The roles of natural organic matter in chemical and microbial reduction of ferric iron

Although natural organic matter (NOM) is known to be redox reactive, the roles and effectiveness of specific functional groups of NOM in metal reduction are still a subject of intense investigation. This study entails the investigation of the Fe(III) reduction kinetics and capacity by three fraction...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 307; no. 1; pp. 167 - 178
Main Authors Chen, Jie, Gu, Baohua, Royer, Richard A., Burgos, William D.
Format Journal Article
LanguageEnglish
Published Shannon Elsevier B.V 20.05.2003
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although natural organic matter (NOM) is known to be redox reactive, the roles and effectiveness of specific functional groups of NOM in metal reduction are still a subject of intense investigation. This study entails the investigation of the Fe(III) reduction kinetics and capacity by three fractionated NOM subcomponents in the presence or absence of the dissimilatory metal reducing bacterium Shewanella putrefaciens CN32. Results indicate that NOM was able to reduce Fe(III) abiotically; the reduction was pH-dependent and varied greatly with different fractions of NOM. The polyphenolic-rich NOM-PP fraction exhibited the highest reactivity and oxidation capacity at a low pH (<4) as compared with the carbohydrate-rich NOM-CH fraction and a soil humic acid (soil HA) in reducing Fe(III). However, at a pH>4, soil HA showed a relatively high oxidation capacity, probably resulting from its conformational and solubility changes with an increased solution pH. In the presence of S. putrefaciens CN32, all NOM fractions were found to enhance the microbial reduction of Fe(III) under anaerobic, circumneutral pH conditions. Soil HA was found to be particularly effective in mediating the bioreduction of Fe(III) as compared with the NOM-PP or NOM-CH fractions. NOM-CH was the least effective because it was depleted in both aromatic and polyphenolic organic contents. However, because both soil HA and NOM-PP contain relatively high amounts of aromatic and phenolic compounds, results may indicate that low-molecular-weight polyphenolic organics in NOM-PP were less effective in mediating the bioreduction of Fe(III) at circumneutral pH than the high-molecular-weight polycondensed, conjugated aromatics present in soil HA. These research findings may shed additional light in understanding of the roles and underlying mechanisms of NOM reactions with contaminant metals, radionuclides, and other toxic chemicals in the natural environment.
AbstractList Although natural organic matter (NOM) is known to be redox reactive, the roles and effectiveness of specific functional groups of NOM in metal reduction are still a subject of intense investigation. This study entails the investigation of the Fe(III) reduction kinetics and capacity by three fractionated NOM subcomponents in the presence or absence of the dissimilatory metal reducing bacterium Shewanella putrefaciens CN32. Results indicate that NOM was able to reduce Fe(III) abiotically; the reduction was pH-dependent and varied greatly with different fractions of NOM. The polyphenolic-rich NOM-PP fraction exhibited the highest reactivity and oxidation capacity at a low pH (<4) as compared with the carbohydrate-rich NOM-CH fraction and a soil humic acid (soil HA) in reducing Fe(III). However, at a pH>4, soil HA showed a relatively high oxidation capacity, probably resulting from its conformational and solubility changes with an increased solution pH. In the presence of S. putrefaciens CN32, all NOM fractions were found to enhance the microbial reduction of Fe(III) under anaerobic, circumneutral pH conditions. Soil HA was found to be particularly effective in mediating the bioreduction of Fe(III) as compared with the NOM-PP or NOM-CH fractions. NOM-CH was the least effective because it was depleted in both aromatic and polyphenolic organic contents. However, because both soil HA and NOM-PP contain relatively high amounts of aromatic and phenolic compounds, results may indicate that low-molecular-weight polyphenolic organics in NOM-PP were less effective in mediating the bioreduction of Fe(III) at circumneutral pH than the high-molecular-weight polycondensed, conjugated aromatics present in soil HA. These research findings may shed additional light in understanding of the roles and underlying mechanisms of NOM reactions with contaminant metals, radionuclides, and other toxic chemicals in the natural environment.
Although natural organic matter (NOM) is known to be redox reactive, the roles and effectiveness of specific functional groups of NOM in metal reduction are still a subject of intense investigation. This study entails the investigation of the Fe(III) reduction kinetics and capacity by three fractionated NOM subcomponents in the presence or absence of the dissimilatory metal reducing bacterium Shewanella putrefaciens CN32. Results indicate that NOM was able to reduce Fe(III) abiotically; the reduction was pH-dependent and varied greatly with different fractions of NOM. The polyphenolic-rich NOM-PP fraction exhibited the highest reactivity and oxidation capacity at a low pH (<4) as compared with the carbohydrate-rich NOM-CH fraction and a soil humic acid (soil HA) in reducing Fe(III). However, at a pH>4, soil HA showed a relatively high oxidation capacity, probably resulting from its conformational and solubility changes with an increased solution pH. In the presence of S. putrefaciens CN32, all NOM fractions were found to enhance the microbial reduction of Fe(III) under anaerobic, circumneutral pH conditions. Soil HA was found to be particularly effective in mediating the bioreduction of Fe(III) as compared with the NOM-PP or NOM-CH fractions. NOM-CH was the least effective because it was depleted in both aromatic and polyphenolic organic contents. However, because both soil HA and NOM-PP contain relatively high amounts of aromatic and phenolic compounds, results may indicate that low-molecular-weight polyphenolic organics in NOM-PP were less effective in mediating the bioreduction of Fe(III) at circumneutral pH than the high-molecular-weight polycondensed, conjugated aromatics present in soil HA. These research findings may shed additional light in understanding of the roles and underlying mechanisms of NOM reactions with contaminant metals, radionuclides, and other toxic chemicals in the natural environment.Although natural organic matter (NOM) is known to be redox reactive, the roles and effectiveness of specific functional groups of NOM in metal reduction are still a subject of intense investigation. This study entails the investigation of the Fe(III) reduction kinetics and capacity by three fractionated NOM subcomponents in the presence or absence of the dissimilatory metal reducing bacterium Shewanella putrefaciens CN32. Results indicate that NOM was able to reduce Fe(III) abiotically; the reduction was pH-dependent and varied greatly with different fractions of NOM. The polyphenolic-rich NOM-PP fraction exhibited the highest reactivity and oxidation capacity at a low pH (<4) as compared with the carbohydrate-rich NOM-CH fraction and a soil humic acid (soil HA) in reducing Fe(III). However, at a pH>4, soil HA showed a relatively high oxidation capacity, probably resulting from its conformational and solubility changes with an increased solution pH. In the presence of S. putrefaciens CN32, all NOM fractions were found to enhance the microbial reduction of Fe(III) under anaerobic, circumneutral pH conditions. Soil HA was found to be particularly effective in mediating the bioreduction of Fe(III) as compared with the NOM-PP or NOM-CH fractions. NOM-CH was the least effective because it was depleted in both aromatic and polyphenolic organic contents. However, because both soil HA and NOM-PP contain relatively high amounts of aromatic and phenolic compounds, results may indicate that low-molecular-weight polyphenolic organics in NOM-PP were less effective in mediating the bioreduction of Fe(III) at circumneutral pH than the high-molecular-weight polycondensed, conjugated aromatics present in soil HA. These research findings may shed additional light in understanding of the roles and underlying mechanisms of NOM reactions with contaminant metals, radionuclides, and other toxic chemicals in the natural environment.
Although natural organic matter (NOM) is known to be redox reactive, the roles and effectiveness of specific functional groups of NOM in metal reduction are still a subject of intense investigation. This study entails the investigation of the Fe(III) reduction kinetics and capacity by three fractionated NOM subcomponents in the presence or absence of the dissimilatory metal reducing bacterium Shewanella putrefaciens CN32. Results indicate that NOM was able to reduce Fe(III) abiotically; the reduction was pH-dependent and varied greatly with different fractions of NOM. The polyphenolic-rich NOM-PP fraction exhibited the highest reactivity and oxidation capacity at a low pH (<4) as compared with the carbohydrate-rich NOM-CH fraction and a soil humic acid (soil HA) in reducing Fe(III). However, at a pH>4, soil HA showed a relatively high oxidation capacity, probably resulting from its conformational and solubility changes with an increased solution pH. In the presence of S. putrefaciens CN32, all NOM fractions were found to enhance the microbial reduction of Fe(III) under anaerobic, circumneutral pH conditions. Soil HA was found to be particularly effective in mediating the bioreduction of Fe(III) as compared with the NOM-PP or NOM-CH fractions. NOM-CH was the least effective because it was depleted in both aromatic and polyphenolic organic contents. However, because both soil HA and NOM-PP contain relatively high amounts of aromatic and phenolic compounds, results may indicate that low-molecular-weight polyphenolic organics in NOM-PP were less effective in mediating the bioreduction of Fe(III) at circumneutral pH than the high-molecular-weight polycondensed, conjugated aromatics present in soil HA. These research findings may shed additional light in understanding of the roles and underlying mechanisms of NOM reactions with contaminant metals, radionuclides, and other toxic chemicals in the natural environment.
Author Burgos, William D.
Chen, Jie
Gu, Baohua
Royer, Richard A.
Author_xml – sequence: 1
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
  organization: Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6036, USA
– sequence: 2
  givenname: Baohua
  surname: Gu
  fullname: Gu, Baohua
  email: b26@ornl.gov
  organization: Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6036, USA
– sequence: 3
  givenname: Richard A.
  surname: Royer
  fullname: Royer, Richard A.
  organization: Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 4
  givenname: William D.
  surname: Burgos
  fullname: Burgos, William D.
  organization: Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14687600$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12711432$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvFSEUhYmpsa9Pf4JmNhpdTL0wDDBxYUzT1iZNXFjdEgbuWMwMVJgx6b-X6XvWxM1jA4Tv3Hs554QchRiQkJcUTilQ8f4rAFd1Jzr5Ftg7gLZRtXxCNlTJrqbAxBHZPCLH5CTnn1CWVPQZOaZMUsobtiHfb26xSnHEXMWhCmZekhmrmH6Y4G01mXnGVPlQ2VucvC1PJriqnFLsfbkldIudfQyresCUisinGJ6Tp4MZM77Y71vy7eL85uxzff3l8urs03VtuVJzzTkF0_Ucet5LLvqmH1hHmSvfEaxFcB0oCw6Ysko4C33resncIAeqOmGh2ZI3u7p3Kf5aMM968tniOJqAcclaNoxyKthBkArasqbtCvhqDy79hE7fJT-ZdK__WlaA13vA5GLIkEywPv_juFBSwDrahx1XvMo54aCtn83q1ZyMHzUFvQapH4LUa0oamH4Isoy9Je1_6scGB3Qfdzosrv_2mHS2HoNF5xPaWbvoD1T4Aw5Ss1c
CODEN STENDL
CitedBy_id crossref_primary_10_1016_j_geoderma_2012_01_036
crossref_primary_10_1021_es072092z
crossref_primary_10_1016_j_geoderma_2006_08_004
crossref_primary_10_1080_02757540_2018_1437147
crossref_primary_10_3390_w14213450
crossref_primary_10_1007_s11104_020_04725_8
crossref_primary_10_1016_j_scitotenv_2017_08_060
crossref_primary_10_1007_s11431_024_2655_y
crossref_primary_10_1016_j_gca_2005_03_045
crossref_primary_10_1016_j_clay_2012_02_013
crossref_primary_10_1016_j_envpol_2017_03_048
crossref_primary_10_1016_S0168_6496_03_00245_9
crossref_primary_10_1680_jenge_21_00075
crossref_primary_10_1007_s12665_024_11777_x
crossref_primary_10_1002_ldr_3299
crossref_primary_10_1016_j_apgeochem_2016_12_027
crossref_primary_10_1016_j_gca_2019_02_027
crossref_primary_10_1002_jpln_201800207
crossref_primary_10_1016_j_apgeochem_2011_04_023
crossref_primary_10_1016_j_jenvman_2021_114036
crossref_primary_10_1016_j_cej_2015_09_095
crossref_primary_10_1039_C6EW00264A
crossref_primary_10_1021_acs_est_6b04131
crossref_primary_10_1021_es900474f
crossref_primary_10_1016_j_gca_2014_10_022
crossref_primary_10_1073_pnas_2313487120
crossref_primary_10_1016_j_watres_2020_116508
crossref_primary_10_1016_j_soilbio_2013_09_029
crossref_primary_10_1021_acsearthspacechem_2c00255
crossref_primary_10_1016_j_envres_2022_114267
crossref_primary_10_1021_es100594t
crossref_primary_10_1007_s13593_013_0202_5
crossref_primary_10_1039_D4EM00402G
crossref_primary_10_1128_AEM_02250_09
crossref_primary_10_1021_acs_est_0c02521
crossref_primary_10_1021_jp300995h
crossref_primary_10_1016_j_envpol_2024_123573
crossref_primary_10_1021_acsearthspacechem_3c00288
crossref_primary_10_1039_C7EM00003K
crossref_primary_10_1007_s10021_021_00639_3
crossref_primary_10_1016_j_chemgeo_2014_02_012
crossref_primary_10_1021_acs_est_8b06333
crossref_primary_10_1007_s11769_011_0454_4
crossref_primary_10_1016_j_limno_2011_10_004
crossref_primary_10_1016_j_chemgeo_2023_121833
crossref_primary_10_1021_acs_est_9b07134
crossref_primary_10_1016_j_scitotenv_2022_154927
crossref_primary_10_1016_j_ecoenv_2024_117298
crossref_primary_10_1021_es803112a
crossref_primary_10_1016_j_geoderma_2011_01_012
crossref_primary_10_1080_15320383_2015_1058337
crossref_primary_10_1524_ract_2009_1661
crossref_primary_10_1039_C9SE00918C
crossref_primary_10_1016_j_cej_2024_150836
crossref_primary_10_1016_j_scitotenv_2024_170451
crossref_primary_10_1016_j_jenvman_2019_110003
crossref_primary_10_1007_s10533_010_9490_x
crossref_primary_10_2136_sssaj2007_0418
crossref_primary_10_1016_j_chemosphere_2015_09_037
crossref_primary_10_1021_es062802l
crossref_primary_10_1080_09593330_2014_885586
crossref_primary_10_1016_j_bbabio_2018_05_007
crossref_primary_10_3390_resources5010015
crossref_primary_10_1007_s10661_020_08571_0
crossref_primary_10_1021_acs_est_7b03152
crossref_primary_10_1111_j_1365_2621_2005_tb09984_x
crossref_primary_10_1007_s11368_010_0332_1
crossref_primary_10_1016_S1002_0160_13_60087_9
crossref_primary_10_1016_j_chemgeo_2008_12_016
crossref_primary_10_1016_j_earscirev_2020_103281
crossref_primary_10_1007_s13762_017_1263_9
crossref_primary_10_1016_j_chemosphere_2018_11_143
crossref_primary_10_1128_AEM_72_4_2925_2935_2006
crossref_primary_10_1007_s10533_007_9172_5
crossref_primary_10_1016_j_jenvman_2020_111082
crossref_primary_10_1021_es050350r
crossref_primary_10_1371_journal_pone_0176484
crossref_primary_10_1016_j_apcatb_2015_12_018
crossref_primary_10_1021_es901585z
crossref_primary_10_1081_PLN_120024253
crossref_primary_10_5194_bg_17_683_2020
crossref_primary_10_3390_environments11070136
crossref_primary_10_1007_s42535_022_00467_3
crossref_primary_10_1016_j_seppur_2024_127266
crossref_primary_10_1021_es061323j
crossref_primary_10_1007_s11157_017_9424_3
crossref_primary_10_1080_01490451_2013_791356
crossref_primary_10_1021_es200110y
crossref_primary_10_1002_jsfa_4068
crossref_primary_10_1016_j_jcis_2011_03_067
crossref_primary_10_1371_journal_pone_0247478
crossref_primary_10_3389_fmicb_2020_01677
crossref_primary_10_1016_j_biortech_2014_09_018
crossref_primary_10_1016_j_corsci_2007_06_016
crossref_primary_10_1016_j_envpol_2015_12_046
crossref_primary_10_1016_j_gca_2023_01_027
crossref_primary_10_1016_S0016_7037_03_00162_5
crossref_primary_10_1016_S1872_2040_16_60964_7
crossref_primary_10_1021_es8013979
crossref_primary_10_1029_2021JG006584
crossref_primary_10_1016_j_chemosphere_2018_03_104
crossref_primary_10_1007_s10661_014_4047_4
crossref_primary_10_1016_j_jhazmat_2024_134290
crossref_primary_10_1016_j_scitotenv_2005_01_027
crossref_primary_10_1002_fes3_547
crossref_primary_10_1021_es900179s
crossref_primary_10_2139_ssrn_3971424
crossref_primary_10_1007_s10311_008_0158_x
crossref_primary_10_1073_pnas_1008747108
crossref_primary_10_1016_j_ecoenv_2021_112900
crossref_primary_10_1016_j_scitotenv_2020_140213
crossref_primary_10_5424_sjar_2013111_2671
crossref_primary_10_1016_j_gca_2006_05_018
crossref_primary_10_1007_s11157_005_2948_y
crossref_primary_10_1021_es0525197
crossref_primary_10_1007_s11356_016_6371_4
crossref_primary_10_1139_cjm_2015_0129
crossref_primary_10_1021_es203402p
crossref_primary_10_1016_j_envpol_2020_113977
crossref_primary_10_1016_j_jenvman_2017_11_012
crossref_primary_10_1016_j_jes_2018_07_016
crossref_primary_10_1039_C9EM00313D
crossref_primary_10_1016_j_earscirev_2016_09_001
crossref_primary_10_1039_C8RA06025H
crossref_primary_10_1021_jp910353y
crossref_primary_10_1111_1758_2229_12173
crossref_primary_10_1021_es049027z
crossref_primary_10_1016_j_jenvrad_2008_06_003
crossref_primary_10_1016_j_scitotenv_2020_142937
crossref_primary_10_1016_j_jclepro_2024_143053
crossref_primary_10_1021_es5022679
crossref_primary_10_1021_es4023317
crossref_primary_10_1016_j_chemgeo_2006_05_011
crossref_primary_10_1021_acs_est_5b03939
crossref_primary_10_1016_S1001_0742_08_60040_6
crossref_primary_10_2478_v10014_011_0013_9
crossref_primary_10_1016_j_jhazmat_2014_07_030
crossref_primary_10_1016_j_nbt_2013_03_008
crossref_primary_10_1071_EN04053
crossref_primary_10_1111_j_1744_7348_2007_00166_x
crossref_primary_10_1016_j_watres_2020_115631
crossref_primary_10_1021_acs_est_4c05517
crossref_primary_10_1016_j_apgeochem_2006_12_020
crossref_primary_10_1016_j_wasman_2017_09_012
crossref_primary_10_1016_j_catena_2017_09_029
crossref_primary_10_1021_acs_est_9b04873
crossref_primary_10_1039_C4EM00217B
crossref_primary_10_1016_j_gca_2022_10_026
crossref_primary_10_1021_acs_est_6b03237
crossref_primary_10_1016_S2095_3119_16_61509_5
crossref_primary_10_1007_s00027_012_0260_9
crossref_primary_10_1016_j_gca_2018_01_004
crossref_primary_10_1021_ez5002209
crossref_primary_10_1080_09593330_2020_1772376
crossref_primary_10_1021_acsearthspacechem_1c00009
crossref_primary_10_1016_j_scitotenv_2017_10_048
crossref_primary_10_1016_j_chemosphere_2019_124459
crossref_primary_10_1038_s43017_023_00470_5
crossref_primary_10_1016_j_chemosphere_2020_128697
crossref_primary_10_1021_es803647r
crossref_primary_10_1016_j_chemosphere_2018_01_096
crossref_primary_10_1007_s10646_015_1551_4
crossref_primary_10_1016_j_chemgeo_2016_09_031
crossref_primary_10_1016_j_soilbio_2025_109735
crossref_primary_10_1016_j_chemosphere_2022_137198
crossref_primary_10_1016_j_chemosphere_2017_12_007
crossref_primary_10_1016_j_jhazmat_2018_07_026
crossref_primary_10_1007_s10653_019_00456_7
ContentType Journal Article
Copyright 2002 Elsevier Science B.V.
2003 INIST-CNRS
Copyright_xml – notice: 2002 Elsevier Science B.V.
– notice: 2003 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
7TV
8FD
C1K
FR3
P64
7X8
DOI 10.1016/S0048-9697(02)00538-7
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
Applied Sciences
EISSN 1879-1026
EndPage 178
ExternalDocumentID 12711432
14687600
10_1016_S0048_9697_02_00538_7
S0048969702005387
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYJJ
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
WUQ
XPP
ZXP
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
SSH
ADXHL
AEGFY
AFJKZ
AGQPQ
AIGII
APXCP
BNPGV
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
7TV
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c488t-4410a9b40b4b746b3bf2912d005625e0d908c0d028c86dc0b5db72df7f1896c03
IEDL.DBID .~1
ISSN 0048-9697
IngestDate Mon Jul 21 11:25:28 EDT 2025
Tue Aug 05 10:26:58 EDT 2025
Wed Feb 19 01:44:11 EST 2025
Mon Jul 21 09:17:08 EDT 2025
Thu Apr 24 23:08:00 EDT 2025
Tue Jul 01 03:08:35 EDT 2025
Fri Feb 23 02:34:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Shewanella putrefaciens
NOM oxidation capacity
Fe(III) reduction
Humic substances
Microbial activity
Organic matter
Pollutant behavior
Soil pollution
Sediments
Heavy metal
Chemical reduction
Biogeochemistry
Iron III
Medium effect
Oxidation potential
Biotransformation
pH
Property structure relationship
Humic acid
Functional group
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-4410a9b40b4b746b3bf2912d005625e0d908c0d028c86dc0b5db72df7f1896c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 12711432
PQID 16152359
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_73214162
proquest_miscellaneous_16152359
pubmed_primary_12711432
pascalfrancis_primary_14687600
crossref_citationtrail_10_1016_S0048_9697_02_00538_7
crossref_primary_10_1016_S0048_9697_02_00538_7
elsevier_sciencedirect_doi_10_1016_S0048_9697_02_00538_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-05-20
PublicationDateYYYYMMDD 2003-05-20
PublicationDate_xml – month: 05
  year: 2003
  text: 2003-05-20
  day: 20
PublicationDecade 2000
PublicationPlace Shannon
PublicationPlace_xml – name: Shannon
– name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2003
Publisher Elsevier B.V
Elsevier Science
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science
References Aiken, McKnight, Wershaw, MacCarthy (BIB1) 1985
Gu, Schmitt, Chen, Liang, McCarthy (BIB16) 1994; 28
Coates, Ellis, Blunt-Harris, Gaw, Roden, Lovley (BIB8) 1998; 64
Senesi, Miano, Provenzano, Brunetti (BIB31) 1991; 152
Wildung, Gorby, Krupka, Hess, Li, Plymale, McKinley, Fredrickson (BIB42) 2000; 66
Schilt (BIB29) 1969
Truex, Peyton, Valentine, Gorby (BIB41) 1997; 55
Deiana, Gessa, Manunza, Rausa, Solinas (BIB9) 1995; 46
Royer, Burgos, Fisher, Jeon, Unz, Dempsey (BIB27) 2002; 36
Stookey (BIB35) 1970; 42
Fredrickson, Zachara, Kennedy, Dong, Onstott, Hinman, Li (BIB12) 1998; 62
Choi S, Chen J, Gu B, Reductive dissolution of iron oxyhydroxides by different fractions of natural organic matter. Extended abstract. The 220th American Chemical Society National Meeting, 20–25 August 2000, Washington, DC. 2000; 40: 433–435
Helburn, MacCarthy (BIB18) 1994; 295
Lovley (BIB19) 1996; 382
Lovley, Blunt-Harris (BIB21) 1999; 65
Skogerboe, Wilson (BIB32) 1981; 53
Gu B, Chen J, Vairavamurthy MA, Choi S, Tratnyek PG, Chemical and biological reduction of contaminant metals by natural organic matter. Extended abstract. The 220th American Chemical Society National Meeting, 20–25 August 2000, Washington, DC. 2000; 40: 443–446
Suffet IH, MacCarthy P. ‘Aquatic humic substances: Influence on fate and treatment of pollutants. Advances in chemistry Series 219.American Chemical Society, Washington, DC, 1989
Tinoco, Sauer, Wang (BIB40) 1985
Pullin, Cabaniss (BIB26) 1995; 29
Sunda, Kieber (BIB38) 1994; 367
Szilagyi (BIB39) 1971; 111
Fortune, Mellon (BIB11) 1938; 10
Lovley, Fraga, Blunt-Harris, Hayes, Phillips, Coates (BIB23) 1998; 26
Scott, McKnight, Blunt-Harris, Kolesar, Lovley (BIB30) 1998; 32
Steelink, Tollin (BIB33) 1962; 59
Williams, Scherer (BIB43) 2001; 35
Fredrickson, Zachara, Kennedy, Duff, Gorby, Li, Krupka (BIB13) 2000; 64
Chen, Gu, LeBoeuf, Pan, Dai (BIB5) 2002; 48
Gu, Schmitt, Chen, Liang, McCarthy (BIB17) 1995; 59
Dunnivant, Schwarzenbach, Macalady (BIB10) 1992; 26
Fukushima, Tatsumi (BIB14) 1999; 155
Lowe (BIB24) 1975; 55
Benz, Schink, Brune (BIB3) 1998; 64
Struyk, Sposito (BIB36) 2001; 102
Royer, Burgos, Fisher, Unz, Dempsey (BIB28) 2002; 36
Lovley, Coates, Blunt-Harris, Phillips, Woodward (BIB22) 1996; 382
Burgos WD, Royer RA, Yeh RT, Fang YL, Fisher AS, Dempsey BA, Reaction-based modeling of quinone-mediated bacterial iron(III) reduction. Geomicrobiol J 2002: (in review)
Stevenson (BIB34) 1994
Chen, LeBoeuf, Dai, Gu (BIB6) 2002; 50
Lovley, Blunt-Harris (BIB20) 1999; 65
Lu, Johnson, Hook (BIB25) 1998; 32
Alberts, Schindler, Miller (BIB2) 1974; 184
References_xml – year: 1969
  ident: BIB29
  publication-title: Analytical applications of 1,10-phenanthroline and related compounds
– volume: 295
  start-page: 263
  year: 1994
  end-page: 272
  ident: BIB18
  article-title: Determination of some redoc properties of humic acid by alkaline ferricyanide titration
  publication-title: Anal Chim Acta
– volume: 46
  start-page: 103
  year: 1995
  end-page: 108
  ident: BIB9
  article-title: Iron(III) reduction by natural humic acids: a potentiometric and spectroscopic study
  publication-title: Eu J Soil Sci
– volume: 36
  start-page: 1939
  year: 2002
  end-page: 1946
  ident: BIB28
  article-title: Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation
  publication-title: Environ Sci Technol
– year: 1985
  ident: BIB1
  publication-title: Humic substances in soil, sediment, and water
– volume: 48
  start-page: 59
  year: 2002
  end-page: 68
  ident: BIB5
  article-title: Spectroscopic characterization of the structural and functional properties of natural organic matter fractions
  publication-title: Chemosphere
– volume: 152
  start-page: 259
  year: 1991
  end-page: 271
  ident: BIB31
  article-title: Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy
  publication-title: Soil Sci
– volume: 55
  start-page: 490
  year: 1997
  end-page: 496
  ident: BIB41
  article-title: Kinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditions
  publication-title: Biotech Bioeng
– volume: 65
  start-page: 4252
  year: 1999
  end-page: 4254
  ident: BIB20
  article-title: Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction
  publication-title: Appl Environ Microbiol
– reference: Suffet IH, MacCarthy P. ‘Aquatic humic substances: Influence on fate and treatment of pollutants. Advances in chemistry Series 219.American Chemical Society, Washington, DC, 1989
– volume: 382
  start-page: 445
  year: 1996
  end-page: 448
  ident: BIB19
  article-title: Humic substances as electron acceptors for microbial respiration
  publication-title: Nature
– volume: 10
  start-page: 60
  year: 1938
  end-page: 64
  ident: BIB11
  article-title: Determination of iron with
  publication-title: Ind Eng Chem
– volume: 50
  start-page: 639
  year: 2002
  end-page: 647
  ident: BIB6
  article-title: Fluorescence spectroscopic studies of natural organic matter fractions
  publication-title: Chemosphere
– volume: 53
  start-page: 228
  year: 1981
  end-page: 232
  ident: BIB32
  article-title: Reduction of ionic species by fulvic acid
  publication-title: Anal Chem
– volume: 367
  start-page: 62
  year: 1994
  end-page: 65
  ident: BIB38
  article-title: Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates
  publication-title: Nature
– volume: 184
  start-page: 895
  year: 1974
  end-page: 896
  ident: BIB2
  article-title: Elemental mercury evolution mediated by humic acid
  publication-title: Science
– volume: 382
  start-page: 445
  year: 1996
  end-page: 448
  ident: BIB22
  article-title: Humic substances as electron acceptors for microbial respiration
  publication-title: Nature
– volume: 36
  start-page: 2897
  year: 2002
  end-page: 2904
  ident: BIB27
  article-title: Enhancement of hematite bioreduction by natural organic matter
  publication-title: Environ Sci Technol
– reference: Choi S, Chen J, Gu B, Reductive dissolution of iron oxyhydroxides by different fractions of natural organic matter. Extended abstract. The 220th American Chemical Society National Meeting, 20–25 August 2000, Washington, DC. 2000; 40: 433–435
– volume: 111
  start-page: 233
  year: 1971
  end-page: 235
  ident: BIB39
  article-title: Reduction of Fe
  publication-title: Soil Sci
– volume: 59
  start-page: 219
  year: 1995
  end-page: 229
  ident: BIB17
  article-title: Adsorption and desorption of different organic matter fractions on iron oxide
  publication-title: Geochim Cosmochim Acta
– volume: 64
  start-page: 1504
  year: 1998
  end-page: 1509
  ident: BIB8
  article-title: Recovery of humic-reducing bacteria from a diversity of environments
  publication-title: Appl Environ Microbiol
– volume: 29
  start-page: 1460
  year: 1995
  end-page: 1467
  ident: BIB26
  article-title: Rank analysis of the pH-dependent synchronous fluorescence spectra of six standard humic substances
  publication-title: Environ Sci Technol
– volume: 55
  start-page: 109
  year: 1975
  end-page: 126
  ident: BIB24
  article-title: Fractionation of acid-soluble components of soil organic matter using PVP
  publication-title: Can J Soil Sci
– reference: Burgos WD, Royer RA, Yeh RT, Fang YL, Fisher AS, Dempsey BA, Reaction-based modeling of quinone-mediated bacterial iron(III) reduction. Geomicrobiol J 2002: (in review)
– volume: 64
  start-page: 4507
  year: 1998
  end-page: 4512
  ident: BIB3
  article-title: Humic acid reduction by
  publication-title: Appl Environ Microbiol
– volume: 26
  start-page: 2133
  year: 1992
  end-page: 2141
  ident: BIB10
  article-title: Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter
  publication-title: Environ Sci Technol
– volume: 102
  start-page: 329
  year: 2001
  end-page: 346
  ident: BIB36
  article-title: Redox properties of standard humic acids
  publication-title: Geoderma
– volume: 155
  start-page: 249
  year: 1999
  end-page: 258
  ident: BIB14
  article-title: Light acceleration of iron(III) reduction by humic acid in the aqueous solution
  publication-title: Coll Surf A-physicochem Eng Aspects
– year: 1994
  ident: BIB34
  publication-title: Humus chemistry: Genesis, Composition, Reactions
– volume: 65
  start-page: 4252
  year: 1999
  end-page: 4254
  ident: BIB21
  article-title: Role of Humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction
  publication-title: Appl Environ Microbiol.
– volume: 66
  start-page: 2451
  year: 2000
  end-page: 2460
  ident: BIB42
  article-title: Effect of electron donor and solution chemistry on products of dissimilatory reduction of technetium by
  publication-title: Appl Environ Microbiol
– volume: 32
  start-page: 2257
  year: 1998
  end-page: 2263
  ident: BIB25
  article-title: Reaction of vanadate with aquatic humic substances
  publication-title: Environ Sci Technol
– volume: 42
  start-page: 779
  year: 1970
  end-page: 781
  ident: BIB35
  article-title: Ferrozine-a new spectrophotometric reagent for iron
  publication-title: Anal Chem
– reference: Gu B, Chen J, Vairavamurthy MA, Choi S, Tratnyek PG, Chemical and biological reduction of contaminant metals by natural organic matter. Extended abstract. The 220th American Chemical Society National Meeting, 20–25 August 2000, Washington, DC. 2000; 40: 443–446
– volume: 62
  start-page: 3239
  year: 1998
  end-page: 3257
  ident: BIB12
  article-title: Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium
  publication-title: Geochimi et Cosmochimi Acta
– volume: 35
  start-page: 3488
  year: 2001
  end-page: 3494
  ident: BIB43
  article-title: Kinetics of Cr(VI) reduction by carbonate green rust
  publication-title: Environ Sci Tech
– volume: 64
  start-page: 3085
  year: 2000
  end-page: 3098
  ident: BIB13
  article-title: Reduction of U(VI) in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium
  publication-title: Geochim Cosmochim Acta
– volume: 32
  start-page: 2984
  year: 1998
  end-page: 2989
  ident: BIB30
  article-title: Quinone moieties act as electron acceptors in the reduction of humic substances by humic-reducing microorganisms
  publication-title: Environ Sci Technol
– volume: 26
  start-page: 152
  year: 1998
  end-page: 157
  ident: BIB23
  article-title: Humic substances as a mediator for microbially catalyzed metal reduction
  publication-title: Acta Hydrochim Hydrobiol
– year: 1985
  ident: BIB40
  publication-title: Physical Chemistry—Principles and applications in biological sciences
– volume: 59
  start-page: 25
  year: 1962
  end-page: 34
  ident: BIB33
  article-title: Stable free radicals in soil humic acid
  publication-title: Biochim Biophys Acta
– volume: 28
  start-page: 38
  year: 1994
  end-page: 46
  ident: BIB16
  article-title: Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models
  publication-title: Environ Sci Technol
SSID ssj0000781
Score 2.205514
Snippet Although natural organic matter (NOM) is known to be redox reactive, the roles and effectiveness of specific functional groups of NOM in metal reduction are...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 167
SubjectTerms Applied sciences
Biological and physicochemical properties of pollutants. Interaction in the soil
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Fe(III) reduction
ferric iron
Geochemistry
Humic substances
Hydrogen-Ion Concentration
Iron - chemistry
Iron - metabolism
Kinetics
Molecular Weight
NOM oxidation capacity
Organic Chemicals - metabolism
Oxidation-Reduction
Pollution
Pollution, environment geology
Shewanella putrefaciens
Shewanella putrefaciens - physiology
Soil and rock geochemistry
Soil and sediments pollution
Soil Microbiology
Title The roles of natural organic matter in chemical and microbial reduction of ferric iron
URI https://dx.doi.org/10.1016/S0048-9697(02)00538-7
https://www.ncbi.nlm.nih.gov/pubmed/12711432
https://www.proquest.com/docview/16152359
https://www.proquest.com/docview/73214162
Volume 307
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5CSqEQSus2rdvE1aGH9rCJVquVtMcQEpyY5lCaNjehxwoMydrEzqGX_vZqpHWXHEygp2XF6IFmRhpJM98AfK6DCbYRvBCNcQXnviqU4qGolRUyNKaR6Sr725WYXvPLm_pmB043sTDoVtmv_XlNT6t1X3Lcz-bxcj7HGF-uGhEbw4uRSmFEOecSpfzoz-DmgWA2-ZU5KnakHqJ4cgup8AtlX1Mjhdy2P-0tzSrOWsjpLrbbo2lfOn8FL3uDkpzkMb-GnbYbwfOcYvL3CPbPhki2SNar8moEe_nCjuQ4pDfwMwoMQV_DFVkEkvA-I31O-uTIXYLhJPOOuB5hgJjOk7t5wnGKf_cIAYtMxtoB4R4dwX7fwvX52Y_TadEnXShc1OV1ZFdJTWM5tdxKLmxlA2tK5hEzlNUt9Q1VjvpoljglvKO29lYyH2QoIzccrfZht1t07XsgbTx516oMpsZ7RjxaGWW8a7n0JT6njoFvplq7HpEcE2Pc6sH1LHJII4c0ZTpxSMsxHP2rtsyQHE9VUBs-6keypeO28VTVySO-Dx1yofBNcwyfNoKgo2Lia4vp2sXDSqMpzaq62U4hMUlUKdgY3mUJGlpnMp5TK_bh_0f-EV4kv0Nax4XwAHbX9w_tYbSf1naSFGQCz04uZtMr_M6-_5r9BfPzE5A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgRShWChsDxaHzjAIa3jOLFzRFWrBdqeWtSb5UcsrUSzq-72wIXfzoydJeqhqsQpiuWxLY9nPLZnvgH4VEcbXdvIommtL6QMVaG1jEWtXaNia1uVrrLPzpvZpfx-VV9twdEmFobcKgfdn3V60tZDyeEwm4fL-ZxifKVuG2yMLkYqrR7BY4lfSmNw8Gf08yA0m_zMjJKN1ccwntxEKvzMxZfUSqHu26B2lnaF0xZzvov7DdK0MZ28gOeDRcm-5kG_hK2un8CTnGPy9wR2j8dQNqw2yPJqAjv5xo7lQKRX8BNXDCNnwxVbRJYAP7F-zvrk2XXC4WTznvkBYoDZPrDreQJywr8bwoAlLhN1JLxHz6jf13B5cnxxNCuGrAuFR2FeI79KblsnuZNOycZVLoq2FIFAQ0Xd8dBy7XlAu8TrJnju6uCUCFHFEtnhebUL2_2i794C6_DoXesy2pouGulsZbUNvpMqlPSeOgW5mWrjB0hyyozxy4y-Z8ghQxwyXJjEIaOmcPCPbJkxOR4i0Bs-mjuLy-C-8RDp3h2-jx3KRtOj5hT2NwvBoGTSc4vtu8XtypAtLaq6vb-GoixRZSOm8CavoLF1ofCgWol3_z_yfXg6uzg7Naffzn-8h2fJCZHXqBU_wPb65rb7iMbU2u0lYfkLgIoTew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+roles+of+natural+organic+matter+in+chemical+and+microbial+reduction+of+ferric+iron&rft.jtitle=The+Science+of+the+total+environment&rft.au=JIE+CHEN&rft.au=BAOHUA+GU&rft.au=ROYER%2C+Richard+A&rft.au=BURGOS%2C+William+D&rft.date=2003-05-20&rft.pub=Elsevier+Science&rft.issn=0048-9697&rft.volume=307&rft.issue=1-3&rft.spage=167&rft.epage=178&rft_id=info:doi/10.1016%2Fs0048-9697%2802%2900538-7&rft.externalDBID=n%2Fa&rft.externalDocID=14687600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon