 – ident: e_1_3_3_24_2 doi: 10.1105/tpc.007385 – ident: e_1_3_3_26_2 doi: 10.1016/j.febslet.2005.06.046 – ident: e_1_3_3_9_2 doi: 10.1016/j.febslet.2007.03.050 |
SSID | ssj0009580 |
Score | 2.509708 |
Snippet | The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3251 |
SubjectTerms | adenosinetriphosphatase Arabidopsis - enzymology Arabidopsis - growth & development Arabidopsis thaliana Biological Sciences Cells Colorimetry Flowers & plants Hydrogen-Ion Concentration Inorganic Pyrophosphatase - metabolism ion transport Ions Membranes Mutation Mutation - genetics nitrate nitrogen Nitrates Nitrates - metabolism Patch-Clamp Techniques Plant growth Plants proton pump Proton pumps Protons Seedlings Sodium Sodium - metabolism Tonoplast Vacuolar Proton-Translocating ATPases - genetics Vacuolar Proton-Translocating ATPases - metabolism Vacuoles Vacuoles - enzymology Zinc Zinc - toxicity |
Title | Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation |
URI | https://www.jstor.org/stable/40536849 http://www.pnas.org/content/107/7/3251.abstract https://www.ncbi.nlm.nih.gov/pubmed/20133698 https://www.proquest.com/docview/201431753 https://pubmed.ncbi.nlm.nih.gov/PMC2840351 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB11e-KCKFAaCpUPHMohu_lw_HFcVVQFVFSJLurNsmMHIrFJtMke-PeMvcmWRZy4rbIey8rzzDwr4zcA7zBnYFrLdZxhiMQDCk1iLUJLQJsWvEwrHkSSbr-wmxX99FA8HEEx3YUJRfulqefNz_W8qX-E2spuXS6mOrHF3e0VhlT_AWwxgxlu0OmIvlfaFbt7JxmGX5rRSc-H54uu0f3cC2F668T338P0l-dMioOsNKt0O5Unes1TtPoX__y7jPKPvHT9DJ6OhJIsdws_gSPXPIeT0WV7cjnqSr9_Ab-WG21q23Z93ZNv8fL-DjMY8RcbfP8IogeCZJAgF2w7pNQDwVEb5wuFnSVIbYkLahO4CtJ4CX__w68dAxIxW3zYDmFY39p6u8Z5y-167A32ElbXH-6vbuKx80JcokMPsbaFZEI4aYXTjosKkSwrW5mC2lIaRhMhmcyq1BiWmgwZuhGlMUIwIxOENz-F46Zt3BkQi6dvYV2SGG5oKROJlAM900pGK5MVVQSX05tX3U5gQ4UP4zxX_s2rR7wiOENklP6O4U-tvnrsvPxYgSEkgtMA134K5KE5E1RG8CrM8jg1V1zlyOoiOJ8gVaPf9irzcodevNTbBXD3ltNWiYAfwL4f4IW6D__B_RsEu8f9-vq_Lc_hya5qIYtT9gaOh83WvUUyNJgLPAZ8_HwRXOA3MgEGdA |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB215QAXoEBpKB8-cCiH7ObDcezjqqJaoFtVYrfqzYrjpESwSbRJDvDrGTvJlq24wC1KPJYcP888y-M3AO8xZmBYCxM3QBeJGxTquQm3JQG1H8Wpn8dWJGlxyeYr-vkmutmDaLwLY5P2U1VMyh_rSVl8s7mV9Tqdjnli06vFGbpUcwA23YcHuF49Om7St1q7vL95EqADpgEdFX3icFqXSTMxUpjG3jMV-DAAhiETfCcu7edJNSYoGtVTtPobA72fSPlHZDp_AtfjmPqElO-TrlWT9Nc9ucd_HvRTeDxwVTLrPx_CXlY-g8PBGzTkdJCs_vAcfs42iSp0VTdFQ67d2fIKgyMxdyZMaQqStAR5JkGaWdXI1luCrTaZyUHONEHWTDIrZIHDI6WpDmAezE9BX0dUhy-r1jZrKl10a-w37dZD2bEXsDr_uDybu0NRBzdFX9G6iY4E4zwTmmdJFvMcQZLmOlcR1alQjHpcMBHkvlLMVwGSf8VTpThnSniInPAIDsqqzI6BaNzYc515nooVTYUnkM3goteC0VwFUe7A6Tilsu61O6Q9c49DaaZU3gHBgWOccpncomeVq68GFEbZLELv5MCRxcG2C6S4IeNUOPDS9nLXdSxjGSJhdOBkxIocXEIjA6OkaHRRjZ1FzdZyxKAD8Q6etg2MBvjuF0SJ1QIfUPHqvy3fwcP5cnEhLz5dfjmBR31yROD67DUctJsue4Ocq1Vv7Qr7DcKHJ2g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVokRAbSoG2oTy8YFEWeSeOvRwVRuXRaiQ6qGJjxY9ABJNEk2RRvp5rJ5l2KlbdjWbsK3l8fO6xcnMuQu8gZ0Bai3M3AoqEC0oSuDm1LQFVmGYyLDJrknR-Qc6Wyeer9OpWqy9btC9F6VV_Vl5V_rK1lc1K-lOdmL84PwVKNQ_A_EYV_g56CGc2INNFfeO3S4e3TyIg4SRKJlefLPabKm89Y4dpYgSmCx8kwTgmjG7lpp0ir6ciReN8CrP-p0LvFlPeyk7zPfRjWtdQlPLb6zvhyb93LB_vtfCn6MmoWfFsGLKPHujqGdofWaHFJ6N19fvn6Hq2zkWp6qYtW_zdnV0uIEli8-6EaVGB8w6D3sQgN-sGVHuHYdRam1pkrTCoZ6ytoQUsEVemS4D5YP4Y4Dwseviy7uywtlZlv4K4sl-N7cdeoOX84-XpmTs2d3AlcEbn5iplhFLNFNW5zmgBYJGFKkSaKMkESQLKCIuKUAgSigguAYJKISglggWAoPgA7VZ1pY8QVnDBp0oHgchEIlnAQNXA4VeMJIWI0sJBJ9O28mbw8OD22XsWc7Ot_AYMDjqCbef5T2BYvvxmgGEczlJgKQcdWCxsQoDUjQlNmIMObZSb0BnPeAzC0UHHE174SA0tj4yjovFHNfMscjYzJxw6KNvC1GaA8QLf_gWQYj3BR2S8vPfMt-jR4sOcf_108eUYPR5qJCI3JK_Qbrfu9WuQXp14Yw_ZPws7Keg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arabidopsis+V-ATPase+activity+at+the+tonoplast+is+required+for+efficient+nutrient+storage+but+not+for+sodium+accumulation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Krebs%2C+Melanie&rft.au=Beyhl%2C+Diana&rft.au=G%C3%B6rlich%2C+Esther&rft.au=Al-Rasheid%2C+Khaled+A.+S.&rft.date=2010-02-16&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=107&rft.issue=7&rft.spage=3251&rft.epage=3256&rft_id=info:doi/10.1073%2Fpnas.0913035107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_0913035107 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F7.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F7.cover.gif |