Uncovering Interfacial Oxygen‐Bridged Binuclear Metal Centers of Heterogenized Molecular Catalyst for Water Electrolysis

The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule‐electrode and electrochemical interfaces remains a great challenge....

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 12; no. 22; pp. e2417607 - n/a
Main Authors Yu, Zhou, Li, Jian‐Ping, Xu, Xian‐Kun, Ding, Zhong‐Chen, Peng, Xiao‐Hui, Gao, Yi‐Jing, Wan, Qiang, Zheng, Ju‐Fang, Zhou, Xiao‐Shun, Wang, Ya‐Hao
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.06.2025
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule‐electrode and electrochemical interfaces remains a great challenge. Herein, shell‐isolated nanoparticle‐enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide‐2‐2′ bipyridine on Au electrode ((bpy)Cu(OH)2/Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH)2 oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O2‐Au with oxygen‐bridged binuclear metal centers of Cu(III)‐O‐Au for the OER. As the potential further increases, Cu(III)‐O‐Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O2. Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)‐O‐Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)‐O‐Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential‐determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized‐molecule catalysts for the development and application of renewable energy conversion devices. In situ Raman monitoring of an electrochemically induced interfacial oxygen‐bridged Cu(III)‐O‐Au binuclear center in heterogenized molecular catalysts, could combine surface hydroxyl groups to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O2. This significantly modifies the elementary reaction steps and lowers the overpotential for oxygen evolution reaction.
AbstractList The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule-electrode and electrochemical interfaces remains a great challenge. Herein, shell-isolated nanoparticle-enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide-2-2' bipyridine on Au electrode ((bpy)Cu(OH) /Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH) oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O -Au with oxygen-bridged binuclear metal centers of Cu(III)-O-Au for the OER. As the potential further increases, Cu(III)-O-Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)-OOH-Au, which then turns into Cu(III)-OO-Au to release O . Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)-O-Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)-O-Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential-determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized-molecule catalysts for the development and application of renewable energy conversion devices.
The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule-electrode and electrochemical interfaces remains a great challenge. Herein, shell-isolated nanoparticle-enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide-2-2' bipyridine on Au electrode ((bpy)Cu(OH)2/Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH)2 oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O2-Au with oxygen-bridged binuclear metal centers of Cu(III)-O-Au for the OER. As the potential further increases, Cu(III)-O-Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)-OOH-Au, which then turns into Cu(III)-OO-Au to release O2. Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)-O-Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)-O-Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential-determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized-molecule catalysts for the development and application of renewable energy conversion devices.The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule-electrode and electrochemical interfaces remains a great challenge. Herein, shell-isolated nanoparticle-enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide-2-2' bipyridine on Au electrode ((bpy)Cu(OH)2/Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH)2 oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O2-Au with oxygen-bridged binuclear metal centers of Cu(III)-O-Au for the OER. As the potential further increases, Cu(III)-O-Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)-OOH-Au, which then turns into Cu(III)-OO-Au to release O2. Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)-O-Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)-O-Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential-determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized-molecule catalysts for the development and application of renewable energy conversion devices.
Abstract The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule‐electrode and electrochemical interfaces remains a great challenge. Herein, shell‐isolated nanoparticle‐enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide‐2‐2′ bipyridine on Au electrode ((bpy)Cu(OH)2/Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH)2 oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O2‐Au with oxygen‐bridged binuclear metal centers of Cu(III)‐O‐Au for the OER. As the potential further increases, Cu(III)‐O‐Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O2. Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)‐O‐Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)‐O‐Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential‐determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized‐molecule catalysts for the development and application of renewable energy conversion devices.
The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule‐electrode and electrochemical interfaces remains a great challenge. Herein, shell‐isolated nanoparticle‐enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide‐2‐2′ bipyridine on Au electrode ((bpy)Cu(OH)2/Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH)2 oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O2‐Au with oxygen‐bridged binuclear metal centers of Cu(III)‐O‐Au for the OER. As the potential further increases, Cu(III)‐O‐Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O2. Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)‐O‐Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)‐O‐Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential‐determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized‐molecule catalysts for the development and application of renewable energy conversion devices.
The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule‐electrode and electrochemical interfaces remains a great challenge. Herein, shell‐isolated nanoparticle‐enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide‐2‐2′ bipyridine on Au electrode ((bpy)Cu(OH)2/Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH)2 oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O2‐Au with oxygen‐bridged binuclear metal centers of Cu(III)‐O‐Au for the OER. As the potential further increases, Cu(III)‐O‐Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O2. Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)‐O‐Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)‐O‐Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential‐determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized‐molecule catalysts for the development and application of renewable energy conversion devices. In situ Raman monitoring of an electrochemically induced interfacial oxygen‐bridged Cu(III)‐O‐Au binuclear center in heterogenized molecular catalysts, could combine surface hydroxyl groups to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O2. This significantly modifies the elementary reaction steps and lowers the overpotential for oxygen evolution reaction.
The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule‐electrode and electrochemical interfaces remains a great challenge. Herein, shell‐isolated nanoparticle‐enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide‐2‐2′ bipyridine on Au electrode ((bpy)Cu(OH) 2 /Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH) 2 oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O 2 ‐Au with oxygen‐bridged binuclear metal centers of Cu(III)‐O‐Au for the OER. As the potential further increases, Cu(III)‐O‐Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O 2 . Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)‐O‐Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)‐O‐Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential‐determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized‐molecule catalysts for the development and application of renewable energy conversion devices. In situ Raman monitoring of an electrochemically induced interfacial oxygen‐bridged Cu(III)‐O‐Au binuclear center in heterogenized molecular catalysts, could combine surface hydroxyl groups to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O 2 . This significantly modifies the elementary reaction steps and lowers the overpotential for oxygen evolution reaction.
The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule‐electrode and electrochemical interfaces remains a great challenge. Herein, shell‐isolated nanoparticle‐enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide‐2‐2′ bipyridine on Au electrode ((bpy)Cu(OH) 2 /Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH) 2 oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O 2 ‐Au with oxygen‐bridged binuclear metal centers of Cu(III)‐O‐Au for the OER. As the potential further increases, Cu(III)‐O‐Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O 2 . Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)‐O‐Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)‐O‐Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential‐determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized‐molecule catalysts for the development and application of renewable energy conversion devices.
Author Yu, Zhou
Xu, Xian‐Kun
Ding, Zhong‐Chen
Wan, Qiang
Gao, Yi‐Jing
Wang, Ya‐Hao
Li, Jian‐Ping
Zhou, Xiao‐Shun
Peng, Xiao‐Hui
Zheng, Ju‐Fang
AuthorAffiliation 2 Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine‐Containing Specialty Chemicals Institute of Advanced Fluorine‐Containing Materials Zhejiang Normal University Jinhua 321004 P. R. China
1 Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Materials Science Zhejiang Normal University Jinhua 321004 P. R. China
AuthorAffiliation_xml – name: 2 Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine‐Containing Specialty Chemicals Institute of Advanced Fluorine‐Containing Materials Zhejiang Normal University Jinhua 321004 P. R. China
– name: 1 Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Materials Science Zhejiang Normal University Jinhua 321004 P. R. China
Author_xml – sequence: 1
  givenname: Zhou
  surname: Yu
  fullname: Yu, Zhou
  organization: Zhejiang Normal University
– sequence: 2
  givenname: Jian‐Ping
  surname: Li
  fullname: Li, Jian‐Ping
  organization: Zhejiang Normal University
– sequence: 3
  givenname: Xian‐Kun
  surname: Xu
  fullname: Xu, Xian‐Kun
  organization: Zhejiang Normal University
– sequence: 4
  givenname: Zhong‐Chen
  surname: Ding
  fullname: Ding, Zhong‐Chen
  organization: Zhejiang Normal University
– sequence: 5
  givenname: Xiao‐Hui
  surname: Peng
  fullname: Peng, Xiao‐Hui
  organization: Zhejiang Normal University
– sequence: 6
  givenname: Yi‐Jing
  surname: Gao
  fullname: Gao, Yi‐Jing
  email: yijinggao@zjnu.edu.cn
  organization: Zhejiang Normal University
– sequence: 7
  givenname: Qiang
  surname: Wan
  fullname: Wan, Qiang
  organization: Zhejiang Normal University
– sequence: 8
  givenname: Ju‐Fang
  surname: Zheng
  fullname: Zheng, Ju‐Fang
  organization: Zhejiang Normal University
– sequence: 9
  givenname: Xiao‐Shun
  surname: Zhou
  fullname: Zhou, Xiao‐Shun
  email: xszhou@zjnu.edu.cn
  organization: Zhejiang Normal University
– sequence: 10
  givenname: Ya‐Hao
  orcidid: 0000-0001-5943-8646
  surname: Wang
  fullname: Wang, Ya‐Hao
  email: yahaowang@zjnu.edu.cn
  organization: Zhejiang Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40159461$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhleoiH7QK0e0EhcuCf5ar31CbSg0UqseoHC0Jl47ONqsi70bmp74CfxGfgkTUqKWCyePZp55PR6_h8VeFztXFC8oGVNC2BtoVnnMCBO0lqR-UhwwqtWIKyH2HsT7xXHOC0IIrXgtqHpW7AuMtZD0oLi77mxcuRS6eTntepc82ABteXW7nrvu14-fpyk0c9eUp6EbbOsglZeuR2DiNnQuoy_PHUYR8XCH4GVsnR1aBCeA4Dr3pY-p_AIIlWdY61PEbMjPi6ce2uyO78-j4vr92afJ-eji6sN0cnIxskIpPVK24jNReS24F7XW2ltvGwkMCNPWKeCMa0KtcrKuRU21cJp44TlAU1cA_KiYbnWbCAtzk8IS0tpECOZPIqa5gdQHfJyRTDBJnFZ4hwBPQRMJfMZVA7LWTKHW263WzTBbusbiEhK0j0QfV7rw1czjylBGZUU0Q4XX9wopfhtc7s0yZOvaFjoXh2w4VaKSdSUJoq_-QRdxSB3uynBGFTqAaorUy4cj7Wb5-8cIjLeATTHn5PwOocRsfGQ2PjI7H2FDtW34Hlq3_g9tTt59_khxGs1_A6jUzSo
Cites_doi 10.1021/acs.inorgchem.8b01173
10.1021/jacs.2c11882
10.1021/acssuschemeng.1c03691
10.1021/acscatal.6b00205
10.1016/j.elecom.2014.05.029
10.1038/s41570-019-0096-0
10.1038/s41557-020-0548-7
10.1039/c3sc50301a
10.1021/jz501850u
10.1021/jacs.4c03218
10.1016/0022-1902(67)80090-3
10.1002/anie.202317220
10.1016/S0022-0728(03)00215-8
10.1038/s41467-019-12994-w
10.1021/acs.jpclett.6b00730
10.1021/acs.jpcc.8b02808
10.1021/acs.inorgchem.5b00266
10.1039/D0SC06991D
10.1002/anie.202218859
10.1038/ncomms7469
10.1002/anie.201908907
10.1002/anie.201411625
10.1038/s41570-016-0003
10.1039/C8CC04302G
10.1038/s41467-022-31096-8
10.1038/s43586-022-00164-0
10.1002/anie.201805464
10.1038/s41467-023-36718-3
10.1039/C9NR10437B
10.1016/j.poly.2006.04.026
10.1038/nprot.2012.141
10.1007/BF02077022
10.1038/s41929-022-00750-1
10.1002/anie.202317514
10.1002/3527600825.ch6
10.1021/acsnano.2c02838
10.1021/jacs.1c10009
10.1038/nchem.1350
10.1021/acs.inorgchem.1c01264
10.1021/acscatal.8b03661
10.1038/s41467-022-28723-9
10.1016/j.chempr.2020.07.022
10.1038/s41467-020-18417-5
10.1021/jacs.1c08078
10.1002/cssc.202001876
10.1038/s41467-023-39206-w
10.1021/acsenergylett.0c00478
10.1002/anie.202102587
10.1038/s41586-019-1760-8
10.1038/nature08907
10.1021/jp211884s
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH
2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH
– notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202417607
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Proquest Research Library
Science Database (Proquest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_624260e98fcf4af1a906a3b38da67928
PMC12165092
40159461
10_1002_advs_202417607
ADVS11809
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation of China
  funderid: LQ21B030010; LQ24B030014
– fundername: National Natural Science Foundation of China
  funderid: 22102150; 22172146; 22303085; 22208312; 21872126
– fundername: National Natural Science Foundation of China
  grantid: 22172146
– fundername: National Natural Science Foundation of China
  grantid: 22102150
– fundername: National Natural Science Foundation of China
  grantid: 22208312
– fundername: National Natural Science Foundation of China
  grantid: 21872126
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LQ24B030014
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LQ21B030010
– fundername: National Natural Science Foundation of China
  grantid: 22303085
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LQ21B030010; LQ24B030014
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
ROL
RPM
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
EJD
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
WIN
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c4889-8c53b45f943f47999fcfcd6a2a029ce8a323901c8e67747194e90f4f3aad75aa3
IEDL.DBID 24P
ISSN 2198-3844
IngestDate Wed Aug 27 01:27:54 EDT 2025
Thu Aug 21 18:27:51 EDT 2025
Fri Jul 11 18:54:34 EDT 2025
Wed Aug 13 11:12:30 EDT 2025
Mon Jul 21 05:36:05 EDT 2025
Thu Jul 03 08:46:05 EDT 2025
Fri Jun 13 09:30:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords copper‐bipyridine complexes
in situ Raman spectroscopy
spectroelectrochemistry
oxygen evolution reaction
heterogenized molecular catalyst
Language English
License Attribution
2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4889-8c53b45f943f47999fcfcd6a2a029ce8a323901c8e67747194e90f4f3aad75aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5943-8646
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202417607
PMID 40159461
PQID 3218002191
PQPubID 4365299
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_624260e98fcf4af1a906a3b38da67928
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12165092
proquest_miscellaneous_3184567560
proquest_journals_3218002191
pubmed_primary_40159461
crossref_primary_10_1002_advs_202417607
wiley_primary_10_1002_advs_202417607_ADVS11809
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2025
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2021; 14
2021 2016; 9 6
2020 2013; 5 4
2020 2012 2021 1981; 12 4 143 16
2018; 8
2018 2006; 54 25
2012 2003; 116 547
2014 2016 2021 2021; 5 7 12 143
2023; 145
2018 2023; 57 62
1967; 29
2010 2023 2018 2019 2021; 464 14 57 58 60
2024; 63
2017 2022 2022; 1 13 2
2019 2019 2022; 3 10 5
1991
2018 2014 2015; 122 46 54
2015 2024; 54 63
2021; 60
2013; 8
2015 2019 2020 2022 2020 2023; 6 575 11 13 12 14
2022 2024 2020; 16 146 6
e_1_2_8_9_3
e_1_2_8_9_2
e_1_2_8_9_5
e_1_2_8_9_4
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_3_3
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_20_2
e_1_2_8_20_3
e_1_2_8_22_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_15_2
e_1_2_8_11_1
e_1_2_8_11_2
Elizarova G. L. (e_1_2_8_3_4) 1981; 16
e_1_2_8_8_4
e_1_2_8_8_3
e_1_2_8_8_6
e_1_2_8_8_5
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_6_3
e_1_2_8_8_1
e_1_2_8_21_1
Wilkins R. G. (e_1_2_8_5_1) 1991
e_1_2_8_16_2
e_1_2_8_16_3
e_1_2_8_18_1
e_1_2_8_16_4
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_12_1
References_xml – volume: 464 14 57 58 60
  start-page: 392 3397
  year: 2010 2023 2018 2019 2021
  publication-title: Nature. Nat. Commun. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 54 63
  start-page: 4909
  year: 2015 2024
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 29
  start-page: 1047
  year: 1967
  publication-title: J. Inorg. Nucl. Chem.
– volume: 122 46 54
  start-page: 1 3061
  year: 2018 2014 2015
  publication-title: J. Phys. Chem. C. Electrochem. Commun. Inorg. Chem.
– volume: 6 575 11 13 12 14
  start-page: 6469 639 4610 3356 1060 997
  year: 2015 2019 2020 2022 2020 2023
  publication-title: Nat. Commun. Nature. Nat. Commun. Nat. Commun. Nat. Chem. Nat. Commun.
– volume: 16 146 6
  start-page: 9572 2974
  year: 2022 2024 2020
  publication-title: ACS Nano. J. Am. Chem. Soc. Chem.
– volume: 14
  start-page: 234
  year: 2021
  publication-title: ChemSusChem.
– volume: 9 6
  start-page: 2473
  year: 2021 2016
  publication-title: ACS Sustain. Chem. Eng. ACS Catal.
– start-page: 299
  year: 1991
  end-page: 332
– volume: 3 10 5
  start-page: 331 4993 79
  year: 2019 2019 2022
  publication-title: Nat. Rev. Chem. Nat. Commun. Nat. Catal.
– volume: 8
  start-page: 52
  year: 2013
  publication-title: Nat. Protoc.
– volume: 1 13 2
  start-page: 0003 1243 84
  year: 2017 2022 2022
  publication-title: Nat. Rev. Chem. Nat. Commun. Nat. Rev. Methods Primers.
– volume: 12 4 143 16
  start-page: 4187 498 19
  year: 2020 2012 2021 1981
  publication-title: Nanoscale. Nat. Chem. J. Am. Chem. Soc. React. Kinet. Catal. Lett.
– volume: 5 7 12 143
  start-page: 3924 2119 8909
  year: 2014 2016 2021 2021
  publication-title: J. Phys. Chem. Lett. J. Phys. Chem. Lett. Chem. Sci. J. Am. Chem. Soc.
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 145
  start-page: 2035
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 54 25
  start-page: 9019 2815
  year: 2018 2006
  publication-title: Chem. Commun. Polyhedron.
– volume: 8
  year: 2018
  publication-title: ACS Catal.
– volume: 60
  year: 2021
  publication-title: Inorg. Chem.
– volume: 57 62
  year: 2018 2023
  publication-title: Inorg. Chem. Angew. Chem., Int. Ed.
– volume: 116 547
  start-page: 5128 163
  year: 2012 2003
  publication-title: J. Phys. Chem. C. J. Electroanal. Chem.
– volume: 5 4
  start-page: 1252 2334
  year: 2020 2013
  publication-title: ACS Energy Lett. Chem. Sci.
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.inorgchem.8b01173
– ident: e_1_2_8_18_1
  doi: 10.1021/jacs.2c11882
– ident: e_1_2_8_14_1
  doi: 10.1021/acssuschemeng.1c03691
– ident: e_1_2_8_14_2
  doi: 10.1021/acscatal.6b00205
– ident: e_1_2_8_6_2
  doi: 10.1016/j.elecom.2014.05.029
– ident: e_1_2_8_2_1
  doi: 10.1038/s41570-019-0096-0
– ident: e_1_2_8_8_5
  doi: 10.1038/s41557-020-0548-7
– ident: e_1_2_8_15_2
  doi: 10.1039/c3sc50301a
– ident: e_1_2_8_16_1
  doi: 10.1021/jz501850u
– ident: e_1_2_8_20_2
  doi: 10.1021/jacs.4c03218
– ident: e_1_2_8_10_1
  doi: 10.1016/0022-1902(67)80090-3
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.202317220
– ident: e_1_2_8_17_2
  doi: 10.1016/S0022-0728(03)00215-8
– ident: e_1_2_8_2_2
  doi: 10.1038/s41467-019-12994-w
– ident: e_1_2_8_16_2
  doi: 10.1021/acs.jpclett.6b00730
– ident: e_1_2_8_6_1
  doi: 10.1021/acs.jpcc.8b02808
– ident: e_1_2_8_6_3
  doi: 10.1021/acs.inorgchem.5b00266
– ident: e_1_2_8_16_3
  doi: 10.1039/D0SC06991D
– ident: e_1_2_8_19_2
  doi: 10.1002/anie.202218859
– ident: e_1_2_8_8_1
  doi: 10.1038/ncomms7469
– ident: e_1_2_8_9_4
  doi: 10.1002/anie.201908907
– ident: e_1_2_8_7_1
  doi: 10.1002/anie.201411625
– ident: e_1_2_8_1_1
  doi: 10.1038/s41570-016-0003
– ident: e_1_2_8_11_1
  doi: 10.1039/C8CC04302G
– ident: e_1_2_8_8_4
  doi: 10.1038/s41467-022-31096-8
– ident: e_1_2_8_1_3
  doi: 10.1038/s43586-022-00164-0
– ident: e_1_2_8_9_3
  doi: 10.1002/anie.201805464
– ident: e_1_2_8_8_6
  doi: 10.1038/s41467-023-36718-3
– ident: e_1_2_8_3_1
  doi: 10.1039/C9NR10437B
– ident: e_1_2_8_11_2
  doi: 10.1016/j.poly.2006.04.026
– ident: e_1_2_8_22_1
  doi: 10.1038/nprot.2012.141
– volume: 16
  start-page: 19
  year: 1981
  ident: e_1_2_8_3_4
  publication-title: React. Kinet. Catal. Lett.
  doi: 10.1007/BF02077022
– ident: e_1_2_8_2_3
  doi: 10.1038/s41929-022-00750-1
– ident: e_1_2_8_7_2
  doi: 10.1002/anie.202317514
– start-page: 299
  volume-title: Kinetics and Mechanism of Reactions of Transition Metal Complexes
  year: 1991
  ident: e_1_2_8_5_1
  doi: 10.1002/3527600825.ch6
– ident: e_1_2_8_20_1
  doi: 10.1021/acsnano.2c02838
– ident: e_1_2_8_16_4
  doi: 10.1021/jacs.1c10009
– ident: e_1_2_8_3_2
  doi: 10.1038/nchem.1350
– ident: e_1_2_8_12_1
  doi: 10.1021/acs.inorgchem.1c01264
– ident: e_1_2_8_13_1
  doi: 10.1021/acscatal.8b03661
– ident: e_1_2_8_1_2
  doi: 10.1038/s41467-022-28723-9
– ident: e_1_2_8_20_3
  doi: 10.1016/j.chempr.2020.07.022
– ident: e_1_2_8_8_3
  doi: 10.1038/s41467-020-18417-5
– ident: e_1_2_8_3_3
  doi: 10.1021/jacs.1c08078
– ident: e_1_2_8_4_1
  doi: 10.1002/cssc.202001876
– ident: e_1_2_8_9_2
  doi: 10.1038/s41467-023-39206-w
– ident: e_1_2_8_15_1
  doi: 10.1021/acsenergylett.0c00478
– ident: e_1_2_8_9_5
  doi: 10.1002/anie.202102587
– ident: e_1_2_8_8_2
  doi: 10.1038/s41586-019-1760-8
– ident: e_1_2_8_9_1
  doi: 10.1038/nature08907
– ident: e_1_2_8_17_1
  doi: 10.1021/jp211884s
SSID ssj0001537418
Score 2.335499
Snippet The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in...
Abstract The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2417607
SubjectTerms Copper
copper‐bipyridine complexes
Electrodes
heterogenized molecular catalyst
in situ Raman spectroscopy
Ligands
Oxidation
oxygen evolution reaction
spectroelectrochemistry
Spectrum analysis
Voltammetry
Water
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT1wQLX-BUhkJCTiEJrZjx8du1WqFtHCAFb1Zk9gWe8mi3W3V9tRH4Bl5Emac7GpXIPXCNXEka34030xmvmHsrVcQhBGQl77wuZLB5IRC8lZJqEwD2muaRp581uOp-nRRXWyt-qKesJ4euBfcMc0v6CLYOrZRQSzBFhpkI2sP2liRxnwx5m0lU_18sCRaljVLYyGOwV8ROzcGLKNpd-xWFEpk_f9CmH83Sm4D2BSBzh-zRwN05Cf9lffZg9AdsP3BOZf8_cAg_eEJu512LbVmYljiqeQXgSrj_Mv1DdrL77tfozSm5flo1hGfMSz4JCAK51TrRTzI55GPqU9mjsdnt3hwst6iy0-p3nOzXHFEu_w7ItUFP-tX6SRyk6dsen727XScD0sWUB3U4VS3lWxUFa2SURmEiyjn1msQUAjbhhqkoLJIWwdtKIG1KtgiqigBvKkA5DO218278IJxDG0RbKnAeKEA2iYWwchY2gYKA5XI2Lu10N3PnkvD9azJwpF63EY9GRuRTjaniAM7PUDLcINluPssI2OHa426wTGXTiKkIVxjy4y92bxGl6L_JNCF-SWeway3wkRKFxl73hvA5iaYjlZWafy63jGNnavuvulmPxJtdylKoitEMXxMVnSPDBzikq9E0Gdf_g9pvGIPBa0uTgWkQ7a3WlyG14inVs1Rcp0_wPEfNg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELagvXBBlN_QgoyEBBxCE9ux4xNiq61WSFsQsKK3aBLbZS9J2d1WtCcegWfkSZjJz7YrEFwTR3I8M55vxuNvGHvuFHhhBMSpS1yspDcxoZC4UhIyU4J2mm4jT4_0ZKbeHWfHfcJt2ZdVDntiu1G7pqIc-b5EX0QOyaZvTr_F1DWKTlf7Fho32TZuwTkGX9uj8dGHj1dZlkwSPcvA1piIfXDnxNKNjsto6iF7zRu1pP1_Q5p_FkxeB7KtJzq8w273EJK_7WS-w274-i7b6Y10yV_2TNKv7rHLWV1RiSa6J96m_gJQhpy__36BevPrx89Re13L8dG8Jl5jWPCpRzTOKeeLuJA3gU-oXqbB4fNLHDgduunyA8r7XCxXHFEv_4KIdcHHXUudluTkPpsdjj8fTOK-2QKKhSqd8iqTpcqCVTIog7AxVKFyGgQkwlY-BykoPVLlXhsKZK3yNgkqSABnMgD5gG3VTe0fMY4uLoBNFRgnFEBVhsQbGVJbQmIgExF7MSx6cdpxahQde7IoSDzFWjwRG5FM1qOIC7t90CxOit60CrrhohNvc5yxgpCCTTTIUuYOtLEij9jeINGiN9BlcaVOEXu2fo2mReclUPvmDMdg9JthQKWTiD3sFGA9EwxLM6s0fp1vqMbGVDff1POvLX13KlKiLcRleN1q0X_WoEB88omI-uzjf__ILrslqDlxmyLaY1urxZl_gohpVT7tzeI3MY4YMw
  priority: 102
  providerName: ProQuest
Title Uncovering Interfacial Oxygen‐Bridged Binuclear Metal Centers of Heterogenized Molecular Catalyst for Water Electrolysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202417607
https://www.ncbi.nlm.nih.gov/pubmed/40159461
https://www.proquest.com/docview/3218002191
https://www.proquest.com/docview/3184567560
https://pubmed.ncbi.nlm.nih.gov/PMC12165092
https://doaj.org/article/624260e98fcf4af1a906a3b38da67928
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVQe-GCKJ8LZWUkJOAQNbEdOz52y1YrxJaKsqK3aJLYsJcE7W4R7YmfwG_klzDjZNNGICFOKyXOyvJ4Mm9ePG8Ye1EpcMIIiJIqriIlnYkIhUSlkpCaAnSlqRp5fqJnC_X2PD2_UcXf6kP0hBt5Rnhfk4NDsT64Fg2F6hvJbWMEMprKyXepvpbU84U6vWZZUknyLNRhDrPrSGZKbZUbY3Ew_ItBZAoC_n9DnX8enrwJakNUOr7L7nRwkh-29t9jt1x9j-11DrvmrzpV6df32dWiLum4JoYqHmhAD8SW8_ffL3EP_frxcxJKtyo-WdakcQwrPneIzDnxv4gReeP5jM7ONDh8eYUD59vOuvyIOKDL9YYjAuafEL2u-LRtrxMETx6wxfH049Es6hovoIno1FNWprJQqbdKemUQQvrSl5UGAbGwpctACqJKysxpQ0mtVc7GXnkJUJkUQD5kO3VTu8eMY7jzYBMFphIKoCx87Iz0iS0gNpCKEXu5XfT8a6uvkbdKyiIn8-S9eUZsQjbpR5EudrjQrD7nnZvlVO2iY2cznLECn4CNNchCZhVoY0U2Yvtbi-ads65ziTCHsI5NRux5fxvdjL6dQO2aCxyDmXCKyZWOR-xRuwH6mWCKmlql8elssDUGUx3eqZdfgpR3IhKSMMRlaPf6P9YgR6xyRqJ99sn_PvCU3RbUujgQSPtsZ7O6cM8QT22KcXCZMds9fDN_d4a_k-nJ6YdxYCd-A9rBH8s
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NctMwENaU9AAXhvIbKCBmYICDqS3JlnVgGFLSSWkTGGimvZm1LUEudklSID3xCDwJD8WTsOuftB0YOPVqy7asXWm_Xa2-ZexhrsAKLcALcj_3lLTaIxTiZUpCqFOI8ohOIw9H0WCsXh-EByvsZ3sWhtIq2zWxWqjzMqMY-YZEW0QGyQQvDj97VDWKdlfbEhq1WuzYxVd02WbPt1-hfB8JsdXf2xx4TVUB_D6l9MRZKFMVOqOkUxrxkctclkcgwBcmszFIQXGALLaRJo_NKGt8p5wEyHUIIPG9F9iqkujKdNhqrz96--4kqhNKooNp2SF9sQH5F2IFR0OpI6pZe8r6VUUC_oZs_0zQPA2cK8u3dYVdbiArf1nr2BpbscVVttYsCjP-pGGufnqNHY-LjFJC0RzyKtTogCLy_M23Berpr-8_etXxsJz3JgXxKMOUDy2if04xZsShvHR8QPk5JTafHGPDYVu9l29SnGkxm3NE2XwfEfKU9-sSPhWpynU2Phcx3GCdoizsLcbRpDowgQKdCwWQpc63WrrApOBrCEWXPW4HPTmsOTySmq1ZJCSeZCmeLuuRTJatiHu7ulBOPybNVE7oRE3kWxNjjxW4AIwfgUxlnEOkjYi7bL2VaNIsCLPkRH277MHyNk5l2p-BwpZH2Aa97RAduMjvspu1Aix7gm5waFSET8dnVONMV8_eKSafKrrwQAREk4jD8KzSov-MQYJ46D0RA5rb__6R--ziYG-4m-xuj3busEuCCiNX4al11plPj-xdRGvz9F4zRTj7cN6z8jfSwVSm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVEJcEOU3UGCRQMAhxN5de70HhEibqKUkVEDU3szY3oVc7JKkQHriEXgeHocnYcY_aSMQnHq119Z6Z2bnm_HsN4w9zBRYoQV0_MzLOkpa3SEU0kmVhEAnEGYhnUYejsKdsXp1GByusZ_NWRgqq2z2xHKjzoqUcuRdib6IHJLxu64ui9jfHrw4-tyhDlL0p7Vpp1GpyJ5dfMXwbfZ8dxtl_UiIQf_91k6n7jCAc6HynigNZKICZ5R0SiNWcqlLsxAEeMKkNgIpKCeQRjbUFL0ZZY3nlJMAmQ4AJL73AlvXGBV5Lbbe64_2355meAJJ1DANU6QnupB9IYZwdJo6pP61Zzxh2TDgbyj3z2LNsyC69IKDK-xyDV_5y0rfNtiaza-yjXqDmPEnNYv102vsZJynVB6KrpGXaUcHlJ3nb74tUGd_ff_RK4-KZbw3yYlTGaZ8aDES4JRvRkzKC8d3qFanwOGTExw4bDr58i3KOS1mc46Imx8gWp7yftXOpyRYuc7G5yKGG6yVF7m9xTi6VwfGV6AzoQDSxHlWS-ebBDwNgWizx82ix0cVn0dcMTeLmMQTL8XTZj2SyXIU8XCXF4rpx7g265hO14SeNRHOWIHzwXghyERGGYTaiKjNNhuJxvXmMItPVbnNHixvo1nTvxrIbXGMYzDyDjCYC702u1kpwHImGBIHRoX4dLSiGitTXb2TTz6V1OG-8IkyEZfhWalF_1mDGLHROyIJNLf__SH32UW0xvj17mjvDrskqEdymanaZK359NjeReA2T-7VFsLZh_M2yt-Okljb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+Interfacial+Oxygen%E2%80%90Bridged+Binuclear+Metal+Centers+of+Heterogenized+Molecular+Catalyst+for+Water+Electrolysis&rft.jtitle=Advanced+science&rft.au=Yu%2C+Zhou&rft.au=Li%2C+Jian%E2%80%90Ping&rft.au=Xu%2C+Xian%E2%80%90Kun&rft.au=Ding%2C+Zhong%E2%80%90Chen&rft.date=2025-06-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=12&rft.issue=22&rft_id=info:doi/10.1002%2Fadvs.202417607&rft_id=info%3Apmid%2F40159461&rft.externalDocID=PMC12165092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon