The roles of natural organic matter in chemical and microbial reduction of ferric iron
Although natural organic matter (NOM) is known to be redox reactive, the roles and effectiveness of specific functional groups of NOM in metal reduction are still a subject of intense investigation. This study entails the investigation of the Fe(III) reduction kinetics and capacity by three fraction...
Saved in:
Published in | The Science of the total environment Vol. 307; no. 1; pp. 167 - 178 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Shannon
Elsevier B.V
20.05.2003
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although natural organic matter (NOM) is known to be redox reactive, the roles and effectiveness of specific functional groups of NOM in metal reduction are still a subject of intense investigation. This study entails the investigation of the Fe(III) reduction kinetics and capacity by three fractionated NOM subcomponents in the presence or absence of the dissimilatory metal reducing bacterium
Shewanella putrefaciens CN32. Results indicate that NOM was able to reduce Fe(III) abiotically; the reduction was pH-dependent and varied greatly with different fractions of NOM. The polyphenolic-rich NOM-PP fraction exhibited the highest reactivity and oxidation capacity at a low pH (<4) as compared with the carbohydrate-rich NOM-CH fraction and a soil humic acid (soil HA) in reducing Fe(III). However, at a pH>4, soil HA showed a relatively high oxidation capacity, probably resulting from its conformational and solubility changes with an increased solution pH. In the presence of
S. putrefaciens CN32, all NOM fractions were found to enhance the microbial reduction of Fe(III) under anaerobic, circumneutral pH conditions. Soil HA was found to be particularly effective in mediating the bioreduction of Fe(III) as compared with the NOM-PP or NOM-CH fractions. NOM-CH was the least effective because it was depleted in both aromatic and polyphenolic organic contents. However, because both soil HA and NOM-PP contain relatively high amounts of aromatic and phenolic compounds, results may indicate that low-molecular-weight polyphenolic organics in NOM-PP were less effective in mediating the bioreduction of Fe(III) at circumneutral pH than the high-molecular-weight polycondensed, conjugated aromatics present in soil HA. These research findings may shed additional light in understanding of the roles and underlying mechanisms of NOM reactions with contaminant metals, radionuclides, and other toxic chemicals in the natural environment. |
---|---|
AbstractList | Although natural organic matter (NOM) is known to be redox reactive, the roles and effectiveness of specific functional groups of NOM in metal reduction are still a subject of intense investigation. This study entails the investigation of the Fe(III) reduction kinetics and capacity by three fractionated NOM subcomponents in the presence or absence of the dissimilatory metal reducing bacterium Shewanella putrefaciens CN32. Results indicate that NOM was able to reduce Fe(III) abiotically; the reduction was pH-dependent and varied greatly with different fractions of NOM. The polyphenolic-rich NOM-PP fraction exhibited the highest reactivity and oxidation capacity at a low pH (<4) as compared with the carbohydrate-rich NOM-CH fraction and a soil humic acid (soil HA) in reducing Fe(III). However, at a pH>4, soil HA showed a relatively high oxidation capacity, probably resulting from its conformational and solubility changes with an increased solution pH. In the presence of S. putrefaciens CN32, all NOM fractions were found to enhance the microbial reduction of Fe(III) under anaerobic, circumneutral pH conditions. Soil HA was found to be particularly effective in mediating the bioreduction of Fe(III) as compared with the NOM-PP or NOM-CH fractions. NOM-CH was the least effective because it was depleted in both aromatic and polyphenolic organic contents. However, because both soil HA and NOM-PP contain relatively high amounts of aromatic and phenolic compounds, results may indicate that low-molecular-weight polyphenolic organics in NOM-PP were less effective in mediating the bioreduction of Fe(III) at circumneutral pH than the high-molecular-weight polycondensed, conjugated aromatics present in soil HA. These research findings may shed additional light in understanding of the roles and underlying mechanisms of NOM reactions with contaminant metals, radionuclides, and other toxic chemicals in the natural environment. Although natural organic matter (NOM) is known to be redox reactive, the roles and effectiveness of specific functional groups of NOM in metal reduction are still a subject of intense investigation. This study entails the investigation of the Fe(III) reduction kinetics and capacity by three fractionated NOM subcomponents in the presence or absence of the dissimilatory metal reducing bacterium Shewanella putrefaciens CN32. Results indicate that NOM was able to reduce Fe(III) abiotically; the reduction was pH-dependent and varied greatly with different fractions of NOM. The polyphenolic-rich NOM-PP fraction exhibited the highest reactivity and oxidation capacity at a low pH (<4) as compared with the carbohydrate-rich NOM-CH fraction and a soil humic acid (soil HA) in reducing Fe(III). However, at a pH>4, soil HA showed a relatively high oxidation capacity, probably resulting from its conformational and solubility changes with an increased solution pH. In the presence of S. putrefaciens CN32, all NOM fractions were found to enhance the microbial reduction of Fe(III) under anaerobic, circumneutral pH conditions. Soil HA was found to be particularly effective in mediating the bioreduction of Fe(III) as compared with the NOM-PP or NOM-CH fractions. NOM-CH was the least effective because it was depleted in both aromatic and polyphenolic organic contents. However, because both soil HA and NOM-PP contain relatively high amounts of aromatic and phenolic compounds, results may indicate that low-molecular-weight polyphenolic organics in NOM-PP were less effective in mediating the bioreduction of Fe(III) at circumneutral pH than the high-molecular-weight polycondensed, conjugated aromatics present in soil HA. These research findings may shed additional light in understanding of the roles and underlying mechanisms of NOM reactions with contaminant metals, radionuclides, and other toxic chemicals in the natural environment.Although natural organic matter (NOM) is known to be redox reactive, the roles and effectiveness of specific functional groups of NOM in metal reduction are still a subject of intense investigation. This study entails the investigation of the Fe(III) reduction kinetics and capacity by three fractionated NOM subcomponents in the presence or absence of the dissimilatory metal reducing bacterium Shewanella putrefaciens CN32. Results indicate that NOM was able to reduce Fe(III) abiotically; the reduction was pH-dependent and varied greatly with different fractions of NOM. The polyphenolic-rich NOM-PP fraction exhibited the highest reactivity and oxidation capacity at a low pH (<4) as compared with the carbohydrate-rich NOM-CH fraction and a soil humic acid (soil HA) in reducing Fe(III). However, at a pH>4, soil HA showed a relatively high oxidation capacity, probably resulting from its conformational and solubility changes with an increased solution pH. In the presence of S. putrefaciens CN32, all NOM fractions were found to enhance the microbial reduction of Fe(III) under anaerobic, circumneutral pH conditions. Soil HA was found to be particularly effective in mediating the bioreduction of Fe(III) as compared with the NOM-PP or NOM-CH fractions. NOM-CH was the least effective because it was depleted in both aromatic and polyphenolic organic contents. However, because both soil HA and NOM-PP contain relatively high amounts of aromatic and phenolic compounds, results may indicate that low-molecular-weight polyphenolic organics in NOM-PP were less effective in mediating the bioreduction of Fe(III) at circumneutral pH than the high-molecular-weight polycondensed, conjugated aromatics present in soil HA. These research findings may shed additional light in understanding of the roles and underlying mechanisms of NOM reactions with contaminant metals, radionuclides, and other toxic chemicals in the natural environment. Although natural organic matter (NOM) is known to be redox reactive, the roles and effectiveness of specific functional groups of NOM in metal reduction are still a subject of intense investigation. This study entails the investigation of the Fe(III) reduction kinetics and capacity by three fractionated NOM subcomponents in the presence or absence of the dissimilatory metal reducing bacterium Shewanella putrefaciens CN32. Results indicate that NOM was able to reduce Fe(III) abiotically; the reduction was pH-dependent and varied greatly with different fractions of NOM. The polyphenolic-rich NOM-PP fraction exhibited the highest reactivity and oxidation capacity at a low pH (<4) as compared with the carbohydrate-rich NOM-CH fraction and a soil humic acid (soil HA) in reducing Fe(III). However, at a pH>4, soil HA showed a relatively high oxidation capacity, probably resulting from its conformational and solubility changes with an increased solution pH. In the presence of S. putrefaciens CN32, all NOM fractions were found to enhance the microbial reduction of Fe(III) under anaerobic, circumneutral pH conditions. Soil HA was found to be particularly effective in mediating the bioreduction of Fe(III) as compared with the NOM-PP or NOM-CH fractions. NOM-CH was the least effective because it was depleted in both aromatic and polyphenolic organic contents. However, because both soil HA and NOM-PP contain relatively high amounts of aromatic and phenolic compounds, results may indicate that low-molecular-weight polyphenolic organics in NOM-PP were less effective in mediating the bioreduction of Fe(III) at circumneutral pH than the high-molecular-weight polycondensed, conjugated aromatics present in soil HA. These research findings may shed additional light in understanding of the roles and underlying mechanisms of NOM reactions with contaminant metals, radionuclides, and other toxic chemicals in the natural environment. |
Author | Burgos, William D. Chen, Jie Gu, Baohua Royer, Richard A. |
Author_xml | – sequence: 1 givenname: Jie surname: Chen fullname: Chen, Jie organization: Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6036, USA – sequence: 2 givenname: Baohua surname: Gu fullname: Gu, Baohua email: b26@ornl.gov organization: Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6036, USA – sequence: 3 givenname: Richard A. surname: Royer fullname: Royer, Richard A. organization: Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 4 givenname: William D. surname: Burgos fullname: Burgos, William D. organization: Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14687600$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12711432$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvFSEUhYmpsa9Pf4JmNhpdTL0wDDBxYUzT1iZNXFjdEgbuWMwMVJgx6b-X6XvWxM1jA4Tv3Hs554QchRiQkJcUTilQ8f4rAFd1Jzr5Ftg7gLZRtXxCNlTJrqbAxBHZPCLH5CTnn1CWVPQZOaZMUsobtiHfb26xSnHEXMWhCmZekhmrmH6Y4G01mXnGVPlQ2VucvC1PJriqnFLsfbkldIudfQyresCUisinGJ6Tp4MZM77Y71vy7eL85uxzff3l8urs03VtuVJzzTkF0_Ucet5LLvqmH1hHmSvfEaxFcB0oCw6Ysko4C33resncIAeqOmGh2ZI3u7p3Kf5aMM968tniOJqAcclaNoxyKthBkArasqbtCvhqDy79hE7fJT-ZdK__WlaA13vA5GLIkEywPv_juFBSwDrahx1XvMo54aCtn83q1ZyMHzUFvQapH4LUa0oamH4Isoy9Je1_6scGB3Qfdzosrv_2mHS2HoNF5xPaWbvoD1T4Aw5Ss1c |
CODEN | STENDL |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2012_01_036 crossref_primary_10_1021_es072092z crossref_primary_10_1016_j_geoderma_2006_08_004 crossref_primary_10_1080_02757540_2018_1437147 crossref_primary_10_3390_w14213450 crossref_primary_10_1007_s11104_020_04725_8 crossref_primary_10_1016_j_scitotenv_2017_08_060 crossref_primary_10_1007_s11431_024_2655_y crossref_primary_10_1016_j_gca_2005_03_045 crossref_primary_10_1016_j_clay_2012_02_013 crossref_primary_10_1016_j_envpol_2017_03_048 crossref_primary_10_1016_S0168_6496_03_00245_9 crossref_primary_10_1680_jenge_21_00075 crossref_primary_10_1007_s12665_024_11777_x crossref_primary_10_1002_ldr_3299 crossref_primary_10_1016_j_apgeochem_2016_12_027 crossref_primary_10_1016_j_gca_2019_02_027 crossref_primary_10_1002_jpln_201800207 crossref_primary_10_1016_j_apgeochem_2011_04_023 crossref_primary_10_1016_j_jenvman_2021_114036 crossref_primary_10_1016_j_cej_2015_09_095 crossref_primary_10_1039_C6EW00264A crossref_primary_10_1021_acs_est_6b04131 crossref_primary_10_1021_es900474f crossref_primary_10_1016_j_gca_2014_10_022 crossref_primary_10_1073_pnas_2313487120 crossref_primary_10_1016_j_watres_2020_116508 crossref_primary_10_1016_j_soilbio_2013_09_029 crossref_primary_10_1021_acsearthspacechem_2c00255 crossref_primary_10_1016_j_envres_2022_114267 crossref_primary_10_1021_es100594t crossref_primary_10_1007_s13593_013_0202_5 crossref_primary_10_1039_D4EM00402G crossref_primary_10_1128_AEM_02250_09 crossref_primary_10_1021_acs_est_0c02521 crossref_primary_10_1021_jp300995h crossref_primary_10_1016_j_envpol_2024_123573 crossref_primary_10_1021_acsearthspacechem_3c00288 crossref_primary_10_1039_C7EM00003K crossref_primary_10_1007_s10021_021_00639_3 crossref_primary_10_1016_j_chemgeo_2014_02_012 crossref_primary_10_1021_acs_est_8b06333 crossref_primary_10_1007_s11769_011_0454_4 crossref_primary_10_1016_j_limno_2011_10_004 crossref_primary_10_1016_j_chemgeo_2023_121833 crossref_primary_10_1021_acs_est_9b07134 crossref_primary_10_1016_j_scitotenv_2022_154927 crossref_primary_10_1016_j_ecoenv_2024_117298 crossref_primary_10_1021_es803112a crossref_primary_10_1016_j_geoderma_2011_01_012 crossref_primary_10_1080_15320383_2015_1058337 crossref_primary_10_1524_ract_2009_1661 crossref_primary_10_1039_C9SE00918C crossref_primary_10_1016_j_cej_2024_150836 crossref_primary_10_1016_j_scitotenv_2024_170451 crossref_primary_10_1016_j_jenvman_2019_110003 crossref_primary_10_1007_s10533_010_9490_x crossref_primary_10_2136_sssaj2007_0418 crossref_primary_10_1016_j_chemosphere_2015_09_037 crossref_primary_10_1021_es062802l crossref_primary_10_1080_09593330_2014_885586 crossref_primary_10_1016_j_bbabio_2018_05_007 crossref_primary_10_3390_resources5010015 crossref_primary_10_1007_s10661_020_08571_0 crossref_primary_10_1021_acs_est_7b03152 crossref_primary_10_1111_j_1365_2621_2005_tb09984_x crossref_primary_10_1007_s11368_010_0332_1 crossref_primary_10_1016_S1002_0160_13_60087_9 crossref_primary_10_1016_j_chemgeo_2008_12_016 crossref_primary_10_1016_j_earscirev_2020_103281 crossref_primary_10_1007_s13762_017_1263_9 crossref_primary_10_1016_j_chemosphere_2018_11_143 crossref_primary_10_1128_AEM_72_4_2925_2935_2006 crossref_primary_10_1007_s10533_007_9172_5 crossref_primary_10_1016_j_jenvman_2020_111082 crossref_primary_10_1021_es050350r crossref_primary_10_1371_journal_pone_0176484 crossref_primary_10_1016_j_apcatb_2015_12_018 crossref_primary_10_1021_es901585z crossref_primary_10_1081_PLN_120024253 crossref_primary_10_5194_bg_17_683_2020 crossref_primary_10_3390_environments11070136 crossref_primary_10_1007_s42535_022_00467_3 crossref_primary_10_1016_j_seppur_2024_127266 crossref_primary_10_1021_es061323j crossref_primary_10_1007_s11157_017_9424_3 crossref_primary_10_1080_01490451_2013_791356 crossref_primary_10_1021_es200110y crossref_primary_10_1002_jsfa_4068 crossref_primary_10_1016_j_jcis_2011_03_067 crossref_primary_10_1371_journal_pone_0247478 crossref_primary_10_3389_fmicb_2020_01677 crossref_primary_10_1016_j_biortech_2014_09_018 crossref_primary_10_1016_j_corsci_2007_06_016 crossref_primary_10_1016_j_envpol_2015_12_046 crossref_primary_10_1016_j_gca_2023_01_027 crossref_primary_10_1016_S0016_7037_03_00162_5 crossref_primary_10_1016_S1872_2040_16_60964_7 crossref_primary_10_1021_es8013979 crossref_primary_10_1029_2021JG006584 crossref_primary_10_1016_j_chemosphere_2018_03_104 crossref_primary_10_1007_s10661_014_4047_4 crossref_primary_10_1016_j_jhazmat_2024_134290 crossref_primary_10_1016_j_scitotenv_2005_01_027 crossref_primary_10_1002_fes3_547 crossref_primary_10_1021_es900179s crossref_primary_10_2139_ssrn_3971424 crossref_primary_10_1007_s10311_008_0158_x crossref_primary_10_1073_pnas_1008747108 crossref_primary_10_1016_j_ecoenv_2021_112900 crossref_primary_10_1016_j_scitotenv_2020_140213 crossref_primary_10_5424_sjar_2013111_2671 crossref_primary_10_1016_j_gca_2006_05_018 crossref_primary_10_1007_s11157_005_2948_y crossref_primary_10_1021_es0525197 crossref_primary_10_1007_s11356_016_6371_4 crossref_primary_10_1139_cjm_2015_0129 crossref_primary_10_1021_es203402p crossref_primary_10_1016_j_envpol_2020_113977 crossref_primary_10_1016_j_jenvman_2017_11_012 crossref_primary_10_1016_j_jes_2018_07_016 crossref_primary_10_1039_C9EM00313D crossref_primary_10_1016_j_earscirev_2016_09_001 crossref_primary_10_1039_C8RA06025H crossref_primary_10_1021_jp910353y crossref_primary_10_1111_1758_2229_12173 crossref_primary_10_1021_es049027z crossref_primary_10_1016_j_jenvrad_2008_06_003 crossref_primary_10_1016_j_scitotenv_2020_142937 crossref_primary_10_1016_j_jclepro_2024_143053 crossref_primary_10_1021_es5022679 crossref_primary_10_1021_es4023317 crossref_primary_10_1016_j_chemgeo_2006_05_011 crossref_primary_10_1021_acs_est_5b03939 crossref_primary_10_1016_S1001_0742_08_60040_6 crossref_primary_10_2478_v10014_011_0013_9 crossref_primary_10_1016_j_jhazmat_2014_07_030 crossref_primary_10_1016_j_nbt_2013_03_008 crossref_primary_10_1071_EN04053 crossref_primary_10_1111_j_1744_7348_2007_00166_x crossref_primary_10_1016_j_watres_2020_115631 crossref_primary_10_1021_acs_est_4c05517 crossref_primary_10_1016_j_apgeochem_2006_12_020 crossref_primary_10_1016_j_wasman_2017_09_012 crossref_primary_10_1016_j_catena_2017_09_029 crossref_primary_10_1021_acs_est_9b04873 crossref_primary_10_1039_C4EM00217B crossref_primary_10_1016_j_gca_2022_10_026 crossref_primary_10_1021_acs_est_6b03237 crossref_primary_10_1016_S2095_3119_16_61509_5 crossref_primary_10_1007_s00027_012_0260_9 crossref_primary_10_1016_j_gca_2018_01_004 crossref_primary_10_1021_ez5002209 crossref_primary_10_1080_09593330_2020_1772376 crossref_primary_10_1021_acsearthspacechem_1c00009 crossref_primary_10_1016_j_scitotenv_2017_10_048 crossref_primary_10_1016_j_chemosphere_2019_124459 crossref_primary_10_1038_s43017_023_00470_5 crossref_primary_10_1016_j_chemosphere_2020_128697 crossref_primary_10_1021_es803647r crossref_primary_10_1016_j_chemosphere_2018_01_096 crossref_primary_10_1007_s10646_015_1551_4 crossref_primary_10_1016_j_chemgeo_2016_09_031 crossref_primary_10_1016_j_soilbio_2025_109735 crossref_primary_10_1016_j_chemosphere_2022_137198 crossref_primary_10_1016_j_chemosphere_2017_12_007 crossref_primary_10_1016_j_jhazmat_2018_07_026 crossref_primary_10_1007_s10653_019_00456_7 |
ContentType | Journal Article |
Copyright | 2002 Elsevier Science B.V. 2003 INIST-CNRS |
Copyright_xml | – notice: 2002 Elsevier Science B.V. – notice: 2003 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7T7 7TV 8FD C1K FR3 P64 7X8 |
DOI | 10.1016/S0048-9697(02)00538-7 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Bacteriology Abstracts (Microbiology B) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences Applied Sciences |
EISSN | 1879-1026 |
EndPage | 178 |
ExternalDocumentID | 12711432 14687600 10_1016_S0048_9697_02_00538_7 S0048969702005387 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYJJ ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCU SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K WUQ XPP ZXP ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGRNS AIIUN AKBMS AKRWK AKYEP ANKPU CITATION SSH ADXHL AEGFY AFJKZ AGQPQ AIGII APXCP BNPGV EFKBS IQODW CGR CUY CVF ECM EIF NPM 7QL 7T7 7TV 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c488t-4410a9b40b4b746b3bf2912d005625e0d908c0d028c86dc0b5db72df7f1896c03 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 |
IngestDate | Mon Jul 21 11:25:28 EDT 2025 Tue Aug 05 10:26:58 EDT 2025 Wed Feb 19 01:44:11 EST 2025 Mon Jul 21 09:17:08 EDT 2025 Thu Apr 24 23:08:00 EDT 2025 Tue Jul 01 03:08:35 EDT 2025 Fri Feb 23 02:34:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Shewanella putrefaciens NOM oxidation capacity Fe(III) reduction Humic substances Microbial activity Organic matter Pollutant behavior Soil pollution Sediments Heavy metal Chemical reduction Biogeochemistry Iron III Medium effect Oxidation potential Biotransformation pH Property structure relationship Humic acid Functional group |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c488t-4410a9b40b4b746b3bf2912d005625e0d908c0d028c86dc0b5db72df7f1896c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 12711432 |
PQID | 16152359 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_73214162 proquest_miscellaneous_16152359 pubmed_primary_12711432 pascalfrancis_primary_14687600 crossref_citationtrail_10_1016_S0048_9697_02_00538_7 crossref_primary_10_1016_S0048_9697_02_00538_7 elsevier_sciencedirect_doi_10_1016_S0048_9697_02_00538_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2003-05-20 |
PublicationDateYYYYMMDD | 2003-05-20 |
PublicationDate_xml | – month: 05 year: 2003 text: 2003-05-20 day: 20 |
PublicationDecade | 2000 |
PublicationPlace | Shannon |
PublicationPlace_xml | – name: Shannon – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2003 |
Publisher | Elsevier B.V Elsevier Science |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science |
References | Aiken, McKnight, Wershaw, MacCarthy (BIB1) 1985 Gu, Schmitt, Chen, Liang, McCarthy (BIB16) 1994; 28 Coates, Ellis, Blunt-Harris, Gaw, Roden, Lovley (BIB8) 1998; 64 Senesi, Miano, Provenzano, Brunetti (BIB31) 1991; 152 Wildung, Gorby, Krupka, Hess, Li, Plymale, McKinley, Fredrickson (BIB42) 2000; 66 Schilt (BIB29) 1969 Truex, Peyton, Valentine, Gorby (BIB41) 1997; 55 Deiana, Gessa, Manunza, Rausa, Solinas (BIB9) 1995; 46 Royer, Burgos, Fisher, Jeon, Unz, Dempsey (BIB27) 2002; 36 Stookey (BIB35) 1970; 42 Fredrickson, Zachara, Kennedy, Dong, Onstott, Hinman, Li (BIB12) 1998; 62 Choi S, Chen J, Gu B, Reductive dissolution of iron oxyhydroxides by different fractions of natural organic matter. Extended abstract. The 220th American Chemical Society National Meeting, 20–25 August 2000, Washington, DC. 2000; 40: 433–435 Helburn, MacCarthy (BIB18) 1994; 295 Lovley (BIB19) 1996; 382 Lovley, Blunt-Harris (BIB21) 1999; 65 Skogerboe, Wilson (BIB32) 1981; 53 Gu B, Chen J, Vairavamurthy MA, Choi S, Tratnyek PG, Chemical and biological reduction of contaminant metals by natural organic matter. Extended abstract. The 220th American Chemical Society National Meeting, 20–25 August 2000, Washington, DC. 2000; 40: 443–446 Suffet IH, MacCarthy P. ‘Aquatic humic substances: Influence on fate and treatment of pollutants. Advances in chemistry Series 219.American Chemical Society, Washington, DC, 1989 Tinoco, Sauer, Wang (BIB40) 1985 Pullin, Cabaniss (BIB26) 1995; 29 Sunda, Kieber (BIB38) 1994; 367 Szilagyi (BIB39) 1971; 111 Fortune, Mellon (BIB11) 1938; 10 Lovley, Fraga, Blunt-Harris, Hayes, Phillips, Coates (BIB23) 1998; 26 Scott, McKnight, Blunt-Harris, Kolesar, Lovley (BIB30) 1998; 32 Steelink, Tollin (BIB33) 1962; 59 Williams, Scherer (BIB43) 2001; 35 Fredrickson, Zachara, Kennedy, Duff, Gorby, Li, Krupka (BIB13) 2000; 64 Chen, Gu, LeBoeuf, Pan, Dai (BIB5) 2002; 48 Gu, Schmitt, Chen, Liang, McCarthy (BIB17) 1995; 59 Dunnivant, Schwarzenbach, Macalady (BIB10) 1992; 26 Fukushima, Tatsumi (BIB14) 1999; 155 Lowe (BIB24) 1975; 55 Benz, Schink, Brune (BIB3) 1998; 64 Struyk, Sposito (BIB36) 2001; 102 Royer, Burgos, Fisher, Unz, Dempsey (BIB28) 2002; 36 Lovley, Coates, Blunt-Harris, Phillips, Woodward (BIB22) 1996; 382 Burgos WD, Royer RA, Yeh RT, Fang YL, Fisher AS, Dempsey BA, Reaction-based modeling of quinone-mediated bacterial iron(III) reduction. Geomicrobiol J 2002: (in review) Stevenson (BIB34) 1994 Chen, LeBoeuf, Dai, Gu (BIB6) 2002; 50 Lovley, Blunt-Harris (BIB20) 1999; 65 Lu, Johnson, Hook (BIB25) 1998; 32 Alberts, Schindler, Miller (BIB2) 1974; 184 |
References_xml | – year: 1969 ident: BIB29 publication-title: Analytical applications of 1,10-phenanthroline and related compounds – volume: 295 start-page: 263 year: 1994 end-page: 272 ident: BIB18 article-title: Determination of some redoc properties of humic acid by alkaline ferricyanide titration publication-title: Anal Chim Acta – volume: 46 start-page: 103 year: 1995 end-page: 108 ident: BIB9 article-title: Iron(III) reduction by natural humic acids: a potentiometric and spectroscopic study publication-title: Eu J Soil Sci – volume: 36 start-page: 1939 year: 2002 end-page: 1946 ident: BIB28 article-title: Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation publication-title: Environ Sci Technol – year: 1985 ident: BIB1 publication-title: Humic substances in soil, sediment, and water – volume: 48 start-page: 59 year: 2002 end-page: 68 ident: BIB5 article-title: Spectroscopic characterization of the structural and functional properties of natural organic matter fractions publication-title: Chemosphere – volume: 152 start-page: 259 year: 1991 end-page: 271 ident: BIB31 article-title: Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy publication-title: Soil Sci – volume: 55 start-page: 490 year: 1997 end-page: 496 ident: BIB41 article-title: Kinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditions publication-title: Biotech Bioeng – volume: 65 start-page: 4252 year: 1999 end-page: 4254 ident: BIB20 article-title: Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction publication-title: Appl Environ Microbiol – reference: Suffet IH, MacCarthy P. ‘Aquatic humic substances: Influence on fate and treatment of pollutants. Advances in chemistry Series 219.American Chemical Society, Washington, DC, 1989 – volume: 382 start-page: 445 year: 1996 end-page: 448 ident: BIB19 article-title: Humic substances as electron acceptors for microbial respiration publication-title: Nature – volume: 10 start-page: 60 year: 1938 end-page: 64 ident: BIB11 article-title: Determination of iron with publication-title: Ind Eng Chem – volume: 50 start-page: 639 year: 2002 end-page: 647 ident: BIB6 article-title: Fluorescence spectroscopic studies of natural organic matter fractions publication-title: Chemosphere – volume: 53 start-page: 228 year: 1981 end-page: 232 ident: BIB32 article-title: Reduction of ionic species by fulvic acid publication-title: Anal Chem – volume: 367 start-page: 62 year: 1994 end-page: 65 ident: BIB38 article-title: Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates publication-title: Nature – volume: 184 start-page: 895 year: 1974 end-page: 896 ident: BIB2 article-title: Elemental mercury evolution mediated by humic acid publication-title: Science – volume: 382 start-page: 445 year: 1996 end-page: 448 ident: BIB22 article-title: Humic substances as electron acceptors for microbial respiration publication-title: Nature – volume: 36 start-page: 2897 year: 2002 end-page: 2904 ident: BIB27 article-title: Enhancement of hematite bioreduction by natural organic matter publication-title: Environ Sci Technol – reference: Choi S, Chen J, Gu B, Reductive dissolution of iron oxyhydroxides by different fractions of natural organic matter. Extended abstract. The 220th American Chemical Society National Meeting, 20–25 August 2000, Washington, DC. 2000; 40: 433–435 – volume: 111 start-page: 233 year: 1971 end-page: 235 ident: BIB39 article-title: Reduction of Fe publication-title: Soil Sci – volume: 59 start-page: 219 year: 1995 end-page: 229 ident: BIB17 article-title: Adsorption and desorption of different organic matter fractions on iron oxide publication-title: Geochim Cosmochim Acta – volume: 64 start-page: 1504 year: 1998 end-page: 1509 ident: BIB8 article-title: Recovery of humic-reducing bacteria from a diversity of environments publication-title: Appl Environ Microbiol – volume: 29 start-page: 1460 year: 1995 end-page: 1467 ident: BIB26 article-title: Rank analysis of the pH-dependent synchronous fluorescence spectra of six standard humic substances publication-title: Environ Sci Technol – volume: 55 start-page: 109 year: 1975 end-page: 126 ident: BIB24 article-title: Fractionation of acid-soluble components of soil organic matter using PVP publication-title: Can J Soil Sci – reference: Burgos WD, Royer RA, Yeh RT, Fang YL, Fisher AS, Dempsey BA, Reaction-based modeling of quinone-mediated bacterial iron(III) reduction. Geomicrobiol J 2002: (in review) – volume: 64 start-page: 4507 year: 1998 end-page: 4512 ident: BIB3 article-title: Humic acid reduction by publication-title: Appl Environ Microbiol – volume: 26 start-page: 2133 year: 1992 end-page: 2141 ident: BIB10 article-title: Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter publication-title: Environ Sci Technol – volume: 102 start-page: 329 year: 2001 end-page: 346 ident: BIB36 article-title: Redox properties of standard humic acids publication-title: Geoderma – volume: 155 start-page: 249 year: 1999 end-page: 258 ident: BIB14 article-title: Light acceleration of iron(III) reduction by humic acid in the aqueous solution publication-title: Coll Surf A-physicochem Eng Aspects – year: 1994 ident: BIB34 publication-title: Humus chemistry: Genesis, Composition, Reactions – volume: 65 start-page: 4252 year: 1999 end-page: 4254 ident: BIB21 article-title: Role of Humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction publication-title: Appl Environ Microbiol. – volume: 66 start-page: 2451 year: 2000 end-page: 2460 ident: BIB42 article-title: Effect of electron donor and solution chemistry on products of dissimilatory reduction of technetium by publication-title: Appl Environ Microbiol – volume: 32 start-page: 2257 year: 1998 end-page: 2263 ident: BIB25 article-title: Reaction of vanadate with aquatic humic substances publication-title: Environ Sci Technol – volume: 42 start-page: 779 year: 1970 end-page: 781 ident: BIB35 article-title: Ferrozine-a new spectrophotometric reagent for iron publication-title: Anal Chem – reference: Gu B, Chen J, Vairavamurthy MA, Choi S, Tratnyek PG, Chemical and biological reduction of contaminant metals by natural organic matter. Extended abstract. The 220th American Chemical Society National Meeting, 20–25 August 2000, Washington, DC. 2000; 40: 443–446 – volume: 62 start-page: 3239 year: 1998 end-page: 3257 ident: BIB12 article-title: Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium publication-title: Geochimi et Cosmochimi Acta – volume: 35 start-page: 3488 year: 2001 end-page: 3494 ident: BIB43 article-title: Kinetics of Cr(VI) reduction by carbonate green rust publication-title: Environ Sci Tech – volume: 64 start-page: 3085 year: 2000 end-page: 3098 ident: BIB13 article-title: Reduction of U(VI) in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium publication-title: Geochim Cosmochim Acta – volume: 32 start-page: 2984 year: 1998 end-page: 2989 ident: BIB30 article-title: Quinone moieties act as electron acceptors in the reduction of humic substances by humic-reducing microorganisms publication-title: Environ Sci Technol – volume: 26 start-page: 152 year: 1998 end-page: 157 ident: BIB23 article-title: Humic substances as a mediator for microbially catalyzed metal reduction publication-title: Acta Hydrochim Hydrobiol – year: 1985 ident: BIB40 publication-title: Physical Chemistry—Principles and applications in biological sciences – volume: 59 start-page: 25 year: 1962 end-page: 34 ident: BIB33 article-title: Stable free radicals in soil humic acid publication-title: Biochim Biophys Acta – volume: 28 start-page: 38 year: 1994 end-page: 46 ident: BIB16 article-title: Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models publication-title: Environ Sci Technol |
SSID | ssj0000781 |
Score | 2.205514 |
Snippet | Although natural organic matter (NOM) is known to be redox reactive, the roles and effectiveness of specific functional groups of NOM in metal reduction are... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 167 |
SubjectTerms | Applied sciences Biological and physicochemical properties of pollutants. Interaction in the soil Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Exact sciences and technology Fe(III) reduction ferric iron Geochemistry Humic substances Hydrogen-Ion Concentration Iron - chemistry Iron - metabolism Kinetics Molecular Weight NOM oxidation capacity Organic Chemicals - metabolism Oxidation-Reduction Pollution Pollution, environment geology Shewanella putrefaciens Shewanella putrefaciens - physiology Soil and rock geochemistry Soil and sediments pollution Soil Microbiology |
Title | The roles of natural organic matter in chemical and microbial reduction of ferric iron |
URI | https://dx.doi.org/10.1016/S0048-9697(02)00538-7 https://www.ncbi.nlm.nih.gov/pubmed/12711432 https://www.proquest.com/docview/16152359 https://www.proquest.com/docview/73214162 |
Volume | 307 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5CSqEQSus2rdvE1aGH9rCJVquVtMcQEpyY5lCaNjehxwoMydrEzqGX_vZqpHWXHEygp2XF6IFmRhpJM98AfK6DCbYRvBCNcQXnviqU4qGolRUyNKaR6Sr725WYXvPLm_pmB043sTDoVtmv_XlNT6t1X3Lcz-bxcj7HGF-uGhEbw4uRSmFEOecSpfzoz-DmgWA2-ZU5KnakHqJ4cgup8AtlX1Mjhdy2P-0tzSrOWsjpLrbbo2lfOn8FL3uDkpzkMb-GnbYbwfOcYvL3CPbPhki2SNar8moEe_nCjuQ4pDfwMwoMQV_DFVkEkvA-I31O-uTIXYLhJPOOuB5hgJjOk7t5wnGKf_cIAYtMxtoB4R4dwX7fwvX52Y_TadEnXShc1OV1ZFdJTWM5tdxKLmxlA2tK5hEzlNUt9Q1VjvpoljglvKO29lYyH2QoIzccrfZht1t07XsgbTx516oMpsZ7RjxaGWW8a7n0JT6njoFvplq7HpEcE2Pc6sH1LHJII4c0ZTpxSMsxHP2rtsyQHE9VUBs-6keypeO28VTVySO-Dx1yofBNcwyfNoKgo2Lia4vp2sXDSqMpzaq62U4hMUlUKdgY3mUJGlpnMp5TK_bh_0f-EV4kv0Nax4XwAHbX9w_tYbSf1naSFGQCz04uZtMr_M6-_5r9BfPzE5A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgRShWChsDxaHzjAIa3jOLFzRFWrBdqeWtSb5UcsrUSzq-72wIXfzoydJeqhqsQpiuWxLY9nPLZnvgH4VEcbXdvIommtL6QMVaG1jEWtXaNia1uVrrLPzpvZpfx-VV9twdEmFobcKgfdn3V60tZDyeEwm4fL-ZxifKVuG2yMLkYqrR7BY4lfSmNw8Gf08yA0m_zMjJKN1ccwntxEKvzMxZfUSqHu26B2lnaF0xZzvov7DdK0MZ28gOeDRcm-5kG_hK2un8CTnGPy9wR2j8dQNqw2yPJqAjv5xo7lQKRX8BNXDCNnwxVbRJYAP7F-zvrk2XXC4WTznvkBYoDZPrDreQJywr8bwoAlLhN1JLxHz6jf13B5cnxxNCuGrAuFR2FeI79KblsnuZNOycZVLoq2FIFAQ0Xd8dBy7XlAu8TrJnju6uCUCFHFEtnhebUL2_2i794C6_DoXesy2pouGulsZbUNvpMqlPSeOgW5mWrjB0hyyozxy4y-Z8ghQxwyXJjEIaOmcPCPbJkxOR4i0Bs-mjuLy-C-8RDp3h2-jx3KRtOj5hT2NwvBoGTSc4vtu8XtypAtLaq6vb-GoixRZSOm8CavoLF1ofCgWol3_z_yfXg6uzg7Naffzn-8h2fJCZHXqBU_wPb65rb7iMbU2u0lYfkLgIoTew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+roles+of+natural+organic+matter+in+chemical+and+microbial+reduction+of+ferric+iron&rft.jtitle=The+Science+of+the+total+environment&rft.au=JIE+CHEN&rft.au=BAOHUA+GU&rft.au=ROYER%2C+Richard+A&rft.au=BURGOS%2C+William+D&rft.date=2003-05-20&rft.pub=Elsevier+Science&rft.issn=0048-9697&rft.volume=307&rft.issue=1-3&rft.spage=167&rft.epage=178&rft_id=info:doi/10.1016%2Fs0048-9697%2802%2900538-7&rft.externalDBID=n%2Fa&rft.externalDocID=14687600 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |