Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase

Plants produce two flavonoid O-pentoses, flavonoid O-xyloside and flavonoid O-arabinoside. However, analyzing their biological properties is difficult because flavonoids are not naturally produced in sufficient quantities. In this study, Escherichia coli was used to synthesize the plant-specific fla...

Full description

Saved in:
Bibliographic Details
Published inApplied and Environmental Microbiology Vol. 80; no. 9; pp. 2754 - 2762
Main Authors Han, So Hyun, Kim, Bong Gyu, Yoon, Jeong A, Chong, Youhoon, Ahn, Joong-Hoon
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plants produce two flavonoid O-pentoses, flavonoid O-xyloside and flavonoid O-arabinoside. However, analyzing their biological properties is difficult because flavonoids are not naturally produced in sufficient quantities. In this study, Escherichia coli was used to synthesize the plant-specific flavonoid O-pentosides quercetin 3-O-xyloside and quercetin 3-O-arabinoside. Two strategies were used. First, E. coli was engineered to express components of the biosynthetic pathways for UDP-xylose and UDP-arabinose. For UDP-xylose biosynthesis, two genes, UXS (UDP-xylose synthase) from Arabidopsis thaliana and ugd (UDP-glucose dehydrogenase) from E. coli, were overexpressed. In addition, the gene encoding ArnA (UDP-l-Ara4N formyltransferase/UDP-GlcA C-4″-decarboxylase), which competes with UXS for UDP-glucuronic acid, was deleted. For UDP-arabinose biosynthesis, UXE (UDP-xylose epimerase) was overexpressed. Next, we engineered UDP-dependent glycosyltransferases (UGTs) to ensure specificity for UDP-xylose and UDP-arabinose. The E. coli strains thus obtained synthesized approximately 160 mg/liter of quercetin 3-O-xyloside and quercetin 3-O-arabinoside.
AbstractList Plants produce two flavonoid O-pentoses, flavonoid O-xyloside and flavonoid O-arabinoside. However, analyzing their biological properties is difficult because flavonoids are not naturally produced in sufficient quantities. In this study, Escherichia coli was used to synthesize the plant-specific flavonoid O-pentosides quercetin 3-O-xyloside and quercetin 3-O-arabinoside. Two strategies were used. First, E. coli was engineered to express components of the biosynthetic pathways for UDP-xylose and UDP-arabinose. For UDP-xylose biosynthesis, two genes, UXS (UDP-xylose synthase) from Arabidopsis thaliana and ugd (UDP-glucose dehydrogenase) from E. coli, were overexpressed. In addition, the gene encoding ArnA (UDP-l-Ara4N formyltransferase/UDP-GlcA C-4 double prime -decarboxylase), which competes with UXS for UDP-glucuronic acid, was deleted. For UDP-arabinose biosynthesis, UXE (UDP-xylose epimerase) was overexpressed. Next, we engineered UDP-dependent glycosyltransferases (UGTs) to ensure specificity for UDP-xylose and UDP-arabinose. The E. coli strains thus obtained synthesized approximately 160 mg/liter of quercetin 3-O-xyloside and quercetin 3-O-arabinoside.
Plants produce two flavonoid O-pentoses, flavonoid O-xyloside and flavonoid O-arabinoside. However, analyzing their biological properties is difficult because flavonoids are not naturally produced in sufficient quantities. In this study, Escherichia coli was used to synthesize the plant-specific flavonoid O-pentosides quercetin 3-O-xyloside and quercetin 3-O-arabinoside. Two strategies were used. First, E. coli was engineered to express components of the biosynthetic pathways for UDP-xylose and UDP-arabinose. For UDP-xylose biosynthesis, two genes, UXS (UDP-xylose synthase) from Arabidopsis thaliana and ugd (UDP-glucose dehydrogenase) from E. coli, were overexpressed. In addition, the gene encoding ArnA (UDP-L-Ara4N formyltransferase/UDP-GlcA C-4?-decarboxylase), which competes with UXS for UDP-glucuronic acid, was deleted. For UDP-arabinose biosynthesis, UXE (UDP-xylose epimerase) was overexpressed. Next, we engineered UDP-dependent glycosyltransferases (UGTs) to ensure specificity for UDP-xylose and UDP-arabinose. The E. coli strains thus obtained synthesized approximately 160 mg/liter of quercetin 3-O-xyloside and quercetin 3-O-arabinoside. [PUBLICATION ABSTRACT]
ABSTRACT Plants produce two flavonoid O -pentoses, flavonoid O -xyloside and flavonoid O -arabinoside. However, analyzing their biological properties is difficult because flavonoids are not naturally produced in sufficient quantities. In this study, Escherichia coli was used to synthesize the plant-specific flavonoid O -pentosides quercetin 3- O -xyloside and quercetin 3- O -arabinoside. Two strategies were used. First, E. coli was engineered to express components of the biosynthetic pathways for UDP-xylose and UDP-arabinose. For UDP-xylose biosynthesis, two genes, UXS (UDP-xylose synthase) from Arabidopsis thaliana and ugd (UDP-glucose dehydrogenase) from E. coli , were overexpressed. In addition, the gene encoding ArnA (UDP- l -Ara4N formyltransferase/UDP-GlcA C-4″-decarboxylase), which competes with UXS for UDP-glucuronic acid, was deleted. For UDP-arabinose biosynthesis, UXE (UDP-xylose epimerase) was overexpressed. Next, we engineered UDP-dependent glycosyltransferases (UGTs) to ensure specificity for UDP-xylose and UDP-arabinose. The E. coli strains thus obtained synthesized approximately 160 mg/liter of quercetin 3- O -xyloside and quercetin 3- O -arabinoside.
Plants produce two flavonoid O -pentoses, flavonoid O -xyloside and flavonoid O -arabinoside. However, analyzing their biological properties is difficult because flavonoids are not naturally produced in sufficient quantities. In this study, Escherichia coli was used to synthesize the plant-specific flavonoid O -pentosides quercetin 3- O -xyloside and quercetin 3- O -arabinoside. Two strategies were used. First, E. coli was engineered to express components of the biosynthetic pathways for UDP-xylose and UDP-arabinose. For UDP-xylose biosynthesis, two genes, UXS (UDP-xylose synthase) from Arabidopsis thaliana and ugd (UDP-glucose dehydrogenase) from E. coli , were overexpressed. In addition, the gene encoding ArnA (UDP- l -Ara4N formyltransferase/UDP-GlcA C-4″-decarboxylase), which competes with UXS for UDP-glucuronic acid, was deleted. For UDP-arabinose biosynthesis, UXE (UDP-xylose epimerase) was overexpressed. Next, we engineered UDP-dependent glycosyltransferases (UGTs) to ensure specificity for UDP-xylose and UDP-arabinose. The E. coli strains thus obtained synthesized approximately 160 mg/liter of quercetin 3- O -xyloside and quercetin 3- O -arabinoside.
Plants produce two flavonoid O-pentoses, flavonoid O-xyloside and flavonoid O-arabinoside. However, analyzing their biological properties is difficult because flavonoids are not naturally produced in sufficient quantities. In this study, Escherichia coli was used to synthesize the plant-specific flavonoid O-pentosides quercetin 3-O-xyloside and quercetin 3-O-arabinoside. Two strategies were used. First, E. coli was engineered to express components of the biosynthetic pathways for UDP-xylose and UDP-arabinose. For UDP-xylose biosynthesis, two genes, UXS (UDP-xylose synthase) from Arabidopsis thaliana and ugd (UDP-glucose dehydrogenase) from E. coli, were overexpressed. In addition, the gene encoding ArnA (UDP-l-Ara4N formyltransferase/UDP-GlcA C-4″-decarboxylase), which competes with UXS for UDP-glucuronic acid, was deleted. For UDP-arabinose biosynthesis, UXE (UDP-xylose epimerase) was overexpressed. Next, we engineered UDP-dependent glycosyltransferases (UGTs) to ensure specificity for UDP-xylose and UDP-arabinose. The E. coli strains thus obtained synthesized approximately 160 mg/liter of quercetin 3-O-xyloside and quercetin 3-O-arabinoside.
Author Kim, Bong Gyu
Ahn, Joong-Hoon
Chong, Youhoon
Yoon, Jeong A
Han, So Hyun
Author_xml – sequence: 1
  givenname: So Hyun
  surname: Han
  fullname: Han, So Hyun
  organization: Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
– sequence: 2
  givenname: Bong Gyu
  surname: Kim
  fullname: Kim, Bong Gyu
– sequence: 3
  givenname: Jeong A
  surname: Yoon
  fullname: Yoon, Jeong A
– sequence: 4
  givenname: Youhoon
  surname: Chong
  fullname: Chong, Youhoon
– sequence: 5
  givenname: Joong-Hoon
  surname: Ahn
  fullname: Ahn, Joong-Hoon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24561591$$D View this record in MEDLINE/PubMed
BookMark eNqNkr1v1TAUxS1URF8LGzOyxMJAir8TL0hV9YBKRR2A2XKc68RVnv2wk6Js_Onk0VIVJqY7nN89uh_nBB3FFAGhl5ScUcqad-fbz2eE17quKH-CNpToppKcqyO0IUTrijFBjtFJKTeEEEFU8wwdMyEVlZpu0M8vS5wGKKHg5LEf7W2KKXT4utpDnFIJHRTcLnhb3AA5uCFY7NIY8DTkNPcDhtiHCKsU-4NDnN0IaVrbcJl7m_HeTsMPuxRsY4f7cXGpLOOUbSwesi3wHD31dizw4r6eom8ftl8vPlVX1x8vL86vKieaZqqYcB3xrFNK1dYJIbpW-FYo1rRSEEa8ZW0DWsqmBd-SrladqAWomlNZC-X5KXp_57uf2x10bt0u29Hsc9jZvJhkg_lbiWEwfbo1XGvONFsN3twb5PR9hjKZXSgOxtFGSHMxVDIhiGZS_gdKVc24knpFX_-D3qQ5x_USB0oL2jBNV-rtHeVyKiWDf5ibEnNIgVlTYH6nwFC-4q8e7_oA_3k7_wWzUbG0
CODEN AEMIDF
CitedBy_id crossref_primary_10_1016_j_biotechadv_2018_11_005
crossref_primary_10_1016_j_ijbiomac_2020_10_184
crossref_primary_10_3390_app9020215
crossref_primary_10_1016_j_jiec_2016_07_054
crossref_primary_10_1007_s00253_015_6504_6
crossref_primary_10_1021_acssynbio_9b00447
crossref_primary_10_1007_s13765_016_0186_3
crossref_primary_10_1016_j_bej_2015_05_017
crossref_primary_10_3839_jabc_2019_050
crossref_primary_10_4014_jmb_1911_11009
crossref_primary_10_1016_j_biotechadv_2020_107538
crossref_primary_10_1016_j_biotechadv_2020_107550
crossref_primary_10_3839_jabc_2019_001
crossref_primary_10_1007_s10600_020_03184_y
crossref_primary_10_1016_j_biotechadv_2023_108146
crossref_primary_10_1007_s00253_017_8694_6
crossref_primary_10_3389_fbioe_2024_1396268
crossref_primary_10_1007_s00299_016_2044_5
crossref_primary_10_30621_jbachs_1056769
crossref_primary_10_1007_s00253_014_6282_6
crossref_primary_10_1016_j_ymben_2024_02_017
crossref_primary_10_1002_bmc_3660
crossref_primary_10_1016_j_biotechadv_2016_02_012
crossref_primary_10_1016_j_plantsci_2020_110577
crossref_primary_10_1021_acssynbio_9b00219
crossref_primary_10_1042_ETLS20180011
crossref_primary_10_1016_j_enzmictec_2016_05_006
crossref_primary_10_1039_C6RA03304K
crossref_primary_10_1016_j_biotechadv_2015_02_005
crossref_primary_10_1016_j_biotechadv_2019_04_016
crossref_primary_10_3390_molecules25133054
crossref_primary_10_1016_j_ymben_2021_10_010
crossref_primary_10_1007_s00253_016_7465_0
crossref_primary_10_1039_C6RA03817D
crossref_primary_10_1093_jxb_erac505
crossref_primary_10_1007_s10295_016_1750_x
crossref_primary_10_1101_cshperspect_a034744
crossref_primary_10_1186_s12934_015_0326_1
Cites_doi 10.1016/j.copbio.2013.02.019
10.1128/AEM.00275-12
10.1007/s00253-013-4844-7
10.1002/biot.200700084
10.1111/j.1574-6968.2001.tb10892.x
10.1146/annurev.arplant.57.032905.105429
10.1007/s00253-012-4438-9
10.3390/ijms10125398
10.1021/jf00081a007
10.1016/S0031-9422(02)00558-7
10.1002/bit.20154
10.1016/j.cbpa.2010.11.022
10.1021/mp7001472
10.3839/jksabc.2009.056
10.1016/j.pbi.2004.03.004
10.1146/annurev-arplant-042110-103918
10.1016/j.carres.2003.07.009
10.1271/bbb.70028
10.1080/14756360500472829
10.1002/bit.21721
10.1038/ja.2008.85
10.1021/jf302123c
10.1016/j.tet.2011.03.110
10.1111/jphp.12050
10.1055/s-2003-45148
10.1021/jf401154c
10.1105/tpc.108.058040
10.1074/jbc.M611498200
10.1002/cbic.201000456
10.1248/bpb.32.1188
10.1007/s10295-011-0970-3
10.1093/nar/gkn751
10.1007/s00253-011-3747-8
10.1002/cbic.200600193
10.1158/0008-5472.CAN-04-3469
10.1104/pp.009654
10.1016/j.pbi.2008.03.009
10.1128/MMBR.65.4.523-569.2001
10.1016/j.tetlet.2011.04.040
10.1021/jf0484069
10.1007/s00253-013-5020-9
10.1016/j.abb.2004.06.021
10.1016/S1360-1385(00)01720-9
10.1016/S0031-9422(00)84935-3
10.1007/s00425-013-1922-0
10.1093/jac/dks005
10.1016/j.phytochem.2008.12.009
10.1146/annurev.biochem.71.110601.135414
ContentType Journal Article
Copyright Copyright American Society for Microbiology May 2014
Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
Copyright_xml – notice: Copyright American Society for Microbiology May 2014
– notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
DOI 10.1128/AEM.03797-13
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database
Virology and AIDS Abstracts
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
Medicine
Pharmacy, Therapeutics, & Pharmacology
EISSN 1098-5336
1098-6596
Editor Pettinari, M. J.
Editor_xml – sequence: 1
  givenname: M. J.
  surname: Pettinari
  fullname: Pettinari, M. J.
EndPage 2762
ExternalDocumentID 3287426511
10_1128_AEM_03797_13
24561591
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.GJ
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
85S
AAZTW
ABOGM
ABPPZ
ABTAH
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFFNX
AFRAH
AGCDD
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CGR
CS3
CUY
CVF
D0L
DIK
E.-
E3Z
EBS
ECM
EIF
EJD
F20
F5P
GX1
H13
HYE
HZ~
H~9
K-O
KQ8
L7B
MVM
NEJ
NPM
O9-
OHT
OK1
P2P
PQQKQ
RHF
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UCJ
UHB
VH1
W8F
WH7
WHG
WOQ
X6Y
X7M
XJT
YV5
ZCG
ZGI
ZXP
ZY4
~02
~KM
AAYXX
CITATION
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
FRP
HH5
LSO
W2D
5PM
ID FETCH-LOGICAL-c488t-24cd0f2d6667ac444db4fb4628b54020fa2b8e9558befb0d76d474e67315746f3
IEDL.DBID RPM
ISSN 0099-2240
IngestDate Tue Sep 17 21:19:47 EDT 2024
Fri Aug 16 02:42:38 EDT 2024
Sat Aug 17 03:28:03 EDT 2024
Thu Oct 10 22:08:02 EDT 2024
Thu Sep 12 20:10:04 EDT 2024
Sat Sep 28 08:02:41 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-24cd0f2d6667ac444db4fb4628b54020fa2b8e9558befb0d76d474e67315746f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://aem.asm.org/content/aem/80/9/2754.full.pdf
PMID 24561591
PQID 1519418291
PQPubID 42251
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3993292
proquest_miscellaneous_1524409255
proquest_miscellaneous_1516723659
proquest_journals_1519418291
crossref_primary_10_1128_AEM_03797_13
pubmed_primary_24561591
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Applied and Environmental Microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2014
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References 14735439 - Planta Med. 2003 Nov;69(11):1013-7
18974181 - Nucleic Acids Res. 2009 Jan;37(Database issue):D464-70
22159735 - Appl Microbiol Biotechnol. 2012 Mar;93(6):2447-53
15134748 - Curr Opin Plant Biol. 2004 Jun;7(3):277-84
18486535 - Curr Opin Plant Biol. 2008 Jun;11(3):236-43
21334964 - Curr Opin Chem Biol. 2011 Apr;15(2):226-33
23647459 - J Agric Food Chem. 2013 May 29;61(21):5139-47
21526386 - J Ind Microbiol Biotechnol. 2011 Aug;38(8):873-90
23801300 - Planta. 2013 Oct;238(4):683-93
15352060 - Biotechnol Bioeng. 2004 Sep 5;87(5):623-31
23647684 - J Pharm Pharmacol. 2013 Jun;65(6):907-15
15313223 - Arch Biochem Biophys. 2004 Sep 15;429(2):198-203
21370975 - Annu Rev Plant Biol. 2011;62:127-55
16669774 - Annu Rev Plant Biol. 2006;57:567-97
17935117 - Biotechnol J. 2007 Oct;2(10):1214-34
19194030 - J Antibiot (Tokyo). 2008 Dec;61(12):709-28
23498845 - Curr Opin Biotechnol. 2013 Dec;24(6):1137-43
12045108 - Annu Rev Biochem. 2002;71:635-700
23549747 - Appl Microbiol Biotechnol. 2013 Jun;97(12):5275-82
20054477 - Int J Mol Sci. 2009 Dec;10(12):5398-410
19571383 - Biol Pharm Bull. 2009 Jul;32(7):1188-92
18023053 - Biotechnol Bioeng. 2008 May 1;100(1):126-40
23072384 - J Agric Food Chem. 2012 Nov 7;60(44):11143-8
22311936 - J Antimicrob Chemother. 2012 May;67(5):1138-44
14670712 - Carbohydr Res. 2003 Nov 14;338(23):2503-19
16927318 - Chembiochem. 2006 Aug;7(8):1181-5
18333619 - Mol Pharm. 2008 Mar-Apr;5(2):257-65
15781612 - Cancer Res. 2005 Mar 15;65(6):2059-64
12620353 - Phytochemistry. 2003 Feb;62(3):399-413
17314094 - J Biol Chem. 2007 May 18;282(20):14932-41
19217634 - Phytochemistry. 2009 Feb;70(3):325-47
10973093 - Trends Plant Sci. 2000 Sep;5(9):380-6
12481102 - Plant Physiol. 2002 Dec;130(4):2188-98
15740041 - J Agric Food Chem. 2005 Mar 9;53(5):1563-70
18757557 - Plant Cell. 2008 Aug;20(8):2160-76
23053089 - Appl Microbiol Biotechnol. 2013 Mar;97(5):1889-901
16570511 - J Enzyme Inhib Med Chem. 2006 Feb;21(1):87-93
20981748 - Chembiochem. 2010 Nov 22;11(17):2389-92
11729263 - Microbiol Mol Biol Rev. 2001 Dec;65(4):523-69, table of contents
17587669 - Biosci Biotechnol Biochem. 2007 Jun;71(6):1387-404
22492444 - Appl Environ Microbiol. 2012 Jun;78(12):4256-62
23771780 - Appl Microbiol Biotechnol. 2013 Aug;97(16):7195-204
11731130 - FEMS Microbiol Lett. 2001 Nov 13;204(2):247-52
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_12_2
  doi: 10.1016/j.copbio.2013.02.019
– ident: e_1_3_2_40_2
  doi: 10.1128/AEM.00275-12
– ident: e_1_3_2_19_2
  doi: 10.1007/s00253-013-4844-7
– ident: e_1_3_2_2_2
  doi: 10.1002/biot.200700084
– ident: e_1_3_2_46_2
  doi: 10.1111/j.1574-6968.2001.tb10892.x
– ident: e_1_3_2_5_2
  doi: 10.1146/annurev.arplant.57.032905.105429
– ident: e_1_3_2_20_2
  doi: 10.1007/s00253-012-4438-9
– ident: e_1_3_2_33_2
  doi: 10.3390/ijms10125398
– ident: e_1_3_2_31_2
  doi: 10.1021/jf00081a007
– ident: e_1_3_2_48_2
  doi: 10.1016/S0031-9422(02)00558-7
– ident: e_1_3_2_17_2
  doi: 10.1002/bit.20154
– ident: e_1_3_2_27_2
  doi: 10.1016/j.cbpa.2010.11.022
– ident: e_1_3_2_15_2
  doi: 10.1021/mp7001472
– ident: e_1_3_2_39_2
  doi: 10.3839/jksabc.2009.056
– ident: e_1_3_2_9_2
  doi: 10.1016/j.pbi.2004.03.004
– ident: e_1_3_2_10_2
  doi: 10.1146/annurev-arplant-042110-103918
– ident: e_1_3_2_29_2
  doi: 10.1016/j.carres.2003.07.009
– ident: e_1_3_2_3_2
  doi: 10.1271/bbb.70028
– ident: e_1_3_2_36_2
  doi: 10.1080/14756360500472829
– ident: e_1_3_2_16_2
  doi: 10.1002/bit.21721
– ident: e_1_3_2_14_2
  doi: 10.1038/ja.2008.85
– ident: e_1_3_2_18_2
  doi: 10.1021/jf302123c
– ident: e_1_3_2_25_2
  doi: 10.1016/j.tet.2011.03.110
– ident: e_1_3_2_22_2
  doi: 10.1111/jphp.12050
– ident: e_1_3_2_23_2
  doi: 10.1055/s-2003-45148
– ident: e_1_3_2_35_2
  doi: 10.1021/jf401154c
– ident: e_1_3_2_44_2
  doi: 10.1105/tpc.108.058040
– ident: e_1_3_2_47_2
  doi: 10.1074/jbc.M611498200
– ident: e_1_3_2_38_2
  doi: 10.1002/cbic.201000456
– ident: e_1_3_2_24_2
  doi: 10.1248/bpb.32.1188
– ident: e_1_3_2_13_2
  doi: 10.1007/s10295-011-0970-3
– ident: e_1_3_2_42_2
  doi: 10.1093/nar/gkn751
– ident: e_1_3_2_43_2
  doi: 10.1007/s00253-011-3747-8
– ident: e_1_3_2_6_2
  doi: 10.1002/cbic.200600193
– ident: e_1_3_2_32_2
  doi: 10.1158/0008-5472.CAN-04-3469
– ident: e_1_3_2_37_2
  doi: 10.1104/pp.009654
– ident: e_1_3_2_11_2
  doi: 10.1016/j.pbi.2008.03.009
– ident: e_1_3_2_45_2
  doi: 10.1128/MMBR.65.4.523-569.2001
– ident: e_1_3_2_26_2
  doi: 10.1016/j.tetlet.2011.04.040
– ident: e_1_3_2_30_2
  doi: 10.1021/jf0484069
– ident: e_1_3_2_41_2
  doi: 10.1007/s00253-013-5020-9
– ident: e_1_3_2_49_2
  doi: 10.1016/j.abb.2004.06.021
– ident: e_1_3_2_4_2
  doi: 10.1016/S1360-1385(00)01720-9
– ident: e_1_3_2_34_2
  doi: 10.1016/S0031-9422(00)84935-3
– ident: e_1_3_2_8_2
  doi: 10.1007/s00425-013-1922-0
– ident: e_1_3_2_21_2
  doi: 10.1093/jac/dks005
– ident: e_1_3_2_7_2
  doi: 10.1016/j.phytochem.2008.12.009
– ident: e_1_3_2_28_2
  doi: 10.1146/annurev.biochem.71.110601.135414
SSID ssj0004068
ssj0006590
Score 2.377542
Snippet Plants produce two flavonoid O-pentoses, flavonoid O-xyloside and flavonoid O-arabinoside. However, analyzing their biological properties is difficult because...
ABSTRACT Plants produce two flavonoid O -pentoses, flavonoid O -xyloside and flavonoid O -arabinoside. However, analyzing their biological properties is...
Plants produce two flavonoid O -pentoses, flavonoid O -xyloside and flavonoid O -arabinoside. However, analyzing their biological properties is difficult...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 2754
SubjectTerms Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Arabinose - metabolism
Biosynthesis
Biosynthetic Pathways
Biotechnology
Carboxy-Lyases - genetics
Carboxy-Lyases - metabolism
E coli
Enzymes
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Flavonoids - chemistry
Flavonoids - metabolism
Flowers & plants
Gene expression
Glycosyltransferases - genetics
Glycosyltransferases - metabolism
Metabolic Engineering
Uridine Diphosphate Glucose Dehydrogenase - genetics
Uridine Diphosphate Glucose Dehydrogenase - metabolism
Uridine Diphosphate Sugars - metabolism
Xylose - metabolism
Title Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase
URI https://www.ncbi.nlm.nih.gov/pubmed/24561591
https://www.proquest.com/docview/1519418291
https://search.proquest.com/docview/1516723659
https://search.proquest.com/docview/1524409255
https://pubmed.ncbi.nlm.nih.gov/PMC3993292
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aJiHgAUG5dYzJSPCYNhcnjh-nqWWAOiqNSXuLbMeGSF0yNSlT3vjpHCdx1YLEA8--xMo51vd98rkAvEfI46nylWdojAIFIcKTQkae9nNEH1RvYVeOYXGZXFzTzzfxzQHELhemC9pXspiUq9tJWfzoYivvbtXUxYlNl4tzC6ohD6eHcMiiyEl0lwzpJ6krPWnxykW7h-n0bLaY-BHjzAts_xz75odoHuxD0l88889wyR38mT-FJwNxJGf9AZ_BgS5H8KBvJdmO4KHLMK5H8HinyOBz-HXVlsjy6qImlSHzlfiJE4ucfPWW-KXKtuusiWzJrLb2K2zsM0HvKMjQwofs7GZ3uLQVkKsGl5GrzXexJkskkfeirYkoc_Jx1aqqbldNR4j1GkHyBVzPZ9_OL7yh74Kn8Do3XkhV7pswR2XDhKKU5pIaaZNYZWzlphGhTDWP41RqI_2cJTllVCcsCmJGExO9hKOyKvVrIMK3yUTK54IHdqmgxmhDc6V4YGQqxvDB_frsri-vkXWyJEwztFbWWSsLojGcOLtkwyWrMyQrnKI-4sEY3m2H8XrYNw9R6mrTzUlYGCUx_9cc5Dg-R3E1hle9qbeHcT4yBrbnBNsJtjz3_gh6bVeme_DS4_9e-QYeIT2jfXjlCRw1641-ixSokadI_j99Oe0c_zezqQkB
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQ2jwwKXcAgOMBI9Jc3EufpymlgJrqbQN7S2ynRgiumRqUlB44qdznNRVOyQkePZFtvKdfN-RzwXgDVIeS6QrbUVDdFCQImzBRWDnbobsg96b35VjmM6iyTn9cBFe7EFocmG6oH0pCqdcXDpl8bWLrby6lEMTJzacT481qfrMH96Am2ivfmicdJMO6UaJKT6pGcvEu_vJ8Gg0ddwgZrHt6Q46-tUP-dzbJaU_lOb1gMktBhrfg8_m7H3gyTdn1QhH_rxW1vGfL3cf7q41KTnqhx_AXl4O4FbfpbIdwIFJXq4HcGerfuFD-HXaligg66ImlSLjBf-OE4uMfLLneIVKdwKtiWjJqNbQKHRYNUHgFWTdHYhs7aZ3mOniylWDy8jp6gtfkjnq0x-8rQkvM_Ju0cqqbhdNp7XzJfLvIzgfj86OJ_a6pYMt8U_R2D6Vmav8DJ2mmEtKaSaoEjo_VoTak1XcF0nOwjARuRJuFkcZjWkexYEXxjRSwWPYL6syfwqEuzpPSbqMM08v5VSpXNFMSuYpkXAL3ppvml71lTvSzuPxkxRhkHYwSL3AgkPzwdO1_dYp6iBG0fVingWvN8Noefo5hZd5termRLEfRCH72xyUTy5Dv82CJz2GNocx4LMg3kHXZoKu_L07gpjpKoCvMfLsv1e-goPJ2fQkPXk_-_gcbqMKpH0U5yHsN8tV_gKVViNednb1GzGAKgM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFH6CQWwHlrIFBjASHLM7i4-joWVYWioNI424RLYTz0R0kqpJQeHET-c5S9UOEoc5-9mylc_5vie_BeAtUh6LpSNNRQN0UJAiTMGFb2ZOiuyD3pvXlmOYzsKjE_rpNDjdavXVBu1LkVvF4sIq8vM2tnJ5Ie0hTsyeTw81qXrMs5epsq_DDbyzXjQ46kNKpBPGQwFKzVpDzLsX2wfjqeX4EYtMV3fR0S9_yOnuLjH9ozYvB01usdDkPnwf9t8Fn_yw1rWw5O9LpR2vdMAHcK_XpuSgM3kI17JiBDe7bpXNCG4PSczVCO5u1TF8BH-OmwKFZJVXpFRksuA_0TBPyVdzjscodUfQioiGjCsNkVyHVxMEYE76LkFkazW9wkwXWS5rnEaO12d8ReaoU3_xpiK8SMmHRSPLqlnUrebOVsjDj-FkMv52eGT2rR1MiX-M2vSoTB3lpeg8RVxSSlNBldB5siLQHq3inogzFgSxyJRw0ihMaUSzMPLdIKKh8p_AXlEW2TMg3NH5StJhnLl6KqdKZYqmUjJXiZgb8G74rsmyq-CRtJ6PFycIhaSFQuL6BuwPHz3p73GVoB5iFF0w5hrwZjOMN1A_q_AiK9etTRh5fhiw_9mgjHIY-m8GPO1wtNnMAEADoh2EbQx0BfDdEcRNWwm8x8nzK898Dbfm7yfJl4-zzy_gDopB2gVz7sNevVpnL1Fw1eJVe7X-Amr_LIM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+Flavonoid+O-Pentosides+by+Escherichia+coli+through+Engineering+of+Nucleotide+Sugar+Pathways+and+Glycosyltransferase&rft.jtitle=Applied+and+Environmental+Microbiology&rft.au=Han%2C+So+Hyun&rft.au=Kim%2C+Bong+Gyu&rft.au=Yoon%2C+Jeong+A&rft.au=Chong%2C+Youhoon&rft.date=2014-05-01&rft.issn=0099-2240&rft.eissn=1098-6596&rft.volume=80&rft.issue=9&rft.spage=2754&rft.epage=2762&rft_id=info:doi/10.1128%2FAEM.03797-13&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon