Uncovering Interfacial Oxygen‐Bridged Binuclear Metal Centers of Heterogenized Molecular Catalyst for Water Electrolysis
The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule‐electrode and electrochemical interfaces remains a great challenge....
Saved in:
Published in | Advanced science Vol. 12; no. 22; pp. e2417607 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.06.2025
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule‐electrode and electrochemical interfaces remains a great challenge. Herein, shell‐isolated nanoparticle‐enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide‐2‐2′ bipyridine on Au electrode ((bpy)Cu(OH)2/Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH)2 oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O2‐Au with oxygen‐bridged binuclear metal centers of Cu(III)‐O‐Au for the OER. As the potential further increases, Cu(III)‐O‐Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O2. Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)‐O‐Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)‐O‐Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential‐determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized‐molecule catalysts for the development and application of renewable energy conversion devices.
In situ Raman monitoring of an electrochemically induced interfacial oxygen‐bridged Cu(III)‐O‐Au binuclear center in heterogenized molecular catalysts, could combine surface hydroxyl groups to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O2. This significantly modifies the elementary reaction steps and lowers the overpotential for oxygen evolution reaction. |
---|---|
AbstractList | The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule-electrode and electrochemical interfaces remains a great challenge. Herein, shell-isolated nanoparticle-enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide-2-2' bipyridine on Au electrode ((bpy)Cu(OH)
/Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH)
oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O
-Au with oxygen-bridged binuclear metal centers of Cu(III)-O-Au for the OER. As the potential further increases, Cu(III)-O-Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)-OOH-Au, which then turns into Cu(III)-OO-Au to release O
. Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)-O-Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)-O-Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential-determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized-molecule catalysts for the development and application of renewable energy conversion devices. The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule-electrode and electrochemical interfaces remains a great challenge. Herein, shell-isolated nanoparticle-enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide-2-2' bipyridine on Au electrode ((bpy)Cu(OH)2/Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH)2 oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O2-Au with oxygen-bridged binuclear metal centers of Cu(III)-O-Au for the OER. As the potential further increases, Cu(III)-O-Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)-OOH-Au, which then turns into Cu(III)-OO-Au to release O2. Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)-O-Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)-O-Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential-determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized-molecule catalysts for the development and application of renewable energy conversion devices.The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule-electrode and electrochemical interfaces remains a great challenge. Herein, shell-isolated nanoparticle-enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide-2-2' bipyridine on Au electrode ((bpy)Cu(OH)2/Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH)2 oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O2-Au with oxygen-bridged binuclear metal centers of Cu(III)-O-Au for the OER. As the potential further increases, Cu(III)-O-Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)-OOH-Au, which then turns into Cu(III)-OO-Au to release O2. Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)-O-Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)-O-Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential-determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized-molecule catalysts for the development and application of renewable energy conversion devices. Abstract The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule‐electrode and electrochemical interfaces remains a great challenge. Herein, shell‐isolated nanoparticle‐enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide‐2‐2′ bipyridine on Au electrode ((bpy)Cu(OH)2/Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH)2 oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O2‐Au with oxygen‐bridged binuclear metal centers of Cu(III)‐O‐Au for the OER. As the potential further increases, Cu(III)‐O‐Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O2. Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)‐O‐Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)‐O‐Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential‐determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized‐molecule catalysts for the development and application of renewable energy conversion devices. The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule‐electrode and electrochemical interfaces remains a great challenge. Herein, shell‐isolated nanoparticle‐enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide‐2‐2′ bipyridine on Au electrode ((bpy)Cu(OH)2/Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH)2 oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O2‐Au with oxygen‐bridged binuclear metal centers of Cu(III)‐O‐Au for the OER. As the potential further increases, Cu(III)‐O‐Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O2. Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)‐O‐Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)‐O‐Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential‐determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized‐molecule catalysts for the development and application of renewable energy conversion devices. The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule‐electrode and electrochemical interfaces remains a great challenge. Herein, shell‐isolated nanoparticle‐enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide‐2‐2′ bipyridine on Au electrode ((bpy)Cu(OH)2/Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH)2 oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O2‐Au with oxygen‐bridged binuclear metal centers of Cu(III)‐O‐Au for the OER. As the potential further increases, Cu(III)‐O‐Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O2. Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)‐O‐Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)‐O‐Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential‐determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized‐molecule catalysts for the development and application of renewable energy conversion devices. In situ Raman monitoring of an electrochemically induced interfacial oxygen‐bridged Cu(III)‐O‐Au binuclear center in heterogenized molecular catalysts, could combine surface hydroxyl groups to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O2. This significantly modifies the elementary reaction steps and lowers the overpotential for oxygen evolution reaction. The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule‐electrode and electrochemical interfaces remains a great challenge. Herein, shell‐isolated nanoparticle‐enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide‐2‐2′ bipyridine on Au electrode ((bpy)Cu(OH) 2 /Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH) 2 oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O 2 ‐Au with oxygen‐bridged binuclear metal centers of Cu(III)‐O‐Au for the OER. As the potential further increases, Cu(III)‐O‐Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O 2 . Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)‐O‐Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)‐O‐Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential‐determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized‐molecule catalysts for the development and application of renewable energy conversion devices. In situ Raman monitoring of an electrochemically induced interfacial oxygen‐bridged Cu(III)‐O‐Au binuclear center in heterogenized molecular catalysts, could combine surface hydroxyl groups to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O 2 . This significantly modifies the elementary reaction steps and lowers the overpotential for oxygen evolution reaction. The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule‐electrode and electrochemical interfaces remains a great challenge. Herein, shell‐isolated nanoparticle‐enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide‐2‐2′ bipyridine on Au electrode ((bpy)Cu(OH) 2 /Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH) 2 oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O 2 ‐Au with oxygen‐bridged binuclear metal centers of Cu(III)‐O‐Au for the OER. As the potential further increases, Cu(III)‐O‐Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)‐OOH‐Au, which then turns into Cu(III)‐OO‐Au to release O 2 . Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)‐O‐Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)‐O‐Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential‐determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized‐molecule catalysts for the development and application of renewable energy conversion devices. |
Author | Yu, Zhou Xu, Xian‐Kun Ding, Zhong‐Chen Wan, Qiang Gao, Yi‐Jing Wang, Ya‐Hao Li, Jian‐Ping Zhou, Xiao‐Shun Peng, Xiao‐Hui Zheng, Ju‐Fang |
AuthorAffiliation | 2 Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine‐Containing Specialty Chemicals Institute of Advanced Fluorine‐Containing Materials Zhejiang Normal University Jinhua 321004 P. R. China 1 Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Materials Science Zhejiang Normal University Jinhua 321004 P. R. China |
AuthorAffiliation_xml | – name: 2 Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine‐Containing Specialty Chemicals Institute of Advanced Fluorine‐Containing Materials Zhejiang Normal University Jinhua 321004 P. R. China – name: 1 Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Materials Science Zhejiang Normal University Jinhua 321004 P. R. China |
Author_xml | – sequence: 1 givenname: Zhou surname: Yu fullname: Yu, Zhou organization: Zhejiang Normal University – sequence: 2 givenname: Jian‐Ping surname: Li fullname: Li, Jian‐Ping organization: Zhejiang Normal University – sequence: 3 givenname: Xian‐Kun surname: Xu fullname: Xu, Xian‐Kun organization: Zhejiang Normal University – sequence: 4 givenname: Zhong‐Chen surname: Ding fullname: Ding, Zhong‐Chen organization: Zhejiang Normal University – sequence: 5 givenname: Xiao‐Hui surname: Peng fullname: Peng, Xiao‐Hui organization: Zhejiang Normal University – sequence: 6 givenname: Yi‐Jing surname: Gao fullname: Gao, Yi‐Jing email: yijinggao@zjnu.edu.cn organization: Zhejiang Normal University – sequence: 7 givenname: Qiang surname: Wan fullname: Wan, Qiang organization: Zhejiang Normal University – sequence: 8 givenname: Ju‐Fang surname: Zheng fullname: Zheng, Ju‐Fang organization: Zhejiang Normal University – sequence: 9 givenname: Xiao‐Shun surname: Zhou fullname: Zhou, Xiao‐Shun email: xszhou@zjnu.edu.cn organization: Zhejiang Normal University – sequence: 10 givenname: Ya‐Hao orcidid: 0000-0001-5943-8646 surname: Wang fullname: Wang, Ya‐Hao email: yahaowang@zjnu.edu.cn organization: Zhejiang Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40159461$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhleoiH7QK0e0EhcuCf5ar31CbSg0UqseoHC0Jl47ONqsi70bmp74CfxGfgkTUqKWCyePZp55PR6_h8VeFztXFC8oGVNC2BtoVnnMCBO0lqR-UhwwqtWIKyH2HsT7xXHOC0IIrXgtqHpW7AuMtZD0oLi77mxcuRS6eTntepc82ABteXW7nrvu14-fpyk0c9eUp6EbbOsglZeuR2DiNnQuoy_PHUYR8XCH4GVsnR1aBCeA4Dr3pY-p_AIIlWdY61PEbMjPi6ce2uyO78-j4vr92afJ-eji6sN0cnIxskIpPVK24jNReS24F7XW2ltvGwkMCNPWKeCMa0KtcrKuRU21cJp44TlAU1cA_KiYbnWbCAtzk8IS0tpECOZPIqa5gdQHfJyRTDBJnFZ4hwBPQRMJfMZVA7LWTKHW263WzTBbusbiEhK0j0QfV7rw1czjylBGZUU0Q4XX9wopfhtc7s0yZOvaFjoXh2w4VaKSdSUJoq_-QRdxSB3uynBGFTqAaorUy4cj7Wb5-8cIjLeATTHn5PwOocRsfGQ2PjI7H2FDtW34Hlq3_g9tTt59_khxGs1_A6jUzSo |
Cites_doi | 10.1021/acs.inorgchem.8b01173 10.1021/jacs.2c11882 10.1021/acssuschemeng.1c03691 10.1021/acscatal.6b00205 10.1016/j.elecom.2014.05.029 10.1038/s41570-019-0096-0 10.1038/s41557-020-0548-7 10.1039/c3sc50301a 10.1021/jz501850u 10.1021/jacs.4c03218 10.1016/0022-1902(67)80090-3 10.1002/anie.202317220 10.1016/S0022-0728(03)00215-8 10.1038/s41467-019-12994-w 10.1021/acs.jpclett.6b00730 10.1021/acs.jpcc.8b02808 10.1021/acs.inorgchem.5b00266 10.1039/D0SC06991D 10.1002/anie.202218859 10.1038/ncomms7469 10.1002/anie.201908907 10.1002/anie.201411625 10.1038/s41570-016-0003 10.1039/C8CC04302G 10.1038/s41467-022-31096-8 10.1038/s43586-022-00164-0 10.1002/anie.201805464 10.1038/s41467-023-36718-3 10.1039/C9NR10437B 10.1016/j.poly.2006.04.026 10.1038/nprot.2012.141 10.1007/BF02077022 10.1038/s41929-022-00750-1 10.1002/anie.202317514 10.1002/3527600825.ch6 10.1021/acsnano.2c02838 10.1021/jacs.1c10009 10.1038/nchem.1350 10.1021/acs.inorgchem.1c01264 10.1021/acscatal.8b03661 10.1038/s41467-022-28723-9 10.1016/j.chempr.2020.07.022 10.1038/s41467-020-18417-5 10.1021/jacs.1c08078 10.1002/cssc.202001876 10.1038/s41467-023-39206-w 10.1021/acsenergylett.0c00478 10.1002/anie.202102587 10.1038/s41586-019-1760-8 10.1038/nature08907 10.1021/jp211884s |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. – notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202417607 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Proquest Research Library Science Database (Proquest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_624260e98fcf4af1a906a3b38da67928 PMC12165092 40159461 10_1002_advs_202417607 ADVS11809 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation of China funderid: LQ21B030010; LQ24B030014 – fundername: National Natural Science Foundation of China funderid: 22102150; 22172146; 22303085; 22208312; 21872126 – fundername: National Natural Science Foundation of China grantid: 22172146 – fundername: National Natural Science Foundation of China grantid: 22102150 – fundername: National Natural Science Foundation of China grantid: 22208312 – fundername: National Natural Science Foundation of China grantid: 21872126 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LQ24B030014 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LQ21B030010 – fundername: National Natural Science Foundation of China grantid: 22303085 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LQ21B030010; LQ24B030014 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC ROL RPM AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION EJD NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U WIN 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c4889-8c53b45f943f47999fcfcd6a2a029ce8a323901c8e67747194e90f4f3aad75aa3 |
IEDL.DBID | 24P |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:27:54 EDT 2025 Thu Aug 21 18:27:51 EDT 2025 Fri Jul 11 18:54:34 EDT 2025 Wed Aug 13 11:12:30 EDT 2025 Mon Jul 21 05:36:05 EDT 2025 Thu Jul 03 08:46:05 EDT 2025 Fri Jun 13 09:30:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | copper‐bipyridine complexes in situ Raman spectroscopy spectroelectrochemistry oxygen evolution reaction heterogenized molecular catalyst |
Language | English |
License | Attribution 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4889-8c53b45f943f47999fcfcd6a2a029ce8a323901c8e67747194e90f4f3aad75aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5943-8646 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202417607 |
PMID | 40159461 |
PQID | 3218002191 |
PQPubID | 4365299 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_624260e98fcf4af1a906a3b38da67928 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12165092 proquest_miscellaneous_3184567560 proquest_journals_3218002191 pubmed_primary_40159461 crossref_primary_10_1002_advs_202417607 wiley_primary_10_1002_advs_202417607_ADVS11809 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2021; 14 2021 2016; 9 6 2020 2013; 5 4 2020 2012 2021 1981; 12 4 143 16 2018; 8 2018 2006; 54 25 2012 2003; 116 547 2014 2016 2021 2021; 5 7 12 143 2023; 145 2018 2023; 57 62 1967; 29 2010 2023 2018 2019 2021; 464 14 57 58 60 2024; 63 2017 2022 2022; 1 13 2 2019 2019 2022; 3 10 5 1991 2018 2014 2015; 122 46 54 2015 2024; 54 63 2021; 60 2013; 8 2015 2019 2020 2022 2020 2023; 6 575 11 13 12 14 2022 2024 2020; 16 146 6 e_1_2_8_9_3 e_1_2_8_9_2 e_1_2_8_9_5 e_1_2_8_9_4 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_3_3 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_20_2 e_1_2_8_20_3 e_1_2_8_22_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_15_2 e_1_2_8_11_1 e_1_2_8_11_2 Elizarova G. L. (e_1_2_8_3_4) 1981; 16 e_1_2_8_8_4 e_1_2_8_8_3 e_1_2_8_8_6 e_1_2_8_8_5 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_6_3 e_1_2_8_8_1 e_1_2_8_21_1 Wilkins R. G. (e_1_2_8_5_1) 1991 e_1_2_8_16_2 e_1_2_8_16_3 e_1_2_8_18_1 e_1_2_8_16_4 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_12_1 |
References_xml | – volume: 464 14 57 58 60 start-page: 392 3397 year: 2010 2023 2018 2019 2021 publication-title: Nature. Nat. Commun. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 54 63 start-page: 4909 year: 2015 2024 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 29 start-page: 1047 year: 1967 publication-title: J. Inorg. Nucl. Chem. – volume: 122 46 54 start-page: 1 3061 year: 2018 2014 2015 publication-title: J. Phys. Chem. C. Electrochem. Commun. Inorg. Chem. – volume: 6 575 11 13 12 14 start-page: 6469 639 4610 3356 1060 997 year: 2015 2019 2020 2022 2020 2023 publication-title: Nat. Commun. Nature. Nat. Commun. Nat. Commun. Nat. Chem. Nat. Commun. – volume: 16 146 6 start-page: 9572 2974 year: 2022 2024 2020 publication-title: ACS Nano. J. Am. Chem. Soc. Chem. – volume: 14 start-page: 234 year: 2021 publication-title: ChemSusChem. – volume: 9 6 start-page: 2473 year: 2021 2016 publication-title: ACS Sustain. Chem. Eng. ACS Catal. – start-page: 299 year: 1991 end-page: 332 – volume: 3 10 5 start-page: 331 4993 79 year: 2019 2019 2022 publication-title: Nat. Rev. Chem. Nat. Commun. Nat. Catal. – volume: 8 start-page: 52 year: 2013 publication-title: Nat. Protoc. – volume: 1 13 2 start-page: 0003 1243 84 year: 2017 2022 2022 publication-title: Nat. Rev. Chem. Nat. Commun. Nat. Rev. Methods Primers. – volume: 12 4 143 16 start-page: 4187 498 19 year: 2020 2012 2021 1981 publication-title: Nanoscale. Nat. Chem. J. Am. Chem. Soc. React. Kinet. Catal. Lett. – volume: 5 7 12 143 start-page: 3924 2119 8909 year: 2014 2016 2021 2021 publication-title: J. Phys. Chem. Lett. J. Phys. Chem. Lett. Chem. Sci. J. Am. Chem. Soc. – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 145 start-page: 2035 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 54 25 start-page: 9019 2815 year: 2018 2006 publication-title: Chem. Commun. Polyhedron. – volume: 8 year: 2018 publication-title: ACS Catal. – volume: 60 year: 2021 publication-title: Inorg. Chem. – volume: 57 62 year: 2018 2023 publication-title: Inorg. Chem. Angew. Chem., Int. Ed. – volume: 116 547 start-page: 5128 163 year: 2012 2003 publication-title: J. Phys. Chem. C. J. Electroanal. Chem. – volume: 5 4 start-page: 1252 2334 year: 2020 2013 publication-title: ACS Energy Lett. Chem. Sci. – ident: e_1_2_8_19_1 doi: 10.1021/acs.inorgchem.8b01173 – ident: e_1_2_8_18_1 doi: 10.1021/jacs.2c11882 – ident: e_1_2_8_14_1 doi: 10.1021/acssuschemeng.1c03691 – ident: e_1_2_8_14_2 doi: 10.1021/acscatal.6b00205 – ident: e_1_2_8_6_2 doi: 10.1016/j.elecom.2014.05.029 – ident: e_1_2_8_2_1 doi: 10.1038/s41570-019-0096-0 – ident: e_1_2_8_8_5 doi: 10.1038/s41557-020-0548-7 – ident: e_1_2_8_15_2 doi: 10.1039/c3sc50301a – ident: e_1_2_8_16_1 doi: 10.1021/jz501850u – ident: e_1_2_8_20_2 doi: 10.1021/jacs.4c03218 – ident: e_1_2_8_10_1 doi: 10.1016/0022-1902(67)80090-3 – ident: e_1_2_8_21_1 doi: 10.1002/anie.202317220 – ident: e_1_2_8_17_2 doi: 10.1016/S0022-0728(03)00215-8 – ident: e_1_2_8_2_2 doi: 10.1038/s41467-019-12994-w – ident: e_1_2_8_16_2 doi: 10.1021/acs.jpclett.6b00730 – ident: e_1_2_8_6_1 doi: 10.1021/acs.jpcc.8b02808 – ident: e_1_2_8_6_3 doi: 10.1021/acs.inorgchem.5b00266 – ident: e_1_2_8_16_3 doi: 10.1039/D0SC06991D – ident: e_1_2_8_19_2 doi: 10.1002/anie.202218859 – ident: e_1_2_8_8_1 doi: 10.1038/ncomms7469 – ident: e_1_2_8_9_4 doi: 10.1002/anie.201908907 – ident: e_1_2_8_7_1 doi: 10.1002/anie.201411625 – ident: e_1_2_8_1_1 doi: 10.1038/s41570-016-0003 – ident: e_1_2_8_11_1 doi: 10.1039/C8CC04302G – ident: e_1_2_8_8_4 doi: 10.1038/s41467-022-31096-8 – ident: e_1_2_8_1_3 doi: 10.1038/s43586-022-00164-0 – ident: e_1_2_8_9_3 doi: 10.1002/anie.201805464 – ident: e_1_2_8_8_6 doi: 10.1038/s41467-023-36718-3 – ident: e_1_2_8_3_1 doi: 10.1039/C9NR10437B – ident: e_1_2_8_11_2 doi: 10.1016/j.poly.2006.04.026 – ident: e_1_2_8_22_1 doi: 10.1038/nprot.2012.141 – volume: 16 start-page: 19 year: 1981 ident: e_1_2_8_3_4 publication-title: React. Kinet. Catal. Lett. doi: 10.1007/BF02077022 – ident: e_1_2_8_2_3 doi: 10.1038/s41929-022-00750-1 – ident: e_1_2_8_7_2 doi: 10.1002/anie.202317514 – start-page: 299 volume-title: Kinetics and Mechanism of Reactions of Transition Metal Complexes year: 1991 ident: e_1_2_8_5_1 doi: 10.1002/3527600825.ch6 – ident: e_1_2_8_20_1 doi: 10.1021/acsnano.2c02838 – ident: e_1_2_8_16_4 doi: 10.1021/jacs.1c10009 – ident: e_1_2_8_3_2 doi: 10.1038/nchem.1350 – ident: e_1_2_8_12_1 doi: 10.1021/acs.inorgchem.1c01264 – ident: e_1_2_8_13_1 doi: 10.1021/acscatal.8b03661 – ident: e_1_2_8_1_2 doi: 10.1038/s41467-022-28723-9 – ident: e_1_2_8_20_3 doi: 10.1016/j.chempr.2020.07.022 – ident: e_1_2_8_8_3 doi: 10.1038/s41467-020-18417-5 – ident: e_1_2_8_3_3 doi: 10.1021/jacs.1c08078 – ident: e_1_2_8_4_1 doi: 10.1002/cssc.202001876 – ident: e_1_2_8_9_2 doi: 10.1038/s41467-023-39206-w – ident: e_1_2_8_15_1 doi: 10.1021/acsenergylett.0c00478 – ident: e_1_2_8_9_5 doi: 10.1002/anie.202102587 – ident: e_1_2_8_8_2 doi: 10.1038/s41586-019-1760-8 – ident: e_1_2_8_9_1 doi: 10.1038/nature08907 – ident: e_1_2_8_17_1 doi: 10.1021/jp211884s |
SSID | ssj0001537418 |
Score | 2.335499 |
Snippet | The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in... Abstract The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2417607 |
SubjectTerms | Copper copper‐bipyridine complexes Electrodes heterogenized molecular catalyst in situ Raman spectroscopy Ligands Oxidation oxygen evolution reaction spectroelectrochemistry Spectrum analysis Voltammetry Water |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT1wQLX-BUhkJCTiEJrZjx8du1WqFtHCAFb1Zk9gWe8mi3W3V9tRH4Bl5Emac7GpXIPXCNXEka34030xmvmHsrVcQhBGQl77wuZLB5IRC8lZJqEwD2muaRp581uOp-nRRXWyt-qKesJ4euBfcMc0v6CLYOrZRQSzBFhpkI2sP2liRxnwx5m0lU_18sCRaljVLYyGOwV8ROzcGLKNpd-xWFEpk_f9CmH83Sm4D2BSBzh-zRwN05Cf9lffZg9AdsP3BOZf8_cAg_eEJu512LbVmYljiqeQXgSrj_Mv1DdrL77tfozSm5flo1hGfMSz4JCAK51TrRTzI55GPqU9mjsdnt3hwst6iy0-p3nOzXHFEu_w7ItUFP-tX6SRyk6dsen727XScD0sWUB3U4VS3lWxUFa2SURmEiyjn1msQUAjbhhqkoLJIWwdtKIG1KtgiqigBvKkA5DO218278IJxDG0RbKnAeKEA2iYWwchY2gYKA5XI2Lu10N3PnkvD9azJwpF63EY9GRuRTjaniAM7PUDLcINluPssI2OHa426wTGXTiKkIVxjy4y92bxGl6L_JNCF-SWeway3wkRKFxl73hvA5iaYjlZWafy63jGNnavuvulmPxJtdylKoitEMXxMVnSPDBzikq9E0Gdf_g9pvGIPBa0uTgWkQ7a3WlyG14inVs1Rcp0_wPEfNg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELagvXBBlN_QgoyEBBxCE9ux4xNiq61WSFsQsKK3aBLbZS9J2d1WtCcegWfkSZjJz7YrEFwTR3I8M55vxuNvGHvuFHhhBMSpS1yspDcxoZC4UhIyU4J2mm4jT4_0ZKbeHWfHfcJt2ZdVDntiu1G7pqIc-b5EX0QOyaZvTr_F1DWKTlf7Fho32TZuwTkGX9uj8dGHj1dZlkwSPcvA1piIfXDnxNKNjsto6iF7zRu1pP1_Q5p_FkxeB7KtJzq8w273EJK_7WS-w274-i7b6Y10yV_2TNKv7rHLWV1RiSa6J96m_gJQhpy__36BevPrx89Re13L8dG8Jl5jWPCpRzTOKeeLuJA3gU-oXqbB4fNLHDgduunyA8r7XCxXHFEv_4KIdcHHXUudluTkPpsdjj8fTOK-2QKKhSqd8iqTpcqCVTIog7AxVKFyGgQkwlY-BykoPVLlXhsKZK3yNgkqSABnMgD5gG3VTe0fMY4uLoBNFRgnFEBVhsQbGVJbQmIgExF7MSx6cdpxahQde7IoSDzFWjwRG5FM1qOIC7t90CxOit60CrrhohNvc5yxgpCCTTTIUuYOtLEij9jeINGiN9BlcaVOEXu2fo2mReclUPvmDMdg9JthQKWTiD3sFGA9EwxLM6s0fp1vqMbGVDff1POvLX13KlKiLcRleN1q0X_WoEB88omI-uzjf__ILrslqDlxmyLaY1urxZl_gohpVT7tzeI3MY4YMw priority: 102 providerName: ProQuest |
Title | Uncovering Interfacial Oxygen‐Bridged Binuclear Metal Centers of Heterogenized Molecular Catalyst for Water Electrolysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202417607 https://www.ncbi.nlm.nih.gov/pubmed/40159461 https://www.proquest.com/docview/3218002191 https://www.proquest.com/docview/3184567560 https://pubmed.ncbi.nlm.nih.gov/PMC12165092 https://doaj.org/article/624260e98fcf4af1a906a3b38da67928 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVQe-GCKJ8LZWUkJOAQNbEdOz52y1YrxJaKsqK3aJLYsJcE7W4R7YmfwG_klzDjZNNGICFOKyXOyvJ4Mm9ePG8Ye1EpcMIIiJIqriIlnYkIhUSlkpCaAnSlqRp5fqJnC_X2PD2_UcXf6kP0hBt5Rnhfk4NDsT64Fg2F6hvJbWMEMprKyXepvpbU84U6vWZZUknyLNRhDrPrSGZKbZUbY3Ew_ItBZAoC_n9DnX8enrwJakNUOr7L7nRwkh-29t9jt1x9j-11DrvmrzpV6df32dWiLum4JoYqHmhAD8SW8_ffL3EP_frxcxJKtyo-WdakcQwrPneIzDnxv4gReeP5jM7ONDh8eYUD59vOuvyIOKDL9YYjAuafEL2u-LRtrxMETx6wxfH049Es6hovoIno1FNWprJQqbdKemUQQvrSl5UGAbGwpctACqJKysxpQ0mtVc7GXnkJUJkUQD5kO3VTu8eMY7jzYBMFphIKoCx87Iz0iS0gNpCKEXu5XfT8a6uvkbdKyiIn8-S9eUZsQjbpR5EudrjQrD7nnZvlVO2iY2cznLECn4CNNchCZhVoY0U2Yvtbi-ads65ziTCHsI5NRux5fxvdjL6dQO2aCxyDmXCKyZWOR-xRuwH6mWCKmlql8elssDUGUx3eqZdfgpR3IhKSMMRlaPf6P9YgR6xyRqJ99sn_PvCU3RbUujgQSPtsZ7O6cM8QT22KcXCZMds9fDN_d4a_k-nJ6YdxYCd-A9rBH8s |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NctMwENaU9AAXhvIbKCBmYICDqS3JlnVgGFLSSWkTGGimvZm1LUEudklSID3xCDwJD8WTsOuftB0YOPVqy7asXWm_Xa2-ZexhrsAKLcALcj_3lLTaIxTiZUpCqFOI8ohOIw9H0WCsXh-EByvsZ3sWhtIq2zWxWqjzMqMY-YZEW0QGyQQvDj97VDWKdlfbEhq1WuzYxVd02WbPt1-hfB8JsdXf2xx4TVUB_D6l9MRZKFMVOqOkUxrxkctclkcgwBcmszFIQXGALLaRJo_NKGt8p5wEyHUIIPG9F9iqkujKdNhqrz96--4kqhNKooNp2SF9sQH5F2IFR0OpI6pZe8r6VUUC_oZs_0zQPA2cK8u3dYVdbiArf1nr2BpbscVVttYsCjP-pGGufnqNHY-LjFJC0RzyKtTogCLy_M23Berpr-8_etXxsJz3JgXxKMOUDy2if04xZsShvHR8QPk5JTafHGPDYVu9l29SnGkxm3NE2XwfEfKU9-sSPhWpynU2Phcx3GCdoizsLcbRpDowgQKdCwWQpc63WrrApOBrCEWXPW4HPTmsOTySmq1ZJCSeZCmeLuuRTJatiHu7ulBOPybNVE7oRE3kWxNjjxW4AIwfgUxlnEOkjYi7bL2VaNIsCLPkRH277MHyNk5l2p-BwpZH2Aa97RAduMjvspu1Aix7gm5waFSET8dnVONMV8_eKSafKrrwQAREk4jD8KzSov-MQYJ46D0RA5rb__6R--ziYG-4m-xuj3busEuCCiNX4al11plPj-xdRGvz9F4zRTj7cN6z8jfSwVSm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVEJcEOU3UGCRQMAhxN5de70HhEibqKUkVEDU3szY3oVc7JKkQHriEXgeHocnYcY_aSMQnHq119Z6Z2bnm_HsN4w9zBRYoQV0_MzLOkpa3SEU0kmVhEAnEGYhnUYejsKdsXp1GByusZ_NWRgqq2z2xHKjzoqUcuRdib6IHJLxu64ui9jfHrw4-tyhDlL0p7Vpp1GpyJ5dfMXwbfZ8dxtl_UiIQf_91k6n7jCAc6HynigNZKICZ5R0SiNWcqlLsxAEeMKkNgIpKCeQRjbUFL0ZZY3nlJMAmQ4AJL73AlvXGBV5Lbbe64_2355meAJJ1DANU6QnupB9IYZwdJo6pP61Zzxh2TDgbyj3z2LNsyC69IKDK-xyDV_5y0rfNtiaza-yjXqDmPEnNYv102vsZJynVB6KrpGXaUcHlJ3nb74tUGd_ff_RK4-KZbw3yYlTGaZ8aDES4JRvRkzKC8d3qFanwOGTExw4bDr58i3KOS1mc46Imx8gWp7yftXOpyRYuc7G5yKGG6yVF7m9xTi6VwfGV6AzoQDSxHlWS-ebBDwNgWizx82ix0cVn0dcMTeLmMQTL8XTZj2SyXIU8XCXF4rpx7g265hO14SeNRHOWIHzwXghyERGGYTaiKjNNhuJxvXmMItPVbnNHixvo1nTvxrIbXGMYzDyDjCYC702u1kpwHImGBIHRoX4dLSiGitTXb2TTz6V1OG-8IkyEZfhWalF_1mDGLHROyIJNLf__SH32UW0xvj17mjvDrskqEdymanaZK359NjeReA2T-7VFsLZh_M2yt-Okljb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+Interfacial+Oxygen%E2%80%90Bridged+Binuclear+Metal+Centers+of+Heterogenized+Molecular+Catalyst+for+Water+Electrolysis&rft.jtitle=Advanced+science&rft.au=Yu%2C+Zhou&rft.au=Li%2C+Jian%E2%80%90Ping&rft.au=Xu%2C+Xian%E2%80%90Kun&rft.au=Ding%2C+Zhong%E2%80%90Chen&rft.date=2025-06-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=12&rft.issue=22&rft_id=info:doi/10.1002%2Fadvs.202417607&rft_id=info%3Apmid%2F40159461&rft.externalDocID=PMC12165092 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |