A Convex Analysis Framework for Blind Separation of Non-Negative Sources

This paper presents a new framework for blind source separation (BSS) of non-negative source signals. The proposed framework, referred herein to as convex analysis of mixtures of non-negative sources (CAMNS), is deterministic requiring no source independence assumption, the entrenched premise in man...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 56; no. 10; pp. 5120 - 5134
Main Authors CHAN, Tsung-Han, MA, Wing-Kin, CHI, Chong-Yung, YUE WANG
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a new framework for blind source separation (BSS) of non-negative source signals. The proposed framework, referred herein to as convex analysis of mixtures of non-negative sources (CAMNS), is deterministic requiring no source independence assumption, the entrenched premise in many existing (usually statistical) BSS frameworks. The development is based on a special assumption called local dominance. It is a good assumption for source signals exhibiting sparsity or high contrast, and thus is considered realistic to many real-world problems such as multichannel biomedical imaging. Under local dominance and several standard assumptions, we apply convex analysis to establish a new BSS criterion, which states that the source signals can be perfectly identified (in a blind fashion) by finding the extreme points of an observation-constructed polyhedral set. Methods for fulfilling the CAMNS criterion are also derived, using either linear programming or simplex geometry. Simulation results on several data sets are presented to demonstrate the efficacy of the proposed method over several other reported BSS methods.
AbstractList This paper presents a new framework for blind source separation (BSS) of non-negative source signals. The proposed framework, referred herein to as convex analysis of mixtures of non-negative sources (CAMNS), is deterministic requiring no source independence assumption, the entrenched premise in many existing (usually statistical) BSS frameworks. The development is based on a special assumption called local dominance. It is a good assumption for source signals exhibiting sparsity or high contrast, and thus is considered realistic to many real-world problems such as multichannel biomedical imaging. Under local dominance and several standard assumptions, we apply convex analysis to establish a new BSS criterion, which states that the source signals can be perfectly identified (in a blind fashion) by finding the extreme points of an observation-constructed polyhedral set. Methods for fulfilling the CAMNS criterion are also derived, using either linear programming or simplex geometry. Simulation results on several data sets are presented to demonstrate the efficacy of the proposed method over several other reported BSS methods.
Under local dominance and several standard assumptions, we apply convex analysis to establish a new BSS criterion, which states that the source signals can be perfectly identified (in a blind fashion) by finding the extreme points of an observation-constructed polyhedral set.
Author Wing-Kin Ma
Chong-Yung Chi
Yue Wang
Tsung-Han Chan
Author_xml – sequence: 1
  givenname: Tsung-Han
  surname: CHAN
  fullname: CHAN, Tsung-Han
  organization: Institute of Communications Engineering and the Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, Province of China
– sequence: 2
  givenname: Wing-Kin
  surname: MA
  fullname: MA, Wing-Kin
  organization: Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T, Hong-Kong
– sequence: 3
  givenname: Chong-Yung
  surname: CHI
  fullname: CHI, Chong-Yung
  organization: Institute of Communications Engineering and the Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, Province of China
– sequence: 4
  surname: YUE WANG
  fullname: YUE WANG
  organization: Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20702753$$DView record in Pascal Francis
BookMark eNp9kU1PAjEQhhuDiYCePXhpTNTTQr-2H0ckIiYETcDE26aUrllcWmwB5d9bAvHgwdPMZJ55MzNvCzScdxaAS4w6GCPVnU5eOgQh2VFEKipOQBMrhjPEBG-kHOU0y6V4OwOtGBcIYcYUb4JhD_a929pv2HO63sUqwkHQS_vlwwcsfYD3deXmcGJXOuh15R30JRx7l43te6q3Fk78Jhgbz8FpqetoL46xDV4HD9P-MBs9Pz71e6PMMCnXGZsJQgxHihqtBCeGCTbDZiYFNVQTIygRM2JkXnJt0r6C5FzheToIa8uNom1wd9BdBf-5sXFdLKtobF1rZ_0mFlIizrjkKJG3_5KUyZwl9QRe_wEX6ab0jqTGKckxwyJB3QNkgo8x2LJYhWqpw67AqNgbUCQDir0BxcGANHFzlNXR6LoM2pkq_o4RJBAROU3c1YGrrLW_bZYLhSmiP-rRjbM
CODEN ITPRED
CitedBy_id crossref_primary_10_1364_BOE_3_002244
crossref_primary_10_1137_130946782
crossref_primary_10_1186_s12859_016_1120_8
crossref_primary_10_1093_micmic_ozac018
crossref_primary_10_1109_TSP_2013_2287683
crossref_primary_10_1007_s12204_014_1548_9
crossref_primary_10_1137_18M1188793
crossref_primary_10_1177_0003702816662600
crossref_primary_10_1002_cem_1257
crossref_primary_10_1007_s12539_021_00495_8
crossref_primary_10_1109_TSP_2015_2508778
crossref_primary_10_1186_1687_6180_2013_32
crossref_primary_10_3390_e20030150
crossref_primary_10_1117_1_3596620
crossref_primary_10_1016_j_neucom_2014_12_082
crossref_primary_10_1016_j_actaastro_2010_09_010
crossref_primary_10_1038_srep18909
crossref_primary_10_1109_TGRS_2011_2151197
crossref_primary_10_1109_TNNLS_2012_2208476
crossref_primary_10_1137_130940670
crossref_primary_10_1007_s11760_014_0646_3
crossref_primary_10_1016_j_jmsy_2019_09_013
crossref_primary_10_1093_bioinformatics_btaa205
crossref_primary_10_1007_s10044_015_0517_8
crossref_primary_10_1109_TGRS_2012_2230182
crossref_primary_10_1016_j_jmr_2010_01_014
crossref_primary_10_1007_s11760_016_0877_6
crossref_primary_10_1109_LSP_2015_2498523
crossref_primary_10_3390_sym16020154
crossref_primary_10_1109_TNN_2011_2164621
crossref_primary_10_1109_TSP_2015_2404577
crossref_primary_10_1109_TNNLS_2014_2350026
crossref_primary_10_1002_cem_2456
crossref_primary_10_1137_140994915
crossref_primary_10_1049_iet_spr_2013_0409
crossref_primary_10_1109_TSP_2022_3178191
crossref_primary_10_1109_TSP_2013_2280115
crossref_primary_10_1137_17M114145X
crossref_primary_10_1109_MSP_2013_2279731
crossref_primary_10_3390_rs15041053
crossref_primary_10_1109_TSP_2009_2025802
crossref_primary_10_1109_TGRS_2011_2170999
crossref_primary_10_1109_TGRS_2011_2141672
crossref_primary_10_1109_TIP_2020_2974062
crossref_primary_10_1016_j_sigpro_2016_07_016
crossref_primary_10_1109_JPROC_2016_2607121
crossref_primary_10_1109_TNNLS_2017_2749279
crossref_primary_10_1109_TNNLS_2012_2224671
crossref_primary_10_1109_TPAMI_2009_72
crossref_primary_10_1016_j_camwa_2011_09_003
crossref_primary_10_1016_j_sigpro_2012_05_019
crossref_primary_10_1109_TGRS_2015_2424719
crossref_primary_10_1093_bioinformatics_btae107
crossref_primary_10_1109_TSP_2020_2989551
crossref_primary_10_1109_TPAMI_2019_2956046
crossref_primary_10_1109_TCSI_2019_2908394
crossref_primary_10_1109_TIP_2017_2753400
crossref_primary_10_1109_ACCESS_2019_2956772
crossref_primary_10_1109_TBME_2015_2469601
crossref_primary_10_1109_TSP_2022_3177845
crossref_primary_10_1002_cem_2512
crossref_primary_10_1038_srep38350
crossref_primary_10_1109_MSP_2018_2877582
crossref_primary_10_1007_s41870_023_01226_6
crossref_primary_10_1007_s12190_023_01949_6
crossref_primary_10_1038_s41598_022_04938_0
crossref_primary_10_1021_acsomega_0c01733
crossref_primary_10_1016_j_ultramic_2020_113116
crossref_primary_10_1109_TNNLS_2012_2224124
crossref_primary_10_1109_TSP_2018_2869122
Cites_doi 10.1109/TSP.2004.823502
10.1109/TNN.2006.889941
10.1002/0470845899
10.1109/TSP.2005.861073
10.1109/MLSP.2006.275525
10.1162/neco.1997.9.7.1483
10.1002/0471221317
10.1017/CBO9780511804441
10.1287/moor.8.3.381
10.1002/nav.3800020109
10.1017/CBO9780511810817
10.1109/78.992139
10.1109/TSMCA.2004.824848
10.1109/TNN.2002.804287
10.1109/LSP.2003.821658
10.1109/TGRS.2004.839806
10.1109/78.554307
10.1109/TSP.2006.880310
10.1007/11818564_17
10.1021/ac051707c
10.1155/IJBI/2006/29707
10.1016/0925-7721(95)00049-6
10.1021/ac00063a019
10.1109/97.704974
10.1287/ijoc.6.1.1
10.1109/TSP.2002.806865
10.1038/44565
10.1109/TNN.2003.810616
10.1080/10556789908805766
10.1109/TSP.2003.815387
10.1109/TSP.2003.815393
10.1016/S0165-1684(97)00198-9
10.1109/TSP.2005.861800
10.1007/978-1-4613-0019-9
10.1109/TSP.2006.872578
10.1145/1149283.1149286
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: 2008 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
IQODW
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2008.928937
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
Pascal-Francis
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 5134
ExternalDocumentID 2328826291
10_1109_TSP_2008_928937
20702753
4579130
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAYOK
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AI.
AIBXA
AJQPL
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
VH1
XFK
ABPTK
IQODW
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c488t-4b722c6093ca9762c474b1cb873c3a2c7327b2c85f6ac587725691d9371ae6c93
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Fri Aug 16 05:21:11 EDT 2024
Fri Aug 16 07:52:10 EDT 2024
Thu Oct 10 19:49:17 EDT 2024
Fri Aug 23 02:05:31 EDT 2024
Sun Oct 22 16:07:36 EDT 2023
Wed Jun 26 19:26:57 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Convex analysis criterion
Convex optimization
Simplex geometry
Non-negative sources
Linear program
Blind separation
Linear programming
linear program
Blind source separation
Convex programming
non-negative sources
Simulation
convex analysis criterion
Signal processing
convex optimization
simplex geometry
Deterministic approach
Multiple channel
Convex analysis
Biomedical imaging
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-4b722c6093ca9762c474b1cb873c3a2c7327b2c85f6ac587725691d9371ae6c93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://www.ee.cuhk.edu.hk/~wkma/CAMNS/download/CAMNS.pdf
PQID 863251417
PQPubID 23500
PageCount 15
ParticipantIDs ieee_primary_4579130
proquest_journals_863251417
proquest_miscellaneous_34854569
pascalfrancis_primary_20702753
proquest_miscellaneous_880646860
crossref_primary_10_1109_TSP_2008_928937
PublicationCentury 2000
PublicationDate 2008-10-01
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2008
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
grnbaum (ref32) 2003
ref36
ref14
ref30
ref33
ref10
golub (ref38) 1996
murty (ref34) 1992
ref2
bertsekas (ref31) 2003
ref1
ref39
ref17
armato (ref42) 2004; 30
ref19
ref18
malinowski (ref3) 2002
suzuki (ref43) 0; 238
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref44
ref21
lee (ref11) 1999; 401
ref28
ref27
hoyer (ref16) 2004; 5
ref29
ref8
ref7
ref9
ref4
ref6
ref5
ref40
lawson (ref15) 1974
References_xml – ident: ref19
  doi: 10.1109/TSP.2004.823502
– year: 2002
  ident: ref3
  publication-title: Factor Analysis in Chemistry
  contributor:
    fullname: malinowski
– year: 1996
  ident: ref38
  publication-title: Matrix Computations
  contributor:
    fullname: golub
– ident: ref29
  doi: 10.1109/TNN.2006.889941
– ident: ref2
  doi: 10.1002/0470845899
– ident: ref21
  doi: 10.1109/TSP.2005.861073
– volume: 30
  start-page: 72
  year: 2004
  ident: ref42
  article-title: enhanced visualization and quantification of lung cancers and other diseases of the chest
  publication-title: Experimental Lung Research
  contributor:
    fullname: armato
– ident: ref26
  doi: 10.1109/MLSP.2006.275525
– ident: ref13
  doi: 10.1162/neco.1997.9.7.1483
– ident: ref1
  doi: 10.1002/0471221317
– ident: ref30
  doi: 10.1017/CBO9780511804441
– ident: ref33
  doi: 10.1287/moor.8.3.381
– ident: ref41
  doi: 10.1002/nav.3800020109
– ident: ref44
  doi: 10.1017/CBO9780511810817
– ident: ref17
  doi: 10.1109/78.992139
– ident: ref40
  doi: 10.1109/TSMCA.2004.824848
– ident: ref14
  doi: 10.1109/TNN.2002.804287
– ident: ref39
  doi: 10.1109/LSP.2003.821658
– ident: ref5
  doi: 10.1109/TGRS.2004.839806
– ident: ref12
  doi: 10.1109/78.554307
– ident: ref9
  doi: 10.1109/TSP.2006.880310
– year: 1992
  ident: ref34
  publication-title: Extreme point enumeration
  contributor:
    fullname: murty
– ident: ref25
  doi: 10.1007/11818564_17
– ident: ref8
  doi: 10.1021/ac051707c
– volume: 5
  start-page: 1457
  year: 2004
  ident: ref16
  article-title: non-negative matrix factorization with sparseness constraints
  publication-title: J Mach Learn Res
  contributor:
    fullname: hoyer
– ident: ref6
  doi: 10.1155/IJBI/2006/29707
– ident: ref35
  doi: 10.1016/0925-7721(95)00049-6
– ident: ref10
  doi: 10.1021/ac00063a019
– ident: ref4
  doi: 10.1109/97.704974
– ident: ref37
  doi: 10.1287/ijoc.6.1.1
– year: 1974
  ident: ref15
  publication-title: Solving Least-Squares Problems
  contributor:
    fullname: lawson
– ident: ref23
  doi: 10.1109/TSP.2002.806865
– volume: 401
  start-page: 788
  year: 1999
  ident: ref11
  article-title: learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
  contributor:
    fullname: lee
– ident: ref7
  doi: 10.1109/TNN.2003.810616
– ident: ref36
  doi: 10.1080/10556789908805766
– ident: ref20
  doi: 10.1109/TSP.2003.815387
– ident: ref18
  doi: 10.1109/TSP.2003.815393
– ident: ref27
  doi: 10.1016/S0165-1684(97)00198-9
– volume: 238
  year: 0
  ident: ref43
  article-title: virtual dual-energy radiography: improved chest radiographs by means of rib suppression based on a massive training artificial neural network (mtann)
  publication-title: Radiology
  contributor:
    fullname: suzuki
– ident: ref28
  doi: 10.1109/TSP.2005.861800
– year: 2003
  ident: ref32
  publication-title: Convex Polytopes
  doi: 10.1007/978-1-4613-0019-9
  contributor:
    fullname: grnbaum
– year: 2003
  ident: ref31
  publication-title: Convex Analysis and Optimization
  contributor:
    fullname: bertsekas
– ident: ref22
  doi: 10.1109/TSP.2006.872578
– ident: ref24
  doi: 10.1145/1149283.1149286
SSID ssj0014496
Score 2.3618286
Snippet This paper presents a new framework for blind source separation (BSS) of non-negative source signals. The proposed framework, referred herein to as convex...
Under local dominance and several standard assumptions, we apply convex analysis to establish a new BSS criterion, which states that the source signals can be...
SourceID proquest
crossref
pascalfrancis
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 5120
SubjectTerms Acoustic signal processing
Acoustical engineering
Applied sciences
Biomedical imaging
Biomedical signal processing
Blind separation
Blind source separation
Blinds
Convex analysis
convex analysis criterion
convex optimization
Councils
Criteria
Detection, estimation, filtering, equalization, prediction
Dominance
Effectiveness
Exact sciences and technology
Geometry
Independent component analysis
Information, signal and communications theory
linear program
Linear programming
Miscellaneous
non-negative sources
Separation
Signal and communications theory
Signal processing
Signal, noise
simplex geometry
Simulation
Source separation
Speech processing
Studies
Telecommunications and information theory
Title A Convex Analysis Framework for Blind Separation of Non-Negative Sources
URI https://ieeexplore.ieee.org/document/4579130
https://www.proquest.com/docview/863251417
https://search.proquest.com/docview/34854569
https://search.proquest.com/docview/880646860
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcEBKAWxFFofOHAg28RvH0vV1QqJFdK20t4i23E4ICUVuyshfj1jO4koD6m3SLYiZ8Yz8zkz_gbgHcbQ4BrdFrzBkw7XLfpBa0yhhePWRwKQJhXIruTyln_aiM0BfJjuwoQQUvFZmMfHlMtver-Pv8ouuFAGfe4hHCpj8l2tKWPAeerFhXCBFUKrzUDjU5Xm4mb9JRdNGhqj870IlFqqxIJIu0WZtLmZxV9-OQWbxVP4PC4z15h8m-93bu5__sHg-NDveAZPBtRJLvM2OYaD0D2Hx79xEZ7A8pJcxQr0H2TkKSGLsXCLILIlHxGQNmQdMll435G-Jau-K1bhayIPJ-uUB9i-gNvF9c3VshjaLBQerXdXcKco9bI0zFsEJ9RzxV3lnVbMM0u9YlQ56rVopfUoWoUoyaAKmapskN6wl3DU9V14BaQ1VnghlbVccI_QxYlGekZDab10wczg_Sj6-i6zadTpFFKaGrWUe2JmLc3gJApumjbIbAZn91Q1jVP0XRTPXjM4HXVXD-a4rbVkiON4hW89n0bRjmJyxHah329rxnUEk7hE8p8Z6Okkl1qWr_-9tFN4REey3OoNHO2-78NbRCw7d5a26i8Lrueb
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAO5VEqtoXWBw4cyDaxHT-OpWK1QLtC2q20t8h2HA5IScXuSohfz9hOIspD4hbJVuTMeGY-Z8bfALzGGOptrZqM13jS4apBP2i0zlRpuXGBAKSOBbILMb_hH9fleg_ejndhvPex-MxPw2PM5ded24VfZee8lBp97j24j7haiXRba8wZcB67cSFgYFmp5Lon8ilyfb5afk5lk5qG-HwnBsWmKqEk0mxQKk1qZ_GHZ47hZvYYroeFpiqTr9Pd1k7dj984HP_3S57AQY87yUXaKE9hz7fP4NEvbISHML8gl6EG_TsZmErIbCjdIohtyTuEpDVZ-kQX3rWka8iia7OF_xLpw8kyZgI2z-Fm9n51Oc_6RguZQ_vdZtxKSp3INXMG4Ql1XHJbOKskc8xQJxmVljpVNsI4FK1EnKRRiUwWxgun2RHst13rXwBptCldKaQxvOQOwYsta-EY9blxwno9gTeD6KvbxKdRxXNIrivUUuqKmbQ0gcMguHFaL7MJnN5R1ThO0XtRPH1N4GTQXdUb5KZSgiGS4wW-9WwcRUsK6RHT-m63qRhXAU7iEsk_ZqCvE1wokR__fWln8GC-ur6qrj4sPp3AQzpQ5xYvYX_7bedfIX7Z2tO4bX8CS7Dq5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Convex+Analysis+Framework+for+Blind+Separation+of+Non-Negative+Sources&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Tsung-Han+Chan%2C+Tsung-Han+Chan&rft.au=Wing-Kin+Ma%2C+Wing-Kin+Ma&rft.au=Chong-Yung+Chi%2C+Chong-Yung+Chi&rft.au=Yue+Wang%2C+Yue+Wang&rft.date=2008-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=56&rft.issue=10&rft.spage=5120&rft_id=info:doi/10.1109%2FTSP.2008.928937&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2328826291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon