Plant seedlings of peas, tomatoes, and cucumbers exude compounds that are needed for growth and chemoattraction of Rhizobium leguminosarum bv. viciae 3841 and Azospirillum brasilense Sp7

This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, toma...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of microbiology Vol. 70; no. 5; pp. 150 - 162
Main Authors Nisha, Fatema A., Tagoe, Janice N.A., Pease, Amanda B., Horne, Shelley M., Ugrinov, Angel, Geddes, Barney A., Prüß, Birgit M.
Format Journal Article
LanguageEnglish
Published Canada NRC Research Press 01.05.2024
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text
ISSN0008-4166
1480-3275
1480-3275
DOI10.1139/cjm-2023-0217

Cover

Loading…
Abstract This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on.
AbstractList This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on.
This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on.This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on.
This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that bv. 3841 enhanced growth of pea shoots, while Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that bv. was more selective than , which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, bv. and grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on.
This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on. Key words: plant growth beneficial rhizobacteria, Rhizobium leguminosarum, Azospirillum brasilense, seedling exudate, chemotaxis
Audience Academic
Author Tagoe, Janice N.A.
Prüß, Birgit M.
Nisha, Fatema A.
Pease, Amanda B.
Geddes, Barney A.
Horne, Shelley M.
Ugrinov, Angel
Author_xml – sequence: 1
  givenname: Fatema A.
  surname: Nisha
  fullname: Nisha, Fatema A.
– sequence: 2
  givenname: Janice N.A.
  surname: Tagoe
  fullname: Tagoe, Janice N.A.
– sequence: 3
  givenname: Amanda B.
  surname: Pease
  fullname: Pease, Amanda B.
– sequence: 4
  givenname: Shelley M.
  surname: Horne
  fullname: Horne, Shelley M.
– sequence: 5
  givenname: Angel
  surname: Ugrinov
  fullname: Ugrinov, Angel
– sequence: 6
  givenname: Barney A.
  surname: Geddes
  fullname: Geddes, Barney A.
– sequence: 7
  givenname: Birgit M.
  orcidid: 0000-0002-5244-766X
  surname: Prüß
  fullname: Prüß, Birgit M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38427979$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAUhSNURKeFJVtkwQYkMthxXl6OKh6VKoFaWFs3zs2MR4md2k4p_Wn8OhymFUw18sK2_J2je6_PSXJkrMEkecnokjEuPqjtkGY04ynNWPUkWbC8pinPquIoWVBK6zRnZXmcnHi_pZRRnpfPkmNe51klKrFIfn_rwQTiEdtem7UntiMjgn9Pgh0gWIwnMC1Rk5qGBp0neDu1SJQdRjuZ1pOwgUDAITHRA1vSWUfWzv4Mm51wg4OFEByooK2Z_S83-s42ehpIj-tp0MZ6cPHW3CzJjVYakMQC2V_56s76UTvd9zPgwOsejUdyNVbPk6cd9B5f3O-nyY9PH7-ffUkvvn4-P1tdpCqv65AyhLnvtkamKEeKwKqOFSovqqboRCEaEEyxTLG8aGoGqmhLqKEQbcVaaICfJm93vqOz1xP6IAftFfZxcGgnLzPB86wUtOYRffMI3drJmVid5DQXGS0rkf-j1tCj1Kaz83RmU7mK7xnlJWeRen2AUqO-lv9DywNQXC0OWsWkdHFe-67v9gSRCXgb1jB5L8-vLvfZV_fdTM2ArRydHsD9kg_piQDfAcpZ7x12UukA8zfHKnQvGZVzRmXMqJwzKueMRlX6SPVgfJj_A3xC5yY
CitedBy_id crossref_primary_10_3389_fmicb_2024_1473099
crossref_primary_10_1016_j_eti_2024_103954
crossref_primary_10_1093_femsle_fnaf025
Cites_doi 10.1038/ncomms9289
10.1128/mBio.01868-19
10.1128/JB.00020-16
10.1139/cjm-2017-0281
10.1093/jxb/erp105
10.1016/j.plaphy.2019.01.013
10.1099/00221287-134-10-2741
10.1099/mic.0.2006/005538-0
10.1007/s00216-011-5556-4
10.1139/m78-160
10.1128/aem.01026-20
10.17221/159/2014-HORTSCI
10.1021/jf904247k
10.1111/1462-2920.14472
10.1111/j.1574-6976.2000.tb00552.x
10.1016/j.celrep.2016.12.088
10.1099/00221287-140-10-2787
10.1111/j.1574-6968.1997.tb10428.x
10.1111/j.1365-2958.1988.tb00085.x
10.1111/pce.14523
10.3389/fpls.2021.719987
10.1080/07929978.2015.1039290
10.1146/annurev.arplant.57.032905.105159
10.1128/aem.68.12.5789-5795.2002
10.1007/s11274-009-0169-1
10.3390/plants10010015
10.1099/ijsem.0.005979
10.1371/journal.pone.0217571
10.3390/genes9010001
10.1104/pp.114.245811
10.1186/gb-2011-12-10-r106
10.1111/1462-2920.16570
10.1099/00221287-87-2-343
10.1371/journal.pone.0259380
10.1007/s00425-005-1523-7
10.1094/mpmi.2000.13.6.637
10.1046/j.1462-2920.1999.00054.x
10.1016/j.plantsci.2021.111056
10.1038/nprot.2006.59
10.1094/mpmi-07-16-0131-r
10.1128/mSystems.00951-21
10.3389/fpls.2021.686465
10.1128/aem.34.5.582-585.1977
10.1094/mpmi-21-7-1001
10.1126/science.166.3913.1588
10.3390/nu11092073
10.1128/aem.53.2.410-415.1987
10.1016/j.scienta.2020.109401
10.1146/annurev.micro.53.1.103
10.1099/mic.0.025031-0
10.3390/ijms232214216
10.1016/j.nbt.2013.01.001
10.1094/mpmi-9-0600
10.1007/BF02186972
10.1128/JB.182.21.6042-6048.2000
10.1007/978-1-4757-5235-9_2
10.1104/pp.16.01302
10.1073/pnas.86.18.6973
10.1104/pp.67.3.389
10.1128/msystems.00975-21
10.1111/j.1365-2958.2006.05515.x
10.1016/j.apsoil.2012.10.011
10.1007/s10343-022-00625-2
10.1139/m96-064
10.1007/s12298-017-0422-2
10.1094/mpmi-19-1121
10.1099/00221287-126-1-231
10.1046/j.1365-2958.1998.00835.x
10.1016/j.phytochem.2019.01.015
10.1099/00221287-128-6-1179
10.1016/j.plaphy.2015.05.002
10.1128/aem.01727-22
10.1371/journal.pone.0055731
ContentType Journal Article
Copyright COPYRIGHT 2024 NRC Research Press
2024 Published by NRC Research Press
Copyright_xml – notice: COPYRIGHT 2024 NRC Research Press
– notice: 2024 Published by NRC Research Press
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7QL
7SN
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
DOI 10.1139/cjm-2023-0217
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Nursing & Allied Health Premium

MEDLINE - Academic

MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1480-3275
EndPage 162
ExternalDocumentID A794203631
38427979
10_1139_cjm_2023_0217
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
-~X
00T
0R~
29B
2QL
2XV
36B
4.4
4IJ
5GY
5RE
5RP
6J9
A8Z
AAHBH
AAIKC
AAMNW
AAYXX
ABCQX
ABDBF
ABJNI
ACGFO
ACGFS
ACGOD
ACNCT
ACPRK
ACUHS
AEGXH
AENEX
AFRAH
AHMBA
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
APEBS
CITATION
CS3
D8U
DU5
EAD
EAP
EAS
EBC
EBD
EBS
ECC
EDH
EMB
EMK
EMOBN
EPL
EST
ESTFP
ESX
F5P
HZ~
IAG
IAO
ICQ
IEA
IEP
IGS
IHR
INH
INR
IPNFZ
ISN
ISR
ITC
L7B
ML0
MM.
MV1
NRXXU
NYCZX
O9-
ONR
P2P
PV9
QF4
QM4
QN7
QO4
QRP
RIG
RRP
RZL
SV3
TN5
TUS
U5U
WH7
YZZ
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7SN
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c488t-1ea0103d8e1c03e0ea17f15c457b5f959ba91c12c145b81ac5d6a8a59d71daba3
ISSN 0008-4166
1480-3275
IngestDate Thu Sep 04 21:51:24 EDT 2025
Sat Aug 16 21:32:04 EDT 2025
Tue Jun 17 21:56:57 EDT 2025
Tue Jun 10 15:33:17 EDT 2025
Tue Jun 10 20:56:15 EDT 2025
Fri Jun 27 05:14:25 EDT 2025
Wed Feb 19 02:08:30 EST 2025
Thu Jul 10 08:28:29 EDT 2025
Thu Apr 24 22:57:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Azospirillum brasilense
plant growth beneficial rhizobacteria
seedling exudate
Rhizobium leguminosarum
chemotaxis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c488t-1ea0103d8e1c03e0ea17f15c457b5f959ba91c12c145b81ac5d6a8a59d71daba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5244-766X
OpenAccessLink https://doi.org/10.1139/cjm-2023-0217
PMID 38427979
PQID 3049206794
PQPubID 6731
PageCount 13
ParticipantIDs proquest_miscellaneous_2934269083
proquest_journals_3049206794
gale_infotracmisc_A794203631
gale_infotraccpiq_794203631
gale_infotracacademiconefile_A794203631
gale_incontextgauss_ISR_A794203631
pubmed_primary_38427979
crossref_citationtrail_10_1139_cjm_2023_0217
crossref_primary_10_1139_cjm_2023_0217
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Ottawa
PublicationTitle Canadian journal of microbiology
PublicationTitleAlternate Can J Microbiol
PublicationYear 2024
Publisher NRC Research Press
Canadian Science Publishing NRC Research Press
Publisher_xml – name: NRC Research Press
– name: Canadian Science Publishing NRC Research Press
References refg47/ref47
refg40/ref40
refg65/ref65
refg18/ref18
refg22/ref22
refg36/ref36
refg76/ref76
refg51/ref51
refg72/ref72
refg11/ref11
refg25/ref25
refg6/ref6
refg15/ref15
refg29/ref29
refg43/ref43
refg26/ref26
refg14/ref14
refg5/ref5
refg54/ref54
refg57/ref57
refg37/ref37
refg19/ref19
refg21/ref21
refg75/ref75
refg7/ref7
refg4/ref4
refg46/ref46
refg48/ref48
refg10/ref10
refg1/ref1
refg32/ref32
refg35/ref35
refg59/ref59
refg61/ref61
refg53/ref53
refg42/ref42
refg24/ref24
refg16/ref16
refg50/ref50
refg64/ref64
refg67/ref67
refg13/ref13
refg27/ref27
refg56/ref56
refg74/ref74
refg20/ref20
refg38/ref38
refg45/ref45
refg49/ref49
Warkentin T.V. (refg73/ref73) 2003
refg31/ref31
refg9/ref9
refg34/ref34
refg71/ref71
refg52/ref52
refg8/ref8
refg60/ref60
refg63/ref63
refg77/ref77
refg2/ref2
refg23/ref23
refg17/ref17
refg30/ref30
refg66/ref66
refg12/ref12
refg28/ref28
refg41/ref41
refg55/ref55
refg39/ref39
refg3/ref3
refg69/ref69
refg62/ref62
van Egeraat A.W.S.M. (refg68/ref68) 1975; 42
refg44/ref44
refg58/ref58
refg33/ref33
refg70/ref70
References_xml – ident: refg8/ref8
  doi: 10.1038/ncomms9289
– ident: refg15/ref15
  doi: 10.1128/mBio.01868-19
– ident: refg41/ref41
  doi: 10.1128/JB.00020-16
– ident: refg75/ref75
  doi: 10.1139/cjm-2017-0281
– ident: refg9/ref9
  doi: 10.1093/jxb/erp105
– ident: refg36/ref36
  doi: 10.1016/j.plaphy.2019.01.013
– ident: refg42/ref42
  doi: 10.1099/00221287-134-10-2741
– ident: refg31/ref31
  doi: 10.1099/mic.0.2006/005538-0
– ident: refg45/ref45
  doi: 10.1007/s00216-011-5556-4
– ident: refg62/ref62
  doi: 10.1139/m78-160
– ident: refg44/ref44
  doi: 10.1128/aem.01026-20
– ident: refg34/ref34
  doi: 10.17221/159/2014-HORTSCI
– ident: refg22/ref22
  doi: 10.1021/jf904247k
– ident: refg23/ref23
  doi: 10.1111/1462-2920.14472
– ident: refg59/ref59
  doi: 10.1111/j.1574-6976.2000.tb00552.x
– ident: refg43/ref43
  doi: 10.1016/j.celrep.2016.12.088
– ident: refg51/ref51
  doi: 10.1099/00221287-140-10-2787
– ident: refg77/ref77
  doi: 10.1111/j.1574-6968.1997.tb10428.x
– ident: refg5/ref5
  doi: 10.1111/j.1365-2958.1988.tb00085.x
– ident: refg66/ref66
  doi: 10.1111/pce.14523
– ident: refg11/ref11
  doi: 10.3389/fpls.2021.719987
– ident: refg35/ref35
  doi: 10.1080/07929978.2015.1039290
– ident: refg7/ref7
  doi: 10.1146/annurev.arplant.57.032905.105159
– ident: refg46/ref46
  doi: 10.1128/aem.68.12.5789-5795.2002
– ident: refg47/ref47
  doi: 10.1007/s11274-009-0169-1
– ident: refg57/ref57
  doi: 10.3390/plants10010015
– ident: refg76/ref76
  doi: 10.1099/ijsem.0.005979
– ident: refg72/ref72
  doi: 10.1371/journal.pone.0217571
– ident: refg26/ref26
  doi: 10.3390/genes9010001
– ident: refg29/ref29
  doi: 10.1104/pp.114.245811
– ident: refg53/ref53
  doi: 10.1186/gb-2011-12-10-r106
– ident: refg6/ref6
  doi: 10.1111/1462-2920.16570
– ident: refg27/ref27
  doi: 10.1099/00221287-87-2-343
– ident: refg50/ref50
  doi: 10.1371/journal.pone.0259380
– ident: refg18/ref18
  doi: 10.1007/s00425-005-1523-7
– ident: refg65/ref65
  doi: 10.1094/mpmi.2000.13.6.637
– ident: refg33/ref33
  doi: 10.1046/j.1462-2920.1999.00054.x
– ident: refg71/ref71
  doi: 10.1016/j.plantsci.2021.111056
– ident: refg30/ref30
  doi: 10.1038/nprot.2006.59
– ident: refg32/ref32
  doi: 10.1094/mpmi-07-16-0131-r
– ident: refg55/ref55
  doi: 10.1128/mSystems.00951-21
– ident: refg17/ref17
  doi: 10.3389/fpls.2021.686465
– ident: refg21/ref21
  doi: 10.1128/aem.34.5.582-585.1977
– ident: refg40/ref40
  doi: 10.1094/mpmi-21-7-1001
– start-page: 239
  year: 2003
  ident: refg73/ref73
  publication-title: Can. J. Plant Sci.
– ident: refg1/ref1
  doi: 10.1126/science.166.3913.1588
– ident: refg39/ref39
  doi: 10.3390/nu11092073
– ident: refg70/ref70
  doi: 10.1128/aem.53.2.410-415.1987
– ident: refg19/ref19
  doi: 10.1016/j.scienta.2020.109401
– ident: refg64/ref64
  doi: 10.1146/annurev.micro.53.1.103
– ident: refg69/ref69
  doi: 10.1099/mic.0.025031-0
– ident: refg4/ref4
  doi: 10.3390/ijms232214216
– ident: refg13/ref13
  doi: 10.1016/j.nbt.2013.01.001
– ident: refg58/ref58
  doi: 10.1094/mpmi-9-0600
– ident: refg67/ref67
  doi: 10.1007/BF02186972
– ident: refg3/ref3
  doi: 10.1128/JB.182.21.6042-6048.2000
– ident: refg60/ref60
  doi: 10.1007/978-1-4757-5235-9_2
– ident: refg49/ref49
  doi: 10.1104/pp.16.01302
– ident: refg74/ref74
  doi: 10.1073/pnas.86.18.6973
– ident: refg54/ref54
  doi: 10.1104/pp.67.3.389
– volume: 42
  start-page: 331
  year: 1975
  ident: refg68/ref68
  publication-title: Plant Soil
– ident: refg56/ref56
  doi: 10.1128/msystems.00975-21
– ident: refg38/ref38
  doi: 10.1111/j.1365-2958.2006.05515.x
– ident: refg61/ref61
  doi: 10.1016/j.apsoil.2012.10.011
– ident: refg12/ref12
  doi: 10.3389/fpls.2021.719987
– ident: refg20/ref20
  doi: 10.1007/s10343-022-00625-2
– ident: refg37/ref37
  doi: 10.1139/m96-064
– ident: refg2/ref2
  doi: 10.1099/00221287-134-10-2741
– ident: refg25/ref25
  doi: 10.1007/s12298-017-0422-2
– ident: refg28/ref28
  doi: 10.1094/mpmi-19-1121
– ident: refg14/ref14
  doi: 10.1099/00221287-126-1-231
– ident: refg63/ref63
  doi: 10.1046/j.1365-2958.1998.00835.x
– ident: refg10/ref10
  doi: 10.1016/j.phytochem.2019.01.015
– ident: refg24/ref24
  doi: 10.1099/00221287-128-6-1179
– ident: refg48/ref48
  doi: 10.1016/j.plaphy.2015.05.002
– ident: refg52/ref52
  doi: 10.1128/aem.01727-22
– ident: refg16/ref16
  doi: 10.1371/journal.pone.0055731
SSID ssj0010346
Score 2.4174964
Snippet This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment...
SourceID proquest
gale
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 150
SubjectTerms Agar
Amino acids
Azospirillum brasilense
Azospirillum brasilense - growth & development
Azospirillum brasilense - metabolism
Bacteria
Bases (nucleic acids)
Chemical analysis
Chemical composition
Chemotactic factors
Chemotaxis
Cucumbers
Cucumis sativus - growth & development
Cucumis sativus - microbiology
Environmental aspects
Exudates
Glutathione
Organic acids
Peas
Physiological aspects
Pisum sativum - growth & development
Pisum sativum - microbiology
Plant Exudates - chemistry
Plant Exudates - metabolism
Plant Roots - growth & development
Plant Roots - microbiology
Plates
Proteobacteria
Rhizobium
Rhizobium leguminosarum
Rhizobium leguminosarum - growth & development
Rhizobium leguminosarum - metabolism
Roots (Botany)
Seedlings
Seedlings - growth & development
Seedlings - microbiology
Solanum lycopersicum - growth & development
Solanum lycopersicum - microbiology
Tomatoes
Vegetables
Title Plant seedlings of peas, tomatoes, and cucumbers exude compounds that are needed for growth and chemoattraction of Rhizobium leguminosarum bv. viciae 3841 and Azospirillum brasilense Sp7
URI https://www.ncbi.nlm.nih.gov/pubmed/38427979
https://www.proquest.com/docview/3049206794
https://www.proquest.com/docview/2934269083
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqrZC4IN6ULcggBIc0pc6jSY7dhaqsxB62XWlvke26pahNSpOs2P1p_An-EjNxmsfyEHCp0sR208yX8Yw9Mx8hr5jPPXuhhCmU5ZmOsuAIJnpzwBln0vakUJjg_PF0ODl3Ti7ci1brey1qKUtFX17_Mq_kf6QK50CumCX7D5ItB4UTcAzyhU-QMHz-lYyRcSg1EpiA1jn7JkYvK52hlcZgisZaB-Spa5nMuT8SQ33N5ioPJUdGpQQsT54aGP8VwThgfmLc4RKc833O2ye1iXma7gpScSxegnF6YpVtjLVaZptVFCd8B9_EZd-4xGUSZdi-w_Luo2skJtmtkFDZAM88AS0UJcqYbr26XVwWSahVstisqiJRte0TvUM15liAulqJnfGlDmo84RHoPuO0P6ppfc0eOdrgsknFMz2Ji_XcaR4Ne1WsDBdrIJZTRRzqEJGz4zJQsRG6olW-b4LVOayrfM1VUkDbrelvpqvg_jyv2FiWVX7emEg3b6IjV02gZVjjCJQbbuxiXn_b8jyMG2iPjt4djdsVqYbOHdvf1b7sqx28bYzeMJNuGgs3XKDcFJrdJXcKH4aONCDvkZaK7pNbmtX06gH5lsOSlrCk8YIiLHt0D8oeBUHQEpI0hyQtIUkRkhQgSTUkKUCSakjqjk1I4vglJGkDkhQgSTUkKUIy716HJK0gSQGSD8n5-P3seGIWFCGmhJknNZni-EznvmJyYKuB4sxbMFc6rifcReAGggdMMksyxxU-49KdD7nP3WDusTkX3H5EDqI4Uk8IHdiW9P1gIGwFlt18EcBlIZwhdIFBLLtDenuJhLKon480Lusw96PtIAQBhijAEAXYIa_L5ltdOOZ3DV-ieEMsxhJhtNeSZ0kSfpiehRWeOuRN0WgR49PlRfIM3DrWb2u0PGy0lNvVl7B2tdu4CnOJbHTu7jEWFu97EuJGPJI8BE6HvCgvY0-Mz4xUnCUhOA2YEw_-XIc81tgs_zWI1_ICL3j6598-JLerV7tLDtJdpp6BwZ-K58VL9APkDQc9
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+seedlings+of+peas%2C+tomatoes%2C+and+cucumbers+exude+compounds+that+are+needed+for+growth+and+chemoattraction+of+Rhizobium+leguminosarum+bv.+viciae+3841+and+Azospirillum+brasilense+Sp7&rft.jtitle=Canadian+journal+of+microbiology&rft.au=Nisha%2C+Fatema+A&rft.au=Tagoe%2C+Janice+N.A&rft.au=Pease%2C+Amanda+B&rft.au=Horne%2C+Shelley+M&rft.date=2024-05-01&rft.pub=NRC+Research+Press&rft.issn=0008-4166&rft.volume=70&rft.issue=5&rft.spage=150&rft_id=info:doi/10.1139%2Fcjm-2023-0217&rft.externalDocID=A794203631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4166&client=summon