Climate change and alpine-adapted insects: modelling environmental envelopes of a grasshopper radiation
Mountains create steep environmental gradients that are sensitive barometers of climate change. We calibrated 10 statistical models to formulate ensemble ecological niche models for 12 predominantly alpine, flightless grasshopper species in Aotearoa New Zealand, using their current distributions and...
Saved in:
Published in | Royal Society open science Vol. 9; no. 3; p. 211596 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mountains create steep environmental gradients that are sensitive barometers of climate change. We calibrated 10 statistical models to formulate ensemble ecological niche models for 12 predominantly alpine, flightless grasshopper species in
Aotearoa
New Zealand, using their current distributions and current conditions. Niche models were then projected for two future global climate scenarios: representative concentration pathway (RCP) 2.6 (1.0°C rise) and RCP8.5 (3.7°C rise). Results were species specific, with two-thirds of our models suggesting a reduction in potential range for nine species by 2070, but surprisingly, for six species, we predict an increase in potential suitable habitat under mild (+1.0°C) or severe global warming (+3.7°C). However, when the limited dispersal ability of these flightless grasshoppers is taken into account, all 12 species studied are predicted to suffer extreme reductions in range, with a quarter likely to go extinct due to a 96–100% reduction in suitable habitat. Habitat loss is associated with habitat fragmentation that is likely to escalate stochastic vulnerability of remaining populations. Here, we present the predicted outcomes for an endemic radiation of alpine taxa as an exemplar of the challenges that alpine species, both in New Zealand and internationally, are subject to by anthropogenic climate change. |
---|---|
AbstractList | Mountains create steep environmental gradients that are sensitive barometers of climate change. We calibrated 10 statistical models to formulate ensemble ecological niche models for 12 predominantly alpine, flightless grasshopper species in Aotearoa New Zealand, using their current distributions and current conditions. Niche models were then projected for two future global climate scenarios: representative concentration pathway (RCP) 2.6 (1.0°C rise) and RCP8.5 (3.7°C rise). Results were species specific, with two-thirds of our models suggesting a reduction in potential range for nine species by 2070, but surprisingly, for six species, we predict an increase in potential suitable habitat under mild (+1.0°C) or severe global warming (+3.7°C). However, when the limited dispersal ability of these flightless grasshoppers is taken into account, all 12 species studied are predicted to suffer extreme reductions in range, with a quarter likely to go extinct due to a 96–100% reduction in suitable habitat. Habitat loss is associated with habitat fragmentation that is likely to escalate stochastic vulnerability of remaining populations. Here, we present the predicted outcomes for an endemic radiation of alpine taxa as an exemplar of the challenges that alpine species, both in New Zealand and internationally, are subject to by anthropogenic climate change. Mountains create steep environmental gradients that are sensitive barometers of climate change. We calibrated 10 statistical models to formulate ensemble ecological niche models for 12 predominantly alpine, flightless grasshopper species in Aotearoa New Zealand, using their current distributions and current conditions. Niche models were then projected for two future global climate scenarios: representative concentration pathway (RCP) 2.6 (1.0°C rise) and RCP8.5 (3.7°C rise). Results were species specific, with two-thirds of our models suggesting a reduction in potential range for nine species by 2070, but surprisingly, for six species, we predict an increase in potential suitable habitat under mild (+1.0°C) or severe global warming (+3.7°C). However, when the limited dispersal ability of these flightless grasshoppers is taken into account, all 12 species studied are predicted to suffer extreme reductions in range, with a quarter likely to go extinct due to a 96–100% reduction in suitable habitat. Habitat loss is associated with habitat fragmentation that is likely to escalate stochastic vulnerability of remaining populations. Here, we present the predicted outcomes for an endemic radiation of alpine taxa as an exemplar of the challenges that alpine species, both in New Zealand and internationally, are subject to by anthropogenic climate change. Mountains create steep environmental gradients that are sensitive barometers of climate change. We calibrated 10 statistical models to formulate ensemble ecological niche models for 12 predominantly alpine, flightless grasshopper species in New Zealand, using their current distributions and current conditions. Niche models were then projected for two future global climate scenarios: representative concentration pathway (RCP) 2.6 (1.0°C rise) and RCP8.5 (3.7°C rise). Results were species specific, with two-thirds of our models suggesting a reduction in potential range for nine species by 2070, but surprisingly, for six species, we predict an increase in potential suitable habitat under mild (+1.0°C) or severe global warming (+3.7°C). However, when the limited dispersal ability of these flightless grasshoppers is taken into account, all 12 species studied are predicted to suffer extreme reductions in range, with a quarter likely to go extinct due to a 96-100% reduction in suitable habitat. Habitat loss is associated with habitat fragmentation that is likely to escalate stochastic vulnerability of remaining populations. Here, we present the predicted outcomes for an endemic radiation of alpine taxa as an exemplar of the challenges that alpine species, both in New Zealand and internationally, are subject to by anthropogenic climate change. Mountains create steep environmental gradients that are sensitive barometers of climate change. We calibrated 10 statistical models to formulate ensemble ecological niche models for 12 predominantly alpine, flightless grasshopper species in Aotearoa New Zealand, using their current distributions and current conditions. Niche models were then projected for two future global climate scenarios: representative concentration pathway (RCP) 2.6 (1.0°C rise) and RCP8.5 (3.7°C rise). Results were species specific, with two-thirds of our models suggesting a reduction in potential range for nine species by 2070, but surprisingly, for six species, we predict an increase in potential suitable habitat under mild (+1.0°C) or severe global warming (+3.7°C). However, when the limited dispersal ability of these flightless grasshoppers is taken into account, all 12 species studied are predicted to suffer extreme reductions in range, with a quarter likely to go extinct due to a 96-100% reduction in suitable habitat. Habitat loss is associated with habitat fragmentation that is likely to escalate stochastic vulnerability of remaining populations. Here, we present the predicted outcomes for an endemic radiation of alpine taxa as an exemplar of the challenges that alpine species, both in New Zealand and internationally, are subject to by anthropogenic climate change.Mountains create steep environmental gradients that are sensitive barometers of climate change. We calibrated 10 statistical models to formulate ensemble ecological niche models for 12 predominantly alpine, flightless grasshopper species in Aotearoa New Zealand, using their current distributions and current conditions. Niche models were then projected for two future global climate scenarios: representative concentration pathway (RCP) 2.6 (1.0°C rise) and RCP8.5 (3.7°C rise). Results were species specific, with two-thirds of our models suggesting a reduction in potential range for nine species by 2070, but surprisingly, for six species, we predict an increase in potential suitable habitat under mild (+1.0°C) or severe global warming (+3.7°C). However, when the limited dispersal ability of these flightless grasshoppers is taken into account, all 12 species studied are predicted to suffer extreme reductions in range, with a quarter likely to go extinct due to a 96-100% reduction in suitable habitat. Habitat loss is associated with habitat fragmentation that is likely to escalate stochastic vulnerability of remaining populations. Here, we present the predicted outcomes for an endemic radiation of alpine taxa as an exemplar of the challenges that alpine species, both in New Zealand and internationally, are subject to by anthropogenic climate change. |
Author | Trewick, Steven A. Koot, Emily M. Morgan-Richards, Mary |
Author_xml | – sequence: 1 givenname: Emily M. orcidid: 0000-0002-1956-3415 surname: Koot fullname: Koot, Emily M. organization: Wildlife and Ecology Group, Massey University, Palmerston North, New Zealand – sequence: 2 givenname: Mary orcidid: 0000-0002-3913-9814 surname: Morgan-Richards fullname: Morgan-Richards, Mary organization: Wildlife and Ecology Group, Massey University, Palmerston North, New Zealand – sequence: 3 givenname: Steven A. orcidid: 0000-0002-4680-8457 surname: Trewick fullname: Trewick, Steven A. organization: Wildlife and Ecology Group, Massey University, Palmerston North, New Zealand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35316945$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv3CAQgK0qVZOmOfVecaxUOQVjMO6hUrXqI1KkXnJHAwxeIhZc8Ebqv683m0ZJ1ROvj28YZl43JyknbJq3jF4yOqqPpeZ62TEmRvmiOeuo6FsxUH7yZH7aXNR6SyllgvJBDq-aUy44k2MvzpppE8MOFiR2C2lCAskRiHNI2IKDeUFHQqpol_qJ7LLDGEOaCKa7UHLaYVogHlYY84yVZE-ATAVq3eZ5xkIKuABLyOlN89JDrHjxMJ43N9--3mx-tNc_v19tvly3tldqaaWRluEAvTV8oEqCdMisciNV1lMpB-8oV6OUDBUIdAykGa2k3pgRuefnzdVR6zLc6rmsuZXfOkPQ9xu5TBrKEmxEbYVQBuzIBgO98qh452nnzei8MsIfXJ-PrnlvdujsmmyB-Ez6_CSFrZ7ynVZKrVa1Ct4_CEr-tce66F2odv1CSJj3VXey73inOO1X9N3TWI9B_hZqBT4cAVtyrQX9I8KoPnSCPnSCPnbCSrN_aBuW-zqsDw3xv3f-AMt8utE |
CitedBy_id | crossref_primary_10_1007_s10530_024_03370_x crossref_primary_10_1016_j_cris_2024_100092 crossref_primary_10_11646_zootaxa_5383_2_7 crossref_primary_10_1016_j_cois_2024_101159 crossref_primary_10_1111_een_13217 crossref_primary_10_3390_insects14020120 crossref_primary_10_1111_ddi_13848 crossref_primary_10_1111_mec_17212 crossref_primary_10_1016_j_gecco_2024_e03163 crossref_primary_10_1002_ece3_70810 crossref_primary_10_1002_ece3_9633 crossref_primary_10_11646_zootaxa_5529_2_1 crossref_primary_10_1111_icad_12789 crossref_primary_10_1111_jbi_14787 crossref_primary_10_1126_science_adp4461 crossref_primary_10_1111_btp_70001 crossref_primary_10_1007_s10841_024_00581_4 crossref_primary_10_1080_03036758_2022_2130367 crossref_primary_10_1016_j_gecco_2023_e02702 crossref_primary_10_1098_rsos_211596 crossref_primary_10_1080_03036758_2022_2061020 crossref_primary_10_1111_gcb_17125 crossref_primary_10_1111_jbi_14590 |
Cites_doi | 10.1111/2041-210X.12403 10.1111/ecog.01557 10.1016/j.ppees.2007.09.004 10.1111/gcb.13470 10.1111/j.1365-2664.2006.01214.x 10.1111/j.1365-2699.2006.01460.x 10.1111/j.1365-2745.2009.01488.x 10.1016/j.gloplacha.2014.10.012 10.1016/j.cryobiol.2015.07.008 10.1006/qres.1999.2123 10.1111/j.1365-2486.2007.01418.x 10.1016/j.ympev.2020.106783 10.1007/s10531-012-0398-8 10.1111/eva.12484 10.1080/15230430.2020.1773033 10.1111/j.1365-2486.2010.02380.x 10.1126/science.287.5459.1770 10.1111/ecog.01881 10.1038/s41598-019-40766-5 10.1016/j.tree.2018.07.005 10.1038/s41467-019-13128-y 10.1073/pnas.0409902102 10.1111/ecog.04282 10.1111/gcb.14619 10.1038/nature08649 10.1038/nature01286 10.1016/j.ympev.2018.09.006 10.1111/ecog.05012 10.1175/BAMS-D-11-00094.1 10.1146/annurev.ecolsys.37.091305.110100 10.1111/j.1600-0587.2011.06866.x 10.1002/joc.1276 10.1186/s12862-014-0216-x 10.3390/cli9050081 10.1111/j.1365-2699.2003.01043.x 10.1007/s10584-016-1806-y 10.1038/509297a 10.1080/13658816.2020.1798968 10.1016/j.biocon.2018.07.022 10.1080/03036758.2010.549493 10.1111/j.2041-210X.2011.00157.x 10.1038/nclimate2563 10.1016/j.tree.2006.09.010 10.1111/j.1472-4642.2008.00482.x 10.1038/srep26316 10.1016/j.tree.2018.10.012 10.1098/rsos.211596 10.1657/1938-4246-46.4.829 10.1007/s00035-011-0094-4 10.1038/nclimate3127 10.1073/pnas.0801507105 10.1111/j.1472-4642.2008.00491.x 10.1111/ddi.12892 10.1016/j.ode.2004.12.001 10.1016/j.biocon.2018.12.026 10.1007/s004420050540 10.2307/2997525 10.1016/S0304-3800(01)00388-X 10.1111/j.1654-1103.2009.01133.x 10.1111/gcb.14280 10.1098/rspb.2007.0997 10.1007/s10750-014-2134-8 10.1111/icad.12488 10.1038/s41598-018-30606-3 10.2737/PNW-GTR-351 10.1111/j.0906-7590.2006.04700.x 10.1006/jtbi.1999.0967 10.1017/CBO9780511754821 10.1016/j.gecco.2018.e00507 10.1111/icad.12289 10.1890/12-0833.1 10.1111/gcb.14087 10.5194/gmd-4-845-2011 10.1073/pnas.0906380106 10.1371/journal.pone.0080811 10.1007/s10841-017-9983-1 10.1146/annurev-ecolsys-110316-022612 |
ContentType | Journal Article |
Copyright | 2022 The Authors. 2022 The Authors. 2022 |
Copyright_xml | – notice: 2022 The Authors. – notice: 2022 The Authors. 2022 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1098/rsos.211596 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Climate change and alpine-adapted insects: modelling environmental envelopes of a grasshopper radiation |
EISSN | 2054-5703 |
ExternalDocumentID | oai_doaj_org_article_c558bac917ba48fe832f02fb9df8b5ff PMC8889178 35316945 10_1098_rsos_211596 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 7X2 88I AAFWJ AAYXX ABJCF ABUWG ADBBV ADRAZ AEUYN AFKRA AFPKN ALAEF ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS AZQEC BBNVY BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION DWQXO EBS EJD GNUQQ GROUPED_DOAJ H13 HCIFZ HYE ICLEN KB. KQ8 M0K M2P M48 M7P M7S M~E OK1 OP1 PATMY PCBAR PDBOC PGMZT PHGZM PHGZT PIMPY PTHSS PYCSY RPM NPM PQGLB 7X8 5PM |
ID | FETCH-LOGICAL-c488t-6b6c1e7a4cb37086a6de1c8d908cf0667fd0389661e8a5ed1a6b9c60fbb9e3f3 |
IEDL.DBID | M48 |
ISSN | 2054-5703 |
IngestDate | Wed Aug 27 01:25:55 EDT 2025 Thu Aug 21 13:55:32 EDT 2025 Fri Jul 11 02:18:49 EDT 2025 Mon Jul 21 06:01:52 EDT 2025 Tue Jul 01 03:45:26 EDT 2025 Thu Apr 24 23:05:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | FRAGSTATS ecological niche modelling biomod2 alpine fragmentation climate change ensemble modelling |
Language | English |
License | 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c488t-6b6c1e7a4cb37086a6de1c8d908cf0667fd0389661e8a5ed1a6b9c60fbb9e3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.5859650. Present address: The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand. |
ORCID | 0000-0002-1956-3415 0000-0002-3913-9814 0000-0002-4680-8457 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1098/rsos.211596 |
PMID | 35316945 |
PQID | 2642328304 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c558bac917ba48fe832f02fb9df8b5ff pubmedcentral_primary_oai_pubmedcentral_nih_gov_8889178 proquest_miscellaneous_2642328304 pubmed_primary_35316945 crossref_primary_10_1098_rsos_211596 crossref_citationtrail_10_1098_rsos_211596 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Mar |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-Mar |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Royal Society open science |
PublicationTitleAlternate | R Soc Open Sci |
PublicationYear | 2022 |
Publisher | The Royal Society |
Publisher_xml | – name: The Royal Society |
References | e_1_3_6_30_2 e_1_3_6_51_2 e_1_3_6_76_2 e_1_3_6_32_2 e_1_3_6_53_2 e_1_3_6_74_2 e_1_3_6_72_2 e_1_3_6_70_2 e_1_3_6_91_2 Newsome P (e_1_3_6_50_2) 1987 e_1_3_6_13_2 e_1_3_6_38_2 Leathwick J (e_1_3_6_49_2) 2004 e_1_3_6_59_2 e_1_3_6_11_2 e_1_3_6_17_2 e_1_3_6_34_2 e_1_3_6_55_2 e_1_3_6_15_2 e_1_3_6_36_2 e_1_3_6_57_2 e_1_3_6_78_2 e_1_3_6_40_2 e_1_3_6_65_2 e_1_3_6_86_2 e_1_3_6_21_2 e_1_3_6_42_2 e_1_3_6_63_2 e_1_3_6_84_2 e_1_3_6_61_2 e_1_3_6_82_2 e_1_3_6_80_2 e_1_3_6_4_2 e_1_3_6_2_2 e_1_3_6_8_2 e_1_3_6_6_2 e_1_3_6_27_2 e_1_3_6_48_2 e_1_3_6_29_2 Gatti RC (e_1_3_6_10_2) 2019; 9 e_1_3_6_23_2 e_1_3_6_44_2 e_1_3_6_69_2 e_1_3_6_25_2 e_1_3_6_46_2 e_1_3_6_67_2 e_1_3_6_88_2 e_1_3_6_52_2 e_1_3_6_75_2 e_1_3_6_31_2 e_1_3_6_54_2 e_1_3_6_73_2 e_1_3_6_71_2 e_1_3_6_92_2 e_1_3_6_90_2 Pachauri RK (e_1_3_6_45_2) 2014 Lute A (e_1_3_6_18_2) 2020; 41 e_1_3_6_14_2 e_1_3_6_37_2 Turner C (e_1_3_6_7_2) 2018 e_1_3_6_12_2 e_1_3_6_39_2 e_1_3_6_33_2 e_1_3_6_56_2 e_1_3_6_79_2 e_1_3_6_16_2 e_1_3_6_35_2 e_1_3_6_58_2 e_1_3_6_77_2 e_1_3_6_41_2 e_1_3_6_64_2 e_1_3_6_87_2 e_1_3_6_20_2 e_1_3_6_43_2 e_1_3_6_62_2 e_1_3_6_85_2 e_1_3_6_60_2 e_1_3_6_83_2 e_1_3_6_81_2 e_1_3_6_5_2 e_1_3_6_3_2 e_1_3_6_9_2 e_1_3_6_26_2 e_1_3_6_28_2 e_1_3_6_22_2 e_1_3_6_68_2 Minder JR (e_1_3_6_19_2) 2010; 115 e_1_3_6_24_2 e_1_3_6_47_2 e_1_3_6_66_2 e_1_3_6_89_2 |
References_xml | – ident: e_1_3_6_60_2 doi: 10.1111/2041-210X.12403 – ident: e_1_3_6_79_2 doi: 10.1111/ecog.01557 – ident: e_1_3_6_28_2 doi: 10.1016/j.ppees.2007.09.004 – ident: e_1_3_6_73_2 doi: 10.1111/gcb.13470 – ident: e_1_3_6_57_2 doi: 10.1111/j.1365-2664.2006.01214.x – ident: e_1_3_6_75_2 doi: 10.1111/j.1365-2699.2006.01460.x – volume: 41 start-page: E110 year: 2020 ident: e_1_3_6_18_2 article-title: Best practices for estimating near-surface air temperature lapse rates publication-title: Int. J. Climatol. – ident: e_1_3_6_42_2 – ident: e_1_3_6_9_2 doi: 10.1111/j.1365-2745.2009.01488.x – volume-title: Climate change and biodiversity. year: 2018 ident: e_1_3_6_7_2 – ident: e_1_3_6_81_2 doi: 10.1016/j.gloplacha.2014.10.012 – ident: e_1_3_6_37_2 doi: 10.1016/j.cryobiol.2015.07.008 – ident: e_1_3_6_22_2 doi: 10.1006/qres.1999.2123 – ident: e_1_3_6_12_2 doi: 10.1111/j.1365-2486.2007.01418.x – ident: e_1_3_6_33_2 doi: 10.1016/j.ympev.2020.106783 – ident: e_1_3_6_52_2 doi: 10.1007/s10531-012-0398-8 – ident: e_1_3_6_83_2 doi: 10.1111/eva.12484 – volume: 9 start-page: 1 year: 2019 ident: e_1_3_6_10_2 article-title: Accelerating upward treeline shift in the Altai Mountains under last-century climate change publication-title: Sci. Rep. – ident: e_1_3_6_47_2 – ident: e_1_3_6_15_2 doi: 10.1080/15230430.2020.1773033 – ident: e_1_3_6_2_2 doi: 10.1111/j.1365-2486.2010.02380.x – ident: e_1_3_6_5_2 doi: 10.1126/science.287.5459.1770 – ident: e_1_3_6_48_2 doi: 10.1111/ecog.01881 – ident: e_1_3_6_29_2 doi: 10.1038/s41598-019-40766-5 – ident: e_1_3_6_65_2 doi: 10.1016/j.tree.2018.07.005 – ident: e_1_3_6_86_2 doi: 10.1038/s41467-019-13128-y – ident: e_1_3_6_78_2 doi: 10.1073/pnas.0409902102 – ident: e_1_3_6_26_2 doi: 10.1111/ecog.04282 – ident: e_1_3_6_27_2 doi: 10.1111/gcb.14619 – ident: e_1_3_6_55_2 – ident: e_1_3_6_4_2 doi: 10.1038/nature08649 – ident: e_1_3_6_58_2 – ident: e_1_3_6_14_2 doi: 10.1038/nature01286 – ident: e_1_3_6_87_2 doi: 10.1016/j.ympev.2018.09.006 – volume-title: Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change year: 2014 ident: e_1_3_6_45_2 – ident: e_1_3_6_16_2 doi: 10.1111/ecog.05012 – ident: e_1_3_6_44_2 doi: 10.1175/BAMS-D-11-00094.1 – ident: e_1_3_6_6_2 doi: 10.1146/annurev.ecolsys.37.091305.110100 – ident: e_1_3_6_25_2 doi: 10.1111/j.1600-0587.2011.06866.x – ident: e_1_3_6_43_2 doi: 10.1002/joc.1276 – ident: e_1_3_6_77_2 doi: 10.1186/s12862-014-0216-x – ident: e_1_3_6_76_2 doi: 10.3390/cli9050081 – ident: e_1_3_6_20_2 doi: 10.1111/j.1365-2699.2003.01043.x – ident: e_1_3_6_11_2 doi: 10.1007/s10584-016-1806-y – ident: e_1_3_6_64_2 doi: 10.1038/509297a – ident: e_1_3_6_30_2 doi: 10.1080/13658816.2020.1798968 – ident: e_1_3_6_89_2 doi: 10.1016/j.biocon.2018.07.022 – ident: e_1_3_6_91_2 doi: 10.1080/03036758.2010.549493 – ident: e_1_3_6_53_2 doi: 10.1111/j.2041-210X.2011.00157.x – ident: e_1_3_6_8_2 doi: 10.1038/nclimate2563 – ident: e_1_3_6_32_2 doi: 10.1016/j.tree.2006.09.010 – ident: e_1_3_6_63_2 doi: 10.1111/j.1472-4642.2008.00482.x – ident: e_1_3_6_56_2 doi: 10.1038/srep26316 – ident: e_1_3_6_72_2 doi: 10.1016/j.tree.2018.10.012 – ident: e_1_3_6_92_2 doi: 10.1098/rsos.211596 – ident: e_1_3_6_23_2 doi: 10.1657/1938-4246-46.4.829 – ident: e_1_3_6_17_2 doi: 10.1007/s00035-011-0094-4 – volume-title: New Zealand's potential vegetation pattern year: 2004 ident: e_1_3_6_49_2 – ident: e_1_3_6_40_2 – ident: e_1_3_6_3_2 doi: 10.1038/nclimate3127 – ident: e_1_3_6_34_2 doi: 10.1073/pnas.0801507105 – volume-title: Vegetative cover of New Zealand year: 1987 ident: e_1_3_6_50_2 – ident: e_1_3_6_74_2 doi: 10.1111/j.1472-4642.2008.00491.x – ident: e_1_3_6_31_2 doi: 10.1111/ddi.12892 – ident: e_1_3_6_36_2 doi: 10.1016/j.ode.2004.12.001 – ident: e_1_3_6_88_2 doi: 10.1016/j.biocon.2018.12.026 – ident: e_1_3_6_21_2 doi: 10.1007/s004420050540 – ident: e_1_3_6_24_2 doi: 10.2307/2997525 – ident: e_1_3_6_62_2 doi: 10.1016/S0304-3800(01)00388-X – ident: e_1_3_6_70_2 doi: 10.1111/j.1654-1103.2009.01133.x – ident: e_1_3_6_82_2 doi: 10.1111/gcb.14280 – ident: e_1_3_6_66_2 doi: 10.1098/rspb.2007.0997 – ident: e_1_3_6_41_2 – ident: e_1_3_6_69_2 doi: 10.1007/s10750-014-2134-8 – ident: e_1_3_6_39_2 doi: 10.1111/icad.12488 – ident: e_1_3_6_35_2 doi: 10.1038/s41598-018-30606-3 – ident: e_1_3_6_59_2 doi: 10.2737/PNW-GTR-351 – ident: e_1_3_6_61_2 doi: 10.1111/j.0906-7590.2006.04700.x – ident: e_1_3_6_67_2 doi: 10.1006/jtbi.1999.0967 – ident: e_1_3_6_85_2 doi: 10.1017/CBO9780511754821 – volume: 115 start-page: 1 year: 2010 ident: e_1_3_6_19_2 article-title: Surface temperature lapse rates over complex terrain: lessons from the Cascade Mountains publication-title: J. Geophys. Res. – ident: e_1_3_6_54_2 – ident: e_1_3_6_68_2 doi: 10.1016/j.gecco.2018.e00507 – ident: e_1_3_6_38_2 doi: 10.1111/icad.12289 – ident: e_1_3_6_13_2 doi: 10.1890/12-0833.1 – ident: e_1_3_6_84_2 doi: 10.1111/gcb.14087 – ident: e_1_3_6_46_2 doi: 10.5194/gmd-4-845-2011 – ident: e_1_3_6_71_2 doi: 10.1073/pnas.0906380106 – ident: e_1_3_6_51_2 doi: 10.1371/journal.pone.0080811 – ident: e_1_3_6_80_2 doi: 10.1007/s10841-017-9983-1 – ident: e_1_3_6_90_2 doi: 10.1146/annurev-ecolsys-110316-022612 |
SSID | ssj0001503767 |
Score | 2.35155 |
Snippet | Mountains create steep environmental gradients that are sensitive barometers of climate change. We calibrated 10 statistical models to formulate ensemble... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 211596 |
SubjectTerms | alpine biomod2 climate change ecological niche modelling Ecology, Conservation and Global Change Biology ensemble modelling fragmentation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA6LJy-y6rrb64MIHlah127TySTeVBRZ2D0peGvyqOjA0NPM4_9b1WmHHhH24q0foRNSVV1fkaqvGDsBkAE9G1qasEWO_rjEqxhyCQBWG2d8x8D395-6f6z-PMmnQasvyglL9MBp4869lNpZj1GFs5WOgBoYi4voTIjayRjp74s-bxBMpfrggmhK-oK8wuhzhK_z3xjtSKLnH7igjqn_I3j5Pkty4HbuvrKtHi_yq7TObfYFmh223VvknP_qaaNPd9nzzWSM8BN4quXltgncTlpEkbkNtkVkycfNnJI3LnnX_4YK0fmg0A2nwTtKIcIPTyO3_HmG0Ppl2rYw4zMiMSApfmMPd7cPN_d530Yh92idi1w55UsY2co7McIIxqoApdfBFNpHynGNgVj20FGDthJCaRWKSBXROQMiij220Uwb-MF4NBbKEOLIR4QtVphoPChRIcQgekqRsbO3ja19TzFOnS4mdTrq1jVJoU5SyNjJanCbmDU-HnZNEloNITrs7gEqSd0rSf0_JcnY8Zt8azQfOhOxDUyXOImik2otiipj35O8V1MJ_D8pU8mMjdY0YW0t62-a8UtH0a21xsXon5-x-H22eUE1F13i2wHbWMyWcIhIaOGOOqV_BTh_Df0 priority: 102 providerName: Directory of Open Access Journals |
Title | Climate change and alpine-adapted insects: modelling environmental envelopes of a grasshopper radiation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35316945 https://www.proquest.com/docview/2642328304 https://pubmed.ncbi.nlm.nih.gov/PMC8889178 https://doaj.org/article/c558bac917ba48fe832f02fb9df8b5ff |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3da9RAEB9qBemLWL8aP8oKfVAhNWmSza4gosVShKoPLfQt7Mfs9eBIYu4K-t87k-SOu3K-hHxsdkNmJvPb7MxvAI4QC0-ejSwtM0lM_jilveDjAhGN0la7noHv4oc8v8q_XxfXO7Asxjm-wPnWqR3Xk7rqZsd_fv_9TAb_aSBDUh8Imc6PaSJTaHkP7pNLKtlCL0acP6QLJ8xawoXmCKLEzDo15urduX8PHmSklVJzetOao-r5_LeB0LuxlGvO6ewRPBxRpfgyqME-7GD9GPZHu52LtyO59LsnMDmdTQmkohgyfoWpvTCzlrBmbLxpCX-KaT3nEI-Poq-Sw-nqYi0djoahIw40oo6bIIyYdATAb5q2xU50THXAsn4Kl2ffLk_P47HYQuzIhhextNKlWJrc2aykeY6RHlOnvE6UCxwJGzxz8ZE7R2UK9KmRJEiZBGs1ZiF7Brt1U-MBiKANpt6H0gUCNybTQTuUWU5AhEksswjeL19s5UYicq6HMauGBXFVsUCqQSARHK0atwP_xvZmX1lCqyZMmt2faLpJNdpg5YpCWeNogmpNrgLSxywkJ8FqH5QtQojgzVK-FRkZr5yYGptbGkTyerbKkjyC54O8V0Mt9SWCckMTNp5l80o9vemJvJVS9DDqxX_7fAl7J5xu0ce8vYLdRXeLrwkELexh__PgsFdz2v78lf4DeR8J6Q |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+change+and+alpine-adapted+insects%3A+modelling+environmental+envelopes+of+a+grasshopper+radiation&rft.jtitle=Royal+Society+open+science&rft.au=Koot%2C+Emily+M&rft.au=Morgan-Richards%2C+Mary&rft.au=Trewick%2C+Steven+A&rft.date=2022-03-01&rft.issn=2054-5703&rft.eissn=2054-5703&rft.volume=9&rft.issue=3&rft.spage=211596&rft_id=info:doi/10.1098%2Frsos.211596&rft_id=info%3Apmid%2F35316945&rft.externalDocID=35316945 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2054-5703&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2054-5703&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2054-5703&client=summon |