Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation

The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H⁺-ATPase (V-ATPase) and the vacuolar H⁺-pyrophosphatas...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 7; pp. 3251 - 3256
Main Authors Krebs, Melanie, Beyhl, Diana, Görlich, Esther, Al-Rasheid, Khaled A.S, Marten, Irene, Stierhof, York-Dieter, Hedrich, Rainer, Schumacher, Karin
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 16.02.2010
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H⁺-ATPase (V-ATPase) and the vacuolar H⁺-pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The vha-a2 vha-a3 double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the vha-a2 vha-a3 mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn²⁺/H⁺-antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na⁺/H⁺-antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the vha-a2 vha-a3 double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth.
AbstractList The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H + -ATPase (V-ATPase) and the vacuolar H + -pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The vha-a2 vha-a3 double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the vha-a2 vha-a3 mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn 2+ /H + -antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na + /H + -antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the vha-a2 vha-a3 double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth.
The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H^(+)-ATPase (V-ATPase) and the vacuolar H^(+)-pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The vha-a2 vha-a3 double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the vha-a2 vha-a3 mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn2+/H^(+)-antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na+/H^(+)-antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the vha-a2 vha-a3 double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth. [PUBLICATION ABSTRACT]
The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H(+)-ATPase (V-ATPase) and the vacuolar H(+)-pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The vha-a2 vha-a3 double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the vha-a2 vha-a3 mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn(2+)/H(+)-antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na(+)/H(+)-antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the vha-a2 vha-a3 double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth.
The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H⁺-ATPase (VATPase) and the vacuolar H⁺-pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The vha-a2 vha-a3 double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the vha-a2 vha-a3 mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn²⁺/H⁺ -antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na⁺/H⁺-antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the vhaa2 vha-a3 double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosóme (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth.
The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H⁺-ATPase (V-ATPase) and the vacuolar H⁺-pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The vha-a2 vha-a3 double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the vha-a2 vha-a3 mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn²⁺/H⁺-antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na⁺/H⁺-antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the vha-a2 vha-a3 double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth.
Author Görlich, Esther
Schumacher, Karin
Al-Rasheid, Khaled A.S
Beyhl, Diana
Stierhof, York-Dieter
Hedrich, Rainer
Krebs, Melanie
Marten, Irene
Author_xml – sequence: 1
  fullname: Krebs, Melanie
– sequence: 2
  fullname: Beyhl, Diana
– sequence: 3
  fullname: Görlich, Esther
– sequence: 4
  fullname: Al-Rasheid, Khaled A.S
– sequence: 5
  fullname: Marten, Irene
– sequence: 6
  fullname: Stierhof, York-Dieter
– sequence: 7
  fullname: Hedrich, Rainer
– sequence: 8
  fullname: Schumacher, Karin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20133698$$D View this record in MEDLINE/PubMed
BookMark eNpVkUtvGyEUhVGVqnHSrrtqi7qfBAZmgE0lK-pLitRKTbpFwICDZQ8THpH878PYqZOugHu_ezi65wycjGG0ALzH6AIjRi6nUaULJDBBpKuFV2CB66vpqUAnYIFQyxpOW3oKzlJaI4REx9EbcNoiTEgv-ALsllFpP4Qp-QT_Nsub3ypZqEz2Dz7voMow31mYwximjUoZVira--KjHaALEVrnvPF2zHAsOe4vKYeoVhbqUosh77EUBl-2VdeUbdmo7MP4Frx2apPsu6fzHNx--3pz9aO5_vX959XyujGU89yooRM951YM3CrLuGsJNW5wuqODEbqniItetA5r3WPdMtZqbrTmvNcCOcbJOfhy0J2K3trBVItRbeQU_VbFnQzKy_87o7-Tq_AgW07nrVaBz08CMdwXm7JchxLH6lnWPVKCWUcqdHmATAwpReuOH2Ak56jkHJV8jqpOfHzp68j_y-YFME8-yzHJJGn3xj4cgPW88iNBUUd6TkXtfzr0nQpSraJP8vbPLI8wR11POHkEhm-xvw
CitedBy_id crossref_primary_10_1016_j_phytochem_2018_08_007
crossref_primary_10_3389_fpls_2019_00384
crossref_primary_10_3390_ijms24109014
crossref_primary_10_1093_plphys_kiab099
crossref_primary_10_1093_pcp_pct138
crossref_primary_10_1186_s12870_016_0797_1
crossref_primary_10_1073_pnas_1501318112
crossref_primary_10_1111_j_1469_8137_2011_03977_x
crossref_primary_10_3390_ijms22095020
crossref_primary_10_1111_nph_15280
crossref_primary_10_1093_jxb_erq409
crossref_primary_10_7554_eLife_44213
crossref_primary_10_1105_tpc_111_089581
crossref_primary_10_1038_srep16205
crossref_primary_10_1146_annurev_arplant_043014_114648
crossref_primary_10_1111_ppl_12064
crossref_primary_10_1007_s00344_020_10092_6
crossref_primary_10_1038_s41598_017_06744_5
crossref_primary_10_1093_pcp_pcq096
crossref_primary_10_1093_pcp_pcz002
crossref_primary_10_1111_plb_12704
crossref_primary_10_3390_ijms20205125
crossref_primary_10_1002_cbf_3798
crossref_primary_10_1105_tpc_111_085415
crossref_primary_10_3389_fpls_2016_00415
crossref_primary_10_1134_S1990747818050045
crossref_primary_10_1111_tpj_12854
crossref_primary_10_1016_j_cellsig_2011_03_003
crossref_primary_10_1007_s11427_024_2620_7
crossref_primary_10_1016_j_scienta_2015_09_019
crossref_primary_10_1093_jxb_erx050
crossref_primary_10_1111_nph_16231
crossref_primary_10_1104_pp_113_216572
crossref_primary_10_1016_j_envexpbot_2016_04_002
crossref_primary_10_1111_pce_12109
crossref_primary_10_1016_j_plantsci_2018_05_011
crossref_primary_10_1038_s41598_018_35578_y
crossref_primary_10_1038_ncomms11710
crossref_primary_10_1146_annurev_arplant_042811_105608
crossref_primary_10_1371_journal_pgen_1009674
crossref_primary_10_1128_EC_05198_11
crossref_primary_10_1007_s00232_023_00279_9
crossref_primary_10_1016_j_ceca_2011_01_004
crossref_primary_10_1104_pp_110_169730
crossref_primary_10_1016_j_pbi_2014_08_002
crossref_primary_10_1016_j_tplants_2014_02_001
crossref_primary_10_1071_FP16187
crossref_primary_10_1093_jxb_erx261
crossref_primary_10_1093_plphys_kiae226
crossref_primary_10_3390_plants10040685
crossref_primary_10_1111_nph_16358
crossref_primary_10_1111_tpj_12023
crossref_primary_10_1093_jxb_ers250
crossref_primary_10_1080_07352689_2016_1245056
crossref_primary_10_1093_jxb_erx266
crossref_primary_10_3390_ijms22010002
crossref_primary_10_1021_acs_jafc_3c01698
crossref_primary_10_3389_fpls_2021_658836
crossref_primary_10_1016_j_plantsci_2011_11_011
crossref_primary_10_3389_fpls_2018_00737
crossref_primary_10_1016_j_plantsci_2017_10_016
crossref_primary_10_3390_genes11060701
crossref_primary_10_1093_pcp_pcq062
crossref_primary_10_1016_j_jplph_2015_02_010
crossref_primary_10_1111_j_1365_3040_2011_02462_x
crossref_primary_10_1007_s00425_016_2488_4
crossref_primary_10_1016_j_ygeno_2020_07_006
crossref_primary_10_3389_fmolb_2019_00132
crossref_primary_10_1016_j_plantsci_2012_09_003
crossref_primary_10_1371_journal_pone_0201480
crossref_primary_10_1128_EC_05286_11
crossref_primary_10_1111_pce_12691
crossref_primary_10_1111_ppl_12260
crossref_primary_10_1111_tpj_15191
crossref_primary_10_1016_j_molp_2023_07_003
crossref_primary_10_1186_1746_4811_9_4
crossref_primary_10_1038_s41588_023_01297_y
crossref_primary_10_1186_s12870_018_1413_3
crossref_primary_10_1007_s10535_018_0790_7
crossref_primary_10_1186_1939_8433_6_27
crossref_primary_10_1111_j_1365_313X_2012_05004_x
crossref_primary_10_1093_mp_ssr017
crossref_primary_10_1016_j_jplph_2012_12_014
crossref_primary_10_1111_tpj_12138
crossref_primary_10_1016_j_pbi_2018_09_003
crossref_primary_10_1016_j_plaphy_2016_03_031
crossref_primary_10_1371_journal_pone_0073972
crossref_primary_10_3389_fpls_2023_1096091
crossref_primary_10_1021_acs_jafc_8b01995
crossref_primary_10_1042_BJ20120976
crossref_primary_10_1111_tpj_15971
crossref_primary_10_1146_annurev_arplant_042811_105532
crossref_primary_10_1016_j_tplants_2014_03_008
crossref_primary_10_3389_fpls_2014_00460
crossref_primary_10_7554_eLife_60568
crossref_primary_10_1016_j_plantsci_2024_112105
crossref_primary_10_1038_nplants_2015_94
crossref_primary_10_1093_plphys_kiab313
crossref_primary_10_1111_j_1365_313X_2010_04376_x
crossref_primary_10_1093_jxb_eru230
crossref_primary_10_1038_srep31319
crossref_primary_10_1104_pp_111_175257
crossref_primary_10_3390_ijms20102421
crossref_primary_10_1007_s11105_011_0353_y
crossref_primary_10_1111_pce_12557
crossref_primary_10_1104_pp_112_195701
crossref_primary_10_1016_j_jplph_2021_153525
crossref_primary_10_3389_fpls_2020_599944
crossref_primary_10_1111_jmi_12881
crossref_primary_10_1021_acs_jafc_9b02491
crossref_primary_10_1105_tpc_113_116897
crossref_primary_10_1093_jxb_erw102
crossref_primary_10_1080_15592324_2017_1382796
crossref_primary_10_1186_s13059_023_02947_4
crossref_primary_10_1093_jxb_eraa150
crossref_primary_10_1093_jxb_erw109
crossref_primary_10_1371_journal_pone_0144716
crossref_primary_10_1007_s11738_018_2745_1
crossref_primary_10_1016_j_plaphy_2011_09_011
crossref_primary_10_1007_s12010_018_2738_y
crossref_primary_10_3389_fpls_2021_672873
crossref_primary_10_1007_s11627_019_10005_7
crossref_primary_10_1016_j_xplc_2019_100013
crossref_primary_10_1016_j_jplph_2010_03_020
crossref_primary_10_1016_j_plaphy_2016_12_024
crossref_primary_10_1146_annurev_arplant_102820_114551
crossref_primary_10_1083_jcb_202203139
crossref_primary_10_1093_pcp_pcaa156
crossref_primary_10_1371_journal_pone_0069046
crossref_primary_10_1016_j_celrep_2013_12_009
crossref_primary_10_1016_j_semcdb_2017_07_008
crossref_primary_10_1093_aob_mct205
crossref_primary_10_1038_s41477_020_0621_7
crossref_primary_10_4161_psb_6_9_16529
crossref_primary_10_3389_fpls_2018_01892
crossref_primary_10_1016_j_molp_2018_03_017
crossref_primary_10_1073_pnas_1717204115
crossref_primary_10_1016_j_plantsci_2019_04_003
crossref_primary_10_1111_ppl_13447
crossref_primary_10_1093_mp_sst079
crossref_primary_10_1111_tpj_12456
crossref_primary_10_1016_j_plantsci_2010_11_013
crossref_primary_10_1016_j_molp_2023_10_007
crossref_primary_10_1021_acs_jproteome_8b00213
crossref_primary_10_1093_aobpla_plu023
crossref_primary_10_21769_BioProtoc_810
crossref_primary_10_1111_tpj_15251
crossref_primary_10_1021_acs_jafc_3c08485
crossref_primary_10_14348_molcells_2016_0083
crossref_primary_10_1016_j_jprot_2011_11_037
crossref_primary_10_1371_journal_pbio_2003451
crossref_primary_10_1038_s42003_024_05847_w
crossref_primary_10_15252_embj_2021108713
crossref_primary_10_3389_fpls_2020_01079
crossref_primary_10_1093_hr_uhac016
crossref_primary_10_3389_fphys_2016_00243
crossref_primary_10_1016_j_envexpbot_2023_105302
crossref_primary_10_1021_acssuschemeng_6b01124
crossref_primary_10_1038_cr_2012_161
crossref_primary_10_1093_plcell_koac325
crossref_primary_10_1111_tpj_16357
crossref_primary_10_1152_physrev_00038_2011
crossref_primary_10_1371_journal_pgen_1004375
crossref_primary_10_3389_fpls_2017_01564
crossref_primary_10_1007_s11103_018_0794_x
crossref_primary_10_1104_pp_114_249268
crossref_primary_10_3390_ijms22042203
crossref_primary_10_3390_ijms24043623
crossref_primary_10_1105_tpc_113_114827
crossref_primary_10_1186_1471_2229_13_23
crossref_primary_10_3389_fpls_2020_00655
crossref_primary_10_3390_plants11243439
crossref_primary_10_3389_fpls_2022_1004477
crossref_primary_10_1104_pp_15_00744
crossref_primary_10_7554_eLife_70701
crossref_primary_10_1007_s11103_017_0696_3
crossref_primary_10_3390_biology10121255
crossref_primary_10_1016_j_pbi_2011_04_005
crossref_primary_10_1073_pnas_1717839115
crossref_primary_10_1186_s12284_019_0321_y
crossref_primary_10_1007_s00425_013_1981_2
crossref_primary_10_1007_s00425_017_2762_0
crossref_primary_10_1105_tpc_112_108829
crossref_primary_10_1071_FP17133
crossref_primary_10_1111_tpj_13297
crossref_primary_10_3390_ijms241813896
crossref_primary_10_1007_s11738_014_1613_x
crossref_primary_10_1111_pbi_12381
crossref_primary_10_1007_s00425_012_1827_3
crossref_primary_10_1007_s00344_014_9439_8
crossref_primary_10_1242_jcs_209270
crossref_primary_10_1111_nph_14948
crossref_primary_10_1111_nph_12642
crossref_primary_10_1111_j_1365_313X_2012_05106_x
crossref_primary_10_1016_j_scitotenv_2021_151910
crossref_primary_10_1016_j_tplants_2016_11_012
crossref_primary_10_1007_s00299_017_2241_x
crossref_primary_10_1016_j_molp_2015_05_006
crossref_primary_10_1016_j_plaphy_2011_05_012
crossref_primary_10_1016_j_pbi_2014_09_005
crossref_primary_10_1111_pce_12706
crossref_primary_10_1111_j_1365_313X_2011_04672_x
crossref_primary_10_1073_pnas_1420944112
crossref_primary_10_1105_tpc_113_110411
crossref_primary_10_1016_j_envexpbot_2014_11_002
crossref_primary_10_1007_s42770_019_00092_4
crossref_primary_10_3390_plants9121661
crossref_primary_10_1016_j_envexpbot_2013_03_001
crossref_primary_10_1104_pp_110_168963
crossref_primary_10_1134_S1021443715050064
crossref_primary_10_1016_j_tplants_2012_06_009
crossref_primary_10_1093_pcp_pcu173
crossref_primary_10_1007_s11105_015_0969_4
crossref_primary_10_1016_j_cub_2015_03_053
crossref_primary_10_1371_journal_pone_0048183
crossref_primary_10_1016_j_pbi_2010_07_003
crossref_primary_10_1016_j_rsci_2016_09_004
crossref_primary_10_3390_ijms20194686
crossref_primary_10_1016_j_stress_2023_100328
crossref_primary_10_1074_jbc_M111_310367
crossref_primary_10_1016_j_jplph_2014_03_016
crossref_primary_10_1007_s11738_014_1744_0
crossref_primary_10_1094_MPMI_07_10_0147
Cites_doi 10.1126/science.1439795
10.1093/jxb/erm066
10.1038/nature05013
10.1126/science.285.5431.1256
10.1111/j.1365-313X.2009.03820.x
10.1093/jxb/erl183
10.1128/MCB.00430-07
10.1111/j.1365-313X.2004.02324.x
10.1016/j.tplants.2007.10.007
10.1101/gad.13.24.3259
10.1016/j.bbabio.2008.03.013
10.1073/pnas.0504437102
10.1111/j.1365-313X.2004.02282.x
10.1104/pp.83.3.490
10.1074/jbc.273.33.21054
10.1105/tpc.105.037978
10.1074/jbc.M307982200
10.1105/tpc.12.12.2383
10.1105/tpc.108.058362
10.1074/mcp.M600250-MCP200
10.1093/pcp/pci015
10.1126/science.1115711
10.1104/pp.105.061218
10.1093/jxb/erj110
10.1111/j.1365-313X.2004.02283.x
10.1074/jbc.272.42.26145
10.1002/j.1460-2075.1989.tb08430.x
10.1016/S0005-2736(00)00130-9
10.1105/tpc.104.027078
10.1016/0003-2697(81)90082-8
10.1023/A:1025737117382
10.1104/pp.78.1.163
10.1042/BJ20081115
10.1046/j.1365-313X.2003.01871.x
10.1104/pp.116.2.589
10.1104/pp.103.034025
10.1093/jxb/erj114
10.1126/science.1086391
10.1105/tpc.007385
10.1016/j.febslet.2005.06.046
10.1016/j.febslet.2007.03.050
ContentType Journal Article
Copyright Copyright National Academy of Sciences Feb 16, 2010
Copyright_xml – notice: Copyright National Academy of Sciences Feb 16, 2010
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1073/pnas.0913035107
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList
Virology and AIDS Abstracts
MEDLINE
CrossRef



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 3256
ExternalDocumentID 1966999131
10_1073_pnas_0913035107
20133698
107_7_3251
40536849
US201301805638
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c488t-ad59688e9d8eae78f234cfdfb54dc9b64089692f1bb61b2772b8cbb886b90f783
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:28:04 EDT 2024
Thu Oct 10 17:55:44 EDT 2024
Fri Aug 23 00:41:34 EDT 2024
Sat Sep 28 08:01:14 EDT 2024
Wed Nov 11 00:30:42 EST 2020
Fri Feb 02 07:04:54 EST 2024
Wed Dec 27 19:16:30 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-ad59688e9d8eae78f234cfdfb54dc9b64089692f1bb61b2772b8cbb886b90f783
Notes This Direct Submission article had a prearranged editor.
Edited* by Maarten J. Chrispeels, University of California at San Diego, La Jolla, CA, and approved December 28, 2009 (received for review November 11, 2009)
Author contributions: M.K., K.A.S.A.-R., R.H., and K.S. designed research; M.K., D.B., E.G., and Y.-D.S. performed research; M.K., D.B., I.M., R.H., and K.S. analyzed data; and M.K. and K.S. wrote the paper.
OpenAccessLink https://europepmc.org/articles/pmc2840351?pdf=render
PMID 20133698
PQID 201431753
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_201431753
crossref_primary_10_1073_pnas_0913035107
pubmed_primary_20133698
jstor_primary_40536849
fao_agris_US201301805638
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2840351
pnas_primary_107_7_3251
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2010-02-16
PublicationDateYYYYMMDD 2010-02-16
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2010
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 17519352 - J Exp Bot. 2007;58(9):2297-306
9694857 - J Biol Chem. 1998 Aug 14;273(33):21054-60
16665277 - Plant Physiol. 1987 Mar;83(3):490-6
17875927 - Mol Cell Biol. 2007 Nov;27(22):7781-90
16210544 - Science. 2005 Oct 7;310(5745):121-5
2479537 - EMBO J. 1989 Oct;8(10):2835-41
12566577 - Plant Cell. 2003 Feb;15(2):347-64
15610354 - Plant J. 2005 Jan;41(1):117-24
14535887 - Plant J. 2003 Oct;36(2):229-39
9334180 - J Biol Chem. 1997 Oct 17;272(42):26145-52
14570921 - J Biol Chem. 2004 Jan 2;279(1):207-15
18178509 - Trends Plant Sci. 2008 Jan;13(1):4-6
18423392 - Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):599-604
12893945 - Science. 2003 Aug 1;301(5633):653-7
6116463 - Anal Biochem. 1981 May 15;113(2):313-7
9489011 - Plant Physiol. 1998 Feb;116(2):589-97
16513813 - J Exp Bot. 2006;57(5):1181-99
15686523 - Plant J. 2005 Feb;41(4):606-14
16461582 - Plant Cell. 2006 Mar;18(3):715-30
17151019 - Mol Cell Proteomics. 2007 Mar;6(3):394-412
14635783 - J Bioenerg Biomembr. 2003 Aug;35(4):377-88
16055687 - Plant Physiol. 2005 Aug;138(4):2048-60
19298454 - Plant J. 2009 Jun;58(5):715-23
1439795 - Science. 1992 Nov 6;258(5084):873-4
15610355 - Plant J. 2005 Jan;41(1):125-32
18441211 - Plant Cell. 2008 Apr;20(4):1088-100
15653794 - Plant Cell Physiol. 2004 Dec;45(12):1749-58
10748246 - Biochim Biophys Acta. 2000 May 1;1465(1-2):37-51
10455050 - Science. 1999 Aug 20;285(5431):1256-8
17110589 - J Exp Bot. 2007;58(1):83-102
16249341 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):16107-12
15539469 - Plant Cell. 2004 Dec;16(12):3285-303
16878138 - Nature. 2006 Aug 24;442(7105):939-42
16547128 - J Exp Bot. 2006;57(6):1333-40
16664191 - Plant Physiol. 1985 May;78(1):163-7
15051861 - Plant Physiol. 2004 Apr;134(4):1514-26
11148285 - Plant Cell. 2000 Dec;12(12):2383-2394
17412324 - FEBS Lett. 2007 May 25;581(12):2204-14
10617574 - Genes Dev. 1999 Dec 15;13(24):3259-70
18778247 - Biochem J. 2008 Oct 1;415(1):11-9
16038907 - FEBS Lett. 2005 Aug 1;579(19):4165-74
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_39_2
  doi: 10.1126/science.1439795
– ident: e_1_3_3_2_2
  doi: 10.1093/jxb/erm066
– ident: e_1_3_3_4_2
  doi: 10.1038/nature05013
– ident: e_1_3_3_6_2
  doi: 10.1126/science.285.5431.1256
– ident: e_1_3_3_37_2
  doi: 10.1111/j.1365-313X.2009.03820.x
– ident: e_1_3_3_1_2
  doi: 10.1093/jxb/erl183
– ident: e_1_3_3_29_2
  doi: 10.1128/MCB.00430-07
– ident: e_1_3_3_38_2
  doi: 10.1111/j.1365-313X.2004.02324.x
– ident: e_1_3_3_23_2
  doi: 10.1016/j.tplants.2007.10.007
– ident: e_1_3_3_17_2
  doi: 10.1101/gad.13.24.3259
– ident: e_1_3_3_10_2
  doi: 10.1016/j.bbabio.2008.03.013
– ident: e_1_3_3_33_2
  doi: 10.1073/pnas.0504437102
– ident: e_1_3_3_15_2
  doi: 10.1111/j.1365-313X.2004.02282.x
– ident: e_1_3_3_3_2
  doi: 10.1104/pp.83.3.490
– ident: e_1_3_3_36_2
  doi: 10.1074/jbc.273.33.21054
– ident: e_1_3_3_20_2
  doi: 10.1105/tpc.105.037978
– ident: e_1_3_3_28_2
  doi: 10.1074/jbc.M307982200
– ident: e_1_3_3_22_2
  doi: 10.1105/tpc.12.12.2383
– ident: e_1_3_3_18_2
  doi: 10.1105/tpc.108.058362
– ident: e_1_3_3_12_2
  doi: 10.1074/mcp.M600250-MCP200
– ident: e_1_3_3_27_2
  doi: 10.1093/pcp/pci015
– ident: e_1_3_3_19_2
  doi: 10.1126/science.1115711
– ident: e_1_3_3_25_2
  doi: 10.1104/pp.105.061218
– ident: e_1_3_3_40_2
  doi: 10.1093/jxb/erj110
– ident: e_1_3_3_16_2
  doi: 10.1111/j.1365-313X.2004.02283.x
– ident: e_1_3_3_35_2
  doi: 10.1074/jbc.272.42.26145
– ident: e_1_3_3_8_2
  doi: 10.1002/j.1460-2075.1989.tb08430.x
– ident: e_1_3_3_11_2
  doi: 10.1016/S0005-2736(00)00130-9
– ident: e_1_3_3_13_2
  doi: 10.1105/tpc.104.027078
– ident: e_1_3_3_41_2
  doi: 10.1016/0003-2697(81)90082-8
– ident: e_1_3_3_31_2
  doi: 10.1023/A:1025737117382
– ident: e_1_3_3_5_2
  doi: 10.1104/pp.78.1.163
– ident: e_1_3_3_30_2
  doi: 10.1042/BJ20081115
– ident: e_1_3_3_7_2
  doi: 10.1046/j.1365-313X.2003.01871.x
– ident: e_1_3_3_14_2
  doi: 10.1104/pp.116.2.589
– ident: e_1_3_3_32_2
  doi: 10.1104/pp.103.034025
– ident: e_1_3_3_34_2
  doi: 10.1093/jxb/erj114
– ident: e_1_3_3_21_2
  doi: 10.1126/science.1086391
– ident: e_1_3_3_24_2
  doi: 10.1105/tpc.007385
– ident: e_1_3_3_26_2
  doi: 10.1016/j.febslet.2005.06.046
– ident: e_1_3_3_9_2
  doi: 10.1016/j.febslet.2007.03.050
SSID ssj0009580
Score 2.509708
Snippet The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3251
SubjectTerms adenosinetriphosphatase
Arabidopsis - enzymology
Arabidopsis - growth & development
Arabidopsis thaliana
Biological Sciences
Cells
Colorimetry
Flowers & plants
Hydrogen-Ion Concentration
Inorganic Pyrophosphatase - metabolism
ion transport
Ions
Membranes
Mutation
Mutation - genetics
nitrate nitrogen
Nitrates
Nitrates - metabolism
Patch-Clamp Techniques
Plant growth
Plants
proton pump
Proton pumps
Protons
Seedlings
Sodium
Sodium - metabolism
Tonoplast
Vacuolar Proton-Translocating ATPases - genetics
Vacuolar Proton-Translocating ATPases - metabolism
Vacuoles
Vacuoles - enzymology
Zinc
Zinc - toxicity
Title Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation
URI https://www.jstor.org/stable/40536849
http://www.pnas.org/content/107/7/3251.abstract
https://www.ncbi.nlm.nih.gov/pubmed/20133698
https://www.proquest.com/docview/201431753
https://pubmed.ncbi.nlm.nih.gov/PMC2840351
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB11e-KCKFAaCpUPHMohu_lw_HFcVVQFVFSJLurNsmMHIrFJtMke-PeMvcmWRZy4rbIey8rzzDwr4zcA7zBnYFrLdZxhiMQDCk1iLUJLQJsWvEwrHkSSbr-wmxX99FA8HEEx3YUJRfulqefNz_W8qX-E2spuXS6mOrHF3e0VhlT_AWwxgxlu0OmIvlfaFbt7JxmGX5rRSc-H54uu0f3cC2F668T338P0l-dMioOsNKt0O5Unes1TtPoX__y7jPKPvHT9DJ6OhJIsdws_gSPXPIeT0WV7cjnqSr9_Ab-WG21q23Z93ZNv8fL-DjMY8RcbfP8IogeCZJAgF2w7pNQDwVEb5wuFnSVIbYkLahO4CtJ4CX__w68dAxIxW3zYDmFY39p6u8Z5y-167A32ElbXH-6vbuKx80JcokMPsbaFZEI4aYXTjosKkSwrW5mC2lIaRhMhmcyq1BiWmgwZuhGlMUIwIxOENz-F46Zt3BkQi6dvYV2SGG5oKROJlAM900pGK5MVVQSX05tX3U5gQ4UP4zxX_s2rR7wiOENklP6O4U-tvnrsvPxYgSEkgtMA134K5KE5E1RG8CrM8jg1V1zlyOoiOJ8gVaPf9irzcodevNTbBXD3ltNWiYAfwL4f4IW6D__B_RsEu8f9-vq_Lc_hya5qIYtT9gaOh83WvUUyNJgLPAZ8_HwRXOA3MgEGdA
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB215QAXoEBpKB8-cCiH7ObDcezjqqJaoFtVYrfqzYrjpESwSbRJDvDrGTvJlq24wC1KPJYcP888y-M3AO8xZmBYCxM3QBeJGxTquQm3JQG1H8Wpn8dWJGlxyeYr-vkmutmDaLwLY5P2U1VMyh_rSVl8s7mV9Tqdjnli06vFGbpUcwA23YcHuF49Om7St1q7vL95EqADpgEdFX3icFqXSTMxUpjG3jMV-DAAhiETfCcu7edJNSYoGtVTtPobA72fSPlHZDp_AtfjmPqElO-TrlWT9Nc9ucd_HvRTeDxwVTLrPx_CXlY-g8PBGzTkdJCs_vAcfs42iSp0VTdFQ67d2fIKgyMxdyZMaQqStAR5JkGaWdXI1luCrTaZyUHONEHWTDIrZIHDI6WpDmAezE9BX0dUhy-r1jZrKl10a-w37dZD2bEXsDr_uDybu0NRBzdFX9G6iY4E4zwTmmdJFvMcQZLmOlcR1alQjHpcMBHkvlLMVwGSf8VTpThnSniInPAIDsqqzI6BaNzYc515nooVTYUnkM3goteC0VwFUe7A6Tilsu61O6Q9c49DaaZU3gHBgWOccpncomeVq68GFEbZLELv5MCRxcG2C6S4IeNUOPDS9nLXdSxjGSJhdOBkxIocXEIjA6OkaHRRjZ1FzdZyxKAD8Q6etg2MBvjuF0SJ1QIfUPHqvy3fwcP5cnEhLz5dfjmBR31yROD67DUctJsue4Ocq1Vv7Qr7DcKHJ2g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVokRAbSoG2oTy8YFEWeSeOvRwVRuXRaiQ6qGJjxY9ABJNEk2RRvp5rJ5l2KlbdjWbsK3l8fO6xcnMuQu8gZ0Bai3M3AoqEC0oSuDm1LQFVmGYyLDJrknR-Qc6Wyeer9OpWqy9btC9F6VV_Vl5V_rK1lc1K-lOdmL84PwVKNQ_A_EYV_g56CGc2INNFfeO3S4e3TyIg4SRKJlefLPabKm89Y4dpYgSmCx8kwTgmjG7lpp0ir6ciReN8CrP-p0LvFlPeyk7zPfRjWtdQlPLb6zvhyb93LB_vtfCn6MmoWfFsGLKPHujqGdofWaHFJ6N19fvn6Hq2zkWp6qYtW_zdnV0uIEli8-6EaVGB8w6D3sQgN-sGVHuHYdRam1pkrTCoZ6ytoQUsEVemS4D5YP4Y4Dwseviy7uywtlZlv4K4sl-N7cdeoOX84-XpmTs2d3AlcEbn5iplhFLNFNW5zmgBYJGFKkSaKMkESQLKCIuKUAgSigguAYJKISglggWAoPgA7VZ1pY8QVnDBp0oHgchEIlnAQNXA4VeMJIWI0sJBJ9O28mbw8OD22XsWc7Ot_AYMDjqCbef5T2BYvvxmgGEczlJgKQcdWCxsQoDUjQlNmIMObZSb0BnPeAzC0UHHE174SA0tj4yjovFHNfMscjYzJxw6KNvC1GaA8QLf_gWQYj3BR2S8vPfMt-jR4sOcf_108eUYPR5qJCI3JK_Qbrfu9WuQXp14Yw_ZPws7Keg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arabidopsis+V-ATPase+activity+at+the+tonoplast+is+required+for+efficient+nutrient+storage+but+not+for+sodium+accumulation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Krebs%2C+Melanie&rft.au=Beyhl%2C+Diana&rft.au=G%C3%B6rlich%2C+Esther&rft.au=Al-Rasheid%2C+Khaled+A.+S.&rft.date=2010-02-16&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=107&rft.issue=7&rft.spage=3251&rft.epage=3256&rft_id=info:doi/10.1073%2Fpnas.0913035107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_0913035107
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F7.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F7.cover.gif