DMA-tudor interaction modules control the specificity of in vivo condensates
Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the “survival of motor neuron protein” (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN...
Saved in:
Published in | Cell Vol. 184; no. 14; pp. 3612 - 3625.e17 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
08.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the “survival of motor neuron protein” (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN’s globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs—gems and Cajal bodies—were separate or “docked” to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules—combinations of tudor domains bound to their DMA ligand(s)—represent versatile yet specific regulators of MLO assembly, composition, and morphology.
[Display omitted]
•The tudor domain of SMN promotes condensation by binding dimethylarginine (DMA)•DMA-tudor condensation is a shared property of numerous other tudor domains•Each tudor domain has a specific dependence on symmetric or asymmetric DMA•aDMA and sDMA levels define the composition and substructure of Cajal bodies
The SMN tudor domain is sufficient for condensation by binding to dimethylarginine (DMA) modified protein ligands. Asymmetric versus symmetric DMA determines whether gems and Cajal bodies were separate or “docked” to one another. |
---|---|
AbstractList | Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the ‘survival of motor neuron protein’ (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN’s globular tudor domain was sufficient for dimerization-induced condensation
in vivo
, while its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs – gems and Cajal bodies – were separate or “docked” to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules – combinations of tudor domains bound to their DMA ligand(s) – represent versatile yet specific regulators of MLO assembly, composition, and morphology.
The SMN tudor domain is sufficient for condensation by binding to dimethylarginine (DMA) modified protein ligands. Asymmetric versus symmetric DMA determines whether gems and Cajal bodies were separate or “docked” to one another. Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology.Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology. Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the “survival of motor neuron protein” (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN’s globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs—gems and Cajal bodies—were separate or “docked” to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules—combinations of tudor domains bound to their DMA ligand(s)—represent versatile yet specific regulators of MLO assembly, composition, and morphology. Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology. Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the “survival of motor neuron protein” (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN’s globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs—gems and Cajal bodies—were separate or “docked” to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules—combinations of tudor domains bound to their DMA ligand(s)—represent versatile yet specific regulators of MLO assembly, composition, and morphology. [Display omitted] •The tudor domain of SMN promotes condensation by binding dimethylarginine (DMA)•DMA-tudor condensation is a shared property of numerous other tudor domains•Each tudor domain has a specific dependence on symmetric or asymmetric DMA•aDMA and sDMA levels define the composition and substructure of Cajal bodies The SMN tudor domain is sufficient for condensation by binding to dimethylarginine (DMA) modified protein ligands. Asymmetric versus symmetric DMA determines whether gems and Cajal bodies were separate or “docked” to one another. |
Author | Bewersdorf, Joerg Neugebauer, Karla M. Barentine, Andrew E.S. Courchaine, Edward M. Lee, Dong-Ryoung Straube, Korinna |
AuthorAffiliation | 1 Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA 3 Biomedical Engineering, Yale University, New Haven, CT, 06520, USA 2 Cell Biology, Yale University, New Haven, CT, 06520, USA |
AuthorAffiliation_xml | – name: 3 Biomedical Engineering, Yale University, New Haven, CT, 06520, USA – name: 2 Cell Biology, Yale University, New Haven, CT, 06520, USA – name: 1 Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA |
Author_xml | – sequence: 1 givenname: Edward M. surname: Courchaine fullname: Courchaine, Edward M. organization: Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA – sequence: 2 givenname: Andrew E.S. orcidid: 0000-0002-7673-9771 surname: Barentine fullname: Barentine, Andrew E.S. organization: Cell Biology, Yale University, New Haven, CT 06520, USA – sequence: 3 givenname: Korinna surname: Straube fullname: Straube, Korinna organization: Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA – sequence: 4 givenname: Dong-Ryoung orcidid: 0000-0002-3495-3390 surname: Lee fullname: Lee, Dong-Ryoung organization: Cell Biology, Yale University, New Haven, CT 06520, USA – sequence: 5 givenname: Joerg surname: Bewersdorf fullname: Bewersdorf, Joerg organization: Cell Biology, Yale University, New Haven, CT 06520, USA – sequence: 6 givenname: Karla M. surname: Neugebauer fullname: Neugebauer, Karla M. email: karla.neugebauer@yale.edu organization: Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34115980$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URKeFF2CBsmSTcO3YjiMhpKr8Sq3YwNpy7BvqUSYebGekvg3PwpPhaEoFLMrqLny-T9f3nJGTOcxIyHMKDQUqX20bi9PUMGC0AdEAqEdkQ6Hvak47dkI2AD2rlez4KTlLaQuFEEI8Iactp1T0Cjbk-u31RZ0XF2Ll54zR2OzDXO2CWyZMlQ1zjmGq8g1WaY_Wj976fFuFseA_fxz8IayMwzmZjOkpeTyaKeGzu3lOvr5_9-XyY331-cOny4ur2nKlcs1HcAP2SrqxM9ZIcFaOUo2CGtMadEPfSdGV0To2tBZaLigbbNchKk7BtOfkzbF3vww7dBbLlmbS--h3Jt7qYLz--2X2N_pbOGjFgfVclYKXdwUxfF8wZb3zab2mmTEsSTMpKbSqU_z_qOAgGAXZFvTFn2vd7_P73AVgR8DGkFLE8R6hoFeneqvXar061SB0MVZC6p9QUWBWTeVrfno4-voYxSLj4DHqZD3OFp2PaLN2wT8U_wWK-78t |
CitedBy_id | crossref_primary_10_1038_s41589_022_01204_2 crossref_primary_10_1038_s41467_022_29697_4 crossref_primary_10_3390_ijms25189937 crossref_primary_10_1016_j_omtn_2025_102490 crossref_primary_10_1038_s41580_022_00558_8 crossref_primary_10_1016_j_devcel_2024_06_017 crossref_primary_10_3389_fmolb_2022_818302 crossref_primary_10_1016_j_celrep_2024_114459 crossref_primary_10_1038_s41589_025_01840_4 crossref_primary_10_1016_j_celrep_2024_114537 crossref_primary_10_1038_s41467_023_40124_0 crossref_primary_10_1038_s41467_024_50863_3 crossref_primary_10_1038_s41589_024_01717_y crossref_primary_10_1016_j_bbagen_2025_130764 crossref_primary_10_1083_jcb_202305081 crossref_primary_10_1016_j_isci_2021_102971 crossref_primary_10_1016_j_tibs_2023_04_003 crossref_primary_10_1021_jacs_2c02222 crossref_primary_10_1042_BST20231447 crossref_primary_10_1016_j_chembiol_2024_08_009 crossref_primary_10_1242_jcs_261834 crossref_primary_10_1038_s41467_022_33434_2 crossref_primary_10_7554_eLife_72867 crossref_primary_10_1093_nar_gkac087 crossref_primary_10_1038_s41388_023_02690_x crossref_primary_10_1042_BST20221147 crossref_primary_10_26508_lsa_202201429 crossref_primary_10_1083_jcb_202501009 crossref_primary_10_31083_j_fbl2811292 crossref_primary_10_1038_s41567_022_01917_0 crossref_primary_10_3390_ijms24032247 crossref_primary_10_3389_fncel_2023_1092488 crossref_primary_10_3390_biom12030347 crossref_primary_10_1063_5_0083286 crossref_primary_10_1038_s41556_023_01254_1 crossref_primary_10_1016_j_cell_2023_09_006 crossref_primary_10_1042_BST20231116 crossref_primary_10_1111_febs_17360 crossref_primary_10_1016_j_cell_2023_09_002 crossref_primary_10_3389_freae_2023_1245832 crossref_primary_10_1083_jcb_202303125 crossref_primary_10_3389_fgene_2022_931220 crossref_primary_10_3390_ijms25074127 crossref_primary_10_1038_s41467_022_31738_x crossref_primary_10_1093_procel_pwae057 crossref_primary_10_1080_19491034_2023_2256036 crossref_primary_10_1261_rna_078995_121 crossref_primary_10_3389_fcell_2022_801953 crossref_primary_10_1093_nar_gkae045 crossref_primary_10_1007_s11427_024_2661_3 |
Cites_doi | 10.1016/j.cell.2016.06.010 10.1038/nchembio.1810 10.1073/pnas.1504822112 10.1016/j.gde.2020.11.002 10.1016/j.celrep.2018.01.036 10.1016/j.molcel.2015.01.013 10.1016/j.molcel.2010.09.024 10.1091/mbc.e06-03-0247 10.1016/j.molcel.2016.05.042 10.1109/TED.2003.813462 10.1016/j.molcel.2015.08.018 10.1038/nmeth.2360 10.1093/emboj/20.9.2304 10.15252/embj.201695957 10.1111/j.1365-2818.2006.01578.x 10.1016/j.molcel.2017.12.022 10.1038/nature16469 10.1038/nsmb1135 10.1002/wrna.1139 10.1074/jbc.M116.739573 10.1073/pnas.1508778112 10.1038/s41598-019-45822-8 10.1126/science.aaf4382 10.1073/pnas.1800038115 10.1073/pnas.2017184118 10.4161/nucl.1.1.10680 10.1016/j.ydbio.2009.05.553 10.1529/biophysj.104.045815 10.1242/jcs.02782 10.1073/pnas.1017150108 10.1111/tra.12674 10.1093/nar/gkl374 10.1016/S0092-8674(00)81632-3 10.1006/excr.2001.5186 10.1038/nrm3185 10.1101/gad.1956010 10.15252/embj.201593517 10.1007/s00418-012-0921-8 10.1016/j.tibs.2013.08.002 10.1016/j.cell.2020.03.049 10.1038/nsmb.2185 10.1038/msb.2011.75 10.1093/hmg/8.13.2351 10.1146/annurev-biophys-121219-081629 10.1126/science.aau6313 10.1038/nmeth.2019 10.1021/acschembio.5b00839 10.1080/15476286.2016.1236168 10.1016/j.cell.2011.06.043 10.1038/s41556-018-0263-4 10.1016/j.cell.2020.03.050 10.1101/sqb.2019.84.040329 10.1038/s41580-020-00303-z 10.1038/s41586-019-1464-0 10.1107/S0907444902021406 10.1016/j.cell.2015.09.015 10.1091/mbc.11.12.4159 10.1016/j.cell.2018.03.004 10.1074/jbc.M105412200 10.1074/jbc.275.11.7723 10.1126/science.1172046 10.1146/annurev-cellbio-100913-013325 10.1016/j.cell.2013.10.033 10.1093/nar/gkaa1209 10.1101/gad.331520.119 10.1242/jcs.235093 10.1093/bioinformatics/bth070 10.1093/hmg/ddn203 10.1016/j.cell.2016.11.054 10.1016/j.cell.2012.04.017 10.1016/j.cell.2015.07.047 10.1016/j.molcel.2014.01.011 10.1080/10409238.2019.1603199 10.1016/j.cell.2018.06.006 10.1016/j.cell.2018.03.056 10.1073/pnas.96.20.11167 10.1016/j.celrep.2014.12.030 10.1016/S1534-5807(02)00222-8 10.1016/j.cell.2018.02.051 10.1016/j.molcel.2010.11.024 10.1038/nrm.2017.7 10.1073/pnas.77.9.5239 10.1186/gb-2006-7-10-r100 10.1038/s41467-018-05273-7 10.1038/nature10879 10.1038/nprot.2012.085 10.1038/83014 10.1242/jcs.00211 10.1016/j.cell.2019.08.037 10.1016/j.molcel.2012.12.009 10.1126/science.aar4199 10.1371/journal.pone.0030375 10.1073/pnas.0508947102 10.1083/jcb.200104083 10.1016/S0021-9258(18)91101-4 10.1038/nmeth.1214 10.1126/science.1145801 10.1016/j.jmb.2018.08.003 10.1126/science.aar7432 10.1101/gad.908401 10.1016/S1097-2765(01)00244-1 10.1016/j.cell.2018.12.035 10.1038/nsmb.1783 10.1074/jbc.M105059200 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2021.05.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 3625.e17 |
ExternalDocumentID | PMC8402948 34115980 10_1016_j_cell_2021_05_008 S0092867421006255 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: U01 CA200147 – fundername: NIDA NIH HHS grantid: U01 DA047734 – fundername: NINDS NIH HHS grantid: F31 NS105379 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A O-L O9- OK1 P2P RCE RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- RIG UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 5PM |
ID | FETCH-LOGICAL-c488t-4f0dbe986df7aca60dc6f68f51aa3aedb97657db93d2b3c034512bc77ee8410a3 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 14:35:27 EDT 2025 Mon Jul 21 11:54:39 EDT 2025 Fri Jul 11 05:56:38 EDT 2025 Thu Apr 03 07:06:44 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Tue Jul 01 02:17:09 EDT 2025 Fri Feb 23 02:42:20 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | MLO biomolecular condensation membraneless organelle dimethylarginine tudor domains Cajal body nuclear gem DMA post-translational modification |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c488t-4f0dbe986df7aca60dc6f68f51aa3aedb97657db93d2b3c034512bc77ee8410a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 E.C. and K.M.N. designed the study. K.S. generated all constructs. E.C. prepared cell lines and performed experiments. E.C. and A.E.S.B. carried out image analysis. D.R.L. performed isoSTED data collection and image processing. J.B. and K.M.N. supervised the study. All authors contributed to writing the manuscript. Author contributions |
ORCID | 0000-0002-7673-9771 0000-0002-3495-3390 |
OpenAccessLink | http://www.cell.com/article/S0092867421006255/pdf |
PMID | 34115980 |
PQID | 2540521063 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8402948 proquest_miscellaneous_2661038784 proquest_miscellaneous_2540521063 pubmed_primary_34115980 crossref_primary_10_1016_j_cell_2021_05_008 crossref_citationtrail_10_1016_j_cell_2021_05_008 elsevier_sciencedirect_doi_10_1016_j_cell_2021_05_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-08 |
PublicationDateYYYYMMDD | 2021-07-08 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Mateju, Franzmann, Patel, Kopach, Boczek, Maharana, Lee, Carra, Hyman, Alberti (bib58) 2017; 36 Moon, Morisaki, Khong, Lyon, Parker, Stasevich (bib62) 2019; 21 Tang, Frankel, Cook, Kim, Paik, Williams, Clarke, Herschman (bib92) 2000; 275 Sievers, Wilm, Dineen, Gibson, Karplus, Li, Lopez, McWilliam, Remmert, Söding (bib87) 2011; 7 Banani, Rice, Peeples, Lin, Jain, Parker, Rosen (bib3) 2016; 166 Pellizzoni, Kataoka, Charroux, Dreyfuss (bib68) 1998; 95 Brangwynne, Mitchison, Hyman (bib10) 2011; 108 Pettersson, Hinterberger, Mimori, Gottlieb, Steitz (bib70) 1984; 259 Corbet, Parker (bib22) 2019; 84 Lyon, Peeples, Rosen (bib56) 2021; 22 Novotny, Malinova, Stejskalova, Mateju, Klimesova, Roithova, Sveda, Knejzlik, Stanek (bib64) 2015; 10 Eram, Shen, Szewczyk, Wu, Senisterra, Li, Butler, Kaniskan, Speed, Dela Seña (bib26) 2016; 11 Hebert, Szymczyk, Shpargel, Matera (bib39) 2001; 15 Chen, Nott, Jin, Pawson (bib18) 2011; 12 Selenko, Sprangers, Stier, Bühler, Fischer, Sattler (bib81) 2001; 8 Wyman, Gill (bib101) 1980; 77 Guillén-Boixet, Kopach, Holehouse, Wittmann, Jahnel, Schlüßler, Kim, Trussina, Wang, Mateju (bib35) 2020; 181 Machyna, Heyn, Neugebauer (bib57) 2013; 4 Hofweber, Hutten, Bourgeois, Spreitzer, Niedner-Boblenz, Schifferer, Ruepp, Simons, Niessing, Madl, Dormann (bib41) 2018; 173 Kwon, Kato, Xiang, Wu, Theodoropoulos, Mirzaei, Han, Xie, Corden, McKnight (bib45) 2013; 155 McSwiggen, Mir, Darzacq, Tjian (bib59) 2019; 33 Ryan, Dignon, Zerze, Chabata, Silva, Conicella, Amaya, Burke, Mittal, Fawzi (bib77) 2018; 69 Langdon, Qiu, Ghanbari Niaki, McLaughlin, Weidmann, Gerbich, Smith, Crutchley, Termini, Weeks (bib46) 2018; 360 Liu, Guo, Liu, Bian, Lam, Liu, Mackenzie, Rojas, Reinberg, Bedford (bib54) 2012; 7 Lu, Wang (bib55) 2013; 38 Tapia, Bengoechea, Palanca, Arteaga, Val-Bernal, Tizzano, Berciano, Lafarga (bib93) 2012; 137 Gan, Chen, Liu, Min, Liu (bib28) 2019; 54 Robbins, Hadwen (bib75) 2003; 50 Pak, Kosno, Holehouse, Padrick, Mittal, Ali, Yunus, Liu, Pappu, Rosen (bib66) 2016; 63 Tucker, Berciano, Jacobs, LePage, Shpargel, Rossire, Chan, Lafarga, Conlon, Matera (bib97) 2001; 154 Boulon, Westman, Hutten, Boisvert, Lamond (bib8) 2010; 40 Gordon, Phizicky, Neugebauer (bib31) 2021; 67 Wang, Choi, Holehouse, Lee, Zhang, Jahnel, Maharana, Lemaitre, Pozniakovsky, Drechsel (bib100) 2018; 174 Friesen, Massenet, Paushkin, Wyce, Dreyfuss (bib27) 2001; 7 Sprangers, Selenko, Sattler, Sinning, Groves (bib88) 2003; 59 Raimer, Gray, Matera (bib73) 2017; 14 Case, Zhang, Ditlev, Rosen (bib15) 2019; 363 Choi, Holehouse, Pappu (bib21) 2020; 49 Shin, Berry, Pannucci, Haataja, Toettcher, Brangwynne (bib84) 2017; 168 Young, Le, Dunckley, Nguyen, Burghes, Morris (bib104) 2001; 265 Zhao, Gish, Braunschweig, Li, Ni, Schmitges, Zhong, Liu, Li, Moffat (bib106) 2016; 529 Brangwynne, Eckmann, Courson, Rybarska, Hoege, Gharakhani, Jülicher, Hyman (bib9) 2009; 324 Trcek, Lehmann (bib94) 2019; 20 Cho, Spille, Hecht, Lee, Li, Grube, Cisse (bib20) 2018; 361 Van Treeck, Protter, Matheny, Khong, Link, Parker (bib98) 2018; 115 Gibson, Doolittle, Schneider, Jensen, Gamarra, Henry, Gerlich, Redding, Rosen (bib29) 2019; 179 Grimm, Chari, Pelz, Kuper, Kisker, Diederichs, Stark, Schindelin, Fischer (bib33) 2013; 49 Carpenter, Jones, Lamprecht, Clarke, Kang, Friman, Guertin, Chang, Lindquist, Moffat (bib14) 2006; 7 Tripsianes, Madl, Machyna, Fessas, Englbrecht, Fischer, Neugebauer, Sattler (bib95) 2011; 18 Ditlev, Case, Rosen (bib24) 2018; 430 Shpargel, Ospina, Tucker, Matera, Hebert (bib86) 2003; 116 Strom, Brangwynne (bib89) 2019; 132 Shpargel, Matera (bib85) 2005; 102 Osman, Bolding, Villalón, Kaifer, Lorson, Tisdale, Hao, Conant, Pires, Pellizzoni, Lorson (bib65) 2019; 9 Pellizzoni, Charroux, Dreyfuss (bib69) 1999; 96 Banjade, Wu, Mittal, Peeples, Pappu, Rosen (bib5) 2015; 112 Girard, Neel, Bertrand, Bordonné (bib30) 2006; 34 Qamar, Wang, Randle, Ruggeri, Varela, Lin, Phillips, Miyashita, Williams, Ströhl (bib72) 2018; 173 Elbaum-Garfinkle, Kim, Szczepaniak, Chen, Eckmann, Myong, Brangwynne (bib25) 2015; 112 Patel, Lee, Jawerth, Maharana, Jahnel, Hein, Stoynov, Mahamid, Saha, Franzmann (bib67) 2015; 162 Chang, Chen, Zhao, Bruick (bib17) 2007; 318 Shin, Brangwynne (bib83) 2017; 357 Chan-Penebre, Kuplast, Majer, Boriack-Sjodin, Wigle, Johnston, Rioux, Munchhof, Jin, Jacques (bib16) 2015; 11 Zhang, So, Li, Yong, Glisovic, Wan, Dreyfuss (bib105) 2011; 146 Meister, Hannus, Plöttner, Baars, Hartmann, Fakan, Laggerbauer, Fischer (bib60) 2001; 20 Yang, Lu, Espejo, Wu, Xu, Liang, Bedford (bib102) 2010; 40 Hebert, Matera (bib38) 2000; 11 Banani, Lee, Hyman, Rosen (bib4) 2017; 18 Guo, Manteiga, Henninger, Sabari, Dall’Agnese, Hannett, Spille, Afeyan, Zamudio, Shrinivas (bib36) 2019; 572 Peng, Weber (bib1) 2019; 5 Källberg, Wang, Wang, Peng, Wang, Lu, Xu (bib43) 2012; 7 Bewersdorf, Schmidt, Hell (bib7) 2006; 222 Gugel, Bewersdorf, Jakobs, Engelhardt, Storz, Hell (bib34) 2004; 87 Sheu-Gruttadauria, MacRae (bib82) 2018; 173 Lemm, Girard, Kuhn, Watkins, Schneider, Bordonné, Lührmann (bib48) 2006; 17 Ruff, Dar, Pappu (bib76) 2021; 118 Strzelecka, Oates, Neugebauer (bib90) 2010; 1 Berezin, Glaser, Rosenberg, Paz, Pupko, Fariselli, Casadio, Ben-Tal (bib6) 2004; 20 Hebert, Shpargel, Ospina, Tucker, Matera (bib40) 2002; 3 Li, Banjade, Cheng, Kim, Chen, Guo, Llaguno, Hollingsworth, King, Banani (bib49) 2012; 483 Goulet, Boisvenue, Mokas, Mazroui, Côté (bib32) 2008; 17 Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid (bib79) 2012; 9 Renvoisé, Khoobarry, Gendron, Cibert, Viollet, Lefebvre (bib74) 2006; 119 Lee, Davies, Liu (bib47) 2009; 332 Liao, Regev (bib50) 2021; 49 Nott, Petsalaki, Farber, Jervis, Fussner, Plochowietz, Craggs, Bazett-Jones, Pawson, Forman-Kay, Baldwin (bib63) 2015; 57 Chitiprolu, Jagow, Tremblay, Bondy-Chorney, Paris, Savard, Palidwor, Barry, Zinman, Keith (bib19) 2018; 9 Hyman, Weber, Jülicher (bib42) 2014; 30 Bühler, Raker, Lührmann, Fischer (bib13) 1999; 8 Kato, Han, Xie, Shi, Du, Wu, Mirzaei, Goldsmith, Longgood, Pei (bib44) 2012; 149 Tsai, Gayatri, Reineke, Sbardella, Bedford, Lloyd (bib96) 2016; 291 Yang, McBride, Hensley, Lu, Chedin, Bedford (bib103) 2014; 53 Alberti, Gladfelter, Mittag (bib2) 2019; 176 Branscombe, Frankel, Lee, Cook, Yang, Pestka, Clarke (bib11) 2001; 276 Listerman, Sapra, Neugebauer (bib52) 2006; 13 Molliex, Temirov, Lee, Coughlin, Kanagaraj, Kim, Mittag, Taylor (bib61) 2015; 163 Strzelecka, Trowitzsch, Weber, Lührmann, Oates, Neugebauer (bib91) 2010; 17 Sanders, Kedersha, Lee, Strom, Drake, Riback, Bracha, Eeftens, Iwanicki, Wang (bib78) 2020; 181 Protter, Rao, Van Treeck, Lin, Mizoue, Rosen, Parker (bib71) 2018; 22 Bugaj, Choksi, Mesuda, Kane, Schaffer (bib12) 2013; 10 Courchaine, Lu, Neugebauer (bib23) 2016; 35 Hao, Allgeyer, Antonello, Watters, Gerdes, Schroeder, Bottanelli, Zhao, Kidd, Lessard (bib37) 2020 Lin, Protter, Rosen, Parker (bib51) 2015; 60 Wang, Dreyfuss (bib99) 2001; 276 Schmidt, Wurm, Jakobs, Engelhardt, Egner, Hell (bib80) 2008; 5 Liu, Wang, Huang, Li, Gong, Lehmann, Xu (bib53) 2010; 24 Novotny (10.1016/j.cell.2021.05.008_bib64) 2015; 10 Hao (10.1016/j.cell.2021.05.008_bib37) 2020 Shin (10.1016/j.cell.2021.05.008_bib83) 2017; 357 Ruff (10.1016/j.cell.2021.05.008_bib76) 2021; 118 Protter (10.1016/j.cell.2021.05.008_bib71) 2018; 22 Molliex (10.1016/j.cell.2021.05.008_bib61) 2015; 163 Osman (10.1016/j.cell.2021.05.008_bib65) 2019; 9 Selenko (10.1016/j.cell.2021.05.008_bib81) 2001; 8 Renvoisé (10.1016/j.cell.2021.05.008_bib74) 2006; 119 Sanders (10.1016/j.cell.2021.05.008_bib78) 2020; 181 Tucker (10.1016/j.cell.2021.05.008_bib97) 2001; 154 Liu (10.1016/j.cell.2021.05.008_bib54) 2012; 7 Brangwynne (10.1016/j.cell.2021.05.008_bib9) 2009; 324 Trcek (10.1016/j.cell.2021.05.008_bib94) 2019; 20 Goulet (10.1016/j.cell.2021.05.008_bib32) 2008; 17 Bewersdorf (10.1016/j.cell.2021.05.008_bib7) 2006; 222 Meister (10.1016/j.cell.2021.05.008_bib60) 2001; 20 Kato (10.1016/j.cell.2021.05.008_bib44) 2012; 149 Girard (10.1016/j.cell.2021.05.008_bib30) 2006; 34 Courchaine (10.1016/j.cell.2021.05.008_bib23) 2016; 35 Lemm (10.1016/j.cell.2021.05.008_bib48) 2006; 17 Chen (10.1016/j.cell.2021.05.008_bib18) 2011; 12 Liu (10.1016/j.cell.2021.05.008_bib53) 2010; 24 Gan (10.1016/j.cell.2021.05.008_bib28) 2019; 54 Pettersson (10.1016/j.cell.2021.05.008_bib70) 1984; 259 Tang (10.1016/j.cell.2021.05.008_bib92) 2000; 275 Yang (10.1016/j.cell.2021.05.008_bib102) 2010; 40 Hofweber (10.1016/j.cell.2021.05.008_bib41) 2018; 173 Chang (10.1016/j.cell.2021.05.008_bib17) 2007; 318 Guo (10.1016/j.cell.2021.05.008_bib36) 2019; 572 Pellizzoni (10.1016/j.cell.2021.05.008_bib68) 1998; 95 Källberg (10.1016/j.cell.2021.05.008_bib43) 2012; 7 Tripsianes (10.1016/j.cell.2021.05.008_bib95) 2011; 18 Mateju (10.1016/j.cell.2021.05.008_bib58) 2017; 36 Sievers (10.1016/j.cell.2021.05.008_bib87) 2011; 7 Grimm (10.1016/j.cell.2021.05.008_bib33) 2013; 49 Young (10.1016/j.cell.2021.05.008_bib104) 2001; 265 Nott (10.1016/j.cell.2021.05.008_bib63) 2015; 57 Gugel (10.1016/j.cell.2021.05.008_bib34) 2004; 87 Ryan (10.1016/j.cell.2021.05.008_bib77) 2018; 69 Strzelecka (10.1016/j.cell.2021.05.008_bib91) 2010; 17 Schmidt (10.1016/j.cell.2021.05.008_bib80) 2008; 5 Zhao (10.1016/j.cell.2021.05.008_bib106) 2016; 529 Sheu-Gruttadauria (10.1016/j.cell.2021.05.008_bib82) 2018; 173 Shin (10.1016/j.cell.2021.05.008_bib84) 2017; 168 Boulon (10.1016/j.cell.2021.05.008_bib8) 2010; 40 Hyman (10.1016/j.cell.2021.05.008_bib42) 2014; 30 Machyna (10.1016/j.cell.2021.05.008_bib57) 2013; 4 Liao (10.1016/j.cell.2021.05.008_bib50) 2021; 49 Banani (10.1016/j.cell.2021.05.008_bib4) 2017; 18 Hebert (10.1016/j.cell.2021.05.008_bib40) 2002; 3 Langdon (10.1016/j.cell.2021.05.008_bib46) 2018; 360 Peng (10.1016/j.cell.2021.05.008_bib1) 2019; 5 Lee (10.1016/j.cell.2021.05.008_bib47) 2009; 332 Guillén-Boixet (10.1016/j.cell.2021.05.008_bib35) 2020; 181 Gordon (10.1016/j.cell.2021.05.008_bib31) 2021; 67 Lyon (10.1016/j.cell.2021.05.008_bib56) 2021; 22 Qamar (10.1016/j.cell.2021.05.008_bib72) 2018; 173 Listerman (10.1016/j.cell.2021.05.008_bib52) 2006; 13 Shpargel (10.1016/j.cell.2021.05.008_bib86) 2003; 116 Yang (10.1016/j.cell.2021.05.008_bib103) 2014; 53 Branscombe (10.1016/j.cell.2021.05.008_bib11) 2001; 276 Ditlev (10.1016/j.cell.2021.05.008_bib24) 2018; 430 Pellizzoni (10.1016/j.cell.2021.05.008_bib69) 1999; 96 Hebert (10.1016/j.cell.2021.05.008_bib38) 2000; 11 Sprangers (10.1016/j.cell.2021.05.008_bib88) 2003; 59 Van Treeck (10.1016/j.cell.2021.05.008_bib98) 2018; 115 Alberti (10.1016/j.cell.2021.05.008_bib2) 2019; 176 Wyman (10.1016/j.cell.2021.05.008_bib101) 1980; 77 Lin (10.1016/j.cell.2021.05.008_bib51) 2015; 60 McSwiggen (10.1016/j.cell.2021.05.008_bib59) 2019; 33 Zhang (10.1016/j.cell.2021.05.008_bib105) 2011; 146 Gibson (10.1016/j.cell.2021.05.008_bib29) 2019; 179 Brangwynne (10.1016/j.cell.2021.05.008_bib10) 2011; 108 Shpargel (10.1016/j.cell.2021.05.008_bib85) 2005; 102 Bugaj (10.1016/j.cell.2021.05.008_bib12) 2013; 10 Lu (10.1016/j.cell.2021.05.008_bib55) 2013; 38 Bühler (10.1016/j.cell.2021.05.008_bib13) 1999; 8 Berezin (10.1016/j.cell.2021.05.008_bib6) 2004; 20 Patel (10.1016/j.cell.2021.05.008_bib67) 2015; 162 Cho (10.1016/j.cell.2021.05.008_bib20) 2018; 361 Choi (10.1016/j.cell.2021.05.008_bib21) 2020; 49 Raimer (10.1016/j.cell.2021.05.008_bib73) 2017; 14 Case (10.1016/j.cell.2021.05.008_bib15) 2019; 363 Banjade (10.1016/j.cell.2021.05.008_bib5) 2015; 112 Eram (10.1016/j.cell.2021.05.008_bib26) 2016; 11 Chitiprolu (10.1016/j.cell.2021.05.008_bib19) 2018; 9 Wang (10.1016/j.cell.2021.05.008_bib99) 2001; 276 Friesen (10.1016/j.cell.2021.05.008_bib27) 2001; 7 Banani (10.1016/j.cell.2021.05.008_bib3) 2016; 166 Moon (10.1016/j.cell.2021.05.008_bib62) 2019; 21 Li (10.1016/j.cell.2021.05.008_bib49) 2012; 483 Chan-Penebre (10.1016/j.cell.2021.05.008_bib16) 2015; 11 Robbins (10.1016/j.cell.2021.05.008_bib75) 2003; 50 Strom (10.1016/j.cell.2021.05.008_bib89) 2019; 132 Pak (10.1016/j.cell.2021.05.008_bib66) 2016; 63 Hebert (10.1016/j.cell.2021.05.008_bib39) 2001; 15 Carpenter (10.1016/j.cell.2021.05.008_bib14) 2006; 7 Corbet (10.1016/j.cell.2021.05.008_bib22) 2019; 84 Kwon (10.1016/j.cell.2021.05.008_bib45) 2013; 155 Schindelin (10.1016/j.cell.2021.05.008_bib79) 2012; 9 Elbaum-Garfinkle (10.1016/j.cell.2021.05.008_bib25) 2015; 112 Tsai (10.1016/j.cell.2021.05.008_bib96) 2016; 291 Wang (10.1016/j.cell.2021.05.008_bib100) 2018; 174 Strzelecka (10.1016/j.cell.2021.05.008_bib90) 2010; 1 Tapia (10.1016/j.cell.2021.05.008_bib93) 2012; 137 |
References_xml | – volume: 20 start-page: 1322 year: 2004 end-page: 1324 ident: bib6 article-title: ConSeq: the identification of functionally and structurally important residues in protein sequences publication-title: Bioinformatics – volume: 318 start-page: 444 year: 2007 end-page: 447 ident: bib17 article-title: JMJD6 is a histone arginine demethylase publication-title: Science – volume: 132 year: 2019 ident: bib89 article-title: The liquid nucleome - phase transitions in the nucleus at a glance publication-title: J. Cell Sci. – volume: 4 start-page: 17 year: 2013 end-page: 34 ident: bib57 article-title: Cajal bodies: where form meets function publication-title: Wiley Interdiscip. Rev. RNA – volume: 291 start-page: 22671 year: 2016 end-page: 22685 ident: bib96 article-title: Arginine Demethylation of G3BP1 Promotes Stress Granule Assembly publication-title: J. Biol. Chem. – volume: 173 start-page: 946 year: 2018 end-page: 957.e16 ident: bib82 article-title: Phase Transitions in the Assembly and Function of Human miRISC publication-title: Cell – volume: 11 start-page: 432 year: 2015 end-page: 437 ident: bib16 article-title: A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models publication-title: Nat. Chem. Biol. – volume: 14 start-page: 701 year: 2017 end-page: 711 ident: bib73 article-title: SMN - A chaperone for nuclear RNP social occasions? publication-title: RNA Biol. – volume: 102 start-page: 17372 year: 2005 end-page: 17377 ident: bib85 article-title: Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins publication-title: Proc. Natl. Acad. Sci. USA – volume: 118 year: 2021 ident: bib76 article-title: Ligand effects on phase separation of multivalent macromolecules publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 249 year: 2013 end-page: 252 ident: bib12 article-title: Optogenetic protein clustering and signaling activation in mammalian cells publication-title: Nat. Methods – volume: 179 start-page: 470 year: 2019 end-page: 484.e21 ident: bib29 article-title: Organization of Chromatin by Intrinsic and Regulated Phase Separation publication-title: Cell – volume: 163 start-page: 123 year: 2015 end-page: 133 ident: bib61 article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization publication-title: Cell – volume: 50 start-page: 1227 year: 2003 end-page: 1232 ident: bib75 article-title: The noise performance of electron multiplying charge-coupled devices publication-title: IEEE Trans. Electron Dev. – volume: 7 start-page: e30375 year: 2012 ident: bib54 article-title: Crystal structure of TDRD3 and methyl-arginine binding characterization of TDRD3, SMN and SPF30 publication-title: PLoS ONE – volume: 63 start-page: 72 year: 2016 end-page: 85 ident: bib66 article-title: Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein publication-title: Mol. Cell – volume: 33 start-page: 1619 year: 2019 end-page: 1634 ident: bib59 article-title: Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences publication-title: Genes Dev. – volume: 7 start-page: 539 year: 2011 ident: bib87 article-title: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega publication-title: Mol. Syst. Biol. – volume: 7 start-page: R100 year: 2006 ident: bib14 article-title: CellProfiler: image analysis software for identifying and quantifying cell phenotypes publication-title: Genome Biol. – volume: 361 start-page: 412 year: 2018 end-page: 415 ident: bib20 article-title: Mediator and RNA polymerase II clusters associate in transcription-dependent condensates publication-title: Science – volume: 5 start-page: 50 year: 2019 ident: bib1 article-title: Evidence for and against Liquid-Liquid Phase Separation in the Nucleus publication-title: Noncoding RNA – volume: 146 start-page: 384 year: 2011 end-page: 395 ident: bib105 article-title: Structure of a key intermediate of the SMN complex reveals Gemin2's crucial function in snRNP assembly publication-title: Cell – volume: 35 start-page: 1603 year: 2016 end-page: 1612 ident: bib23 article-title: Droplet organelles? publication-title: EMBO J. – volume: 137 start-page: 657 year: 2012 end-page: 667 ident: bib93 article-title: Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy publication-title: Histochem. Cell Biol. – volume: 222 start-page: 105 year: 2006 end-page: 117 ident: bib7 article-title: Comparison of I5M and 4Pi-microscopy publication-title: J. Microsc. – volume: 87 start-page: 4146 year: 2004 end-page: 4152 ident: bib34 article-title: Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy publication-title: Biophys. J. – volume: 49 start-page: 636 year: 2021 end-page: 645 ident: bib50 article-title: Splicing at the phase-separated nuclear speckle interface: a model publication-title: Nucleic Acids Res. – volume: 20 start-page: 650 year: 2019 end-page: 660 ident: bib94 article-title: Germ granules in Drosophila publication-title: Traffic – volume: 173 start-page: 706 year: 2018 end-page: 719.e13 ident: bib41 article-title: Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation publication-title: Cell – volume: 154 start-page: 293 year: 2001 end-page: 307 ident: bib97 article-title: Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product publication-title: J. Cell Biol. – volume: 168 start-page: 159 year: 2017 end-page: 171 ident: bib84 article-title: Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets publication-title: Cell – volume: 21 start-page: 162 year: 2019 end-page: 168 ident: bib62 article-title: Multicolour single-molecule tracking of mRNA interactions with RNP granules publication-title: Nat. Cell Biol. – volume: 36 start-page: 1669 year: 2017 end-page: 1687 ident: bib58 article-title: An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function publication-title: EMBO J. – volume: 112 start-page: 7189 year: 2015 end-page: 7194 ident: bib25 article-title: The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics publication-title: Proc. Natl. Acad. Sci. USA – volume: 155 start-page: 1049 year: 2013 end-page: 1060 ident: bib45 article-title: Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains publication-title: Cell – volume: 12 start-page: 629 year: 2011 end-page: 642 ident: bib18 article-title: Deciphering arginine methylation: Tudor tells the tale publication-title: Nat. Rev. Mol. Cell Biol. – volume: 430 start-page: 4666 year: 2018 end-page: 4684 ident: bib24 article-title: Who’s In and Who’s Out-Compositional Control of Biomolecular Condensates publication-title: J. Mol. Biol. – volume: 95 start-page: 615 year: 1998 end-page: 624 ident: bib68 article-title: A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing publication-title: Cell – volume: 8 start-page: 27 year: 2001 end-page: 31 ident: bib81 article-title: SMN tudor domain structure and its interaction with the Sm proteins publication-title: Nat. Struct. Biol. – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: bib79 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods – volume: 17 start-page: 3055 year: 2008 end-page: 3074 ident: bib32 article-title: TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules publication-title: Hum. Mol. Genet. – volume: 10 start-page: 429 year: 2015 end-page: 440 ident: bib64 article-title: SART3-Dependent Accumulation of Incomplete Spliceosomal snRNPs in Cajal Bodies publication-title: Cell Rep. – volume: 96 start-page: 11167 year: 1999 end-page: 11172 ident: bib69 article-title: SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins publication-title: Proc. Natl. Acad. Sci. USA – volume: 181 start-page: 306 year: 2020 end-page: 324 ident: bib78 article-title: Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization publication-title: Cell – volume: 173 start-page: 720 year: 2018 end-page: 734.e15 ident: bib72 article-title: FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions publication-title: Cell – volume: 119 start-page: 680 year: 2006 end-page: 692 ident: bib74 article-title: Distinct domains of the spinal muscular atrophy protein SMN are required for targeting to Cajal bodies in mammalian cells publication-title: J. Cell Sci. – volume: 572 start-page: 543 year: 2019 end-page: 548 ident: bib36 article-title: Pol II phosphorylation regulates a switch between transcriptional and splicing condensates publication-title: Nature – volume: 49 start-page: 692 year: 2013 end-page: 703 ident: bib33 article-title: Structural basis of assembly chaperone- mediated snRNP formation publication-title: Mol. Cell – volume: 360 start-page: 922 year: 2018 end-page: 927 ident: bib46 article-title: mRNA structure determines specificity of a polyQ-driven phase separation publication-title: Science – volume: 77 start-page: 5239 year: 1980 end-page: 5242 ident: bib101 article-title: Ligand-linked phase changes in a biological system: applications to sickle cell hemoglobin publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 9472 year: 2019 ident: bib65 article-title: Functional characterization of SMN evolution in mouse models of SMA publication-title: Sci. Rep. – volume: 49 start-page: 107 year: 2020 end-page: 133 ident: bib21 article-title: Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions publication-title: Annu. Rev. Biophys. – volume: 30 start-page: 39 year: 2014 end-page: 58 ident: bib42 article-title: Liquid-liquid phase separation in biology publication-title: Annu. Rev. Cell Dev. Biol. – volume: 13 start-page: 815 year: 2006 end-page: 822 ident: bib52 article-title: Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells publication-title: Nat. Struct. Mol. Biol. – volume: 40 start-page: 1016 year: 2010 end-page: 1023 ident: bib102 article-title: TDRD3 is an effector molecule for arginine-methylated histone marks publication-title: Mol. Cell – volume: 8 start-page: 2351 year: 1999 end-page: 2357 ident: bib13 article-title: Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy publication-title: Hum. Mol. Genet. – volume: 22 start-page: 1401 year: 2018 end-page: 1412 ident: bib71 article-title: Intrinsically Disordered Regions Can Contribute Promiscuous Interactions to RNP Granule Assembly publication-title: Cell Rep. – volume: 5 start-page: 539 year: 2008 end-page: 544 ident: bib80 article-title: Spherical nanosized focal spot unravels the interior of cells publication-title: Nat. Methods – volume: 18 start-page: 285 year: 2017 end-page: 298 ident: bib4 article-title: Biomolecular condensates: organizers of cellular biochemistry publication-title: Nat. Rev. Mol. Cell Biol. – volume: 20 start-page: 2304 year: 2001 end-page: 2314 ident: bib60 article-title: SMNrp is an essential pre-mRNA splicing factor required for the formation of the mature spliceosome publication-title: EMBO J. – volume: 67 start-page: 67 year: 2021 end-page: 76 ident: bib31 article-title: Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision publication-title: Curr. Opin. Genet. Dev. – volume: 9 start-page: 2794 year: 2018 ident: bib19 article-title: A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy publication-title: Nat. Commun. – volume: 17 start-page: 3221 year: 2006 end-page: 3231 ident: bib48 article-title: Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies publication-title: Mol. Biol. Cell – volume: 265 start-page: 252 year: 2001 end-page: 261 ident: bib104 article-title: Nuclear gems and Cajal (coiled) bodies in fetal tissues: nucleolar distribution of the spinal muscular atrophy protein, SMN publication-title: Exp. Cell Res. – volume: 7 start-page: 1511 year: 2012 end-page: 1522 ident: bib43 article-title: Template-based protein structure modeling using the RaptorX web server publication-title: Nat. Protoc. – volume: 357 year: 2017 ident: bib83 article-title: Liquid phase condensation in cell physiology and disease publication-title: Science – volume: 176 start-page: 419 year: 2019 end-page: 434 ident: bib2 article-title: Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates publication-title: Cell – volume: 166 start-page: 651 year: 2016 end-page: 663 ident: bib3 article-title: Compositional Control of Phase-Separated Cellular Bodies publication-title: Cell – volume: 363 start-page: 1093 year: 2019 end-page: 1097 ident: bib15 article-title: Stoichiometry controls activity of phase-separated clusters of actin signaling proteins publication-title: Science – volume: 54 start-page: 119 year: 2019 end-page: 132 ident: bib28 article-title: Structure and function of eTudor domain containing TDRD proteins publication-title: Crit. Rev. Biochem. Mol. Biol. – volume: 11 start-page: 772 year: 2016 end-page: 781 ident: bib26 article-title: A Potent, Selective, and Cell-Active Inhibitor of Human Type I Protein Arginine Methyltransferases publication-title: ACS Chem. Biol. – volume: 11 start-page: 4159 year: 2000 end-page: 4171 ident: bib38 article-title: Self-association of coilin reveals a common theme in nuclear body localization publication-title: Mol. Biol. Cell – volume: 84 start-page: 203 year: 2019 end-page: 215 ident: bib22 article-title: RNP Granule Formation: Lessons from P-Bodies and Stress Granules publication-title: Cold Spring Harb. Symp. Quant. Biol. – volume: 18 start-page: 1414 year: 2011 end-page: 1420 ident: bib95 article-title: Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins publication-title: Nat. Struct. Mol. Biol. – volume: 115 start-page: 2734 year: 2018 end-page: 2739 ident: bib98 article-title: RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome publication-title: Proc. Natl. Acad. Sci. USA – volume: 60 start-page: 208 year: 2015 end-page: 219 ident: bib51 article-title: Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins publication-title: Mol. Cell – volume: 34 start-page: 2925 year: 2006 end-page: 2932 ident: bib30 article-title: Depletion of SMN by RNA interference in HeLa cells induces defects in Cajal body formation publication-title: Nucleic Acids Res. – volume: 24 start-page: 1876 year: 2010 end-page: 1881 ident: bib53 article-title: Structural basis for methylarginine-dependent recognition of Aubergine by Tudor publication-title: Genes Dev. – volume: 59 start-page: 366 year: 2003 end-page: 368 ident: bib88 article-title: Definition of domain boundaries and crystallization of the SMN Tudor domain publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 116 start-page: 303 year: 2003 end-page: 312 ident: bib86 article-title: Control of Cajal body number is mediated by the coilin C-terminus publication-title: J. Cell Sci. – volume: 276 start-page: 45387 year: 2001 end-page: 45393 ident: bib99 article-title: Characterization of functional domains of the SMN protein in vivo publication-title: J. Biol. Chem. – volume: 112 start-page: E6426 year: 2015 end-page: E6435 ident: bib5 article-title: Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck publication-title: Proc. Natl. Acad. Sci. USA – volume: 324 start-page: 1729 year: 2009 end-page: 1732 ident: bib9 article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation publication-title: Science – volume: 17 start-page: 403 year: 2010 end-page: 409 ident: bib91 article-title: Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis publication-title: Nat. Struct. Mol. Biol. – volume: 275 start-page: 7723 year: 2000 end-page: 7730 ident: bib92 article-title: PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells publication-title: J. Biol. Chem. – volume: 181 start-page: 346 year: 2020 end-page: 361 ident: bib35 article-title: RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation publication-title: Cell – volume: 108 start-page: 4334 year: 2011 end-page: 4339 ident: bib10 article-title: Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes publication-title: Proc. Natl. Acad. Sci. USA – volume: 1 start-page: 96 year: 2010 end-page: 108 ident: bib90 article-title: Dynamic control of Cajal body number during zebrafish embryogenesis publication-title: Nucleus – volume: 3 start-page: 329 year: 2002 end-page: 337 ident: bib40 article-title: Coilin methylation regulates nuclear body formation publication-title: Dev. Cell – volume: 57 start-page: 936 year: 2015 end-page: 947 ident: bib63 article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles publication-title: Mol. Cell – volume: 332 start-page: 142 year: 2009 end-page: 155 ident: bib47 article-title: The spinal muscular atrophy protein SMN affects Drosophila germline nuclear organization through the U body-P body pathway publication-title: Dev. Biol. – volume: 22 start-page: 215 year: 2021 end-page: 235 ident: bib56 article-title: A framework for understanding the functions of biomolecular condensates across scales publication-title: Nat. Rev. Mol. Cell Biol. – volume: 69 start-page: 465 year: 2018 end-page: 479 ident: bib77 article-title: Mechanistic View of hnRNPA2 Low-Complexity Domain Structure, Interactions, and Phase Separation Altered by Mutation and Arginine Methylation publication-title: Mol. Cell – volume: 259 start-page: 5907 year: 1984 end-page: 5914 ident: bib70 article-title: The structure of mammalian small nuclear ribonucleoproteins. Identification of multiple protein components reactive with anti-(U1)ribonucleoprotein and anti-Sm autoantibodies publication-title: J. Biol. Chem. – volume: 162 start-page: 1066 year: 2015 end-page: 1077 ident: bib67 article-title: A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation publication-title: Cell – year: 2020 ident: bib37 article-title: 3D Adaptive Optical Nanoscopy for Thick Specimen Imaging at sub-50 nm Resolution publication-title: bioRxiv – volume: 53 start-page: 484 year: 2014 end-page: 497 ident: bib103 article-title: Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation publication-title: Mol. Cell – volume: 483 start-page: 336 year: 2012 end-page: 340 ident: bib49 article-title: Phase transitions in the assembly of multivalent signalling proteins publication-title: Nature – volume: 38 start-page: 546 year: 2013 end-page: 555 ident: bib55 article-title: Tudor: a versatile family of histone methylation ‘readers’ publication-title: Trends Biochem. Sci. – volume: 149 start-page: 753 year: 2012 end-page: 767 ident: bib44 article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels publication-title: Cell – volume: 529 start-page: 48 year: 2016 end-page: 53 ident: bib106 article-title: SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination publication-title: Nature – volume: 15 start-page: 2720 year: 2001 end-page: 2729 ident: bib39 article-title: Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein publication-title: Genes Dev. – volume: 276 start-page: 32971 year: 2001 end-page: 32976 ident: bib11 article-title: PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins publication-title: J. Biol. Chem. – volume: 174 start-page: 688 year: 2018 end-page: 699 ident: bib100 article-title: A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins publication-title: Cell – volume: 7 start-page: 1111 year: 2001 end-page: 1117 ident: bib27 article-title: SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets publication-title: Mol. Cell – volume: 40 start-page: 216 year: 2010 end-page: 227 ident: bib8 article-title: The nucleolus under stress publication-title: Mol. Cell – volume: 166 start-page: 651 year: 2016 ident: 10.1016/j.cell.2021.05.008_bib3 article-title: Compositional Control of Phase-Separated Cellular Bodies publication-title: Cell doi: 10.1016/j.cell.2016.06.010 – volume: 11 start-page: 432 year: 2015 ident: 10.1016/j.cell.2021.05.008_bib16 article-title: A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1810 – volume: 112 start-page: 7189 year: 2015 ident: 10.1016/j.cell.2021.05.008_bib25 article-title: The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1504822112 – volume: 67 start-page: 67 year: 2021 ident: 10.1016/j.cell.2021.05.008_bib31 article-title: Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2020.11.002 – volume: 22 start-page: 1401 year: 2018 ident: 10.1016/j.cell.2021.05.008_bib71 article-title: Intrinsically Disordered Regions Can Contribute Promiscuous Interactions to RNP Granule Assembly publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.01.036 – volume: 57 start-page: 936 year: 2015 ident: 10.1016/j.cell.2021.05.008_bib63 article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.01.013 – volume: 40 start-page: 216 year: 2010 ident: 10.1016/j.cell.2021.05.008_bib8 article-title: The nucleolus under stress publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.09.024 – volume: 17 start-page: 3221 year: 2006 ident: 10.1016/j.cell.2021.05.008_bib48 article-title: Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e06-03-0247 – volume: 63 start-page: 72 year: 2016 ident: 10.1016/j.cell.2021.05.008_bib66 article-title: Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.05.042 – volume: 50 start-page: 1227 year: 2003 ident: 10.1016/j.cell.2021.05.008_bib75 article-title: The noise performance of electron multiplying charge-coupled devices publication-title: IEEE Trans. Electron Dev. doi: 10.1109/TED.2003.813462 – volume: 60 start-page: 208 year: 2015 ident: 10.1016/j.cell.2021.05.008_bib51 article-title: Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.08.018 – volume: 10 start-page: 249 year: 2013 ident: 10.1016/j.cell.2021.05.008_bib12 article-title: Optogenetic protein clustering and signaling activation in mammalian cells publication-title: Nat. Methods doi: 10.1038/nmeth.2360 – volume: 20 start-page: 2304 year: 2001 ident: 10.1016/j.cell.2021.05.008_bib60 article-title: SMNrp is an essential pre-mRNA splicing factor required for the formation of the mature spliceosome publication-title: EMBO J. doi: 10.1093/emboj/20.9.2304 – volume: 36 start-page: 1669 year: 2017 ident: 10.1016/j.cell.2021.05.008_bib58 article-title: An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function publication-title: EMBO J. doi: 10.15252/embj.201695957 – volume: 222 start-page: 105 year: 2006 ident: 10.1016/j.cell.2021.05.008_bib7 article-title: Comparison of I5M and 4Pi-microscopy publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2006.01578.x – year: 2020 ident: 10.1016/j.cell.2021.05.008_bib37 article-title: 3D Adaptive Optical Nanoscopy for Thick Specimen Imaging at sub-50 nm Resolution publication-title: bioRxiv – volume: 69 start-page: 465 year: 2018 ident: 10.1016/j.cell.2021.05.008_bib77 article-title: Mechanistic View of hnRNPA2 Low-Complexity Domain Structure, Interactions, and Phase Separation Altered by Mutation and Arginine Methylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.12.022 – volume: 529 start-page: 48 year: 2016 ident: 10.1016/j.cell.2021.05.008_bib106 article-title: SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination publication-title: Nature doi: 10.1038/nature16469 – volume: 13 start-page: 815 year: 2006 ident: 10.1016/j.cell.2021.05.008_bib52 article-title: Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1135 – volume: 4 start-page: 17 year: 2013 ident: 10.1016/j.cell.2021.05.008_bib57 article-title: Cajal bodies: where form meets function publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1139 – volume: 291 start-page: 22671 year: 2016 ident: 10.1016/j.cell.2021.05.008_bib96 article-title: Arginine Demethylation of G3BP1 Promotes Stress Granule Assembly publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.739573 – volume: 112 start-page: E6426 year: 2015 ident: 10.1016/j.cell.2021.05.008_bib5 article-title: Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1508778112 – volume: 9 start-page: 9472 year: 2019 ident: 10.1016/j.cell.2021.05.008_bib65 article-title: Functional characterization of SMN evolution in mouse models of SMA publication-title: Sci. Rep. doi: 10.1038/s41598-019-45822-8 – volume: 357 year: 2017 ident: 10.1016/j.cell.2021.05.008_bib83 article-title: Liquid phase condensation in cell physiology and disease publication-title: Science doi: 10.1126/science.aaf4382 – volume: 115 start-page: 2734 year: 2018 ident: 10.1016/j.cell.2021.05.008_bib98 article-title: RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1800038115 – volume: 118 year: 2021 ident: 10.1016/j.cell.2021.05.008_bib76 article-title: Ligand effects on phase separation of multivalent macromolecules publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2017184118 – volume: 1 start-page: 96 year: 2010 ident: 10.1016/j.cell.2021.05.008_bib90 article-title: Dynamic control of Cajal body number during zebrafish embryogenesis publication-title: Nucleus doi: 10.4161/nucl.1.1.10680 – volume: 332 start-page: 142 year: 2009 ident: 10.1016/j.cell.2021.05.008_bib47 article-title: The spinal muscular atrophy protein SMN affects Drosophila germline nuclear organization through the U body-P body pathway publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2009.05.553 – volume: 87 start-page: 4146 year: 2004 ident: 10.1016/j.cell.2021.05.008_bib34 article-title: Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy publication-title: Biophys. J. doi: 10.1529/biophysj.104.045815 – volume: 119 start-page: 680 year: 2006 ident: 10.1016/j.cell.2021.05.008_bib74 article-title: Distinct domains of the spinal muscular atrophy protein SMN are required for targeting to Cajal bodies in mammalian cells publication-title: J. Cell Sci. doi: 10.1242/jcs.02782 – volume: 108 start-page: 4334 year: 2011 ident: 10.1016/j.cell.2021.05.008_bib10 article-title: Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1017150108 – volume: 20 start-page: 650 year: 2019 ident: 10.1016/j.cell.2021.05.008_bib94 article-title: Germ granules in Drosophila publication-title: Traffic doi: 10.1111/tra.12674 – volume: 34 start-page: 2925 year: 2006 ident: 10.1016/j.cell.2021.05.008_bib30 article-title: Depletion of SMN by RNA interference in HeLa cells induces defects in Cajal body formation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl374 – volume: 95 start-page: 615 year: 1998 ident: 10.1016/j.cell.2021.05.008_bib68 article-title: A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing publication-title: Cell doi: 10.1016/S0092-8674(00)81632-3 – volume: 265 start-page: 252 year: 2001 ident: 10.1016/j.cell.2021.05.008_bib104 article-title: Nuclear gems and Cajal (coiled) bodies in fetal tissues: nucleolar distribution of the spinal muscular atrophy protein, SMN publication-title: Exp. Cell Res. doi: 10.1006/excr.2001.5186 – volume: 12 start-page: 629 year: 2011 ident: 10.1016/j.cell.2021.05.008_bib18 article-title: Deciphering arginine methylation: Tudor tells the tale publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3185 – volume: 24 start-page: 1876 year: 2010 ident: 10.1016/j.cell.2021.05.008_bib53 article-title: Structural basis for methylarginine-dependent recognition of Aubergine by Tudor publication-title: Genes Dev. doi: 10.1101/gad.1956010 – volume: 35 start-page: 1603 year: 2016 ident: 10.1016/j.cell.2021.05.008_bib23 article-title: Droplet organelles? publication-title: EMBO J. doi: 10.15252/embj.201593517 – volume: 137 start-page: 657 year: 2012 ident: 10.1016/j.cell.2021.05.008_bib93 article-title: Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy publication-title: Histochem. Cell Biol. doi: 10.1007/s00418-012-0921-8 – volume: 38 start-page: 546 year: 2013 ident: 10.1016/j.cell.2021.05.008_bib55 article-title: Tudor: a versatile family of histone methylation ‘readers’ publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2013.08.002 – volume: 181 start-page: 346 year: 2020 ident: 10.1016/j.cell.2021.05.008_bib35 article-title: RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation publication-title: Cell doi: 10.1016/j.cell.2020.03.049 – volume: 18 start-page: 1414 year: 2011 ident: 10.1016/j.cell.2021.05.008_bib95 article-title: Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2185 – volume: 7 start-page: 539 year: 2011 ident: 10.1016/j.cell.2021.05.008_bib87 article-title: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2011.75 – volume: 8 start-page: 2351 year: 1999 ident: 10.1016/j.cell.2021.05.008_bib13 article-title: Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/8.13.2351 – volume: 49 start-page: 107 year: 2020 ident: 10.1016/j.cell.2021.05.008_bib21 article-title: Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-121219-081629 – volume: 363 start-page: 1093 year: 2019 ident: 10.1016/j.cell.2021.05.008_bib15 article-title: Stoichiometry controls activity of phase-separated clusters of actin signaling proteins publication-title: Science doi: 10.1126/science.aau6313 – volume: 9 start-page: 676 year: 2012 ident: 10.1016/j.cell.2021.05.008_bib79 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 11 start-page: 772 year: 2016 ident: 10.1016/j.cell.2021.05.008_bib26 article-title: A Potent, Selective, and Cell-Active Inhibitor of Human Type I Protein Arginine Methyltransferases publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b00839 – volume: 14 start-page: 701 year: 2017 ident: 10.1016/j.cell.2021.05.008_bib73 article-title: SMN - A chaperone for nuclear RNP social occasions? publication-title: RNA Biol. doi: 10.1080/15476286.2016.1236168 – volume: 146 start-page: 384 year: 2011 ident: 10.1016/j.cell.2021.05.008_bib105 article-title: Structure of a key intermediate of the SMN complex reveals Gemin2's crucial function in snRNP assembly publication-title: Cell doi: 10.1016/j.cell.2011.06.043 – volume: 21 start-page: 162 year: 2019 ident: 10.1016/j.cell.2021.05.008_bib62 article-title: Multicolour single-molecule tracking of mRNA interactions with RNP granules publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0263-4 – volume: 181 start-page: 306 year: 2020 ident: 10.1016/j.cell.2021.05.008_bib78 article-title: Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization publication-title: Cell doi: 10.1016/j.cell.2020.03.050 – volume: 84 start-page: 203 year: 2019 ident: 10.1016/j.cell.2021.05.008_bib22 article-title: RNP Granule Formation: Lessons from P-Bodies and Stress Granules publication-title: Cold Spring Harb. Symp. Quant. Biol. doi: 10.1101/sqb.2019.84.040329 – volume: 22 start-page: 215 year: 2021 ident: 10.1016/j.cell.2021.05.008_bib56 article-title: A framework for understanding the functions of biomolecular condensates across scales publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-00303-z – volume: 572 start-page: 543 year: 2019 ident: 10.1016/j.cell.2021.05.008_bib36 article-title: Pol II phosphorylation regulates a switch between transcriptional and splicing condensates publication-title: Nature doi: 10.1038/s41586-019-1464-0 – volume: 59 start-page: 366 year: 2003 ident: 10.1016/j.cell.2021.05.008_bib88 article-title: Definition of domain boundaries and crystallization of the SMN Tudor domain publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444902021406 – volume: 163 start-page: 123 year: 2015 ident: 10.1016/j.cell.2021.05.008_bib61 article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization publication-title: Cell doi: 10.1016/j.cell.2015.09.015 – volume: 11 start-page: 4159 year: 2000 ident: 10.1016/j.cell.2021.05.008_bib38 article-title: Self-association of coilin reveals a common theme in nuclear body localization publication-title: Mol. Biol. Cell doi: 10.1091/mbc.11.12.4159 – volume: 173 start-page: 706 year: 2018 ident: 10.1016/j.cell.2021.05.008_bib41 article-title: Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation publication-title: Cell doi: 10.1016/j.cell.2018.03.004 – volume: 276 start-page: 32971 year: 2001 ident: 10.1016/j.cell.2021.05.008_bib11 article-title: PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M105412200 – volume: 275 start-page: 7723 year: 2000 ident: 10.1016/j.cell.2021.05.008_bib92 article-title: PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.11.7723 – volume: 324 start-page: 1729 year: 2009 ident: 10.1016/j.cell.2021.05.008_bib9 article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation publication-title: Science doi: 10.1126/science.1172046 – volume: 30 start-page: 39 year: 2014 ident: 10.1016/j.cell.2021.05.008_bib42 article-title: Liquid-liquid phase separation in biology publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100913-013325 – volume: 155 start-page: 1049 year: 2013 ident: 10.1016/j.cell.2021.05.008_bib45 article-title: Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains publication-title: Cell doi: 10.1016/j.cell.2013.10.033 – volume: 49 start-page: 636 year: 2021 ident: 10.1016/j.cell.2021.05.008_bib50 article-title: Splicing at the phase-separated nuclear speckle interface: a model publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1209 – volume: 33 start-page: 1619 year: 2019 ident: 10.1016/j.cell.2021.05.008_bib59 article-title: Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences publication-title: Genes Dev. doi: 10.1101/gad.331520.119 – volume: 132 year: 2019 ident: 10.1016/j.cell.2021.05.008_bib89 article-title: The liquid nucleome - phase transitions in the nucleus at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.235093 – volume: 20 start-page: 1322 year: 2004 ident: 10.1016/j.cell.2021.05.008_bib6 article-title: ConSeq: the identification of functionally and structurally important residues in protein sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth070 – volume: 17 start-page: 3055 year: 2008 ident: 10.1016/j.cell.2021.05.008_bib32 article-title: TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddn203 – volume: 168 start-page: 159 year: 2017 ident: 10.1016/j.cell.2021.05.008_bib84 article-title: Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets publication-title: Cell doi: 10.1016/j.cell.2016.11.054 – volume: 149 start-page: 753 year: 2012 ident: 10.1016/j.cell.2021.05.008_bib44 article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels publication-title: Cell doi: 10.1016/j.cell.2012.04.017 – volume: 162 start-page: 1066 year: 2015 ident: 10.1016/j.cell.2021.05.008_bib67 article-title: A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation publication-title: Cell doi: 10.1016/j.cell.2015.07.047 – volume: 53 start-page: 484 year: 2014 ident: 10.1016/j.cell.2021.05.008_bib103 article-title: Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.01.011 – volume: 54 start-page: 119 year: 2019 ident: 10.1016/j.cell.2021.05.008_bib28 article-title: Structure and function of eTudor domain containing TDRD proteins publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.1080/10409238.2019.1603199 – volume: 174 start-page: 688 year: 2018 ident: 10.1016/j.cell.2021.05.008_bib100 article-title: A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins publication-title: Cell doi: 10.1016/j.cell.2018.06.006 – volume: 173 start-page: 720 year: 2018 ident: 10.1016/j.cell.2021.05.008_bib72 article-title: FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions publication-title: Cell doi: 10.1016/j.cell.2018.03.056 – volume: 96 start-page: 11167 year: 1999 ident: 10.1016/j.cell.2021.05.008_bib69 article-title: SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.20.11167 – volume: 5 start-page: 50 year: 2019 ident: 10.1016/j.cell.2021.05.008_bib1 article-title: Evidence for and against Liquid-Liquid Phase Separation in the Nucleus publication-title: Noncoding RNA – volume: 10 start-page: 429 year: 2015 ident: 10.1016/j.cell.2021.05.008_bib64 article-title: SART3-Dependent Accumulation of Incomplete Spliceosomal snRNPs in Cajal Bodies publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.12.030 – volume: 3 start-page: 329 year: 2002 ident: 10.1016/j.cell.2021.05.008_bib40 article-title: Coilin methylation regulates nuclear body formation publication-title: Dev. Cell doi: 10.1016/S1534-5807(02)00222-8 – volume: 173 start-page: 946 year: 2018 ident: 10.1016/j.cell.2021.05.008_bib82 article-title: Phase Transitions in the Assembly and Function of Human miRISC publication-title: Cell doi: 10.1016/j.cell.2018.02.051 – volume: 40 start-page: 1016 year: 2010 ident: 10.1016/j.cell.2021.05.008_bib102 article-title: TDRD3 is an effector molecule for arginine-methylated histone marks publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.11.024 – volume: 18 start-page: 285 year: 2017 ident: 10.1016/j.cell.2021.05.008_bib4 article-title: Biomolecular condensates: organizers of cellular biochemistry publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.7 – volume: 77 start-page: 5239 year: 1980 ident: 10.1016/j.cell.2021.05.008_bib101 article-title: Ligand-linked phase changes in a biological system: applications to sickle cell hemoglobin publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.77.9.5239 – volume: 7 start-page: R100 year: 2006 ident: 10.1016/j.cell.2021.05.008_bib14 article-title: CellProfiler: image analysis software for identifying and quantifying cell phenotypes publication-title: Genome Biol. doi: 10.1186/gb-2006-7-10-r100 – volume: 9 start-page: 2794 year: 2018 ident: 10.1016/j.cell.2021.05.008_bib19 article-title: A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy publication-title: Nat. Commun. doi: 10.1038/s41467-018-05273-7 – volume: 483 start-page: 336 year: 2012 ident: 10.1016/j.cell.2021.05.008_bib49 article-title: Phase transitions in the assembly of multivalent signalling proteins publication-title: Nature doi: 10.1038/nature10879 – volume: 7 start-page: 1511 year: 2012 ident: 10.1016/j.cell.2021.05.008_bib43 article-title: Template-based protein structure modeling using the RaptorX web server publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.085 – volume: 8 start-page: 27 year: 2001 ident: 10.1016/j.cell.2021.05.008_bib81 article-title: SMN tudor domain structure and its interaction with the Sm proteins publication-title: Nat. Struct. Biol. doi: 10.1038/83014 – volume: 116 start-page: 303 year: 2003 ident: 10.1016/j.cell.2021.05.008_bib86 article-title: Control of Cajal body number is mediated by the coilin C-terminus publication-title: J. Cell Sci. doi: 10.1242/jcs.00211 – volume: 179 start-page: 470 year: 2019 ident: 10.1016/j.cell.2021.05.008_bib29 article-title: Organization of Chromatin by Intrinsic and Regulated Phase Separation publication-title: Cell doi: 10.1016/j.cell.2019.08.037 – volume: 49 start-page: 692 year: 2013 ident: 10.1016/j.cell.2021.05.008_bib33 article-title: Structural basis of assembly chaperone- mediated snRNP formation publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.12.009 – volume: 361 start-page: 412 year: 2018 ident: 10.1016/j.cell.2021.05.008_bib20 article-title: Mediator and RNA polymerase II clusters associate in transcription-dependent condensates publication-title: Science doi: 10.1126/science.aar4199 – volume: 7 start-page: e30375 year: 2012 ident: 10.1016/j.cell.2021.05.008_bib54 article-title: Crystal structure of TDRD3 and methyl-arginine binding characterization of TDRD3, SMN and SPF30 publication-title: PLoS ONE doi: 10.1371/journal.pone.0030375 – volume: 102 start-page: 17372 year: 2005 ident: 10.1016/j.cell.2021.05.008_bib85 article-title: Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0508947102 – volume: 154 start-page: 293 year: 2001 ident: 10.1016/j.cell.2021.05.008_bib97 article-title: Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product publication-title: J. Cell Biol. doi: 10.1083/jcb.200104083 – volume: 259 start-page: 5907 year: 1984 ident: 10.1016/j.cell.2021.05.008_bib70 article-title: The structure of mammalian small nuclear ribonucleoproteins. Identification of multiple protein components reactive with anti-(U1)ribonucleoprotein and anti-Sm autoantibodies publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)91101-4 – volume: 5 start-page: 539 year: 2008 ident: 10.1016/j.cell.2021.05.008_bib80 article-title: Spherical nanosized focal spot unravels the interior of cells publication-title: Nat. Methods doi: 10.1038/nmeth.1214 – volume: 318 start-page: 444 year: 2007 ident: 10.1016/j.cell.2021.05.008_bib17 article-title: JMJD6 is a histone arginine demethylase publication-title: Science doi: 10.1126/science.1145801 – volume: 430 start-page: 4666 year: 2018 ident: 10.1016/j.cell.2021.05.008_bib24 article-title: Who’s In and Who’s Out-Compositional Control of Biomolecular Condensates publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2018.08.003 – volume: 360 start-page: 922 year: 2018 ident: 10.1016/j.cell.2021.05.008_bib46 article-title: mRNA structure determines specificity of a polyQ-driven phase separation publication-title: Science doi: 10.1126/science.aar7432 – volume: 15 start-page: 2720 year: 2001 ident: 10.1016/j.cell.2021.05.008_bib39 article-title: Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein publication-title: Genes Dev. doi: 10.1101/gad.908401 – volume: 7 start-page: 1111 year: 2001 ident: 10.1016/j.cell.2021.05.008_bib27 article-title: SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets publication-title: Mol. Cell doi: 10.1016/S1097-2765(01)00244-1 – volume: 176 start-page: 419 year: 2019 ident: 10.1016/j.cell.2021.05.008_bib2 article-title: Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates publication-title: Cell doi: 10.1016/j.cell.2018.12.035 – volume: 17 start-page: 403 year: 2010 ident: 10.1016/j.cell.2021.05.008_bib91 article-title: Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1783 – volume: 276 start-page: 45387 year: 2001 ident: 10.1016/j.cell.2021.05.008_bib99 article-title: Characterization of functional domains of the SMN protein in vivo publication-title: J. Biol. Chem. doi: 10.1074/jbc.M105059200 |
SSID | ssj0008555 |
Score | 2.5590236 |
Snippet | Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the “survival of motor neuron protein” (SMN) is implicated in the... Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the... Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the ‘survival of motor neuron protein’ (SMN) is implicated in the... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3612 |
SubjectTerms | Animals Arginine - analogs & derivatives Arginine - metabolism Biomolecular Condensates - metabolism biomolecular condensation Cajal body Cell Nucleus - metabolism Coiled Bodies - metabolism condensates dimethylarginine DMA Drosophila melanogaster - metabolism HEK293 Cells HeLa Cells Humans Ligands membraneless organelle Methylation Mice microscopy MLO Models, Biological motor neurons NIH 3T3 Cells nuclear gem organelles post-translational modification Protein Binding Protein Domains Protein Multimerization Ribonucleoproteins, Small Nuclear - metabolism SMN Complex Proteins - chemistry SMN Complex Proteins - metabolism tudor domains |
Title | DMA-tudor interaction modules control the specificity of in vivo condensates |
URI | https://dx.doi.org/10.1016/j.cell.2021.05.008 https://www.ncbi.nlm.nih.gov/pubmed/34115980 https://www.proquest.com/docview/2540521063 https://www.proquest.com/docview/2661038784 https://pubmed.ncbi.nlm.nih.gov/PMC8402948 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KIHgR39YXEbxJaJJ9ZHOs1VKEerLQ27KbbLBSk9IX-G_8Lf4yZ_IoVqUHT6XdCSSzszPfpPPNEHIThSmlhhk3CYyHTbWFK9GWIRWREA24DiWykftPojdgj0M-bJBOzYXBssrK95c-vfDW1S-tSputyWiEHN8okAJSOx-JgByJ5pTJgsQ3vFt5Y8l5OcUggpMP0hVxpqzxwpfjkCMGftG9E0dM_h2cfoPPnzWU34JSd4_sVmjSaZc3vE8aNjsg2-V8yfdD0r_vt935IsmnDraFmJYkBuctTxZjO3OqMnUHMKCDjEusGgJQ7uQpiH9-LEfLHGXAM80QkR6RQffhudNzq_kJbgzHcu6y1EuMBZ0naahjLbwkFqmQKfe1ptomBqAID-GDwkbR2KMMor-Jw9BayXxP02OyleWZPSVOCMguFTGnghsGKaFOmUelMYYCAosD2iR-rTgVV83FccbFWNVVZK8Kla1Q2crjCpTdJLerayZla42N0rzeD7VmIAp8_8brruvNU3BycFlnNl_MVIBgFYxH0A0yAF_wD37JmuSk3PDVvUL8BywovSYJ10xhJYCdu9dXstFL0cEbsuogYvLsn890TnbwW1E1LC_I1ny6sJeAjebmqjD-L4z0DcQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTtxAEC0RoihcUAIJTBLASNwiC9u9zpGwaCAMJ5Dm1uq222IQ2GgWJP6Gb8mXUeVllAE0B06W3NWSXVu_smsB2OuqnDHHXZglLqKm2jLUpMsYimg8DYRVmqqR-xeyd8XPBmKwBIdtLQylVTa-v_bplbdu7uw33Ny_Hw6pxrebaImhXUyFgEJ8gI-IBhTNbzgd_Jm5Yy1EPcagi6aP5E3lTJ3kRV_HMUhM4qp9J82YfPt0eo0-XyZR_ncqnXyB1QZOBgf1E3-FJV-swad6wOTjOvSP-gfhZJqVo4D6QozqKobgrsymt34cNHnqAYLAgEouKW0IUXlQ5kj-7-lh-FASDbqmMUHSb3B1cnx52AubAQphinY5CXkeZc4j07Nc2dTKKEtlLnUuYmuZ9ZlDLCIUXhhKiqUR43j8u1Qp7zWPI8u-w3JRFn4TAoXQLpepYFI4jjGhzXnEtHOOIQRLE9aBuGWcSZvu4jTk4ta0aWQ3hphtiNkmEgaZ3YHfsz33dW-NhdSilYeZ0xCDzn_hvt1WeAZNh5Zt4cvp2CSEVlF7JFtAg_iF_vBr3oGNWuCzZ0UAgGBQRx1Qc6owI6DW3fMrxfC6auGNYXXS5frHO99pBz73Lvvn5vz04u9PWKGVKoVY_4LlyWjqtxAoTdx2ZQjPGBEQ4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DMA-tudor+interaction+modules+control+the+specificity+of+in+vivo+condensates&rft.jtitle=Cell&rft.au=Courchaine%2C+Edward+M.&rft.au=Barentine%2C+Andrew+E.S.&rft.au=Straube%2C+Korinna&rft.au=Lee%2C+Dong-Ryoung&rft.date=2021-07-08&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=184&rft.issue=14&rft.spage=3612&rft.epage=3625.e17&rft_id=info:doi/10.1016%2Fj.cell.2021.05.008&rft_id=info%3Apmid%2F34115980&rft.externalDocID=PMC8402948 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |