Method for detection of leads from Sentinel-1 SAR images

The presence of leads with open water or thin ice is an important feature of the Arctic sea ice cover. Leads regulate the heat, gas and moisture fluxes between the ocean and atmosphere and are areas of high ice growth rates during periods of freezing conditions. Here, an algorithm providing an autom...

Full description

Saved in:
Bibliographic Details
Published inAnnals of glaciology Vol. 59; no. 76pt2; pp. 124 - 136
Main Authors Murashkin, Dmitrii, Spreen, Gunnar, Huntemann, Marcus, Dierking, Wolfgang
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.07.2018
Cambridge University Press (CUP)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The presence of leads with open water or thin ice is an important feature of the Arctic sea ice cover. Leads regulate the heat, gas and moisture fluxes between the ocean and atmosphere and are areas of high ice growth rates during periods of freezing conditions. Here, an algorithm providing an automatic lead detection based on synthetic aperture radar images is described that can be applied to a wide range of Sentinel-1 scenes. By using both the HH and the HV channels instead of single co-polarised observations the algorithm is able to classify more leads correctly. The lead classification algorithm is based on polarimetric features and textural features derived from the grey-level co-occurrence matrix. The Random Forest classifier is used to investigate the importance of the individual features for lead detection. The precision–recall curve representing the quality of the classification is used to define threshold for a binary lead/sea ice classification. The algorithm is able to produce a lead classification with more that 90% precision with 60% of all leads classified. The precision can be increased by the cost of the amount of leads detected. Results are evaluated based on comparisons with Sentinel-2 optical satellite data.
AbstractList The presence of leads with open water or thin ice is an important feature of the Arctic sea ice cover. Leads regulate the heat, gas and moisture fluxes between the ocean and atmosphere and are areas of high ice growth rates during periods of freezing conditions. Here, an algorithm providing an automatic lead detection based on synthetic aperture radar images is described that can be applied to a wide range of Sentinel-1 scenes. By using both the HH and the HV channels instead of single co-polarised observations the algorithm is able to classify more leads correctly. The lead classification algorithm is based on polarimetric features and textural features derived from the grey-level co-occurrence matrix. The Random Forest classifier is used to investigate the importance of the individual features for lead detection. The precision–recall curve representing the quality of the classification is used to define threshold for a binary lead/sea ice classification. The algorithm is able to produce a lead classification with more that 90% precision with 60% of all leads classified. The precision can be increased by the cost of the amount of leads detected. Results are evaluated based on comparisons with Sentinel-2 optical satellite data.
Author Huntemann, Marcus
Dierking, Wolfgang
Murashkin, Dmitrii
Spreen, Gunnar
Author_xml – sequence: 1
  givenname: Dmitrii
  surname: Murashkin
  fullname: Murashkin, Dmitrii
  email: murashkin@uni-bremen.de
  organization: 1University of Bremen, Institute of Environmental Physics, Bremen, Germany Email: murashkin@uni-bremen.de
– sequence: 2
  givenname: Gunnar
  surname: Spreen
  fullname: Spreen, Gunnar
  email: murashkin@uni-bremen.de
  organization: 1University of Bremen, Institute of Environmental Physics, Bremen, Germany Email: murashkin@uni-bremen.de
– sequence: 3
  givenname: Marcus
  surname: Huntemann
  fullname: Huntemann, Marcus
  email: murashkin@uni-bremen.de
  organization: 1University of Bremen, Institute of Environmental Physics, Bremen, Germany Email: murashkin@uni-bremen.de
– sequence: 4
  givenname: Wolfgang
  surname: Dierking
  fullname: Dierking, Wolfgang
  organization: 2Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
BookMark eNptkV1rFDEUhoNUcFu98Q844J0425Pv5LKUaguVQluvQyY5WbPMTmpmetF_b9ZtEaRXgfCcJ3nPe0yOpjIhIR8prClQferLZs2AmrV6Q1ZUM91LJcQRWQFT0HOQ8h05nuctAAcAtSLmBy6_SuxSqV3EBcOSy9SV1I3o49ylWnbdHU5LnnDsaXd3dtvlnd_g_J68TX6c8cPzeUJ-fru4P7_sr2--X52fXfdBGLP0PuhgjJIgvbWKS6HSEKVIKQhpIyIGNlgNVgwsMhAIRhjLddIW0BgP_IRcHbyx-K17qO31-uSKz-7vRakb5-uSw4jOckDgAx8GYYUemI3cBJk8oFYaQTfXp4Mr1Dy3SG4q1TvalqEdlcB4Iz4fiIdafj_ivLhteaxTC-gYGAaKMisaBS-eMs8Vkwt58fvNLdXnsRndvg3X2nD7NpxqI1_-G3mJ8ir89Rn2u6HmuMF_33gF_wMVSZcj
CitedBy_id crossref_primary_10_1016_j_rse_2021_112730
crossref_primary_10_3103_S1068373924040046
crossref_primary_10_1109_TGRS_2022_3144731
crossref_primary_10_3103_S1068373924040083
crossref_primary_10_5194_essd_13_2723_2021
crossref_primary_10_1016_j_rse_2024_114517
crossref_primary_10_1016_j_heliyon_2020_e05358
crossref_primary_10_5194_tc_13_1565_2019
crossref_primary_10_1016_j_joes_2022_05_029
crossref_primary_10_1109_TGRS_2020_3007789
crossref_primary_10_1038_s41597_024_04139_6
crossref_primary_10_3390_rs14040969
crossref_primary_10_3390_rs12101633
crossref_primary_10_1109_TGRS_2024_3444045
crossref_primary_10_1016_j_polar_2021_100719
crossref_primary_10_1109_JSTARS_2021_3122546
crossref_primary_10_1016_j_rse_2024_114193
crossref_primary_10_1175_JTECH_D_19_0159_1
crossref_primary_10_3390_rs16050842
crossref_primary_10_3390_rs13224571
crossref_primary_10_5194_tc_17_2829_2023
crossref_primary_10_1175_JTECH_D_18_0239_1
crossref_primary_10_5194_tc_17_1279_2023
crossref_primary_10_1016_j_rse_2024_114204
crossref_primary_10_5194_tc_15_3401_2021
crossref_primary_10_1109_TGRS_2023_3266158
crossref_primary_10_1080_15481603_2023_2300222
crossref_primary_10_1016_j_rse_2022_113129
crossref_primary_10_1016_j_rse_2023_113726
crossref_primary_10_1109_JSTARS_2020_2977506
crossref_primary_10_24057_2071_9388_2024_3109
crossref_primary_10_1080_04353676_2022_2070158
crossref_primary_10_3390_jmse12060856
crossref_primary_10_1109_LGRS_2022_3223689
crossref_primary_10_3390_rs11050521
crossref_primary_10_3390_rs14133025
crossref_primary_10_1080_10095020_2020_1845574
crossref_primary_10_5194_tc_18_1259_2024
crossref_primary_10_1590_0001_3765202420240554
crossref_primary_10_1109_LGRS_2020_3039739
crossref_primary_10_5194_tc_18_2207_2024
crossref_primary_10_1029_2019GL084624
crossref_primary_10_3390_rs13122283
crossref_primary_10_1109_JSTARS_2021_3099398
crossref_primary_10_5194_tc_16_237_2022
crossref_primary_10_5194_acp_23_14521_2023
crossref_primary_10_5194_tc_13_2051_2019
crossref_primary_10_3390_rs15102545
crossref_primary_10_1109_TGRS_2018_2889381
crossref_primary_10_1080_03772063_2023_2248950
crossref_primary_10_5194_tc_17_809_2023
crossref_primary_10_1109_JSTARS_2022_3205849
crossref_primary_10_3390_rs15245726
crossref_primary_10_1525_elementa_2021_00062
crossref_primary_10_1016_j_rse_2021_112342
crossref_primary_10_1109_TGRS_2022_3169892
Cites_doi 10.3189/2015AoG69A615
10.1109/TGRS.2013.2255060
10.1038/srep40850
10.1109/TGRS.2012.2212445
10.3390/rs5115620
10.1002/2016GL068696
10.1109/TGRS.2013.2290231
10.1017/S0260305500009708
10.3390/rs6021451
10.1109/JSTARS.2016.2539501
10.1029/2005JC003384
10.1109/TSMC.1973.4309314
10.1109/TGRS.2012.2234756
10.1029/96JC03208
10.5194/tc-10-585-2016
10.1109/TGRS.2009.2031806
10.1029/94JC02393
10.5194/tc-6-343-2012
10.5194/tc-9-1955-2015
10.1109/LGRS.2016.2558543
10.1016/j.patrec.2005.10.010
10.1029/JC083iC07p03646
10.1109/TGRS.2013.2290331
10.1145/1143844.1143874
10.5194/tc-11-33-2017
10.1016/j.rse.2014.01.015
10.1109/TGRS.2005.857896
10.1023/A:1010933404324
10.1109/ICCV.1998.710815)
10.5670/oceanog.2013.33
10.3189/2015AoG69A802
ContentType Journal Article
Copyright Copyright © The Author(s) 2018
Copyright © The Author(s) 2018 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (the “License”) (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
info:eu-repo/semantics/openAccess
Copyright_xml – notice: Copyright © The Author(s) 2018
– notice: Copyright © The Author(s) 2018 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (the “License”) (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: info:eu-repo/semantics/openAccess
DBID IKXGN
AAYXX
CITATION
7QH
7TG
7UA
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
3HK
DOA
DOI 10.1017/aog.2018.6
DatabaseName Cambridge University Press Wholly Gold Open Access Journals
CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
NORA - Norwegian Open Research Archives
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: IKXGN
  name: Cambridge University Press Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
DocumentTitleAlternate Murashkin and others: Method for detection of leads from Sentinel-1 SAR images
EISSN 1727-5644
EndPage 136
ExternalDocumentID oai_doaj_org_article_930e03b3bb4947b29d38c5fa0e767e07
10037_15023
10_1017_aog_2018_6
GeographicLocations Arctic Ocean
Arctic region
GeographicLocations_xml – name: Arctic region
– name: Arctic Ocean
GroupedDBID -~X
09C
09E
0R~
23M
5GY
8FE
8FH
AABES
AABWE
AAGFV
AAKTX
AANRG
AASVR
ABBZL
ABMWE
ABQTM
ABROB
ABTAH
ABVKB
ABVZP
ABXAU
ACAJB
ACDLN
ACGFS
ACUIJ
ACZWT
ADBBV
ADDNB
ADKIL
ADOVH
ADOVT
ADVJH
AEBAK
AEHGV
AENCP
AENEX
AEUYN
AEYYC
AFFNX
AFKQG
AFKRA
AFLVW
AFRAH
AFZFC
AGABE
AGJUD
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AJCYY
AJPFC
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ARZZG
AUXHV
AYIQA
BBLKV
BCGOX
BCNDV
BENPR
BESQT
BHPHI
BJBOZ
BKSAR
BLZWO
BMAJL
CBIIA
CCPQU
CCQAD
CCUQV
CFAFE
CFBFF
CGQII
CJCSC
CS3
DOHLZ
EBS
EGQIC
EJD
GROUPED_DOAJ
H13
HCIFZ
IKXGN
IOEEP
IOO
IPYYG
JHPGK
JQKCU
KAFGG
KCGVB
KFECR
LHUNA
LK5
M7R
NIKVX
NZEOI
OK1
P2P
PCBAR
PIMPY
PROAC
RAMDC
RCA
ROL
S6U
SAAAG
SJN
T9M
VH1
VOH
WFFJZ
Y6R
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
~02
AAFWJ
AAYXX
ABGDZ
ABXHF
AKMAY
CITATION
PHGZM
PHGZT
7QH
7TG
7UA
ABUWG
AZQEC
C1K
DWQXO
F1W
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
3HK
AFMIJ
LW7
PUEGO
ID FETCH-LOGICAL-c488t-ac7c886505a9963546fbd54ffc459deeec2b97094b2d204e0848937f790e88a03
IEDL.DBID BENPR
ISSN 0260-3055
1727-5644
IngestDate Wed Aug 27 01:27:11 EDT 2025
Wed Jul 10 03:06:54 EDT 2024
Mon Jun 30 13:01:29 EDT 2025
Tue Jul 01 03:20:15 EDT 2025
Thu Apr 24 22:53:57 EDT 2025
Tue Jan 21 06:16:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 76pt2
Keywords ice/atmosphere interactions
remote sensing
sea-ice dynamics
ice/ocean interactions
sea ice
Language English
License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-ac7c886505a9963546fbd54ffc459deeec2b97094b2d204e0848937f790e88a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
Annals of Glaciology
OpenAccessLink https://www.proquest.com/docview/2082061294?pq-origsite=%requestingapplication%
PQID 2082061294
PQPubID 2046290
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_930e03b3bb4947b29d38c5fa0e767e07
cristin_nora_10037_15023
proquest_journals_2082061294
crossref_citationtrail_10_1017_aog_2018_6
crossref_primary_10_1017_aog_2018_6
cambridge_journals_10_1017_aog_2018_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Annals of glaciology
PublicationTitleAlternate Ann. Glaciol
PublicationYear 2018
Publisher Cambridge University Press
Cambridge University Press (CUP)
Publisher_xml – name: Cambridge University Press
– name: Cambridge University Press (CUP)
References Dierking, Wesche 2014; 52
Zakhvatkina, Alexandrov, Johannessen, Sandven, Frolov 2013; 51
Steffen 1991; 15
Spreen, Kaleschke, Heygster 2008; 113
Alonso-Gonzalez, Lopez-Martnez, Salembier, Deng 2013; 5
Bröhan, Kaleschke 2014; 6
Isleifson 2014; 52
Leigh, Wang, Clausi 2014; 52
Breiman 2001; 45
Scharien, Yackel 2005; 43
Willmes, Heinemann 2016; 8
Karvonen 2014; 52
Ressel, Singha, Lehner, Rosel, Spreen 2016; 9
Röhrs, Kaleschke 2012; 6
Maykut 1978; 83
Ivanova, Rampal, Bouillon 2016; 10
Lindsay, Rothrock 1995; 100
Moen, Anfinsen, Doulgeris, Renner, Gerland 2015; 56
Wang, Danilov, Jung, Kaleschke, Wernecke 2016; 43
Assmy 2017; 7
Fawcett 2006; 27
Dierking 2013; 26
Nghiem 1997; 102
Liu, Guo, Zhang 2015
Pedregosa 2011; 12
Haralick, Shanmugam, Dinstein 1973; 3
Dierking 2010; 48
Willmes, Heinemann 2015; 56
Brekke, Jones, Skrunes, Holt, Espeseth 2016; 13
Zakhvatkina, Korosov, Muckenhuber, Sandven, Babiker 2017; 11
Wernecke, Kaleschke 2015; 9
Brekke, Holt, Jones, Skrunes 2014; 145
S026030551800006X_ref30
S026030551800006X_ref31
S026030551800006X_ref36
S026030551800006X_ref14
S026030551800006X_ref37
S026030551800006X_ref15
S026030551800006X_ref16
S026030551800006X_ref17
S026030551800006X_ref10
S026030551800006X_ref11
S026030551800006X_ref33
S026030551800006X_ref34
S026030551800006X_ref12
S026030551800006X_ref13
S026030551800006X_ref18
S026030551800006X_ref19
Weeks (S026030551800006X_ref32) 2010
S026030551800006X_ref1
S026030551800006X_ref2
S026030551800006X_ref3
S026030551800006X_ref4
S026030551800006X_ref5
S026030551800006X_ref6
S026030551800006X_ref7
S026030551800006X_ref8
S026030551800006X_ref25
S026030551800006X_ref26
S026030551800006X_ref27
S026030551800006X_ref28
Willmes (S026030551800006X_ref35) 2016; 8
S026030551800006X_ref21
S026030551800006X_ref22
S026030551800006X_ref23
Liu (S026030551800006X_ref20) 2015
S026030551800006X_ref29
S026030551800006X_ref9
Pedregosa (S026030551800006X_ref24) 2011; 12
References_xml – volume: 52
  start-page: 5529
  issue: 9
  year: 2014
  end-page: 5539
  article-title: Automated ice-water classification using dual polarization SAR satellite imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 43
  start-page: 7019
  year: 2016
  end-page: 7027
  article-title: Sea ice leads in the Arctic Ocean: Model assessment, interannual variability and trends
  publication-title: Geophys. Res. Lett.
– volume: 113
  year: 2008
  article-title: Sea ice remote sensing using AMSR-E 89-GHz channels
  publication-title: J. Geophys. Res.
– volume: 52
  start-page: 1787
  issue: 3
  year: 2014
  end-page: 1798
  article-title: A study on the C-Band polarimetric scattering and physical characteristics of frost flowers on experimental sea ice
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 145
  start-page: 1
  year: 2014
  end-page: 14
  article-title: Discrimination of oil spills from newly formed sea ice by synthetic aperture radar
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 33
  year: 2017
  end-page: 46
  article-title: Operational algorithm for icewater classification on dual-polarized RADARSAT-2 images
  publication-title: Cryosphere
– volume: 83
  start-page: 3646
  issue: C7
  year: 1978
  end-page: 3658
  article-title: Energy exchange over young sea ice in the central Arctic
  publication-title: J. Geophys. Res.
– volume: 100
  start-page: 4533
  issue: C3
  year: 1995
  end-page: 4544
  article-title: Arctic sea ice leads from advanced very high resolution radiometer images
  publication-title: J. Geophys. Res.
– volume: 6
  start-page: 343
  issue: 0
  year: 2012
  end-page: 352
  article-title: An algorithm to detect sea ice leads by using AMSR-E passive microwave imagery
  publication-title: Cryosphere
– volume: 3
  start-page: 610
  issue: 6
  year: 1973
  end-page: 621
  article-title: Textural Features for Image Classification
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 48
  start-page: 1045
  issue: 3
  year: 2010
  end-page: 1058
  article-title: Mapping of different sea ice regimes using images from sentinel-1 and ALOS synthetic aperture radar
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 5
  start-page: 5620
  year: 2013
  end-page: 5641
  article-title: Bilateral distance based filtering for polarimetric SAR data
  publication-title: Remote Sens. (Basel)
– volume: 52
  start-page: 25
  issue: 1
  year: 2014
  end-page: 37
  article-title: C-Band Radar polarimetry - useful for detection of icebergs in sea ice?
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2015
  article-title: SVM-Based sea ice classification using textural features and concentration from RADARSAT-2 Dual-Pol ScanSAR data
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 102
  start-page: 3357
  issue: C2
  year: 1997
  end-page: 3370
  article-title: A laboratory study of the effect of frost flowers on C band radar backscatter from sea ice
  publication-title: J. Geophys. Res.
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
– volume: 10
  start-page: 585
  year: 2016
  end-page: 595
  article-title: Error assessment of satellite-derived lead fraction in the Arctic
  publication-title: Cryosphere
– volume: 9
  start-page: 3131
  issue: 7
  year: 2016
  end-page: 3143
  article-title: Investigation into different polarimetric features for sea ice classification using X-band synthetic aperture radar
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 43
  start-page: 2927
  issue: 12
  year: 2005
  end-page: 2939
  article-title: Analysis of surface roughness and morphology of first-year sea ice melt ponds: implications for microwave scattering
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 13
  start-page: 997
  issue: 7
  year: 2016
  end-page: 1001
  article-title: Cross-correlation between polarization channels in SAR imagery over oceanographic features
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 51
  start-page: 2587
  issue: 5
  year: 2013
  end-page: 2600
  article-title: Classification of sea ice types in ENVISAT synthetic aperture radar images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 56
  start-page: 29
  issue: 69
  year: 2015
  end-page: 37
  article-title: Pan-Arctic lead detection from MODIS thermal infrared imagery
  publication-title: Ann. Glaciol.
– volume: 9
  start-page: 1955
  year: 2015
  end-page: 1968
  article-title: Lead detection in Arctic sea ice from CryoSat-2: Quality assessment, lead area fraction and width distribution
  publication-title: Cryosphere
– volume: 6
  start-page: 1451
  year: 2014
  end-page: 1475
  article-title: A nine-year climatology of arctic sea ice lead orientation and frequency from AMSR-E
  publication-title: Remote Sens. (Basel)
– volume: 56
  start-page: 285
  issue: 69
  year: 2015
  end-page: 294
  article-title: Assessing polarimetric SAR sea-ice classifications using consecutive day images
  publication-title: Ann. Glaciol.
– volume: 26
  start-page: 100
  issue: 3
  year: 2013
  end-page: 111
  article-title: Sea ice monitoring by synthetic aperture Radar
  publication-title: Oceanography
– volume: 15
  start-page: 178
  year: 1991
  end-page: 183
  article-title: Energy flux density estintation over sea ice based on satellite passive microwave measurements
  publication-title: Ann. Glaciol.
– volume: 52
  start-page: 5558
  issue: 9
  year: 2014
  end-page: 5566
  article-title: Baltic sea ice concentration estimation based on C-band dual-polarized SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  year: 2017
  article-title: Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice
  publication-title: Sci. Rep.
– volume: 8
  issue: 4
  year: 2016
  article-title: Sea-ice wintertime lead frequencies and regional characteristics in the Arctic, 2003-2015
  publication-title: Remote Sens. (Basel)
– ident: S026030551800006X_ref34
  doi: 10.3189/2015AoG69A615
– ident: S026030551800006X_ref14
  doi: 10.1109/TGRS.2013.2255060
– volume: 8
  year: 2016
  ident: S026030551800006X_ref35
  article-title: Sea-ice wintertime lead frequencies and regional characteristics in the Arctic, 2003-2015
  publication-title: Remote Sens. (Basel)
– ident: S026030551800006X_ref2
  doi: 10.1038/srep40850
– ident: S026030551800006X_ref37
  doi: 10.1109/TGRS.2012.2212445
– ident: S026030551800006X_ref1
  doi: 10.3390/rs5115620
– volume-title: On Sea Ice
  year: 2010
  ident: S026030551800006X_ref32
– ident: S026030551800006X_ref31
  doi: 10.1002/2016GL068696
– ident: S026030551800006X_ref18
  doi: 10.1109/TGRS.2013.2290231
– ident: S026030551800006X_ref29
  doi: 10.1017/S0260305500009708
– ident: S026030551800006X_ref6
  doi: 10.3390/rs6021451
– ident: S026030551800006X_ref17
– volume: 12
  start-page: 2825
  year: 2011
  ident: S026030551800006X_ref24
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: S026030551800006X_ref25
  doi: 10.1109/JSTARS.2016.2539501
– ident: S026030551800006X_ref28
  doi: 10.1029/2005JC003384
– ident: S026030551800006X_ref13
  doi: 10.1109/TSMC.1973.4309314
– ident: S026030551800006X_ref10
  doi: 10.1109/TGRS.2012.2234756
– ident: S026030551800006X_ref23
  doi: 10.1029/96JC03208
– ident: S026030551800006X_ref15
  doi: 10.5194/tc-10-585-2016
– ident: S026030551800006X_ref11
– ident: S026030551800006X_ref8
  doi: 10.1109/TGRS.2009.2031806
– ident: S026030551800006X_ref19
  doi: 10.1029/94JC02393
– ident: S026030551800006X_ref26
  doi: 10.5194/tc-6-343-2012
– ident: S026030551800006X_ref33
  doi: 10.5194/tc-9-1955-2015
– ident: S026030551800006X_ref5
  doi: 10.1109/LGRS.2016.2558543
– year: 2015
  ident: S026030551800006X_ref20
  article-title: SVM-Based sea ice classification using textural features and concentration from RADARSAT-2 Dual-Pol ScanSAR data
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– ident: S026030551800006X_ref12
  doi: 10.1016/j.patrec.2005.10.010
– ident: S026030551800006X_ref21
  doi: 10.1029/JC083iC07p03646
– ident: S026030551800006X_ref16
  doi: 10.1109/TGRS.2013.2290331
– ident: S026030551800006X_ref7
  doi: 10.1145/1143844.1143874
– ident: S026030551800006X_ref36
  doi: 10.5194/tc-11-33-2017
– ident: S026030551800006X_ref4
  doi: 10.1016/j.rse.2014.01.015
– ident: S026030551800006X_ref27
  doi: 10.1109/TGRS.2005.857896
– ident: S026030551800006X_ref3
  doi: 10.1023/A:1010933404324
– ident: S026030551800006X_ref30
  doi: 10.1109/ICCV.1998.710815)
– ident: S026030551800006X_ref9
  doi: 10.5670/oceanog.2013.33
– ident: S026030551800006X_ref22
  doi: 10.3189/2015AoG69A802
SSID ssj0030006
Score 2.4528997
Snippet The presence of leads with open water or thin ice is an important feature of the Arctic sea ice cover. Leads regulate the heat, gas and moisture fluxes between...
SourceID doaj
cristin
proquest
crossref
cambridge
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124
SubjectTerms Algorithms
Arctic sea ice
Classification
Detection
Earth science
Fluxes
Freezing
Geofag: 450
Geosciences: 450
Glaciers
Growth rate
Ice
Ice cover
Ice environments
ice/atmosphere interactions
ice/ocean interactions
Image detection
Kvartærgeologi, glasiologi: 465
Matematikk og Naturvitenskap: 400
Mathematical models
Mathematics and natural science: 400
Methods
Neural networks
Open access
Quality
Quaternary geology, glaciology: 465
Radar
Radar imaging
Radar polarimetry
remote sensing
SAR (radar)
Satellite data
Satellites
Sea ice
sea-ice dynamics
Studies
Synthetic aperture radar
VDP
SummonAdditionalLinks – databaseName: Cambridge University Press Wholly Gold Open Access Journals
  dbid: IKXGN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QEuiPJQF1pkCThwCHFiJ7aPpaIUUHtgqZSb5VdKpSVbdZcD_56x4yyq6KG3yHKszMPjz874G4C3rWlqUwtfUO9NwXtfFcZYBHLY6rlybfDxgvPZeXt6wb92TbcD3XQXJqZVbjkO0p_8VB_teqQ_La_8mEMTbspFZMOKfFWVTEG3K-OhZZlNoLPiH8AuYoZKzmD3y7fu8_kUpVl8ZTx_wTiEo0zUpZUozeoy5nzJD7cIFxAguzTvhltLWGL6_y-Qp9Xp5Ak8zrCSHI2fswc7YXgKD3OF859_noE8S6WiCWJU4sMmJWANZNWTJRp5TeItE7KIUg9hWVRkcfSdXP3CWLN-Dhcnn34cnxa5akLhcDJuCuOEkxKBV2NwL8Ma3vbWN7zvHW-UDyG42iqBuzpb-5ryEAn1EaP0QtEgpaHsBcyG1RD2gXiBa5d1ykvqeWWYkU0bBAJCKQR1zMzh3VY9Oit-rce8MaFRjTqqUbdz2M-q0wM6duRJZkIjFK3ZHN5PutQus5LH4hjLO4d5s-17PXJx3NnrYzTJtkfkz04N6EyTV2jFaKDMMmu5QhFr5Zl0TW9oEK0IVMzhYDLoP8HqCJcQESr-8p6Cv4JH8WFM7z2A2ebmdzhEELOxr7M__gVxSe05
  priority: 102
  providerName: Cambridge University Press
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iRS_iE6tVAurBw9p0k2ySYxVFhHqwFryFvFaFuhVbD_57J5ttVSx48RqG3ezMZObLMvMNQseF4bnJhc-I9yZjpe9mxlgAcrDqmXJF8LHBuX9bXA_ZzQN_-DbqK9aEJXrgpLiOoiQQaqm1TDFhc-WpdLw0JIhChNRHDjlvdplKMZjGKJz-rkCUIZzPiEm7omPGj7GiS579oFMA-OvqU1X9SFA1j_-vMF3nnqt1tNaARtxLm91AS6HaRCvN_PKnjy0k-_UgaAwIFPswrcurKjwu8QhMOMGxhwQPYl1QFUZZFw96d_j5BSLJZBsNry7vL66zZiZC5uCoTTPjhJMSYBU3cFOhnBWl9ZyVpWNc-RCCy60ScGezuc8JC5EuHxBIKRQJUhpCd9ByNa7CLsJeQGayTnlJPOsaaiQvggC4J4UgjpoWOpmrRzeePdGpKkxoUKOOatRFC-02qtMVuG1kQaZCA9DMaQudznSpXcM5HkdfjBY-5mgu-5qYNhZKnUeTzCUiO3a9AD6jG5_Rf_lMC7VnBv36sDyCIcB7iu39xzv20WrccarsbaPl6dt7OAD8MrWHtat-AmdZ6C4
  priority: 102
  providerName: Directory of Open Access Journals
Title Method for detection of leads from Sentinel-1 SAR images
URI https://www.cambridge.org/core/product/identifier/S026030551800006X/type/journal_article
https://www.proquest.com/docview/2082061294
http://hdl.handle.net/10037/15023
https://doaj.org/article/930e03b3bb4947b29d38c5fa0e767e07
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61y6G9VAVasS1FligHDmm9sR07pwoQjxaxQlCk5WT5FUBaEspuD_33HSfOIgTiFMWxonhmPP7GGX8D8LUwIje59Bn13mS88qPMGItADls9L10RfDzgfDIuji74r4mYpA23WUqr7H1i66h94-IeOQbpkWkcVyf-4-5PFqtGxb-rqYTGa1hCF6zUAJZ298enZ70vZtEbd7ss6G2oED1B6Uh-N81VzOxS3x7RKiAMdu3sqh8tVC2f_xN33a5BB-_hXQKPZKfT9jK8CvUKvEl1zK__rYI6aQtCE0SixId5m2ZVk6YiU1TljMSzJOQ85gfVYZqNyPnOGbm5RY8y-wAXB_u_946yVBshczjl5plx0imF8EoYjFiY4EVlveBV5bgofQjB5baUGLvZ3OeUh0ibj0ikkiUNShnKPsKgbuqwBsRLXKGsK72ino8MM0oUQSLsU1JSx8wQthbi0cnCZ7rLDpMaxaijGHUxhLUkOl2j-UY2ZCY1As6cDWG7l6V2iXs8lsCYPvuazUXfu45x49leu1Elix6RJbttaO6vdJp0umQ0UGaZtbzEIealZ8qJytAgCxmoHMJ6r9CHgT0Y2qeXH3-Gt_FbutzddRjM7_-GL4hQ5nYjmeFGG-Hj3c_jyeE4Xk8vLw__A00p5ZQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxEC2FySFcEKsyEMAS5MChweOl7T4glECiCcmMUBYpN-OtA9LQHTKDUH6Kb6Tcy0QREbdc3ZbVLtfybJdfAbzOrWSWqZDREGwmyjDKrHUI5LA1iMLnMaQHzpNpPj4Rn0_l6Qr86d_CpLTK3ic2jjrUPp2R4yY9MY1jdBIfzn9mqWpUul3tS2i0arEfL3_jlm3-fu8Tru8mY7s7xx_HWVdVIPOorIvMeuW1RmAiLWJ9LkVeuiBFWXohixBj9MwVCnc9jgVGRUyE8xjDS1XQqLWlHMe9A6uC55QNYHV7Z_rlsPf9PHn_9lQHvRuVsidEHal3tj5LmWT67TUaB4TdvrHm6lpgbOoH_BMempi3ex_udWCVbLXa9QBWYvUQ1rq66d8uH4GeNAWoCSJfEuKiSeuqSF2SGarOnKS3K-Qo5SNVcZaNyNHWIfn-Az3Y_DGc3IrUnsCgqqu4DiQojIjOF0HTIEaWWy3zqBBmaqWo53YIm0vxmM6i5qbNRlMGxWiSGE0-hPVOdKZCc0nsy1wZBLiMD-FNL0vjO67zVHJjduMwr5Z9z1uGjxt7baclWfZIrNxNQ31xZjojNwWnkXLHnRMFTpEVgWsvS0ujylWkaggb_YJeTexKsZ_-__NLWBsfTw7Mwd50_xncTf_V5g1vwGBx8Ss-R3S0cC86lSTw9bat4C_hjB2W
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEE91oYAl6IFDqNeP2Dkg1NKuWkpXVUul3lzHdgrSkpTuItS_xq9jnDhbVVTcenUsKx7P45tk_A3A29xKZpnyGfXeZqLyo8zaEoEcjnpRuDz4eMF5f5LvHIvPJ_JkCf70d2FiWWXvE1tH7RsXv5Fjkh6ZxjE6ifUqlUUcbI0_nv_MYgep-Ke1b6fRqcheuPyN6dvsw-4WnvUaY-Ptr592stRhIHOouPPMOuW0RpAiLeJ-LkVelV6KqnJCFj6E4FhZKMyASuYZFSGSz2M8r1RBg9aWclz3DiyrmBUNYHlze3Jw2McBHiNB94UHPR2VsidHHal125zFqjL9_hqlA0Jw11p2fS1Itr0E_gkVbfwbP4QHCbiSjU7THsFSqB_DvdRD_dvlE9D7bTNqgiiY-DBvS7xq0lRkimo0I_EeCzmKtUl1mGYjcrRxSL7_QG82ewrHtyK1ZzComzqsAPEKo2PpCq-pFyPLrZZ5UAg5tVLUcTuEtYV4TLKumekq05RBMZooRpMPYSWJztRoOpGJmSuDYJfxIbzrZWlc4j2P7TemNy7zZjH3vGP7uHHWZjySxYzI0N0ONBdnJhm8KTgNlJe8LEWBW2SF59rJytKgchWoGsJqf6BXG7tS8uf_f_wa7qL2my-7k70XcD--VldCvAqD-cWv8BKB0rx8lTSSwOltG8FfS20hyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+for+detection+of+leads+from+Sentinel-1+SAR+images&rft.jtitle=Annals+of+glaciology&rft.au=Murashkin%2C+Dmitrii&rft.au=Spreen%2C+Gunnar&rft.au=Huntemann%2C+Marcus&rft.au=Dierking%2C+Wolfgang&rft.date=2018-07-01&rft.pub=Cambridge+University+Press&rft.issn=0260-3055&rft.eissn=1727-5644&rft.volume=59&rft.issue=76pt2&rft.spage=124&rft.epage=136&rft_id=info:doi/10.1017%2Faog.2018.6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0260-3055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0260-3055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0260-3055&client=summon