A Convex Analysis Framework for Blind Separation of Non-Negative Sources
This paper presents a new framework for blind source separation (BSS) of non-negative source signals. The proposed framework, referred herein to as convex analysis of mixtures of non-negative sources (CAMNS), is deterministic requiring no source independence assumption, the entrenched premise in man...
Saved in:
Published in | IEEE transactions on signal processing Vol. 56; no. 10; pp. 5120 - 5134 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.10.2008
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a new framework for blind source separation (BSS) of non-negative source signals. The proposed framework, referred herein to as convex analysis of mixtures of non-negative sources (CAMNS), is deterministic requiring no source independence assumption, the entrenched premise in many existing (usually statistical) BSS frameworks. The development is based on a special assumption called local dominance. It is a good assumption for source signals exhibiting sparsity or high contrast, and thus is considered realistic to many real-world problems such as multichannel biomedical imaging. Under local dominance and several standard assumptions, we apply convex analysis to establish a new BSS criterion, which states that the source signals can be perfectly identified (in a blind fashion) by finding the extreme points of an observation-constructed polyhedral set. Methods for fulfilling the CAMNS criterion are also derived, using either linear programming or simplex geometry. Simulation results on several data sets are presented to demonstrate the efficacy of the proposed method over several other reported BSS methods. |
---|---|
AbstractList | This paper presents a new framework for blind source separation (BSS) of non-negative source signals. The proposed framework, referred herein to as convex analysis of mixtures of non-negative sources (CAMNS), is deterministic requiring no source independence assumption, the entrenched premise in many existing (usually statistical) BSS frameworks. The development is based on a special assumption called local dominance. It is a good assumption for source signals exhibiting sparsity or high contrast, and thus is considered realistic to many real-world problems such as multichannel biomedical imaging. Under local dominance and several standard assumptions, we apply convex analysis to establish a new BSS criterion, which states that the source signals can be perfectly identified (in a blind fashion) by finding the extreme points of an observation-constructed polyhedral set. Methods for fulfilling the CAMNS criterion are also derived, using either linear programming or simplex geometry. Simulation results on several data sets are presented to demonstrate the efficacy of the proposed method over several other reported BSS methods. Under local dominance and several standard assumptions, we apply convex analysis to establish a new BSS criterion, which states that the source signals can be perfectly identified (in a blind fashion) by finding the extreme points of an observation-constructed polyhedral set. |
Author | Wing-Kin Ma Chong-Yung Chi Yue Wang Tsung-Han Chan |
Author_xml | – sequence: 1 givenname: Tsung-Han surname: CHAN fullname: CHAN, Tsung-Han organization: Institute of Communications Engineering and the Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, Province of China – sequence: 2 givenname: Wing-Kin surname: MA fullname: MA, Wing-Kin organization: Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T, Hong-Kong – sequence: 3 givenname: Chong-Yung surname: CHI fullname: CHI, Chong-Yung organization: Institute of Communications Engineering and the Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, Province of China – sequence: 4 surname: YUE WANG fullname: YUE WANG organization: Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20702753$$DView record in Pascal Francis |
BookMark | eNp9kU1PAjEQhhuDiYCePXhpTNTTQr-2H0ckIiYETcDE26aUrllcWmwB5d9bAvHgwdPMZJ55MzNvCzScdxaAS4w6GCPVnU5eOgQh2VFEKipOQBMrhjPEBG-kHOU0y6V4OwOtGBcIYcYUb4JhD_a929pv2HO63sUqwkHQS_vlwwcsfYD3deXmcGJXOuh15R30JRx7l43te6q3Fk78Jhgbz8FpqetoL46xDV4HD9P-MBs9Pz71e6PMMCnXGZsJQgxHihqtBCeGCTbDZiYFNVQTIygRM2JkXnJt0r6C5FzheToIa8uNom1wd9BdBf-5sXFdLKtobF1rZ_0mFlIizrjkKJG3_5KUyZwl9QRe_wEX6ab0jqTGKckxwyJB3QNkgo8x2LJYhWqpw67AqNgbUCQDir0BxcGANHFzlNXR6LoM2pkq_o4RJBAROU3c1YGrrLW_bZYLhSmiP-rRjbM |
CODEN | ITPRED |
CitedBy_id | crossref_primary_10_1364_BOE_3_002244 crossref_primary_10_1137_130946782 crossref_primary_10_1186_s12859_016_1120_8 crossref_primary_10_1093_micmic_ozac018 crossref_primary_10_1109_TSP_2013_2287683 crossref_primary_10_1007_s12204_014_1548_9 crossref_primary_10_1137_18M1188793 crossref_primary_10_1177_0003702816662600 crossref_primary_10_1002_cem_1257 crossref_primary_10_1007_s12539_021_00495_8 crossref_primary_10_1109_TSP_2015_2508778 crossref_primary_10_1186_1687_6180_2013_32 crossref_primary_10_3390_e20030150 crossref_primary_10_1117_1_3596620 crossref_primary_10_1016_j_neucom_2014_12_082 crossref_primary_10_1016_j_actaastro_2010_09_010 crossref_primary_10_1038_srep18909 crossref_primary_10_1109_TGRS_2011_2151197 crossref_primary_10_1109_TNNLS_2012_2208476 crossref_primary_10_1137_130940670 crossref_primary_10_1007_s11760_014_0646_3 crossref_primary_10_1016_j_jmsy_2019_09_013 crossref_primary_10_1093_bioinformatics_btaa205 crossref_primary_10_1007_s10044_015_0517_8 crossref_primary_10_1109_TGRS_2012_2230182 crossref_primary_10_1016_j_jmr_2010_01_014 crossref_primary_10_1007_s11760_016_0877_6 crossref_primary_10_1109_LSP_2015_2498523 crossref_primary_10_3390_sym16020154 crossref_primary_10_1109_TNN_2011_2164621 crossref_primary_10_1109_TSP_2015_2404577 crossref_primary_10_1109_TNNLS_2014_2350026 crossref_primary_10_1002_cem_2456 crossref_primary_10_1137_140994915 crossref_primary_10_1049_iet_spr_2013_0409 crossref_primary_10_1109_TSP_2022_3178191 crossref_primary_10_1109_TSP_2013_2280115 crossref_primary_10_1137_17M114145X crossref_primary_10_1109_MSP_2013_2279731 crossref_primary_10_3390_rs15041053 crossref_primary_10_1109_TSP_2009_2025802 crossref_primary_10_1109_TGRS_2011_2170999 crossref_primary_10_1109_TGRS_2011_2141672 crossref_primary_10_1109_TIP_2020_2974062 crossref_primary_10_1016_j_sigpro_2016_07_016 crossref_primary_10_1109_JPROC_2016_2607121 crossref_primary_10_1109_TNNLS_2017_2749279 crossref_primary_10_1109_TNNLS_2012_2224671 crossref_primary_10_1109_TPAMI_2009_72 crossref_primary_10_1016_j_camwa_2011_09_003 crossref_primary_10_1016_j_sigpro_2012_05_019 crossref_primary_10_1109_TGRS_2015_2424719 crossref_primary_10_1093_bioinformatics_btae107 crossref_primary_10_1109_TSP_2020_2989551 crossref_primary_10_1109_TPAMI_2019_2956046 crossref_primary_10_1109_TCSI_2019_2908394 crossref_primary_10_1109_TIP_2017_2753400 crossref_primary_10_1109_ACCESS_2019_2956772 crossref_primary_10_1109_TBME_2015_2469601 crossref_primary_10_1109_TSP_2022_3177845 crossref_primary_10_1002_cem_2512 crossref_primary_10_1038_srep38350 crossref_primary_10_1109_MSP_2018_2877582 crossref_primary_10_1007_s41870_023_01226_6 crossref_primary_10_1007_s12190_023_01949_6 crossref_primary_10_1038_s41598_022_04938_0 crossref_primary_10_1021_acsomega_0c01733 crossref_primary_10_1016_j_ultramic_2020_113116 crossref_primary_10_1109_TNNLS_2012_2224124 crossref_primary_10_1109_TSP_2018_2869122 |
Cites_doi | 10.1109/TSP.2004.823502 10.1109/TNN.2006.889941 10.1002/0470845899 10.1109/TSP.2005.861073 10.1109/MLSP.2006.275525 10.1162/neco.1997.9.7.1483 10.1002/0471221317 10.1017/CBO9780511804441 10.1287/moor.8.3.381 10.1002/nav.3800020109 10.1017/CBO9780511810817 10.1109/78.992139 10.1109/TSMCA.2004.824848 10.1109/TNN.2002.804287 10.1109/LSP.2003.821658 10.1109/TGRS.2004.839806 10.1109/78.554307 10.1109/TSP.2006.880310 10.1007/11818564_17 10.1021/ac051707c 10.1155/IJBI/2006/29707 10.1016/0925-7721(95)00049-6 10.1021/ac00063a019 10.1109/97.704974 10.1287/ijoc.6.1.1 10.1109/TSP.2002.806865 10.1038/44565 10.1109/TNN.2003.810616 10.1080/10556789908805766 10.1109/TSP.2003.815387 10.1109/TSP.2003.815393 10.1016/S0165-1684(97)00198-9 10.1109/TSP.2005.861800 10.1007/978-1-4613-0019-9 10.1109/TSP.2006.872578 10.1145/1149283.1149286 |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
Copyright_xml | – notice: 2008 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
DBID | 97E RIA RIE IQODW AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TSP.2008.928937 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online Pascal-Francis CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1941-0476 |
EndPage | 5134 |
ExternalDocumentID | 2328826291 10_1109_TSP_2008_928937 20702753 4579130 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AASAJ AAYOK ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AI. AIBXA AJQPL AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIG RNS TAE TN5 VH1 XFK ABPTK IQODW AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c488t-4b722c6093ca9762c474b1cb873c3a2c7327b2c85f6ac587725691d9371ae6c93 |
IEDL.DBID | RIE |
ISSN | 1053-587X |
IngestDate | Fri Aug 16 05:21:11 EDT 2024 Fri Aug 16 07:52:10 EDT 2024 Thu Oct 10 19:49:17 EDT 2024 Fri Aug 23 02:05:31 EDT 2024 Sun Oct 22 16:07:36 EDT 2023 Wed Jun 26 19:26:57 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Convex analysis criterion Convex optimization Simplex geometry Non-negative sources Linear program Blind separation Linear programming linear program Blind source separation Convex programming non-negative sources Simulation convex analysis criterion Signal processing convex optimization simplex geometry Deterministic approach Multiple channel Convex analysis Biomedical imaging |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c488t-4b722c6093ca9762c474b1cb873c3a2c7327b2c85f6ac587725691d9371ae6c93 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://www.ee.cuhk.edu.hk/~wkma/CAMNS/download/CAMNS.pdf |
PQID | 863251417 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | ieee_primary_4579130 proquest_journals_863251417 proquest_miscellaneous_34854569 pascalfrancis_primary_20702753 proquest_miscellaneous_880646860 crossref_primary_10_1109_TSP_2008_928937 |
PublicationCentury | 2000 |
PublicationDate | 2008-10-01 |
PublicationDateYYYYMMDD | 2008-10-01 |
PublicationDate_xml | – month: 10 year: 2008 text: 2008-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on signal processing |
PublicationTitleAbbrev | TSP |
PublicationYear | 2008 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref37 grnbaum (ref32) 2003 ref36 ref14 ref30 ref33 ref10 golub (ref38) 1996 murty (ref34) 1992 ref2 bertsekas (ref31) 2003 ref1 ref39 ref17 armato (ref42) 2004; 30 ref19 ref18 malinowski (ref3) 2002 suzuki (ref43) 0; 238 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref44 ref21 lee (ref11) 1999; 401 ref28 ref27 hoyer (ref16) 2004; 5 ref29 ref8 ref7 ref9 ref4 ref6 ref5 ref40 lawson (ref15) 1974 |
References_xml | – ident: ref19 doi: 10.1109/TSP.2004.823502 – year: 2002 ident: ref3 publication-title: Factor Analysis in Chemistry contributor: fullname: malinowski – year: 1996 ident: ref38 publication-title: Matrix Computations contributor: fullname: golub – ident: ref29 doi: 10.1109/TNN.2006.889941 – ident: ref2 doi: 10.1002/0470845899 – ident: ref21 doi: 10.1109/TSP.2005.861073 – volume: 30 start-page: 72 year: 2004 ident: ref42 article-title: enhanced visualization and quantification of lung cancers and other diseases of the chest publication-title: Experimental Lung Research contributor: fullname: armato – ident: ref26 doi: 10.1109/MLSP.2006.275525 – ident: ref13 doi: 10.1162/neco.1997.9.7.1483 – ident: ref1 doi: 10.1002/0471221317 – ident: ref30 doi: 10.1017/CBO9780511804441 – ident: ref33 doi: 10.1287/moor.8.3.381 – ident: ref41 doi: 10.1002/nav.3800020109 – ident: ref44 doi: 10.1017/CBO9780511810817 – ident: ref17 doi: 10.1109/78.992139 – ident: ref40 doi: 10.1109/TSMCA.2004.824848 – ident: ref14 doi: 10.1109/TNN.2002.804287 – ident: ref39 doi: 10.1109/LSP.2003.821658 – ident: ref5 doi: 10.1109/TGRS.2004.839806 – ident: ref12 doi: 10.1109/78.554307 – ident: ref9 doi: 10.1109/TSP.2006.880310 – year: 1992 ident: ref34 publication-title: Extreme point enumeration contributor: fullname: murty – ident: ref25 doi: 10.1007/11818564_17 – ident: ref8 doi: 10.1021/ac051707c – volume: 5 start-page: 1457 year: 2004 ident: ref16 article-title: non-negative matrix factorization with sparseness constraints publication-title: J Mach Learn Res contributor: fullname: hoyer – ident: ref6 doi: 10.1155/IJBI/2006/29707 – ident: ref35 doi: 10.1016/0925-7721(95)00049-6 – ident: ref10 doi: 10.1021/ac00063a019 – ident: ref4 doi: 10.1109/97.704974 – ident: ref37 doi: 10.1287/ijoc.6.1.1 – year: 1974 ident: ref15 publication-title: Solving Least-Squares Problems contributor: fullname: lawson – ident: ref23 doi: 10.1109/TSP.2002.806865 – volume: 401 start-page: 788 year: 1999 ident: ref11 article-title: learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 contributor: fullname: lee – ident: ref7 doi: 10.1109/TNN.2003.810616 – ident: ref36 doi: 10.1080/10556789908805766 – ident: ref20 doi: 10.1109/TSP.2003.815387 – ident: ref18 doi: 10.1109/TSP.2003.815393 – ident: ref27 doi: 10.1016/S0165-1684(97)00198-9 – volume: 238 year: 0 ident: ref43 article-title: virtual dual-energy radiography: improved chest radiographs by means of rib suppression based on a massive training artificial neural network (mtann) publication-title: Radiology contributor: fullname: suzuki – ident: ref28 doi: 10.1109/TSP.2005.861800 – year: 2003 ident: ref32 publication-title: Convex Polytopes doi: 10.1007/978-1-4613-0019-9 contributor: fullname: grnbaum – year: 2003 ident: ref31 publication-title: Convex Analysis and Optimization contributor: fullname: bertsekas – ident: ref22 doi: 10.1109/TSP.2006.872578 – ident: ref24 doi: 10.1145/1149283.1149286 |
SSID | ssj0014496 |
Score | 2.3618286 |
Snippet | This paper presents a new framework for blind source separation (BSS) of non-negative source signals. The proposed framework, referred herein to as convex... Under local dominance and several standard assumptions, we apply convex analysis to establish a new BSS criterion, which states that the source signals can be... |
SourceID | proquest crossref pascalfrancis ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 5120 |
SubjectTerms | Acoustic signal processing Acoustical engineering Applied sciences Biomedical imaging Biomedical signal processing Blind separation Blind source separation Blinds Convex analysis convex analysis criterion convex optimization Councils Criteria Detection, estimation, filtering, equalization, prediction Dominance Effectiveness Exact sciences and technology Geometry Independent component analysis Information, signal and communications theory linear program Linear programming Miscellaneous non-negative sources Separation Signal and communications theory Signal processing Signal, noise simplex geometry Simulation Source separation Speech processing Studies Telecommunications and information theory |
Title | A Convex Analysis Framework for Blind Separation of Non-Negative Sources |
URI | https://ieeexplore.ieee.org/document/4579130 https://www.proquest.com/docview/863251417 https://search.proquest.com/docview/34854569 https://search.proquest.com/docview/880646860 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcEBKAWxFFofOHAg28RvH0vV1QqJFdK20t4i23E4ICUVuyshfj1jO4koD6m3SLYiZ8Yz8zkz_gbgHcbQ4BrdFrzBkw7XLfpBa0yhhePWRwKQJhXIruTyln_aiM0BfJjuwoQQUvFZmMfHlMtver-Pv8ouuFAGfe4hHCpj8l2tKWPAeerFhXCBFUKrzUDjU5Xm4mb9JRdNGhqj870IlFqqxIJIu0WZtLmZxV9-OQWbxVP4PC4z15h8m-93bu5__sHg-NDveAZPBtRJLvM2OYaD0D2Hx79xEZ7A8pJcxQr0H2TkKSGLsXCLILIlHxGQNmQdMll435G-Jau-K1bhayIPJ-uUB9i-gNvF9c3VshjaLBQerXdXcKco9bI0zFsEJ9RzxV3lnVbMM0u9YlQ56rVopfUoWoUoyaAKmapskN6wl3DU9V14BaQ1VnghlbVccI_QxYlGekZDab10wczg_Sj6-i6zadTpFFKaGrWUe2JmLc3gJApumjbIbAZn91Q1jVP0XRTPXjM4HXVXD-a4rbVkiON4hW89n0bRjmJyxHah329rxnUEk7hE8p8Z6Okkl1qWr_-9tFN4REey3OoNHO2-78NbRCw7d5a26i8Lrueb |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAO5VEqtoXWBw4cyDaxHT-OpWK1QLtC2q20t8h2HA5IScXuSohfz9hOIspD4hbJVuTMeGY-Z8bfALzGGOptrZqM13jS4apBP2i0zlRpuXGBAKSOBbILMb_hH9fleg_ejndhvPex-MxPw2PM5ded24VfZee8lBp97j24j7haiXRba8wZcB67cSFgYFmp5Lon8ilyfb5afk5lk5qG-HwnBsWmKqEk0mxQKk1qZ_GHZ47hZvYYroeFpiqTr9Pd1k7dj984HP_3S57AQY87yUXaKE9hz7fP4NEvbISHML8gl6EG_TsZmErIbCjdIohtyTuEpDVZ-kQX3rWka8iia7OF_xLpw8kyZgI2z-Fm9n51Oc_6RguZQ_vdZtxKSp3INXMG4Ql1XHJbOKskc8xQJxmVljpVNsI4FK1EnKRRiUwWxgun2RHst13rXwBptCldKaQxvOQOwYsta-EY9blxwno9gTeD6KvbxKdRxXNIrivUUuqKmbQ0gcMguHFaL7MJnN5R1ThO0XtRPH1N4GTQXdUb5KZSgiGS4wW-9WwcRUsK6RHT-m63qRhXAU7iEsk_ZqCvE1wokR__fWln8GC-ur6qrj4sPp3AQzpQ5xYvYX_7bedfIX7Z2tO4bX8CS7Dq5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Convex+Analysis+Framework+for+Blind+Separation+of+Non-Negative+Sources&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Tsung-Han+Chan%2C+Tsung-Han+Chan&rft.au=Wing-Kin+Ma%2C+Wing-Kin+Ma&rft.au=Chong-Yung+Chi%2C+Chong-Yung+Chi&rft.au=Yue+Wang%2C+Yue+Wang&rft.date=2008-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=56&rft.issue=10&rft.spage=5120&rft_id=info:doi/10.1109%2FTSP.2008.928937&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2328826291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |