DMA-tudor interaction modules control the specificity of in vivo condensates

Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the “survival of motor neuron protein” (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 184; no. 14; pp. 3612 - 3625.e17
Main Authors Courchaine, Edward M., Barentine, Andrew E.S., Straube, Korinna, Lee, Dong-Ryoung, Bewersdorf, Joerg, Neugebauer, Karla M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 08.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the “survival of motor neuron protein” (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN’s globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs—gems and Cajal bodies—were separate or “docked” to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules—combinations of tudor domains bound to their DMA ligand(s)—represent versatile yet specific regulators of MLO assembly, composition, and morphology. [Display omitted] •The tudor domain of SMN promotes condensation by binding dimethylarginine (DMA)•DMA-tudor condensation is a shared property of numerous other tudor domains•Each tudor domain has a specific dependence on symmetric or asymmetric DMA•aDMA and sDMA levels define the composition and substructure of Cajal bodies The SMN tudor domain is sufficient for condensation by binding to dimethylarginine (DMA) modified protein ligands. Asymmetric versus symmetric DMA determines whether gems and Cajal bodies were separate or “docked” to one another.
AbstractList Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the ‘survival of motor neuron protein’ (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN’s globular tudor domain was sufficient for dimerization-induced condensation in vivo , while its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs – gems and Cajal bodies – were separate or “docked” to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules – combinations of tudor domains bound to their DMA ligand(s) – represent versatile yet specific regulators of MLO assembly, composition, and morphology. The SMN tudor domain is sufficient for condensation by binding to dimethylarginine (DMA) modified protein ligands. Asymmetric versus symmetric DMA determines whether gems and Cajal bodies were separate or “docked” to one another.
Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology.Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology.
Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the “survival of motor neuron protein” (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN’s globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs—gems and Cajal bodies—were separate or “docked” to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules—combinations of tudor domains bound to their DMA ligand(s)—represent versatile yet specific regulators of MLO assembly, composition, and morphology.
Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology.
Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the “survival of motor neuron protein” (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN’s globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs—gems and Cajal bodies—were separate or “docked” to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules—combinations of tudor domains bound to their DMA ligand(s)—represent versatile yet specific regulators of MLO assembly, composition, and morphology. [Display omitted] •The tudor domain of SMN promotes condensation by binding dimethylarginine (DMA)•DMA-tudor condensation is a shared property of numerous other tudor domains•Each tudor domain has a specific dependence on symmetric or asymmetric DMA•aDMA and sDMA levels define the composition and substructure of Cajal bodies The SMN tudor domain is sufficient for condensation by binding to dimethylarginine (DMA) modified protein ligands. Asymmetric versus symmetric DMA determines whether gems and Cajal bodies were separate or “docked” to one another.
Author Bewersdorf, Joerg
Neugebauer, Karla M.
Barentine, Andrew E.S.
Courchaine, Edward M.
Lee, Dong-Ryoung
Straube, Korinna
AuthorAffiliation 1 Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
3 Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
2 Cell Biology, Yale University, New Haven, CT, 06520, USA
AuthorAffiliation_xml – name: 3 Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
– name: 2 Cell Biology, Yale University, New Haven, CT, 06520, USA
– name: 1 Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
Author_xml – sequence: 1
  givenname: Edward M.
  surname: Courchaine
  fullname: Courchaine, Edward M.
  organization: Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
– sequence: 2
  givenname: Andrew E.S.
  orcidid: 0000-0002-7673-9771
  surname: Barentine
  fullname: Barentine, Andrew E.S.
  organization: Cell Biology, Yale University, New Haven, CT 06520, USA
– sequence: 3
  givenname: Korinna
  surname: Straube
  fullname: Straube, Korinna
  organization: Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
– sequence: 4
  givenname: Dong-Ryoung
  orcidid: 0000-0002-3495-3390
  surname: Lee
  fullname: Lee, Dong-Ryoung
  organization: Cell Biology, Yale University, New Haven, CT 06520, USA
– sequence: 5
  givenname: Joerg
  surname: Bewersdorf
  fullname: Bewersdorf, Joerg
  organization: Cell Biology, Yale University, New Haven, CT 06520, USA
– sequence: 6
  givenname: Karla M.
  surname: Neugebauer
  fullname: Neugebauer, Karla M.
  email: karla.neugebauer@yale.edu
  organization: Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34115980$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKeFF2CBsmSTcO3YjiMhpKr8Sq3YwNpy7BvqUSYebGekvg3PwpPhaEoFLMrqLny-T9f3nJGTOcxIyHMKDQUqX20bi9PUMGC0AdEAqEdkQ6Hvak47dkI2AD2rlez4KTlLaQuFEEI8Iactp1T0Cjbk-u31RZ0XF2Ll54zR2OzDXO2CWyZMlQ1zjmGq8g1WaY_Wj976fFuFseA_fxz8IayMwzmZjOkpeTyaKeGzu3lOvr5_9-XyY331-cOny4ur2nKlcs1HcAP2SrqxM9ZIcFaOUo2CGtMadEPfSdGV0To2tBZaLigbbNchKk7BtOfkzbF3vww7dBbLlmbS--h3Jt7qYLz--2X2N_pbOGjFgfVclYKXdwUxfF8wZb3zab2mmTEsSTMpKbSqU_z_qOAgGAXZFvTFn2vd7_P73AVgR8DGkFLE8R6hoFeneqvXar061SB0MVZC6p9QUWBWTeVrfno4-voYxSLj4DHqZD3OFp2PaLN2wT8U_wWK-78t
CitedBy_id crossref_primary_10_1038_s41589_022_01204_2
crossref_primary_10_1038_s41467_022_29697_4
crossref_primary_10_3390_ijms25189937
crossref_primary_10_1016_j_omtn_2025_102490
crossref_primary_10_1038_s41580_022_00558_8
crossref_primary_10_1016_j_devcel_2024_06_017
crossref_primary_10_3389_fmolb_2022_818302
crossref_primary_10_1016_j_celrep_2024_114459
crossref_primary_10_1038_s41589_025_01840_4
crossref_primary_10_1016_j_celrep_2024_114537
crossref_primary_10_1038_s41467_023_40124_0
crossref_primary_10_1038_s41467_024_50863_3
crossref_primary_10_1038_s41589_024_01717_y
crossref_primary_10_1016_j_bbagen_2025_130764
crossref_primary_10_1083_jcb_202305081
crossref_primary_10_1016_j_isci_2021_102971
crossref_primary_10_1016_j_tibs_2023_04_003
crossref_primary_10_1021_jacs_2c02222
crossref_primary_10_1042_BST20231447
crossref_primary_10_1016_j_chembiol_2024_08_009
crossref_primary_10_1242_jcs_261834
crossref_primary_10_1038_s41467_022_33434_2
crossref_primary_10_7554_eLife_72867
crossref_primary_10_1093_nar_gkac087
crossref_primary_10_1038_s41388_023_02690_x
crossref_primary_10_1042_BST20221147
crossref_primary_10_26508_lsa_202201429
crossref_primary_10_1083_jcb_202501009
crossref_primary_10_31083_j_fbl2811292
crossref_primary_10_1038_s41567_022_01917_0
crossref_primary_10_3390_ijms24032247
crossref_primary_10_3389_fncel_2023_1092488
crossref_primary_10_3390_biom12030347
crossref_primary_10_1063_5_0083286
crossref_primary_10_1038_s41556_023_01254_1
crossref_primary_10_1016_j_cell_2023_09_006
crossref_primary_10_1042_BST20231116
crossref_primary_10_1111_febs_17360
crossref_primary_10_1016_j_cell_2023_09_002
crossref_primary_10_3389_freae_2023_1245832
crossref_primary_10_1083_jcb_202303125
crossref_primary_10_3389_fgene_2022_931220
crossref_primary_10_3390_ijms25074127
crossref_primary_10_1038_s41467_022_31738_x
crossref_primary_10_1093_procel_pwae057
crossref_primary_10_1080_19491034_2023_2256036
crossref_primary_10_1261_rna_078995_121
crossref_primary_10_3389_fcell_2022_801953
crossref_primary_10_1093_nar_gkae045
crossref_primary_10_1007_s11427_024_2661_3
Cites_doi 10.1016/j.cell.2016.06.010
10.1038/nchembio.1810
10.1073/pnas.1504822112
10.1016/j.gde.2020.11.002
10.1016/j.celrep.2018.01.036
10.1016/j.molcel.2015.01.013
10.1016/j.molcel.2010.09.024
10.1091/mbc.e06-03-0247
10.1016/j.molcel.2016.05.042
10.1109/TED.2003.813462
10.1016/j.molcel.2015.08.018
10.1038/nmeth.2360
10.1093/emboj/20.9.2304
10.15252/embj.201695957
10.1111/j.1365-2818.2006.01578.x
10.1016/j.molcel.2017.12.022
10.1038/nature16469
10.1038/nsmb1135
10.1002/wrna.1139
10.1074/jbc.M116.739573
10.1073/pnas.1508778112
10.1038/s41598-019-45822-8
10.1126/science.aaf4382
10.1073/pnas.1800038115
10.1073/pnas.2017184118
10.4161/nucl.1.1.10680
10.1016/j.ydbio.2009.05.553
10.1529/biophysj.104.045815
10.1242/jcs.02782
10.1073/pnas.1017150108
10.1111/tra.12674
10.1093/nar/gkl374
10.1016/S0092-8674(00)81632-3
10.1006/excr.2001.5186
10.1038/nrm3185
10.1101/gad.1956010
10.15252/embj.201593517
10.1007/s00418-012-0921-8
10.1016/j.tibs.2013.08.002
10.1016/j.cell.2020.03.049
10.1038/nsmb.2185
10.1038/msb.2011.75
10.1093/hmg/8.13.2351
10.1146/annurev-biophys-121219-081629
10.1126/science.aau6313
10.1038/nmeth.2019
10.1021/acschembio.5b00839
10.1080/15476286.2016.1236168
10.1016/j.cell.2011.06.043
10.1038/s41556-018-0263-4
10.1016/j.cell.2020.03.050
10.1101/sqb.2019.84.040329
10.1038/s41580-020-00303-z
10.1038/s41586-019-1464-0
10.1107/S0907444902021406
10.1016/j.cell.2015.09.015
10.1091/mbc.11.12.4159
10.1016/j.cell.2018.03.004
10.1074/jbc.M105412200
10.1074/jbc.275.11.7723
10.1126/science.1172046
10.1146/annurev-cellbio-100913-013325
10.1016/j.cell.2013.10.033
10.1093/nar/gkaa1209
10.1101/gad.331520.119
10.1242/jcs.235093
10.1093/bioinformatics/bth070
10.1093/hmg/ddn203
10.1016/j.cell.2016.11.054
10.1016/j.cell.2012.04.017
10.1016/j.cell.2015.07.047
10.1016/j.molcel.2014.01.011
10.1080/10409238.2019.1603199
10.1016/j.cell.2018.06.006
10.1016/j.cell.2018.03.056
10.1073/pnas.96.20.11167
10.1016/j.celrep.2014.12.030
10.1016/S1534-5807(02)00222-8
10.1016/j.cell.2018.02.051
10.1016/j.molcel.2010.11.024
10.1038/nrm.2017.7
10.1073/pnas.77.9.5239
10.1186/gb-2006-7-10-r100
10.1038/s41467-018-05273-7
10.1038/nature10879
10.1038/nprot.2012.085
10.1038/83014
10.1242/jcs.00211
10.1016/j.cell.2019.08.037
10.1016/j.molcel.2012.12.009
10.1126/science.aar4199
10.1371/journal.pone.0030375
10.1073/pnas.0508947102
10.1083/jcb.200104083
10.1016/S0021-9258(18)91101-4
10.1038/nmeth.1214
10.1126/science.1145801
10.1016/j.jmb.2018.08.003
10.1126/science.aar7432
10.1101/gad.908401
10.1016/S1097-2765(01)00244-1
10.1016/j.cell.2018.12.035
10.1038/nsmb.1783
10.1074/jbc.M105059200
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2021.05.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 3625.e17
ExternalDocumentID PMC8402948
34115980
10_1016_j_cell_2021_05_008
S0092867421006255
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U01 CA200147
– fundername: NIDA NIH HHS
  grantid: U01 DA047734
– fundername: NINDS NIH HHS
  grantid: F31 NS105379
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6J9
7-5
85S
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
O-L
O9-
OK1
P2P
RCE
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIDAL
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
RIG
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
5PM
ID FETCH-LOGICAL-c488t-4f0dbe986df7aca60dc6f68f51aa3aedb97657db93d2b3c034512bc77ee8410a3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 14:35:27 EDT 2025
Mon Jul 21 11:54:39 EDT 2025
Fri Jul 11 05:56:38 EDT 2025
Thu Apr 03 07:06:44 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Tue Jul 01 02:17:09 EDT 2025
Fri Feb 23 02:42:20 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords MLO
biomolecular condensation
membraneless organelle
dimethylarginine
tudor domains
Cajal body
nuclear gem
DMA
post-translational modification
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-4f0dbe986df7aca60dc6f68f51aa3aedb97657db93d2b3c034512bc77ee8410a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
E.C. and K.M.N. designed the study. K.S. generated all constructs. E.C. prepared cell lines and performed experiments. E.C. and A.E.S.B. carried out image analysis. D.R.L. performed isoSTED data collection and image processing. J.B. and K.M.N. supervised the study. All authors contributed to writing the manuscript.
Author contributions
ORCID 0000-0002-7673-9771
0000-0002-3495-3390
OpenAccessLink http://www.cell.com/article/S0092867421006255/pdf
PMID 34115980
PQID 2540521063
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8402948
proquest_miscellaneous_2661038784
proquest_miscellaneous_2540521063
pubmed_primary_34115980
crossref_primary_10_1016_j_cell_2021_05_008
crossref_citationtrail_10_1016_j_cell_2021_05_008
elsevier_sciencedirect_doi_10_1016_j_cell_2021_05_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-08
PublicationDateYYYYMMDD 2021-07-08
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Mateju, Franzmann, Patel, Kopach, Boczek, Maharana, Lee, Carra, Hyman, Alberti (bib58) 2017; 36
Moon, Morisaki, Khong, Lyon, Parker, Stasevich (bib62) 2019; 21
Tang, Frankel, Cook, Kim, Paik, Williams, Clarke, Herschman (bib92) 2000; 275
Sievers, Wilm, Dineen, Gibson, Karplus, Li, Lopez, McWilliam, Remmert, Söding (bib87) 2011; 7
Banani, Rice, Peeples, Lin, Jain, Parker, Rosen (bib3) 2016; 166
Pellizzoni, Kataoka, Charroux, Dreyfuss (bib68) 1998; 95
Brangwynne, Mitchison, Hyman (bib10) 2011; 108
Pettersson, Hinterberger, Mimori, Gottlieb, Steitz (bib70) 1984; 259
Corbet, Parker (bib22) 2019; 84
Lyon, Peeples, Rosen (bib56) 2021; 22
Novotny, Malinova, Stejskalova, Mateju, Klimesova, Roithova, Sveda, Knejzlik, Stanek (bib64) 2015; 10
Eram, Shen, Szewczyk, Wu, Senisterra, Li, Butler, Kaniskan, Speed, Dela Seña (bib26) 2016; 11
Hebert, Szymczyk, Shpargel, Matera (bib39) 2001; 15
Chen, Nott, Jin, Pawson (bib18) 2011; 12
Selenko, Sprangers, Stier, Bühler, Fischer, Sattler (bib81) 2001; 8
Wyman, Gill (bib101) 1980; 77
Guillén-Boixet, Kopach, Holehouse, Wittmann, Jahnel, Schlüßler, Kim, Trussina, Wang, Mateju (bib35) 2020; 181
Machyna, Heyn, Neugebauer (bib57) 2013; 4
Hofweber, Hutten, Bourgeois, Spreitzer, Niedner-Boblenz, Schifferer, Ruepp, Simons, Niessing, Madl, Dormann (bib41) 2018; 173
Kwon, Kato, Xiang, Wu, Theodoropoulos, Mirzaei, Han, Xie, Corden, McKnight (bib45) 2013; 155
McSwiggen, Mir, Darzacq, Tjian (bib59) 2019; 33
Ryan, Dignon, Zerze, Chabata, Silva, Conicella, Amaya, Burke, Mittal, Fawzi (bib77) 2018; 69
Langdon, Qiu, Ghanbari Niaki, McLaughlin, Weidmann, Gerbich, Smith, Crutchley, Termini, Weeks (bib46) 2018; 360
Liu, Guo, Liu, Bian, Lam, Liu, Mackenzie, Rojas, Reinberg, Bedford (bib54) 2012; 7
Lu, Wang (bib55) 2013; 38
Tapia, Bengoechea, Palanca, Arteaga, Val-Bernal, Tizzano, Berciano, Lafarga (bib93) 2012; 137
Gan, Chen, Liu, Min, Liu (bib28) 2019; 54
Robbins, Hadwen (bib75) 2003; 50
Pak, Kosno, Holehouse, Padrick, Mittal, Ali, Yunus, Liu, Pappu, Rosen (bib66) 2016; 63
Tucker, Berciano, Jacobs, LePage, Shpargel, Rossire, Chan, Lafarga, Conlon, Matera (bib97) 2001; 154
Boulon, Westman, Hutten, Boisvert, Lamond (bib8) 2010; 40
Gordon, Phizicky, Neugebauer (bib31) 2021; 67
Wang, Choi, Holehouse, Lee, Zhang, Jahnel, Maharana, Lemaitre, Pozniakovsky, Drechsel (bib100) 2018; 174
Friesen, Massenet, Paushkin, Wyce, Dreyfuss (bib27) 2001; 7
Sprangers, Selenko, Sattler, Sinning, Groves (bib88) 2003; 59
Raimer, Gray, Matera (bib73) 2017; 14
Case, Zhang, Ditlev, Rosen (bib15) 2019; 363
Choi, Holehouse, Pappu (bib21) 2020; 49
Shin, Berry, Pannucci, Haataja, Toettcher, Brangwynne (bib84) 2017; 168
Young, Le, Dunckley, Nguyen, Burghes, Morris (bib104) 2001; 265
Zhao, Gish, Braunschweig, Li, Ni, Schmitges, Zhong, Liu, Li, Moffat (bib106) 2016; 529
Brangwynne, Eckmann, Courson, Rybarska, Hoege, Gharakhani, Jülicher, Hyman (bib9) 2009; 324
Trcek, Lehmann (bib94) 2019; 20
Cho, Spille, Hecht, Lee, Li, Grube, Cisse (bib20) 2018; 361
Van Treeck, Protter, Matheny, Khong, Link, Parker (bib98) 2018; 115
Gibson, Doolittle, Schneider, Jensen, Gamarra, Henry, Gerlich, Redding, Rosen (bib29) 2019; 179
Grimm, Chari, Pelz, Kuper, Kisker, Diederichs, Stark, Schindelin, Fischer (bib33) 2013; 49
Carpenter, Jones, Lamprecht, Clarke, Kang, Friman, Guertin, Chang, Lindquist, Moffat (bib14) 2006; 7
Tripsianes, Madl, Machyna, Fessas, Englbrecht, Fischer, Neugebauer, Sattler (bib95) 2011; 18
Ditlev, Case, Rosen (bib24) 2018; 430
Shpargel, Ospina, Tucker, Matera, Hebert (bib86) 2003; 116
Strom, Brangwynne (bib89) 2019; 132
Shpargel, Matera (bib85) 2005; 102
Osman, Bolding, Villalón, Kaifer, Lorson, Tisdale, Hao, Conant, Pires, Pellizzoni, Lorson (bib65) 2019; 9
Pellizzoni, Charroux, Dreyfuss (bib69) 1999; 96
Banjade, Wu, Mittal, Peeples, Pappu, Rosen (bib5) 2015; 112
Girard, Neel, Bertrand, Bordonné (bib30) 2006; 34
Qamar, Wang, Randle, Ruggeri, Varela, Lin, Phillips, Miyashita, Williams, Ströhl (bib72) 2018; 173
Elbaum-Garfinkle, Kim, Szczepaniak, Chen, Eckmann, Myong, Brangwynne (bib25) 2015; 112
Patel, Lee, Jawerth, Maharana, Jahnel, Hein, Stoynov, Mahamid, Saha, Franzmann (bib67) 2015; 162
Chang, Chen, Zhao, Bruick (bib17) 2007; 318
Shin, Brangwynne (bib83) 2017; 357
Chan-Penebre, Kuplast, Majer, Boriack-Sjodin, Wigle, Johnston, Rioux, Munchhof, Jin, Jacques (bib16) 2015; 11
Zhang, So, Li, Yong, Glisovic, Wan, Dreyfuss (bib105) 2011; 146
Meister, Hannus, Plöttner, Baars, Hartmann, Fakan, Laggerbauer, Fischer (bib60) 2001; 20
Yang, Lu, Espejo, Wu, Xu, Liang, Bedford (bib102) 2010; 40
Hebert, Matera (bib38) 2000; 11
Banani, Lee, Hyman, Rosen (bib4) 2017; 18
Guo, Manteiga, Henninger, Sabari, Dall’Agnese, Hannett, Spille, Afeyan, Zamudio, Shrinivas (bib36) 2019; 572
Peng, Weber (bib1) 2019; 5
Källberg, Wang, Wang, Peng, Wang, Lu, Xu (bib43) 2012; 7
Bewersdorf, Schmidt, Hell (bib7) 2006; 222
Gugel, Bewersdorf, Jakobs, Engelhardt, Storz, Hell (bib34) 2004; 87
Sheu-Gruttadauria, MacRae (bib82) 2018; 173
Lemm, Girard, Kuhn, Watkins, Schneider, Bordonné, Lührmann (bib48) 2006; 17
Ruff, Dar, Pappu (bib76) 2021; 118
Strzelecka, Oates, Neugebauer (bib90) 2010; 1
Berezin, Glaser, Rosenberg, Paz, Pupko, Fariselli, Casadio, Ben-Tal (bib6) 2004; 20
Hebert, Shpargel, Ospina, Tucker, Matera (bib40) 2002; 3
Li, Banjade, Cheng, Kim, Chen, Guo, Llaguno, Hollingsworth, King, Banani (bib49) 2012; 483
Goulet, Boisvenue, Mokas, Mazroui, Côté (bib32) 2008; 17
Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid (bib79) 2012; 9
Renvoisé, Khoobarry, Gendron, Cibert, Viollet, Lefebvre (bib74) 2006; 119
Lee, Davies, Liu (bib47) 2009; 332
Liao, Regev (bib50) 2021; 49
Nott, Petsalaki, Farber, Jervis, Fussner, Plochowietz, Craggs, Bazett-Jones, Pawson, Forman-Kay, Baldwin (bib63) 2015; 57
Chitiprolu, Jagow, Tremblay, Bondy-Chorney, Paris, Savard, Palidwor, Barry, Zinman, Keith (bib19) 2018; 9
Hyman, Weber, Jülicher (bib42) 2014; 30
Bühler, Raker, Lührmann, Fischer (bib13) 1999; 8
Kato, Han, Xie, Shi, Du, Wu, Mirzaei, Goldsmith, Longgood, Pei (bib44) 2012; 149
Tsai, Gayatri, Reineke, Sbardella, Bedford, Lloyd (bib96) 2016; 291
Yang, McBride, Hensley, Lu, Chedin, Bedford (bib103) 2014; 53
Alberti, Gladfelter, Mittag (bib2) 2019; 176
Branscombe, Frankel, Lee, Cook, Yang, Pestka, Clarke (bib11) 2001; 276
Listerman, Sapra, Neugebauer (bib52) 2006; 13
Molliex, Temirov, Lee, Coughlin, Kanagaraj, Kim, Mittag, Taylor (bib61) 2015; 163
Strzelecka, Trowitzsch, Weber, Lührmann, Oates, Neugebauer (bib91) 2010; 17
Sanders, Kedersha, Lee, Strom, Drake, Riback, Bracha, Eeftens, Iwanicki, Wang (bib78) 2020; 181
Protter, Rao, Van Treeck, Lin, Mizoue, Rosen, Parker (bib71) 2018; 22
Bugaj, Choksi, Mesuda, Kane, Schaffer (bib12) 2013; 10
Courchaine, Lu, Neugebauer (bib23) 2016; 35
Hao, Allgeyer, Antonello, Watters, Gerdes, Schroeder, Bottanelli, Zhao, Kidd, Lessard (bib37) 2020
Lin, Protter, Rosen, Parker (bib51) 2015; 60
Wang, Dreyfuss (bib99) 2001; 276
Schmidt, Wurm, Jakobs, Engelhardt, Egner, Hell (bib80) 2008; 5
Liu, Wang, Huang, Li, Gong, Lehmann, Xu (bib53) 2010; 24
Novotny (10.1016/j.cell.2021.05.008_bib64) 2015; 10
Hao (10.1016/j.cell.2021.05.008_bib37) 2020
Shin (10.1016/j.cell.2021.05.008_bib83) 2017; 357
Ruff (10.1016/j.cell.2021.05.008_bib76) 2021; 118
Protter (10.1016/j.cell.2021.05.008_bib71) 2018; 22
Molliex (10.1016/j.cell.2021.05.008_bib61) 2015; 163
Osman (10.1016/j.cell.2021.05.008_bib65) 2019; 9
Selenko (10.1016/j.cell.2021.05.008_bib81) 2001; 8
Renvoisé (10.1016/j.cell.2021.05.008_bib74) 2006; 119
Sanders (10.1016/j.cell.2021.05.008_bib78) 2020; 181
Tucker (10.1016/j.cell.2021.05.008_bib97) 2001; 154
Liu (10.1016/j.cell.2021.05.008_bib54) 2012; 7
Brangwynne (10.1016/j.cell.2021.05.008_bib9) 2009; 324
Trcek (10.1016/j.cell.2021.05.008_bib94) 2019; 20
Goulet (10.1016/j.cell.2021.05.008_bib32) 2008; 17
Bewersdorf (10.1016/j.cell.2021.05.008_bib7) 2006; 222
Meister (10.1016/j.cell.2021.05.008_bib60) 2001; 20
Kato (10.1016/j.cell.2021.05.008_bib44) 2012; 149
Girard (10.1016/j.cell.2021.05.008_bib30) 2006; 34
Courchaine (10.1016/j.cell.2021.05.008_bib23) 2016; 35
Lemm (10.1016/j.cell.2021.05.008_bib48) 2006; 17
Chen (10.1016/j.cell.2021.05.008_bib18) 2011; 12
Liu (10.1016/j.cell.2021.05.008_bib53) 2010; 24
Gan (10.1016/j.cell.2021.05.008_bib28) 2019; 54
Pettersson (10.1016/j.cell.2021.05.008_bib70) 1984; 259
Tang (10.1016/j.cell.2021.05.008_bib92) 2000; 275
Yang (10.1016/j.cell.2021.05.008_bib102) 2010; 40
Hofweber (10.1016/j.cell.2021.05.008_bib41) 2018; 173
Chang (10.1016/j.cell.2021.05.008_bib17) 2007; 318
Guo (10.1016/j.cell.2021.05.008_bib36) 2019; 572
Pellizzoni (10.1016/j.cell.2021.05.008_bib68) 1998; 95
Källberg (10.1016/j.cell.2021.05.008_bib43) 2012; 7
Tripsianes (10.1016/j.cell.2021.05.008_bib95) 2011; 18
Mateju (10.1016/j.cell.2021.05.008_bib58) 2017; 36
Sievers (10.1016/j.cell.2021.05.008_bib87) 2011; 7
Grimm (10.1016/j.cell.2021.05.008_bib33) 2013; 49
Young (10.1016/j.cell.2021.05.008_bib104) 2001; 265
Nott (10.1016/j.cell.2021.05.008_bib63) 2015; 57
Gugel (10.1016/j.cell.2021.05.008_bib34) 2004; 87
Ryan (10.1016/j.cell.2021.05.008_bib77) 2018; 69
Strzelecka (10.1016/j.cell.2021.05.008_bib91) 2010; 17
Schmidt (10.1016/j.cell.2021.05.008_bib80) 2008; 5
Zhao (10.1016/j.cell.2021.05.008_bib106) 2016; 529
Sheu-Gruttadauria (10.1016/j.cell.2021.05.008_bib82) 2018; 173
Shin (10.1016/j.cell.2021.05.008_bib84) 2017; 168
Boulon (10.1016/j.cell.2021.05.008_bib8) 2010; 40
Hyman (10.1016/j.cell.2021.05.008_bib42) 2014; 30
Machyna (10.1016/j.cell.2021.05.008_bib57) 2013; 4
Liao (10.1016/j.cell.2021.05.008_bib50) 2021; 49
Banani (10.1016/j.cell.2021.05.008_bib4) 2017; 18
Hebert (10.1016/j.cell.2021.05.008_bib40) 2002; 3
Langdon (10.1016/j.cell.2021.05.008_bib46) 2018; 360
Peng (10.1016/j.cell.2021.05.008_bib1) 2019; 5
Lee (10.1016/j.cell.2021.05.008_bib47) 2009; 332
Guillén-Boixet (10.1016/j.cell.2021.05.008_bib35) 2020; 181
Gordon (10.1016/j.cell.2021.05.008_bib31) 2021; 67
Lyon (10.1016/j.cell.2021.05.008_bib56) 2021; 22
Qamar (10.1016/j.cell.2021.05.008_bib72) 2018; 173
Listerman (10.1016/j.cell.2021.05.008_bib52) 2006; 13
Shpargel (10.1016/j.cell.2021.05.008_bib86) 2003; 116
Yang (10.1016/j.cell.2021.05.008_bib103) 2014; 53
Branscombe (10.1016/j.cell.2021.05.008_bib11) 2001; 276
Ditlev (10.1016/j.cell.2021.05.008_bib24) 2018; 430
Pellizzoni (10.1016/j.cell.2021.05.008_bib69) 1999; 96
Hebert (10.1016/j.cell.2021.05.008_bib38) 2000; 11
Sprangers (10.1016/j.cell.2021.05.008_bib88) 2003; 59
Van Treeck (10.1016/j.cell.2021.05.008_bib98) 2018; 115
Alberti (10.1016/j.cell.2021.05.008_bib2) 2019; 176
Wyman (10.1016/j.cell.2021.05.008_bib101) 1980; 77
Lin (10.1016/j.cell.2021.05.008_bib51) 2015; 60
McSwiggen (10.1016/j.cell.2021.05.008_bib59) 2019; 33
Zhang (10.1016/j.cell.2021.05.008_bib105) 2011; 146
Gibson (10.1016/j.cell.2021.05.008_bib29) 2019; 179
Brangwynne (10.1016/j.cell.2021.05.008_bib10) 2011; 108
Shpargel (10.1016/j.cell.2021.05.008_bib85) 2005; 102
Bugaj (10.1016/j.cell.2021.05.008_bib12) 2013; 10
Lu (10.1016/j.cell.2021.05.008_bib55) 2013; 38
Bühler (10.1016/j.cell.2021.05.008_bib13) 1999; 8
Berezin (10.1016/j.cell.2021.05.008_bib6) 2004; 20
Patel (10.1016/j.cell.2021.05.008_bib67) 2015; 162
Cho (10.1016/j.cell.2021.05.008_bib20) 2018; 361
Choi (10.1016/j.cell.2021.05.008_bib21) 2020; 49
Raimer (10.1016/j.cell.2021.05.008_bib73) 2017; 14
Case (10.1016/j.cell.2021.05.008_bib15) 2019; 363
Banjade (10.1016/j.cell.2021.05.008_bib5) 2015; 112
Eram (10.1016/j.cell.2021.05.008_bib26) 2016; 11
Chitiprolu (10.1016/j.cell.2021.05.008_bib19) 2018; 9
Wang (10.1016/j.cell.2021.05.008_bib99) 2001; 276
Friesen (10.1016/j.cell.2021.05.008_bib27) 2001; 7
Banani (10.1016/j.cell.2021.05.008_bib3) 2016; 166
Moon (10.1016/j.cell.2021.05.008_bib62) 2019; 21
Li (10.1016/j.cell.2021.05.008_bib49) 2012; 483
Chan-Penebre (10.1016/j.cell.2021.05.008_bib16) 2015; 11
Robbins (10.1016/j.cell.2021.05.008_bib75) 2003; 50
Strom (10.1016/j.cell.2021.05.008_bib89) 2019; 132
Pak (10.1016/j.cell.2021.05.008_bib66) 2016; 63
Hebert (10.1016/j.cell.2021.05.008_bib39) 2001; 15
Carpenter (10.1016/j.cell.2021.05.008_bib14) 2006; 7
Corbet (10.1016/j.cell.2021.05.008_bib22) 2019; 84
Kwon (10.1016/j.cell.2021.05.008_bib45) 2013; 155
Schindelin (10.1016/j.cell.2021.05.008_bib79) 2012; 9
Elbaum-Garfinkle (10.1016/j.cell.2021.05.008_bib25) 2015; 112
Tsai (10.1016/j.cell.2021.05.008_bib96) 2016; 291
Wang (10.1016/j.cell.2021.05.008_bib100) 2018; 174
Strzelecka (10.1016/j.cell.2021.05.008_bib90) 2010; 1
Tapia (10.1016/j.cell.2021.05.008_bib93) 2012; 137
References_xml – volume: 20
  start-page: 1322
  year: 2004
  end-page: 1324
  ident: bib6
  article-title: ConSeq: the identification of functionally and structurally important residues in protein sequences
  publication-title: Bioinformatics
– volume: 318
  start-page: 444
  year: 2007
  end-page: 447
  ident: bib17
  article-title: JMJD6 is a histone arginine demethylase
  publication-title: Science
– volume: 132
  year: 2019
  ident: bib89
  article-title: The liquid nucleome - phase transitions in the nucleus at a glance
  publication-title: J. Cell Sci.
– volume: 4
  start-page: 17
  year: 2013
  end-page: 34
  ident: bib57
  article-title: Cajal bodies: where form meets function
  publication-title: Wiley Interdiscip. Rev. RNA
– volume: 291
  start-page: 22671
  year: 2016
  end-page: 22685
  ident: bib96
  article-title: Arginine Demethylation of G3BP1 Promotes Stress Granule Assembly
  publication-title: J. Biol. Chem.
– volume: 173
  start-page: 946
  year: 2018
  end-page: 957.e16
  ident: bib82
  article-title: Phase Transitions in the Assembly and Function of Human miRISC
  publication-title: Cell
– volume: 11
  start-page: 432
  year: 2015
  end-page: 437
  ident: bib16
  article-title: A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models
  publication-title: Nat. Chem. Biol.
– volume: 14
  start-page: 701
  year: 2017
  end-page: 711
  ident: bib73
  article-title: SMN - A chaperone for nuclear RNP social occasions?
  publication-title: RNA Biol.
– volume: 102
  start-page: 17372
  year: 2005
  end-page: 17377
  ident: bib85
  article-title: Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 118
  year: 2021
  ident: bib76
  article-title: Ligand effects on phase separation of multivalent macromolecules
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 249
  year: 2013
  end-page: 252
  ident: bib12
  article-title: Optogenetic protein clustering and signaling activation in mammalian cells
  publication-title: Nat. Methods
– volume: 179
  start-page: 470
  year: 2019
  end-page: 484.e21
  ident: bib29
  article-title: Organization of Chromatin by Intrinsic and Regulated Phase Separation
  publication-title: Cell
– volume: 163
  start-page: 123
  year: 2015
  end-page: 133
  ident: bib61
  article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization
  publication-title: Cell
– volume: 50
  start-page: 1227
  year: 2003
  end-page: 1232
  ident: bib75
  article-title: The noise performance of electron multiplying charge-coupled devices
  publication-title: IEEE Trans. Electron Dev.
– volume: 7
  start-page: e30375
  year: 2012
  ident: bib54
  article-title: Crystal structure of TDRD3 and methyl-arginine binding characterization of TDRD3, SMN and SPF30
  publication-title: PLoS ONE
– volume: 63
  start-page: 72
  year: 2016
  end-page: 85
  ident: bib66
  article-title: Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein
  publication-title: Mol. Cell
– volume: 33
  start-page: 1619
  year: 2019
  end-page: 1634
  ident: bib59
  article-title: Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences
  publication-title: Genes Dev.
– volume: 7
  start-page: 539
  year: 2011
  ident: bib87
  article-title: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
  publication-title: Mol. Syst. Biol.
– volume: 7
  start-page: R100
  year: 2006
  ident: bib14
  article-title: CellProfiler: image analysis software for identifying and quantifying cell phenotypes
  publication-title: Genome Biol.
– volume: 361
  start-page: 412
  year: 2018
  end-page: 415
  ident: bib20
  article-title: Mediator and RNA polymerase II clusters associate in transcription-dependent condensates
  publication-title: Science
– volume: 5
  start-page: 50
  year: 2019
  ident: bib1
  article-title: Evidence for and against Liquid-Liquid Phase Separation in the Nucleus
  publication-title: Noncoding RNA
– volume: 146
  start-page: 384
  year: 2011
  end-page: 395
  ident: bib105
  article-title: Structure of a key intermediate of the SMN complex reveals Gemin2's crucial function in snRNP assembly
  publication-title: Cell
– volume: 35
  start-page: 1603
  year: 2016
  end-page: 1612
  ident: bib23
  article-title: Droplet organelles?
  publication-title: EMBO J.
– volume: 137
  start-page: 657
  year: 2012
  end-page: 667
  ident: bib93
  article-title: Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy
  publication-title: Histochem. Cell Biol.
– volume: 222
  start-page: 105
  year: 2006
  end-page: 117
  ident: bib7
  article-title: Comparison of I5M and 4Pi-microscopy
  publication-title: J. Microsc.
– volume: 87
  start-page: 4146
  year: 2004
  end-page: 4152
  ident: bib34
  article-title: Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy
  publication-title: Biophys. J.
– volume: 49
  start-page: 636
  year: 2021
  end-page: 645
  ident: bib50
  article-title: Splicing at the phase-separated nuclear speckle interface: a model
  publication-title: Nucleic Acids Res.
– volume: 20
  start-page: 650
  year: 2019
  end-page: 660
  ident: bib94
  article-title: Germ granules in Drosophila
  publication-title: Traffic
– volume: 173
  start-page: 706
  year: 2018
  end-page: 719.e13
  ident: bib41
  article-title: Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation
  publication-title: Cell
– volume: 154
  start-page: 293
  year: 2001
  end-page: 307
  ident: bib97
  article-title: Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product
  publication-title: J. Cell Biol.
– volume: 168
  start-page: 159
  year: 2017
  end-page: 171
  ident: bib84
  article-title: Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets
  publication-title: Cell
– volume: 21
  start-page: 162
  year: 2019
  end-page: 168
  ident: bib62
  article-title: Multicolour single-molecule tracking of mRNA interactions with RNP granules
  publication-title: Nat. Cell Biol.
– volume: 36
  start-page: 1669
  year: 2017
  end-page: 1687
  ident: bib58
  article-title: An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function
  publication-title: EMBO J.
– volume: 112
  start-page: 7189
  year: 2015
  end-page: 7194
  ident: bib25
  article-title: The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 155
  start-page: 1049
  year: 2013
  end-page: 1060
  ident: bib45
  article-title: Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains
  publication-title: Cell
– volume: 12
  start-page: 629
  year: 2011
  end-page: 642
  ident: bib18
  article-title: Deciphering arginine methylation: Tudor tells the tale
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 430
  start-page: 4666
  year: 2018
  end-page: 4684
  ident: bib24
  article-title: Who’s In and Who’s Out-Compositional Control of Biomolecular Condensates
  publication-title: J. Mol. Biol.
– volume: 95
  start-page: 615
  year: 1998
  end-page: 624
  ident: bib68
  article-title: A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing
  publication-title: Cell
– volume: 8
  start-page: 27
  year: 2001
  end-page: 31
  ident: bib81
  article-title: SMN tudor domain structure and its interaction with the Sm proteins
  publication-title: Nat. Struct. Biol.
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: bib79
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
– volume: 17
  start-page: 3055
  year: 2008
  end-page: 3074
  ident: bib32
  article-title: TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules
  publication-title: Hum. Mol. Genet.
– volume: 10
  start-page: 429
  year: 2015
  end-page: 440
  ident: bib64
  article-title: SART3-Dependent Accumulation of Incomplete Spliceosomal snRNPs in Cajal Bodies
  publication-title: Cell Rep.
– volume: 96
  start-page: 11167
  year: 1999
  end-page: 11172
  ident: bib69
  article-title: SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 181
  start-page: 306
  year: 2020
  end-page: 324
  ident: bib78
  article-title: Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization
  publication-title: Cell
– volume: 173
  start-page: 720
  year: 2018
  end-page: 734.e15
  ident: bib72
  article-title: FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions
  publication-title: Cell
– volume: 119
  start-page: 680
  year: 2006
  end-page: 692
  ident: bib74
  article-title: Distinct domains of the spinal muscular atrophy protein SMN are required for targeting to Cajal bodies in mammalian cells
  publication-title: J. Cell Sci.
– volume: 572
  start-page: 543
  year: 2019
  end-page: 548
  ident: bib36
  article-title: Pol II phosphorylation regulates a switch between transcriptional and splicing condensates
  publication-title: Nature
– volume: 49
  start-page: 692
  year: 2013
  end-page: 703
  ident: bib33
  article-title: Structural basis of assembly chaperone- mediated snRNP formation
  publication-title: Mol. Cell
– volume: 360
  start-page: 922
  year: 2018
  end-page: 927
  ident: bib46
  article-title: mRNA structure determines specificity of a polyQ-driven phase separation
  publication-title: Science
– volume: 77
  start-page: 5239
  year: 1980
  end-page: 5242
  ident: bib101
  article-title: Ligand-linked phase changes in a biological system: applications to sickle cell hemoglobin
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 9472
  year: 2019
  ident: bib65
  article-title: Functional characterization of SMN evolution in mouse models of SMA
  publication-title: Sci. Rep.
– volume: 49
  start-page: 107
  year: 2020
  end-page: 133
  ident: bib21
  article-title: Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions
  publication-title: Annu. Rev. Biophys.
– volume: 30
  start-page: 39
  year: 2014
  end-page: 58
  ident: bib42
  article-title: Liquid-liquid phase separation in biology
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 13
  start-page: 815
  year: 2006
  end-page: 822
  ident: bib52
  article-title: Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells
  publication-title: Nat. Struct. Mol. Biol.
– volume: 40
  start-page: 1016
  year: 2010
  end-page: 1023
  ident: bib102
  article-title: TDRD3 is an effector molecule for arginine-methylated histone marks
  publication-title: Mol. Cell
– volume: 8
  start-page: 2351
  year: 1999
  end-page: 2357
  ident: bib13
  article-title: Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy
  publication-title: Hum. Mol. Genet.
– volume: 22
  start-page: 1401
  year: 2018
  end-page: 1412
  ident: bib71
  article-title: Intrinsically Disordered Regions Can Contribute Promiscuous Interactions to RNP Granule Assembly
  publication-title: Cell Rep.
– volume: 5
  start-page: 539
  year: 2008
  end-page: 544
  ident: bib80
  article-title: Spherical nanosized focal spot unravels the interior of cells
  publication-title: Nat. Methods
– volume: 18
  start-page: 285
  year: 2017
  end-page: 298
  ident: bib4
  article-title: Biomolecular condensates: organizers of cellular biochemistry
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 20
  start-page: 2304
  year: 2001
  end-page: 2314
  ident: bib60
  article-title: SMNrp is an essential pre-mRNA splicing factor required for the formation of the mature spliceosome
  publication-title: EMBO J.
– volume: 67
  start-page: 67
  year: 2021
  end-page: 76
  ident: bib31
  article-title: Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision
  publication-title: Curr. Opin. Genet. Dev.
– volume: 9
  start-page: 2794
  year: 2018
  ident: bib19
  article-title: A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy
  publication-title: Nat. Commun.
– volume: 17
  start-page: 3221
  year: 2006
  end-page: 3231
  ident: bib48
  article-title: Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies
  publication-title: Mol. Biol. Cell
– volume: 265
  start-page: 252
  year: 2001
  end-page: 261
  ident: bib104
  article-title: Nuclear gems and Cajal (coiled) bodies in fetal tissues: nucleolar distribution of the spinal muscular atrophy protein, SMN
  publication-title: Exp. Cell Res.
– volume: 7
  start-page: 1511
  year: 2012
  end-page: 1522
  ident: bib43
  article-title: Template-based protein structure modeling using the RaptorX web server
  publication-title: Nat. Protoc.
– volume: 357
  year: 2017
  ident: bib83
  article-title: Liquid phase condensation in cell physiology and disease
  publication-title: Science
– volume: 176
  start-page: 419
  year: 2019
  end-page: 434
  ident: bib2
  article-title: Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates
  publication-title: Cell
– volume: 166
  start-page: 651
  year: 2016
  end-page: 663
  ident: bib3
  article-title: Compositional Control of Phase-Separated Cellular Bodies
  publication-title: Cell
– volume: 363
  start-page: 1093
  year: 2019
  end-page: 1097
  ident: bib15
  article-title: Stoichiometry controls activity of phase-separated clusters of actin signaling proteins
  publication-title: Science
– volume: 54
  start-page: 119
  year: 2019
  end-page: 132
  ident: bib28
  article-title: Structure and function of eTudor domain containing TDRD proteins
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– volume: 11
  start-page: 772
  year: 2016
  end-page: 781
  ident: bib26
  article-title: A Potent, Selective, and Cell-Active Inhibitor of Human Type I Protein Arginine Methyltransferases
  publication-title: ACS Chem. Biol.
– volume: 11
  start-page: 4159
  year: 2000
  end-page: 4171
  ident: bib38
  article-title: Self-association of coilin reveals a common theme in nuclear body localization
  publication-title: Mol. Biol. Cell
– volume: 84
  start-page: 203
  year: 2019
  end-page: 215
  ident: bib22
  article-title: RNP Granule Formation: Lessons from P-Bodies and Stress Granules
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
– volume: 18
  start-page: 1414
  year: 2011
  end-page: 1420
  ident: bib95
  article-title: Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins
  publication-title: Nat. Struct. Mol. Biol.
– volume: 115
  start-page: 2734
  year: 2018
  end-page: 2739
  ident: bib98
  article-title: RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 60
  start-page: 208
  year: 2015
  end-page: 219
  ident: bib51
  article-title: Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins
  publication-title: Mol. Cell
– volume: 34
  start-page: 2925
  year: 2006
  end-page: 2932
  ident: bib30
  article-title: Depletion of SMN by RNA interference in HeLa cells induces defects in Cajal body formation
  publication-title: Nucleic Acids Res.
– volume: 24
  start-page: 1876
  year: 2010
  end-page: 1881
  ident: bib53
  article-title: Structural basis for methylarginine-dependent recognition of Aubergine by Tudor
  publication-title: Genes Dev.
– volume: 59
  start-page: 366
  year: 2003
  end-page: 368
  ident: bib88
  article-title: Definition of domain boundaries and crystallization of the SMN Tudor domain
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 116
  start-page: 303
  year: 2003
  end-page: 312
  ident: bib86
  article-title: Control of Cajal body number is mediated by the coilin C-terminus
  publication-title: J. Cell Sci.
– volume: 276
  start-page: 45387
  year: 2001
  end-page: 45393
  ident: bib99
  article-title: Characterization of functional domains of the SMN protein in vivo
  publication-title: J. Biol. Chem.
– volume: 112
  start-page: E6426
  year: 2015
  end-page: E6435
  ident: bib5
  article-title: Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 324
  start-page: 1729
  year: 2009
  end-page: 1732
  ident: bib9
  article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation
  publication-title: Science
– volume: 17
  start-page: 403
  year: 2010
  end-page: 409
  ident: bib91
  article-title: Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis
  publication-title: Nat. Struct. Mol. Biol.
– volume: 275
  start-page: 7723
  year: 2000
  end-page: 7730
  ident: bib92
  article-title: PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells
  publication-title: J. Biol. Chem.
– volume: 181
  start-page: 346
  year: 2020
  end-page: 361
  ident: bib35
  article-title: RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation
  publication-title: Cell
– volume: 108
  start-page: 4334
  year: 2011
  end-page: 4339
  ident: bib10
  article-title: Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 1
  start-page: 96
  year: 2010
  end-page: 108
  ident: bib90
  article-title: Dynamic control of Cajal body number during zebrafish embryogenesis
  publication-title: Nucleus
– volume: 3
  start-page: 329
  year: 2002
  end-page: 337
  ident: bib40
  article-title: Coilin methylation regulates nuclear body formation
  publication-title: Dev. Cell
– volume: 57
  start-page: 936
  year: 2015
  end-page: 947
  ident: bib63
  article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles
  publication-title: Mol. Cell
– volume: 332
  start-page: 142
  year: 2009
  end-page: 155
  ident: bib47
  article-title: The spinal muscular atrophy protein SMN affects Drosophila germline nuclear organization through the U body-P body pathway
  publication-title: Dev. Biol.
– volume: 22
  start-page: 215
  year: 2021
  end-page: 235
  ident: bib56
  article-title: A framework for understanding the functions of biomolecular condensates across scales
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 69
  start-page: 465
  year: 2018
  end-page: 479
  ident: bib77
  article-title: Mechanistic View of hnRNPA2 Low-Complexity Domain Structure, Interactions, and Phase Separation Altered by Mutation and Arginine Methylation
  publication-title: Mol. Cell
– volume: 259
  start-page: 5907
  year: 1984
  end-page: 5914
  ident: bib70
  article-title: The structure of mammalian small nuclear ribonucleoproteins. Identification of multiple protein components reactive with anti-(U1)ribonucleoprotein and anti-Sm autoantibodies
  publication-title: J. Biol. Chem.
– volume: 162
  start-page: 1066
  year: 2015
  end-page: 1077
  ident: bib67
  article-title: A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation
  publication-title: Cell
– year: 2020
  ident: bib37
  article-title: 3D Adaptive Optical Nanoscopy for Thick Specimen Imaging at sub-50 nm Resolution
  publication-title: bioRxiv
– volume: 53
  start-page: 484
  year: 2014
  end-page: 497
  ident: bib103
  article-title: Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation
  publication-title: Mol. Cell
– volume: 483
  start-page: 336
  year: 2012
  end-page: 340
  ident: bib49
  article-title: Phase transitions in the assembly of multivalent signalling proteins
  publication-title: Nature
– volume: 38
  start-page: 546
  year: 2013
  end-page: 555
  ident: bib55
  article-title: Tudor: a versatile family of histone methylation ‘readers’
  publication-title: Trends Biochem. Sci.
– volume: 149
  start-page: 753
  year: 2012
  end-page: 767
  ident: bib44
  article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels
  publication-title: Cell
– volume: 529
  start-page: 48
  year: 2016
  end-page: 53
  ident: bib106
  article-title: SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination
  publication-title: Nature
– volume: 15
  start-page: 2720
  year: 2001
  end-page: 2729
  ident: bib39
  article-title: Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein
  publication-title: Genes Dev.
– volume: 276
  start-page: 32971
  year: 2001
  end-page: 32976
  ident: bib11
  article-title: PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins
  publication-title: J. Biol. Chem.
– volume: 174
  start-page: 688
  year: 2018
  end-page: 699
  ident: bib100
  article-title: A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins
  publication-title: Cell
– volume: 7
  start-page: 1111
  year: 2001
  end-page: 1117
  ident: bib27
  article-title: SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets
  publication-title: Mol. Cell
– volume: 40
  start-page: 216
  year: 2010
  end-page: 227
  ident: bib8
  article-title: The nucleolus under stress
  publication-title: Mol. Cell
– volume: 166
  start-page: 651
  year: 2016
  ident: 10.1016/j.cell.2021.05.008_bib3
  article-title: Compositional Control of Phase-Separated Cellular Bodies
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.010
– volume: 11
  start-page: 432
  year: 2015
  ident: 10.1016/j.cell.2021.05.008_bib16
  article-title: A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1810
– volume: 112
  start-page: 7189
  year: 2015
  ident: 10.1016/j.cell.2021.05.008_bib25
  article-title: The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1504822112
– volume: 67
  start-page: 67
  year: 2021
  ident: 10.1016/j.cell.2021.05.008_bib31
  article-title: Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2020.11.002
– volume: 22
  start-page: 1401
  year: 2018
  ident: 10.1016/j.cell.2021.05.008_bib71
  article-title: Intrinsically Disordered Regions Can Contribute Promiscuous Interactions to RNP Granule Assembly
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.01.036
– volume: 57
  start-page: 936
  year: 2015
  ident: 10.1016/j.cell.2021.05.008_bib63
  article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.01.013
– volume: 40
  start-page: 216
  year: 2010
  ident: 10.1016/j.cell.2021.05.008_bib8
  article-title: The nucleolus under stress
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.09.024
– volume: 17
  start-page: 3221
  year: 2006
  ident: 10.1016/j.cell.2021.05.008_bib48
  article-title: Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e06-03-0247
– volume: 63
  start-page: 72
  year: 2016
  ident: 10.1016/j.cell.2021.05.008_bib66
  article-title: Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.05.042
– volume: 50
  start-page: 1227
  year: 2003
  ident: 10.1016/j.cell.2021.05.008_bib75
  article-title: The noise performance of electron multiplying charge-coupled devices
  publication-title: IEEE Trans. Electron Dev.
  doi: 10.1109/TED.2003.813462
– volume: 60
  start-page: 208
  year: 2015
  ident: 10.1016/j.cell.2021.05.008_bib51
  article-title: Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.08.018
– volume: 10
  start-page: 249
  year: 2013
  ident: 10.1016/j.cell.2021.05.008_bib12
  article-title: Optogenetic protein clustering and signaling activation in mammalian cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2360
– volume: 20
  start-page: 2304
  year: 2001
  ident: 10.1016/j.cell.2021.05.008_bib60
  article-title: SMNrp is an essential pre-mRNA splicing factor required for the formation of the mature spliceosome
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.9.2304
– volume: 36
  start-page: 1669
  year: 2017
  ident: 10.1016/j.cell.2021.05.008_bib58
  article-title: An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function
  publication-title: EMBO J.
  doi: 10.15252/embj.201695957
– volume: 222
  start-page: 105
  year: 2006
  ident: 10.1016/j.cell.2021.05.008_bib7
  article-title: Comparison of I5M and 4Pi-microscopy
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2006.01578.x
– year: 2020
  ident: 10.1016/j.cell.2021.05.008_bib37
  article-title: 3D Adaptive Optical Nanoscopy for Thick Specimen Imaging at sub-50 nm Resolution
  publication-title: bioRxiv
– volume: 69
  start-page: 465
  year: 2018
  ident: 10.1016/j.cell.2021.05.008_bib77
  article-title: Mechanistic View of hnRNPA2 Low-Complexity Domain Structure, Interactions, and Phase Separation Altered by Mutation and Arginine Methylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.12.022
– volume: 529
  start-page: 48
  year: 2016
  ident: 10.1016/j.cell.2021.05.008_bib106
  article-title: SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination
  publication-title: Nature
  doi: 10.1038/nature16469
– volume: 13
  start-page: 815
  year: 2006
  ident: 10.1016/j.cell.2021.05.008_bib52
  article-title: Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1135
– volume: 4
  start-page: 17
  year: 2013
  ident: 10.1016/j.cell.2021.05.008_bib57
  article-title: Cajal bodies: where form meets function
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1139
– volume: 291
  start-page: 22671
  year: 2016
  ident: 10.1016/j.cell.2021.05.008_bib96
  article-title: Arginine Demethylation of G3BP1 Promotes Stress Granule Assembly
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.739573
– volume: 112
  start-page: E6426
  year: 2015
  ident: 10.1016/j.cell.2021.05.008_bib5
  article-title: Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1508778112
– volume: 9
  start-page: 9472
  year: 2019
  ident: 10.1016/j.cell.2021.05.008_bib65
  article-title: Functional characterization of SMN evolution in mouse models of SMA
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45822-8
– volume: 357
  year: 2017
  ident: 10.1016/j.cell.2021.05.008_bib83
  article-title: Liquid phase condensation in cell physiology and disease
  publication-title: Science
  doi: 10.1126/science.aaf4382
– volume: 115
  start-page: 2734
  year: 2018
  ident: 10.1016/j.cell.2021.05.008_bib98
  article-title: RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1800038115
– volume: 118
  year: 2021
  ident: 10.1016/j.cell.2021.05.008_bib76
  article-title: Ligand effects on phase separation of multivalent macromolecules
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2017184118
– volume: 1
  start-page: 96
  year: 2010
  ident: 10.1016/j.cell.2021.05.008_bib90
  article-title: Dynamic control of Cajal body number during zebrafish embryogenesis
  publication-title: Nucleus
  doi: 10.4161/nucl.1.1.10680
– volume: 332
  start-page: 142
  year: 2009
  ident: 10.1016/j.cell.2021.05.008_bib47
  article-title: The spinal muscular atrophy protein SMN affects Drosophila germline nuclear organization through the U body-P body pathway
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2009.05.553
– volume: 87
  start-page: 4146
  year: 2004
  ident: 10.1016/j.cell.2021.05.008_bib34
  article-title: Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.045815
– volume: 119
  start-page: 680
  year: 2006
  ident: 10.1016/j.cell.2021.05.008_bib74
  article-title: Distinct domains of the spinal muscular atrophy protein SMN are required for targeting to Cajal bodies in mammalian cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.02782
– volume: 108
  start-page: 4334
  year: 2011
  ident: 10.1016/j.cell.2021.05.008_bib10
  article-title: Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1017150108
– volume: 20
  start-page: 650
  year: 2019
  ident: 10.1016/j.cell.2021.05.008_bib94
  article-title: Germ granules in Drosophila
  publication-title: Traffic
  doi: 10.1111/tra.12674
– volume: 34
  start-page: 2925
  year: 2006
  ident: 10.1016/j.cell.2021.05.008_bib30
  article-title: Depletion of SMN by RNA interference in HeLa cells induces defects in Cajal body formation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl374
– volume: 95
  start-page: 615
  year: 1998
  ident: 10.1016/j.cell.2021.05.008_bib68
  article-title: A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81632-3
– volume: 265
  start-page: 252
  year: 2001
  ident: 10.1016/j.cell.2021.05.008_bib104
  article-title: Nuclear gems and Cajal (coiled) bodies in fetal tissues: nucleolar distribution of the spinal muscular atrophy protein, SMN
  publication-title: Exp. Cell Res.
  doi: 10.1006/excr.2001.5186
– volume: 12
  start-page: 629
  year: 2011
  ident: 10.1016/j.cell.2021.05.008_bib18
  article-title: Deciphering arginine methylation: Tudor tells the tale
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3185
– volume: 24
  start-page: 1876
  year: 2010
  ident: 10.1016/j.cell.2021.05.008_bib53
  article-title: Structural basis for methylarginine-dependent recognition of Aubergine by Tudor
  publication-title: Genes Dev.
  doi: 10.1101/gad.1956010
– volume: 35
  start-page: 1603
  year: 2016
  ident: 10.1016/j.cell.2021.05.008_bib23
  article-title: Droplet organelles?
  publication-title: EMBO J.
  doi: 10.15252/embj.201593517
– volume: 137
  start-page: 657
  year: 2012
  ident: 10.1016/j.cell.2021.05.008_bib93
  article-title: Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy
  publication-title: Histochem. Cell Biol.
  doi: 10.1007/s00418-012-0921-8
– volume: 38
  start-page: 546
  year: 2013
  ident: 10.1016/j.cell.2021.05.008_bib55
  article-title: Tudor: a versatile family of histone methylation ‘readers’
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2013.08.002
– volume: 181
  start-page: 346
  year: 2020
  ident: 10.1016/j.cell.2021.05.008_bib35
  article-title: RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.049
– volume: 18
  start-page: 1414
  year: 2011
  ident: 10.1016/j.cell.2021.05.008_bib95
  article-title: Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2185
– volume: 7
  start-page: 539
  year: 2011
  ident: 10.1016/j.cell.2021.05.008_bib87
  article-title: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2011.75
– volume: 8
  start-page: 2351
  year: 1999
  ident: 10.1016/j.cell.2021.05.008_bib13
  article-title: Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/8.13.2351
– volume: 49
  start-page: 107
  year: 2020
  ident: 10.1016/j.cell.2021.05.008_bib21
  article-title: Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-121219-081629
– volume: 363
  start-page: 1093
  year: 2019
  ident: 10.1016/j.cell.2021.05.008_bib15
  article-title: Stoichiometry controls activity of phase-separated clusters of actin signaling proteins
  publication-title: Science
  doi: 10.1126/science.aau6313
– volume: 9
  start-page: 676
  year: 2012
  ident: 10.1016/j.cell.2021.05.008_bib79
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 11
  start-page: 772
  year: 2016
  ident: 10.1016/j.cell.2021.05.008_bib26
  article-title: A Potent, Selective, and Cell-Active Inhibitor of Human Type I Protein Arginine Methyltransferases
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.5b00839
– volume: 14
  start-page: 701
  year: 2017
  ident: 10.1016/j.cell.2021.05.008_bib73
  article-title: SMN - A chaperone for nuclear RNP social occasions?
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2016.1236168
– volume: 146
  start-page: 384
  year: 2011
  ident: 10.1016/j.cell.2021.05.008_bib105
  article-title: Structure of a key intermediate of the SMN complex reveals Gemin2's crucial function in snRNP assembly
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.043
– volume: 21
  start-page: 162
  year: 2019
  ident: 10.1016/j.cell.2021.05.008_bib62
  article-title: Multicolour single-molecule tracking of mRNA interactions with RNP granules
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0263-4
– volume: 181
  start-page: 306
  year: 2020
  ident: 10.1016/j.cell.2021.05.008_bib78
  article-title: Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.050
– volume: 84
  start-page: 203
  year: 2019
  ident: 10.1016/j.cell.2021.05.008_bib22
  article-title: RNP Granule Formation: Lessons from P-Bodies and Stress Granules
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
  doi: 10.1101/sqb.2019.84.040329
– volume: 22
  start-page: 215
  year: 2021
  ident: 10.1016/j.cell.2021.05.008_bib56
  article-title: A framework for understanding the functions of biomolecular condensates across scales
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-00303-z
– volume: 572
  start-page: 543
  year: 2019
  ident: 10.1016/j.cell.2021.05.008_bib36
  article-title: Pol II phosphorylation regulates a switch between transcriptional and splicing condensates
  publication-title: Nature
  doi: 10.1038/s41586-019-1464-0
– volume: 59
  start-page: 366
  year: 2003
  ident: 10.1016/j.cell.2021.05.008_bib88
  article-title: Definition of domain boundaries and crystallization of the SMN Tudor domain
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444902021406
– volume: 163
  start-page: 123
  year: 2015
  ident: 10.1016/j.cell.2021.05.008_bib61
  article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.015
– volume: 11
  start-page: 4159
  year: 2000
  ident: 10.1016/j.cell.2021.05.008_bib38
  article-title: Self-association of coilin reveals a common theme in nuclear body localization
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.11.12.4159
– volume: 173
  start-page: 706
  year: 2018
  ident: 10.1016/j.cell.2021.05.008_bib41
  article-title: Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.004
– volume: 276
  start-page: 32971
  year: 2001
  ident: 10.1016/j.cell.2021.05.008_bib11
  article-title: PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M105412200
– volume: 275
  start-page: 7723
  year: 2000
  ident: 10.1016/j.cell.2021.05.008_bib92
  article-title: PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.11.7723
– volume: 324
  start-page: 1729
  year: 2009
  ident: 10.1016/j.cell.2021.05.008_bib9
  article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation
  publication-title: Science
  doi: 10.1126/science.1172046
– volume: 30
  start-page: 39
  year: 2014
  ident: 10.1016/j.cell.2021.05.008_bib42
  article-title: Liquid-liquid phase separation in biology
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-100913-013325
– volume: 155
  start-page: 1049
  year: 2013
  ident: 10.1016/j.cell.2021.05.008_bib45
  article-title: Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.033
– volume: 49
  start-page: 636
  year: 2021
  ident: 10.1016/j.cell.2021.05.008_bib50
  article-title: Splicing at the phase-separated nuclear speckle interface: a model
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1209
– volume: 33
  start-page: 1619
  year: 2019
  ident: 10.1016/j.cell.2021.05.008_bib59
  article-title: Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences
  publication-title: Genes Dev.
  doi: 10.1101/gad.331520.119
– volume: 132
  year: 2019
  ident: 10.1016/j.cell.2021.05.008_bib89
  article-title: The liquid nucleome - phase transitions in the nucleus at a glance
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.235093
– volume: 20
  start-page: 1322
  year: 2004
  ident: 10.1016/j.cell.2021.05.008_bib6
  article-title: ConSeq: the identification of functionally and structurally important residues in protein sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth070
– volume: 17
  start-page: 3055
  year: 2008
  ident: 10.1016/j.cell.2021.05.008_bib32
  article-title: TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddn203
– volume: 168
  start-page: 159
  year: 2017
  ident: 10.1016/j.cell.2021.05.008_bib84
  article-title: Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.054
– volume: 149
  start-page: 753
  year: 2012
  ident: 10.1016/j.cell.2021.05.008_bib44
  article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.017
– volume: 162
  start-page: 1066
  year: 2015
  ident: 10.1016/j.cell.2021.05.008_bib67
  article-title: A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.047
– volume: 53
  start-page: 484
  year: 2014
  ident: 10.1016/j.cell.2021.05.008_bib103
  article-title: Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.01.011
– volume: 54
  start-page: 119
  year: 2019
  ident: 10.1016/j.cell.2021.05.008_bib28
  article-title: Structure and function of eTudor domain containing TDRD proteins
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.1080/10409238.2019.1603199
– volume: 174
  start-page: 688
  year: 2018
  ident: 10.1016/j.cell.2021.05.008_bib100
  article-title: A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.006
– volume: 173
  start-page: 720
  year: 2018
  ident: 10.1016/j.cell.2021.05.008_bib72
  article-title: FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.056
– volume: 96
  start-page: 11167
  year: 1999
  ident: 10.1016/j.cell.2021.05.008_bib69
  article-title: SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.20.11167
– volume: 5
  start-page: 50
  year: 2019
  ident: 10.1016/j.cell.2021.05.008_bib1
  article-title: Evidence for and against Liquid-Liquid Phase Separation in the Nucleus
  publication-title: Noncoding RNA
– volume: 10
  start-page: 429
  year: 2015
  ident: 10.1016/j.cell.2021.05.008_bib64
  article-title: SART3-Dependent Accumulation of Incomplete Spliceosomal snRNPs in Cajal Bodies
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.12.030
– volume: 3
  start-page: 329
  year: 2002
  ident: 10.1016/j.cell.2021.05.008_bib40
  article-title: Coilin methylation regulates nuclear body formation
  publication-title: Dev. Cell
  doi: 10.1016/S1534-5807(02)00222-8
– volume: 173
  start-page: 946
  year: 2018
  ident: 10.1016/j.cell.2021.05.008_bib82
  article-title: Phase Transitions in the Assembly and Function of Human miRISC
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.051
– volume: 40
  start-page: 1016
  year: 2010
  ident: 10.1016/j.cell.2021.05.008_bib102
  article-title: TDRD3 is an effector molecule for arginine-methylated histone marks
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.11.024
– volume: 18
  start-page: 285
  year: 2017
  ident: 10.1016/j.cell.2021.05.008_bib4
  article-title: Biomolecular condensates: organizers of cellular biochemistry
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.7
– volume: 77
  start-page: 5239
  year: 1980
  ident: 10.1016/j.cell.2021.05.008_bib101
  article-title: Ligand-linked phase changes in a biological system: applications to sickle cell hemoglobin
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.77.9.5239
– volume: 7
  start-page: R100
  year: 2006
  ident: 10.1016/j.cell.2021.05.008_bib14
  article-title: CellProfiler: image analysis software for identifying and quantifying cell phenotypes
  publication-title: Genome Biol.
  doi: 10.1186/gb-2006-7-10-r100
– volume: 9
  start-page: 2794
  year: 2018
  ident: 10.1016/j.cell.2021.05.008_bib19
  article-title: A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05273-7
– volume: 483
  start-page: 336
  year: 2012
  ident: 10.1016/j.cell.2021.05.008_bib49
  article-title: Phase transitions in the assembly of multivalent signalling proteins
  publication-title: Nature
  doi: 10.1038/nature10879
– volume: 7
  start-page: 1511
  year: 2012
  ident: 10.1016/j.cell.2021.05.008_bib43
  article-title: Template-based protein structure modeling using the RaptorX web server
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.085
– volume: 8
  start-page: 27
  year: 2001
  ident: 10.1016/j.cell.2021.05.008_bib81
  article-title: SMN tudor domain structure and its interaction with the Sm proteins
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/83014
– volume: 116
  start-page: 303
  year: 2003
  ident: 10.1016/j.cell.2021.05.008_bib86
  article-title: Control of Cajal body number is mediated by the coilin C-terminus
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.00211
– volume: 179
  start-page: 470
  year: 2019
  ident: 10.1016/j.cell.2021.05.008_bib29
  article-title: Organization of Chromatin by Intrinsic and Regulated Phase Separation
  publication-title: Cell
  doi: 10.1016/j.cell.2019.08.037
– volume: 49
  start-page: 692
  year: 2013
  ident: 10.1016/j.cell.2021.05.008_bib33
  article-title: Structural basis of assembly chaperone- mediated snRNP formation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.12.009
– volume: 361
  start-page: 412
  year: 2018
  ident: 10.1016/j.cell.2021.05.008_bib20
  article-title: Mediator and RNA polymerase II clusters associate in transcription-dependent condensates
  publication-title: Science
  doi: 10.1126/science.aar4199
– volume: 7
  start-page: e30375
  year: 2012
  ident: 10.1016/j.cell.2021.05.008_bib54
  article-title: Crystal structure of TDRD3 and methyl-arginine binding characterization of TDRD3, SMN and SPF30
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030375
– volume: 102
  start-page: 17372
  year: 2005
  ident: 10.1016/j.cell.2021.05.008_bib85
  article-title: Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0508947102
– volume: 154
  start-page: 293
  year: 2001
  ident: 10.1016/j.cell.2021.05.008_bib97
  article-title: Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200104083
– volume: 259
  start-page: 5907
  year: 1984
  ident: 10.1016/j.cell.2021.05.008_bib70
  article-title: The structure of mammalian small nuclear ribonucleoproteins. Identification of multiple protein components reactive with anti-(U1)ribonucleoprotein and anti-Sm autoantibodies
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)91101-4
– volume: 5
  start-page: 539
  year: 2008
  ident: 10.1016/j.cell.2021.05.008_bib80
  article-title: Spherical nanosized focal spot unravels the interior of cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1214
– volume: 318
  start-page: 444
  year: 2007
  ident: 10.1016/j.cell.2021.05.008_bib17
  article-title: JMJD6 is a histone arginine demethylase
  publication-title: Science
  doi: 10.1126/science.1145801
– volume: 430
  start-page: 4666
  year: 2018
  ident: 10.1016/j.cell.2021.05.008_bib24
  article-title: Who’s In and Who’s Out-Compositional Control of Biomolecular Condensates
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2018.08.003
– volume: 360
  start-page: 922
  year: 2018
  ident: 10.1016/j.cell.2021.05.008_bib46
  article-title: mRNA structure determines specificity of a polyQ-driven phase separation
  publication-title: Science
  doi: 10.1126/science.aar7432
– volume: 15
  start-page: 2720
  year: 2001
  ident: 10.1016/j.cell.2021.05.008_bib39
  article-title: Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein
  publication-title: Genes Dev.
  doi: 10.1101/gad.908401
– volume: 7
  start-page: 1111
  year: 2001
  ident: 10.1016/j.cell.2021.05.008_bib27
  article-title: SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00244-1
– volume: 176
  start-page: 419
  year: 2019
  ident: 10.1016/j.cell.2021.05.008_bib2
  article-title: Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.035
– volume: 17
  start-page: 403
  year: 2010
  ident: 10.1016/j.cell.2021.05.008_bib91
  article-title: Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1783
– volume: 276
  start-page: 45387
  year: 2001
  ident: 10.1016/j.cell.2021.05.008_bib99
  article-title: Characterization of functional domains of the SMN protein in vivo
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M105059200
SSID ssj0008555
Score 2.5590236
Snippet Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the “survival of motor neuron protein” (SMN) is implicated in the...
Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the...
Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the ‘survival of motor neuron protein’ (SMN) is implicated in the...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3612
SubjectTerms Animals
Arginine - analogs & derivatives
Arginine - metabolism
Biomolecular Condensates - metabolism
biomolecular condensation
Cajal body
Cell Nucleus - metabolism
Coiled Bodies - metabolism
condensates
dimethylarginine
DMA
Drosophila melanogaster - metabolism
HEK293 Cells
HeLa Cells
Humans
Ligands
membraneless organelle
Methylation
Mice
microscopy
MLO
Models, Biological
motor neurons
NIH 3T3 Cells
nuclear gem
organelles
post-translational modification
Protein Binding
Protein Domains
Protein Multimerization
Ribonucleoproteins, Small Nuclear - metabolism
SMN Complex Proteins - chemistry
SMN Complex Proteins - metabolism
tudor domains
Title DMA-tudor interaction modules control the specificity of in vivo condensates
URI https://dx.doi.org/10.1016/j.cell.2021.05.008
https://www.ncbi.nlm.nih.gov/pubmed/34115980
https://www.proquest.com/docview/2540521063
https://www.proquest.com/docview/2661038784
https://pubmed.ncbi.nlm.nih.gov/PMC8402948
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KIHgR39YXEbxJaJJ9ZHOs1VKEerLQ27KbbLBSk9IX-G_8Lf4yZ_IoVqUHT6XdCSSzszPfpPPNEHIThSmlhhk3CYyHTbWFK9GWIRWREA24DiWykftPojdgj0M-bJBOzYXBssrK95c-vfDW1S-tSputyWiEHN8okAJSOx-JgByJ5pTJgsQ3vFt5Y8l5OcUggpMP0hVxpqzxwpfjkCMGftG9E0dM_h2cfoPPnzWU34JSd4_sVmjSaZc3vE8aNjsg2-V8yfdD0r_vt935IsmnDraFmJYkBuctTxZjO3OqMnUHMKCDjEusGgJQ7uQpiH9-LEfLHGXAM80QkR6RQffhudNzq_kJbgzHcu6y1EuMBZ0naahjLbwkFqmQKfe1ptomBqAID-GDwkbR2KMMor-Jw9BayXxP02OyleWZPSVOCMguFTGnghsGKaFOmUelMYYCAosD2iR-rTgVV83FccbFWNVVZK8Kla1Q2crjCpTdJLerayZla42N0rzeD7VmIAp8_8brruvNU3BycFlnNl_MVIBgFYxH0A0yAF_wD37JmuSk3PDVvUL8BywovSYJ10xhJYCdu9dXstFL0cEbsuogYvLsn890TnbwW1E1LC_I1ny6sJeAjebmqjD-L4z0DcQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTtxAEC0RoihcUAIJTBLASNwiC9u9zpGwaCAMJ5Dm1uq222IQ2GgWJP6Gb8mXUeVllAE0B06W3NWSXVu_smsB2OuqnDHHXZglLqKm2jLUpMsYimg8DYRVmqqR-xeyd8XPBmKwBIdtLQylVTa-v_bplbdu7uw33Ny_Hw6pxrebaImhXUyFgEJ8gI-IBhTNbzgd_Jm5Yy1EPcagi6aP5E3lTJ3kRV_HMUhM4qp9J82YfPt0eo0-XyZR_ncqnXyB1QZOBgf1E3-FJV-swad6wOTjOvSP-gfhZJqVo4D6QozqKobgrsymt34cNHnqAYLAgEouKW0IUXlQ5kj-7-lh-FASDbqmMUHSb3B1cnx52AubAQphinY5CXkeZc4j07Nc2dTKKEtlLnUuYmuZ9ZlDLCIUXhhKiqUR43j8u1Qp7zWPI8u-w3JRFn4TAoXQLpepYFI4jjGhzXnEtHOOIQRLE9aBuGWcSZvu4jTk4ta0aWQ3hphtiNkmEgaZ3YHfsz33dW-NhdSilYeZ0xCDzn_hvt1WeAZNh5Zt4cvp2CSEVlF7JFtAg_iF_vBr3oGNWuCzZ0UAgGBQRx1Qc6owI6DW3fMrxfC6auGNYXXS5frHO99pBz73Lvvn5vz04u9PWKGVKoVY_4LlyWjqtxAoTdx2ZQjPGBEQ4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DMA-tudor+interaction+modules+control+the+specificity+of+in+vivo+condensates&rft.jtitle=Cell&rft.au=Courchaine%2C+Edward+M.&rft.au=Barentine%2C+Andrew+E.S.&rft.au=Straube%2C+Korinna&rft.au=Lee%2C+Dong-Ryoung&rft.date=2021-07-08&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=184&rft.issue=14&rft.spage=3612&rft.epage=3625.e17&rft_id=info:doi/10.1016%2Fj.cell.2021.05.008&rft_id=info%3Apmid%2F34115980&rft.externalDocID=PMC8402948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon