Plant seedlings of peas, tomatoes, and cucumbers exude compounds that are needed for growth and chemoattraction of Rhizobium leguminosarum bv. viciae 3841 and Azospirillum brasilense Sp7
This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, toma...
Saved in:
Published in | Canadian journal of microbiology Vol. 70; no. 5; pp. 150 - 162 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Canada
NRC Research Press
01.05.2024
Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
ISSN | 0008-4166 1480-3275 1480-3275 |
DOI | 10.1139/cjm-2023-0217 |
Cover
Loading…
Abstract | This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on. |
---|---|
AbstractList | This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on. This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on.This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on. This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that bv. 3841 enhanced growth of pea shoots, while Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that bv. was more selective than , which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, bv. and grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on. This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on. Key words: plant growth beneficial rhizobacteria, Rhizobium leguminosarum, Azospirillum brasilense, seedling exudate, chemotaxis |
Audience | Academic |
Author | Tagoe, Janice N.A. Prüß, Birgit M. Nisha, Fatema A. Pease, Amanda B. Geddes, Barney A. Horne, Shelley M. Ugrinov, Angel |
Author_xml | – sequence: 1 givenname: Fatema A. surname: Nisha fullname: Nisha, Fatema A. – sequence: 2 givenname: Janice N.A. surname: Tagoe fullname: Tagoe, Janice N.A. – sequence: 3 givenname: Amanda B. surname: Pease fullname: Pease, Amanda B. – sequence: 4 givenname: Shelley M. surname: Horne fullname: Horne, Shelley M. – sequence: 5 givenname: Angel surname: Ugrinov fullname: Ugrinov, Angel – sequence: 6 givenname: Barney A. surname: Geddes fullname: Geddes, Barney A. – sequence: 7 givenname: Birgit M. orcidid: 0000-0002-5244-766X surname: Prüß fullname: Prüß, Birgit M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38427979$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv1DAUhSNURKeFJVtkwQYkMthxXl6OKh6VKoFaWFs3zs2MR4md2k4p_Wn8OhymFUw18sK2_J2je6_PSXJkrMEkecnokjEuPqjtkGY04ynNWPUkWbC8pinPquIoWVBK6zRnZXmcnHi_pZRRnpfPkmNe51klKrFIfn_rwQTiEdtem7UntiMjgn9Pgh0gWIwnMC1Rk5qGBp0neDu1SJQdRjuZ1pOwgUDAITHRA1vSWUfWzv4Mm51wg4OFEByooK2Z_S83-s42ehpIj-tp0MZ6cPHW3CzJjVYakMQC2V_56s76UTvd9zPgwOsejUdyNVbPk6cd9B5f3O-nyY9PH7-ffUkvvn4-P1tdpCqv65AyhLnvtkamKEeKwKqOFSovqqboRCEaEEyxTLG8aGoGqmhLqKEQbcVaaICfJm93vqOz1xP6IAftFfZxcGgnLzPB86wUtOYRffMI3drJmVid5DQXGS0rkf-j1tCj1Kaz83RmU7mK7xnlJWeRen2AUqO-lv9DywNQXC0OWsWkdHFe-67v9gSRCXgb1jB5L8-vLvfZV_fdTM2ArRydHsD9kg_piQDfAcpZ7x12UukA8zfHKnQvGZVzRmXMqJwzKueMRlX6SPVgfJj_A3xC5yY |
CitedBy_id | crossref_primary_10_3389_fmicb_2024_1473099 crossref_primary_10_1016_j_eti_2024_103954 crossref_primary_10_1093_femsle_fnaf025 |
Cites_doi | 10.1038/ncomms9289 10.1128/mBio.01868-19 10.1128/JB.00020-16 10.1139/cjm-2017-0281 10.1093/jxb/erp105 10.1016/j.plaphy.2019.01.013 10.1099/00221287-134-10-2741 10.1099/mic.0.2006/005538-0 10.1007/s00216-011-5556-4 10.1139/m78-160 10.1128/aem.01026-20 10.17221/159/2014-HORTSCI 10.1021/jf904247k 10.1111/1462-2920.14472 10.1111/j.1574-6976.2000.tb00552.x 10.1016/j.celrep.2016.12.088 10.1099/00221287-140-10-2787 10.1111/j.1574-6968.1997.tb10428.x 10.1111/j.1365-2958.1988.tb00085.x 10.1111/pce.14523 10.3389/fpls.2021.719987 10.1080/07929978.2015.1039290 10.1146/annurev.arplant.57.032905.105159 10.1128/aem.68.12.5789-5795.2002 10.1007/s11274-009-0169-1 10.3390/plants10010015 10.1099/ijsem.0.005979 10.1371/journal.pone.0217571 10.3390/genes9010001 10.1104/pp.114.245811 10.1186/gb-2011-12-10-r106 10.1111/1462-2920.16570 10.1099/00221287-87-2-343 10.1371/journal.pone.0259380 10.1007/s00425-005-1523-7 10.1094/mpmi.2000.13.6.637 10.1046/j.1462-2920.1999.00054.x 10.1016/j.plantsci.2021.111056 10.1038/nprot.2006.59 10.1094/mpmi-07-16-0131-r 10.1128/mSystems.00951-21 10.3389/fpls.2021.686465 10.1128/aem.34.5.582-585.1977 10.1094/mpmi-21-7-1001 10.1126/science.166.3913.1588 10.3390/nu11092073 10.1128/aem.53.2.410-415.1987 10.1016/j.scienta.2020.109401 10.1146/annurev.micro.53.1.103 10.1099/mic.0.025031-0 10.3390/ijms232214216 10.1016/j.nbt.2013.01.001 10.1094/mpmi-9-0600 10.1007/BF02186972 10.1128/JB.182.21.6042-6048.2000 10.1007/978-1-4757-5235-9_2 10.1104/pp.16.01302 10.1073/pnas.86.18.6973 10.1104/pp.67.3.389 10.1128/msystems.00975-21 10.1111/j.1365-2958.2006.05515.x 10.1016/j.apsoil.2012.10.011 10.1007/s10343-022-00625-2 10.1139/m96-064 10.1007/s12298-017-0422-2 10.1094/mpmi-19-1121 10.1099/00221287-126-1-231 10.1046/j.1365-2958.1998.00835.x 10.1016/j.phytochem.2019.01.015 10.1099/00221287-128-6-1179 10.1016/j.plaphy.2015.05.002 10.1128/aem.01727-22 10.1371/journal.pone.0055731 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 NRC Research Press 2024 Published by NRC Research Press |
Copyright_xml | – notice: COPYRIGHT 2024 NRC Research Press – notice: 2024 Published by NRC Research Press |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7QL 7SN 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 |
DOI | 10.1139/cjm-2023-0217 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science Bacteriology Abstracts (Microbiology B) Ecology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1480-3275 |
EndPage | 162 |
ExternalDocumentID | A794203631 38427979 10_1139_cjm_2023_0217 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- -~X 00T 0R~ 29B 2QL 2XV 36B 4.4 4IJ 5GY 5RE 5RP 6J9 A8Z AAHBH AAIKC AAMNW AAYXX ABCQX ABDBF ABJNI ACGFO ACGFS ACGOD ACNCT ACPRK ACUHS AEGXH AENEX AFRAH AHMBA AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS APEBS CITATION CS3 D8U DU5 EAD EAP EAS EBC EBD EBS ECC EDH EMB EMK EMOBN EPL EST ESTFP ESX F5P HZ~ IAG IAO ICQ IEA IEP IGS IHR INH INR IPNFZ ISN ISR ITC L7B ML0 MM. MV1 NRXXU NYCZX O9- ONR P2P PV9 QF4 QM4 QN7 QO4 QRP RIG RRP RZL SV3 TN5 TUS U5U WH7 YZZ CGR CUY CVF ECM EIF NPM 7QL 7SN 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 |
ID | FETCH-LOGICAL-c488t-1ea0103d8e1c03e0ea17f15c457b5f959ba91c12c145b81ac5d6a8a59d71daba3 |
ISSN | 0008-4166 1480-3275 |
IngestDate | Thu Sep 04 21:51:24 EDT 2025 Sat Aug 16 21:32:04 EDT 2025 Tue Jun 17 21:56:57 EDT 2025 Tue Jun 10 15:33:17 EDT 2025 Tue Jun 10 20:56:15 EDT 2025 Fri Jun 27 05:14:25 EDT 2025 Wed Feb 19 02:08:30 EST 2025 Thu Jul 10 08:28:29 EDT 2025 Thu Apr 24 22:57:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Azospirillum brasilense plant growth beneficial rhizobacteria seedling exudate Rhizobium leguminosarum chemotaxis |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c488t-1ea0103d8e1c03e0ea17f15c457b5f959ba91c12c145b81ac5d6a8a59d71daba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5244-766X |
OpenAccessLink | https://doi.org/10.1139/cjm-2023-0217 |
PMID | 38427979 |
PQID | 3049206794 |
PQPubID | 6731 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2934269083 proquest_journals_3049206794 gale_infotracmisc_A794203631 gale_infotraccpiq_794203631 gale_infotracacademiconefile_A794203631 gale_incontextgauss_ISR_A794203631 pubmed_primary_38427979 crossref_citationtrail_10_1139_cjm_2023_0217 crossref_primary_10_1139_cjm_2023_0217 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada – name: Ottawa |
PublicationTitle | Canadian journal of microbiology |
PublicationTitleAlternate | Can J Microbiol |
PublicationYear | 2024 |
Publisher | NRC Research Press Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: NRC Research Press – name: Canadian Science Publishing NRC Research Press |
References | refg47/ref47 refg40/ref40 refg65/ref65 refg18/ref18 refg22/ref22 refg36/ref36 refg76/ref76 refg51/ref51 refg72/ref72 refg11/ref11 refg25/ref25 refg6/ref6 refg15/ref15 refg29/ref29 refg43/ref43 refg26/ref26 refg14/ref14 refg5/ref5 refg54/ref54 refg57/ref57 refg37/ref37 refg19/ref19 refg21/ref21 refg75/ref75 refg7/ref7 refg4/ref4 refg46/ref46 refg48/ref48 refg10/ref10 refg1/ref1 refg32/ref32 refg35/ref35 refg59/ref59 refg61/ref61 refg53/ref53 refg42/ref42 refg24/ref24 refg16/ref16 refg50/ref50 refg64/ref64 refg67/ref67 refg13/ref13 refg27/ref27 refg56/ref56 refg74/ref74 refg20/ref20 refg38/ref38 refg45/ref45 refg49/ref49 Warkentin T.V. (refg73/ref73) 2003 refg31/ref31 refg9/ref9 refg34/ref34 refg71/ref71 refg52/ref52 refg8/ref8 refg60/ref60 refg63/ref63 refg77/ref77 refg2/ref2 refg23/ref23 refg17/ref17 refg30/ref30 refg66/ref66 refg12/ref12 refg28/ref28 refg41/ref41 refg55/ref55 refg39/ref39 refg3/ref3 refg69/ref69 refg62/ref62 van Egeraat A.W.S.M. (refg68/ref68) 1975; 42 refg44/ref44 refg58/ref58 refg33/ref33 refg70/ref70 |
References_xml | – ident: refg8/ref8 doi: 10.1038/ncomms9289 – ident: refg15/ref15 doi: 10.1128/mBio.01868-19 – ident: refg41/ref41 doi: 10.1128/JB.00020-16 – ident: refg75/ref75 doi: 10.1139/cjm-2017-0281 – ident: refg9/ref9 doi: 10.1093/jxb/erp105 – ident: refg36/ref36 doi: 10.1016/j.plaphy.2019.01.013 – ident: refg42/ref42 doi: 10.1099/00221287-134-10-2741 – ident: refg31/ref31 doi: 10.1099/mic.0.2006/005538-0 – ident: refg45/ref45 doi: 10.1007/s00216-011-5556-4 – ident: refg62/ref62 doi: 10.1139/m78-160 – ident: refg44/ref44 doi: 10.1128/aem.01026-20 – ident: refg34/ref34 doi: 10.17221/159/2014-HORTSCI – ident: refg22/ref22 doi: 10.1021/jf904247k – ident: refg23/ref23 doi: 10.1111/1462-2920.14472 – ident: refg59/ref59 doi: 10.1111/j.1574-6976.2000.tb00552.x – ident: refg43/ref43 doi: 10.1016/j.celrep.2016.12.088 – ident: refg51/ref51 doi: 10.1099/00221287-140-10-2787 – ident: refg77/ref77 doi: 10.1111/j.1574-6968.1997.tb10428.x – ident: refg5/ref5 doi: 10.1111/j.1365-2958.1988.tb00085.x – ident: refg66/ref66 doi: 10.1111/pce.14523 – ident: refg11/ref11 doi: 10.3389/fpls.2021.719987 – ident: refg35/ref35 doi: 10.1080/07929978.2015.1039290 – ident: refg7/ref7 doi: 10.1146/annurev.arplant.57.032905.105159 – ident: refg46/ref46 doi: 10.1128/aem.68.12.5789-5795.2002 – ident: refg47/ref47 doi: 10.1007/s11274-009-0169-1 – ident: refg57/ref57 doi: 10.3390/plants10010015 – ident: refg76/ref76 doi: 10.1099/ijsem.0.005979 – ident: refg72/ref72 doi: 10.1371/journal.pone.0217571 – ident: refg26/ref26 doi: 10.3390/genes9010001 – ident: refg29/ref29 doi: 10.1104/pp.114.245811 – ident: refg53/ref53 doi: 10.1186/gb-2011-12-10-r106 – ident: refg6/ref6 doi: 10.1111/1462-2920.16570 – ident: refg27/ref27 doi: 10.1099/00221287-87-2-343 – ident: refg50/ref50 doi: 10.1371/journal.pone.0259380 – ident: refg18/ref18 doi: 10.1007/s00425-005-1523-7 – ident: refg65/ref65 doi: 10.1094/mpmi.2000.13.6.637 – ident: refg33/ref33 doi: 10.1046/j.1462-2920.1999.00054.x – ident: refg71/ref71 doi: 10.1016/j.plantsci.2021.111056 – ident: refg30/ref30 doi: 10.1038/nprot.2006.59 – ident: refg32/ref32 doi: 10.1094/mpmi-07-16-0131-r – ident: refg55/ref55 doi: 10.1128/mSystems.00951-21 – ident: refg17/ref17 doi: 10.3389/fpls.2021.686465 – ident: refg21/ref21 doi: 10.1128/aem.34.5.582-585.1977 – ident: refg40/ref40 doi: 10.1094/mpmi-21-7-1001 – start-page: 239 year: 2003 ident: refg73/ref73 publication-title: Can. J. Plant Sci. – ident: refg1/ref1 doi: 10.1126/science.166.3913.1588 – ident: refg39/ref39 doi: 10.3390/nu11092073 – ident: refg70/ref70 doi: 10.1128/aem.53.2.410-415.1987 – ident: refg19/ref19 doi: 10.1016/j.scienta.2020.109401 – ident: refg64/ref64 doi: 10.1146/annurev.micro.53.1.103 – ident: refg69/ref69 doi: 10.1099/mic.0.025031-0 – ident: refg4/ref4 doi: 10.3390/ijms232214216 – ident: refg13/ref13 doi: 10.1016/j.nbt.2013.01.001 – ident: refg58/ref58 doi: 10.1094/mpmi-9-0600 – ident: refg67/ref67 doi: 10.1007/BF02186972 – ident: refg3/ref3 doi: 10.1128/JB.182.21.6042-6048.2000 – ident: refg60/ref60 doi: 10.1007/978-1-4757-5235-9_2 – ident: refg49/ref49 doi: 10.1104/pp.16.01302 – ident: refg74/ref74 doi: 10.1073/pnas.86.18.6973 – ident: refg54/ref54 doi: 10.1104/pp.67.3.389 – volume: 42 start-page: 331 year: 1975 ident: refg68/ref68 publication-title: Plant Soil – ident: refg56/ref56 doi: 10.1128/msystems.00975-21 – ident: refg38/ref38 doi: 10.1111/j.1365-2958.2006.05515.x – ident: refg61/ref61 doi: 10.1016/j.apsoil.2012.10.011 – ident: refg12/ref12 doi: 10.3389/fpls.2021.719987 – ident: refg20/ref20 doi: 10.1007/s10343-022-00625-2 – ident: refg37/ref37 doi: 10.1139/m96-064 – ident: refg2/ref2 doi: 10.1099/00221287-134-10-2741 – ident: refg25/ref25 doi: 10.1007/s12298-017-0422-2 – ident: refg28/ref28 doi: 10.1094/mpmi-19-1121 – ident: refg14/ref14 doi: 10.1099/00221287-126-1-231 – ident: refg63/ref63 doi: 10.1046/j.1365-2958.1998.00835.x – ident: refg10/ref10 doi: 10.1016/j.phytochem.2019.01.015 – ident: refg24/ref24 doi: 10.1099/00221287-128-6-1179 – ident: refg48/ref48 doi: 10.1016/j.plaphy.2015.05.002 – ident: refg52/ref52 doi: 10.1128/aem.01727-22 – ident: refg16/ref16 doi: 10.1371/journal.pone.0055731 |
SSID | ssj0010346 |
Score | 2.4174964 |
Snippet | This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment... |
SourceID | proquest gale pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 150 |
SubjectTerms | Agar Amino acids Azospirillum brasilense Azospirillum brasilense - growth & development Azospirillum brasilense - metabolism Bacteria Bases (nucleic acids) Chemical analysis Chemical composition Chemotactic factors Chemotaxis Cucumbers Cucumis sativus - growth & development Cucumis sativus - microbiology Environmental aspects Exudates Glutathione Organic acids Peas Physiological aspects Pisum sativum - growth & development Pisum sativum - microbiology Plant Exudates - chemistry Plant Exudates - metabolism Plant Roots - growth & development Plant Roots - microbiology Plates Proteobacteria Rhizobium Rhizobium leguminosarum Rhizobium leguminosarum - growth & development Rhizobium leguminosarum - metabolism Roots (Botany) Seedlings Seedlings - growth & development Seedlings - microbiology Solanum lycopersicum - growth & development Solanum lycopersicum - microbiology Tomatoes Vegetables |
Title | Plant seedlings of peas, tomatoes, and cucumbers exude compounds that are needed for growth and chemoattraction of Rhizobium leguminosarum bv. viciae 3841 and Azospirillum brasilense Sp7 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38427979 https://www.proquest.com/docview/3049206794 https://www.proquest.com/docview/2934269083 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqrZC4IN6ULcggBIc0pc6jSY7dhaqsxB62XWlvke26pahNSpOs2P1p_An-EjNxmsfyEHCp0sR208yX8Yw9Mx8hr5jPPXuhhCmU5ZmOsuAIJnpzwBln0vakUJjg_PF0ODl3Ti7ci1brey1qKUtFX17_Mq_kf6QK50CumCX7D5ItB4UTcAzyhU-QMHz-lYyRcSg1EpiA1jn7JkYvK52hlcZgisZaB-Spa5nMuT8SQ33N5ioPJUdGpQQsT54aGP8VwThgfmLc4RKc833O2ye1iXma7gpScSxegnF6YpVtjLVaZptVFCd8B9_EZd-4xGUSZdi-w_Luo2skJtmtkFDZAM88AS0UJcqYbr26XVwWSahVstisqiJRte0TvUM15liAulqJnfGlDmo84RHoPuO0P6ppfc0eOdrgsknFMz2Ji_XcaR4Ne1WsDBdrIJZTRRzqEJGz4zJQsRG6olW-b4LVOayrfM1VUkDbrelvpqvg_jyv2FiWVX7emEg3b6IjV02gZVjjCJQbbuxiXn_b8jyMG2iPjt4djdsVqYbOHdvf1b7sqx28bYzeMJNuGgs3XKDcFJrdJXcKH4aONCDvkZaK7pNbmtX06gH5lsOSlrCk8YIiLHt0D8oeBUHQEpI0hyQtIUkRkhQgSTUkKUCSakjqjk1I4vglJGkDkhQgSTUkKUIy716HJK0gSQGSD8n5-P3seGIWFCGmhJknNZni-EznvmJyYKuB4sxbMFc6rifcReAGggdMMksyxxU-49KdD7nP3WDusTkX3H5EDqI4Uk8IHdiW9P1gIGwFlt18EcBlIZwhdIFBLLtDenuJhLKon480Lusw96PtIAQBhijAEAXYIa_L5ltdOOZ3DV-ieEMsxhJhtNeSZ0kSfpiehRWeOuRN0WgR49PlRfIM3DrWb2u0PGy0lNvVl7B2tdu4CnOJbHTu7jEWFu97EuJGPJI8BE6HvCgvY0-Mz4xUnCUhOA2YEw_-XIc81tgs_zWI1_ICL3j6598-JLerV7tLDtJdpp6BwZ-K58VL9APkDQc9 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+seedlings+of+peas%2C+tomatoes%2C+and+cucumbers+exude+compounds+that+are+needed+for+growth+and+chemoattraction+of+Rhizobium+leguminosarum+bv.+viciae+3841+and+Azospirillum+brasilense+Sp7&rft.jtitle=Canadian+journal+of+microbiology&rft.au=Nisha%2C+Fatema+A&rft.au=Tagoe%2C+Janice+N.A&rft.au=Pease%2C+Amanda+B&rft.au=Horne%2C+Shelley+M&rft.date=2024-05-01&rft.pub=NRC+Research+Press&rft.issn=0008-4166&rft.volume=70&rft.issue=5&rft.spage=150&rft_id=info:doi/10.1139%2Fcjm-2023-0217&rft.externalDocID=A794203631 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4166&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4166&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4166&client=summon |