Depth of delayed cooling alters neuroprotection pattern after hypoxia-ischemia

Hypothermia after perinatal hypoxia‐ischemia (HI) is neuroprotective; the precise brain temperature that provides optimal protection is unknown. To assess the pattern of brain injury with 3 different rectal temperatures, we randomized 42 newborn piglets: (Group i) sham‐normothermia (38.5–39°C); (Gro...

Full description

Saved in:
Bibliographic Details
Published inAnnals of neurology Vol. 58; no. 1; pp. 75 - 87
Main Authors Iwata, Osuke, Thornton, John S., Sellwood, Mark W., Iwata, Sachiko, Sakata, Yasuko, Noone, Martina A., O'Brien, Frances E., Bainbridge, Alan, De Vita, Enrico, Raivich, Gennadij, Peebles, Donald, Scaravilli, Francesco, Cady, Ernest B., Ordidge, Roger, Wyatt, John S., Robertson, Nicola J.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2005
Willey-Liss
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hypothermia after perinatal hypoxia‐ischemia (HI) is neuroprotective; the precise brain temperature that provides optimal protection is unknown. To assess the pattern of brain injury with 3 different rectal temperatures, we randomized 42 newborn piglets: (Group i) sham‐normothermia (38.5–39°C); (Group ii) sham‐33°C; (Group iii) HI‐normothermia; (Group iv) HI‐35°C; and (Group v) HI‐33°C. Groups iii through v were subjected to transient HI insult. Groups ii, iv, and v were cooled to their target rectal temperatures between 2 and 26 hours after resuscitation. Experiments were terminated at 48 hours. Compared with normothermia, hypothermia at 35°C led to 25 and 39% increases in neuronal viability in cortical gray matter (GM) and deep GM, respectively (both p < 0.05); hypothermia at 33°C resulted in a 55% increase in neuronal viability in cortical GM (p < 0.01) but no significant increase in neuronal viability in deep GM. Comparing hypothermia at 35 and 33°C, 35°C resulted in more viable neurons in deep GM, whereas 33°C resulted in more viable neurons in cortical GM (both p < 0.05). These results suggest that optimal neuroprotection by delayed hypothermia may occur at different temperatures in the cortical and deep GM. To obtain maximum benefit, you may need to design patient‐specific hypothermia protocols by combining systemic and selective cooling. Ann Neurol 2005;58:75–87
AbstractList Hypothermia after perinatal hypoxia-ischemia (HI) is neuroprotective; the precise brain temperature that provides optimal protection is unknown. To assess the pattern of brain injury with 3 different rectal temperatures, we randomized 42 newborn piglets: (Group i) sham-normothermia (38.5-39 degrees C); (Group ii) sham-33 degrees C; (Group iii) HI-normothermia; (Group iv) HI-35 degrees C; and (Group v) HI-33 degrees C. Groups iii through v were subjected to transient HI insult. Groups ii, iv, and v were cooled to their target rectal temperatures between 2 and 26 hours after resuscitation. Experiments were terminated at 48 hours. Compared with normothermia, hypothermia at 35 degrees C led to 25 and 39% increases in neuronal viability in cortical gray matter (GM) and deep GM, respectively (both p &lt; 0.05); hypothermia at 33 degrees C resulted in a 55% increase in neuronal viability in cortical GM (p &lt; 0.01) but no significant increase in neuronal viability in deep GM. Comparing hypothermia at 35 and 33 degrees C, 35 degrees C resulted in more viable neurons in deep GM, whereas 33 degrees C resulted in more viable neurons in cortical GM (both p &lt; 0.05). These results suggest that optimal neuroprotection by delayed hypothermia may occur at different temperatures in the cortical and deep GM. To obtain maximum benefit, you may need to design patient-specific hypothermia protocols by combining systemic and selective cooling.
Hypothermia after perinatal hypoxia-ischemia (HI) is neuroprotective; the precise brain temperature that provides optimal protection is unknown. To assess the pattern of brain injury with 3 different rectal temperatures, we randomized 42 newborn piglets: (Group i) sham-normothermia (38.5-39 degrees C); (Group ii) sham-33 degrees C; (Group iii) HI-normothermia; (Group iv) HI-35 degrees C; and (Group v) HI-33 degrees C. Groups iii through v were subjected to transient HI insult. Groups ii, iv, and v were cooled to their target rectal temperatures between 2 and 26 hours after resuscitation. Experiments were terminated at 48 hours. Compared with normothermia, hypothermia at 35 degrees C led to 25 and 39% increases in neuronal viability in cortical gray matter (GM) and deep GM, respectively (both p < 0.05); hypothermia at 33 degrees C resulted in a 55% increase in neuronal viability in cortical GM (p < 0.01) but no significant increase in neuronal viability in deep GM. Comparing hypothermia at 35 and 33 degrees C, 35 degrees C resulted in more viable neurons in deep GM, whereas 33 degrees C resulted in more viable neurons in cortical GM (both p < 0.05). These results suggest that optimal neuroprotection by delayed hypothermia may occur at different temperatures in the cortical and deep GM. To obtain maximum benefit, you may need to design patient-specific hypothermia protocols by combining systemic and selective cooling.
Hypothermia after perinatal hypoxia-ischemia (HI) is neuroprotective; the precise brain temperature that provides optimal protection is unknown. To assess the pattern of brain injury with 3 different rectal temperatures, we randomized 42 newborn piglets: (Group i) sham-normothermia (38.5-39 degree C); (Group ii) sham- 33 degree C; (Group iii) HI-normothermia; (Group iv) HI-35 degree C; and (Group v) HI-33 degree C. Groups iii through v were subjected to transient HI insult. Groups ii, iv, and v were cooled to their target rectal temperatures between 2 and 26 hours after resuscitation. Experiments were terminated at 48 hours. Compared with normothermia, hypothermia at 35 degree C led to 25 and 39% increases in neuronal viability in cortical gray matter (GM) and deep GM, respectively (both p < 0.05); hypothermia at 33 degree C resulted in a 55% increase in neuronal viability in cortical GM (p < 0.01) but no significant increase in neuronal viability in deep GM. Comparing hypothermia at 35 and 33 degree C, 35 degree C resulted in more viable neurons in deep GM, whereas 33 degree C resulted in more viable neurons in cortical GM (both p < 0.05). These results suggest that optimal neuroprotection by delayed hypothermia may occur at different temperatures in the cortical and deep GM. To obtain maximum benefit, you may need to design patient-specific hypothermia protocols by combining systemic and selective cooling. Ann Neurol 2005; 58:75-87
Hypothermia after perinatal hypoxia‐ischemia (HI) is neuroprotective; the precise brain temperature that provides optimal protection is unknown. To assess the pattern of brain injury with 3 different rectal temperatures, we randomized 42 newborn piglets: (Group i) sham‐normothermia (38.5–39°C); (Group ii) sham‐33°C; (Group iii) HI‐normothermia; (Group iv) HI‐35°C; and (Group v) HI‐33°C. Groups iii through v were subjected to transient HI insult. Groups ii, iv, and v were cooled to their target rectal temperatures between 2 and 26 hours after resuscitation. Experiments were terminated at 48 hours. Compared with normothermia, hypothermia at 35°C led to 25 and 39% increases in neuronal viability in cortical gray matter (GM) and deep GM, respectively (both p < 0.05); hypothermia at 33°C resulted in a 55% increase in neuronal viability in cortical GM (p < 0.01) but no significant increase in neuronal viability in deep GM. Comparing hypothermia at 35 and 33°C, 35°C resulted in more viable neurons in deep GM, whereas 33°C resulted in more viable neurons in cortical GM (both p < 0.05). These results suggest that optimal neuroprotection by delayed hypothermia may occur at different temperatures in the cortical and deep GM. To obtain maximum benefit, you may need to design patient‐specific hypothermia protocols by combining systemic and selective cooling. Ann Neurol 2005;58:75–87
Abstract Hypothermia after perinatal hypoxia‐ischemia (HI) is neuroprotective; the precise brain temperature that provides optimal protection is unknown. To assess the pattern of brain injury with 3 different rectal temperatures, we randomized 42 newborn piglets: (Group i) sham‐normothermia (38.5–39°C); (Group ii) sham‐33°C; (Group iii) HI‐normothermia; (Group iv) HI‐35°C; and (Group v) HI‐33°C. Groups iii through v were subjected to transient HI insult. Groups ii, iv, and v were cooled to their target rectal temperatures between 2 and 26 hours after resuscitation. Experiments were terminated at 48 hours. Compared with normothermia, hypothermia at 35°C led to 25 and 39% increases in neuronal viability in cortical gray matter (GM) and deep GM, respectively (both p < 0.05); hypothermia at 33°C resulted in a 55% increase in neuronal viability in cortical GM ( p < 0.01) but no significant increase in neuronal viability in deep GM. Comparing hypothermia at 35 and 33°C, 35°C resulted in more viable neurons in deep GM, whereas 33°C resulted in more viable neurons in cortical GM (both p < 0.05). These results suggest that optimal neuroprotection by delayed hypothermia may occur at different temperatures in the cortical and deep GM. To obtain maximum benefit, you may need to design patient‐specific hypothermia protocols by combining systemic and selective cooling. Ann Neurol 2005;58:75–87
Author Sakata, Yasuko
Cady, Ernest B.
Iwata, Sachiko
Bainbridge, Alan
Noone, Martina A.
Sellwood, Mark W.
De Vita, Enrico
Iwata, Osuke
Wyatt, John S.
Raivich, Gennadij
Thornton, John S.
O'Brien, Frances E.
Scaravilli, Francesco
Peebles, Donald
Ordidge, Roger
Robertson, Nicola J.
Author_xml – sequence: 1
  givenname: Osuke
  surname: Iwata
  fullname: Iwata, Osuke
  email: oiwata@medphys.ucl.ac.uk
  organization: Department of Paediatrics and Child Health, Royal Free and University College Medical School, The Rayne Institute, London, United Kingdom
– sequence: 2
  givenname: John S.
  surname: Thornton
  fullname: Thornton, John S.
  organization: Department of Medical Physics and Bioengineering, University College London, London, United Kingdom
– sequence: 3
  givenname: Mark W.
  surname: Sellwood
  fullname: Sellwood, Mark W.
  organization: Department of Paediatrics and Child Health, Royal Free and University College Medical School, The Rayne Institute, London, United Kingdom
– sequence: 4
  givenname: Sachiko
  surname: Iwata
  fullname: Iwata, Sachiko
  organization: Department of Paediatrics and Child Health, Royal Free and University College Medical School, The Rayne Institute, London, United Kingdom
– sequence: 5
  givenname: Yasuko
  surname: Sakata
  fullname: Sakata, Yasuko
  organization: Department of Paediatrics and Child Health, Royal Free and University College Medical School, The Rayne Institute, London, United Kingdom
– sequence: 6
  givenname: Martina A.
  surname: Noone
  fullname: Noone, Martina A.
  organization: Department of Paediatrics and Child Health, Royal Free and University College Medical School, The Rayne Institute, London, United Kingdom
– sequence: 7
  givenname: Frances E.
  surname: O'Brien
  fullname: O'Brien, Frances E.
  organization: Department of Paediatrics and Child Health, Royal Free and University College Medical School, The Rayne Institute, London, United Kingdom
– sequence: 8
  givenname: Alan
  surname: Bainbridge
  fullname: Bainbridge, Alan
  organization: Department of Medical Physics and Bioengineering, University College London, London, United Kingdom
– sequence: 9
  givenname: Enrico
  surname: De Vita
  fullname: De Vita, Enrico
  organization: Department of Medical Physics and Bioengineering, University College London, London, United Kingdom
– sequence: 10
  givenname: Gennadij
  surname: Raivich
  fullname: Raivich, Gennadij
  organization: Perinatal Brain Research Group, Department of Obstetrics and Gynaecology, Royal Free and University College Medical School, London, United Kingdom
– sequence: 11
  givenname: Donald
  surname: Peebles
  fullname: Peebles, Donald
  organization: Perinatal Brain Research Group, Department of Obstetrics and Gynaecology, Royal Free and University College Medical School, London, United Kingdom
– sequence: 12
  givenname: Francesco
  surname: Scaravilli
  fullname: Scaravilli, Francesco
  organization: Division of Neuropathology, Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
– sequence: 13
  givenname: Ernest B.
  surname: Cady
  fullname: Cady, Ernest B.
  organization: Department of Medical Physics and Bioengineering, University College London, London, United Kingdom
– sequence: 14
  givenname: Roger
  surname: Ordidge
  fullname: Ordidge, Roger
  organization: Department of Medical Physics and Bioengineering, University College London, London, United Kingdom
– sequence: 15
  givenname: John S.
  surname: Wyatt
  fullname: Wyatt, John S.
  organization: Department of Paediatrics and Child Health, Royal Free and University College Medical School, The Rayne Institute, London, United Kingdom
– sequence: 16
  givenname: Nicola J.
  surname: Robertson
  fullname: Robertson, Nicola J.
  organization: Department of Paediatrics and Child Health, Royal Free and University College Medical School, The Rayne Institute, London, United Kingdom
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17017353$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15984028$$D View this record in MEDLINE/PubMed
BookMark eNqF0E1PFDEYB_DGYGBBDn4BMxdJPAz0vZ3jBhQ1sHpAPDbd7lO2ONsO7Wxkv73VXeRkPD1J83te-j9EezFFQOg1wacEY3pmoz2lWFD9Ak2IYKTVlHd7aIKZ5K0gjB-gw1LuMcadJHgfHRDRaY6pnqDZBQzjskm-WUBvN7BoXEp9iHeN7UfIpYmwzmnIaQQ3hhSbwY71PTbW19IsN0N6DLYNxS1hFewr9NLbvsDxrh6hbx_e35x_bK--XH46n161jmutW7sgUnhPPfMdCA1MY6cctdhR5Rx1c8HV3HunOTgise-k0phz5ryaE84lO0In27n1soc1lNGs6gnQ9zZCWhcjVddJTvR_IVGMSypphe-20OVUSgZvhhxWNm8MweZ3yqambP6kXO2b3dD1fAWLZ7mLtYK3O2CLs73PNrpQnp3Cda9g1Z1t3c_Qw-bfG810Nn1a3W47Qhnh8W-HzT_qn5kS5vvs0nzGN-yaXd-ar-wX7zGklA
CODEN ANNED3
CitedBy_id crossref_primary_10_1542_peds_2007_3766
crossref_primary_10_1093_brain_awn150
crossref_primary_10_1093_brain_awp010
crossref_primary_10_1038_jp_2010_91
crossref_primary_10_1016_j_arcped_2007_11_002
crossref_primary_10_1177_147323000603400107
crossref_primary_10_1115_1_4002196
crossref_primary_10_1016_j_braindev_2010_11_008
crossref_primary_10_1542_peds_2005_1649
crossref_primary_10_1542_neo_11_2_e85
crossref_primary_10_1002_nbm_2879
crossref_primary_10_1016_j_clp_2024_04_014
crossref_primary_10_1038_pr_2012_8
crossref_primary_10_1016_j_braindev_2011_06_008
crossref_primary_10_1002_ana_20957
crossref_primary_10_1016_j_brainres_2007_03_083
crossref_primary_10_1038_pr_2017_94
crossref_primary_10_1002_ana_20978
crossref_primary_10_1146_annurev_bioeng_061008_124908
crossref_primary_10_1016_j_nurx_2006_01_007
crossref_primary_10_1016_j_earlhumdev_2010_05_013
crossref_primary_10_1007_s00421_007_0452_5
crossref_primary_10_1016_j_pcl_2009_03_007
crossref_primary_10_1203_PDR_0b013e3181ef3007
crossref_primary_10_2199_jjsca_32_027
crossref_primary_10_1016_j_earlhumdev_2007_09_015
crossref_primary_10_1016_j_clp_2012_09_008
crossref_primary_10_1542_peds_2006_2839
crossref_primary_10_3390_ijms22115481
crossref_primary_10_1097_GRF_0b013e31811ebe68
crossref_primary_10_1016_j_resuscitation_2011_07_023
crossref_primary_10_1038_pr_2015_31
crossref_primary_10_1016_j_neuropharm_2013_03_027
crossref_primary_10_1016_S0929_693X_10_70904_0
crossref_primary_10_1186_s13063_016_1480_4
crossref_primary_10_1038_s41390_021_01502_w
crossref_primary_10_1089_neu_2008_0678
crossref_primary_10_1016_j_clp_2016_04_007
crossref_primary_10_1007_s11940_007_0043_0
crossref_primary_10_1089_ther_2018_0019
crossref_primary_10_1007_s12975_012_0215_4
crossref_primary_10_1113_jphysiol_2006_119602
crossref_primary_10_1093_braincomms_fcaa211
crossref_primary_10_3918_jsicm_17_9
crossref_primary_10_1016_j_clp_2008_07_016
Cites_doi 10.1542/peds.110.2.377
10.1038/sj.cdd.4400353
10.1097/00004647-199601000-00012
10.1097/00000542-199802000-00019
10.1016/0304-3940(94)90574-6
10.1111/j.1365-2990.1997.tb01181.x
10.1006/nbdi.2000.0371
10.1111/j.1469-8749.2003.tb00854.x
10.1542/peds.102.5.1098
10.1016/j.pediatrneurol.2004.06.015
10.1203/00006450-199910000-00005
10.1046/j.1442-200X.2003.01784.x
10.1203/00006450-200106000-00003
10.1203/00006450-200409000-00259
10.1203/01.PDR.0000072783.22373.FF
10.1093/bja/88.2.188
10.1136/fn.74.1.F3
10.1111/j.1471-4159.1993.tb13639.x
10.1038/jcbfm.1990.8
10.1542/peds.85.6.961
10.1056/NEJM199702203360803
10.1006/nbdi.1995.0016
10.1203/00006450-200104000-00010
10.1203/00006450-199505000-00019
10.1111/j.1750-3639.1992.tb00694.x
10.1016/S0006-8993(97)00713-0
10.1016/S0034-5687(01)00306-1
10.1016/S0140-6736(05)17946-X
10.1006/bbrc.1995.2895
10.1203/00006450-199706000-00002
10.1016/S0003-4975(99)00441-5
10.1097/01.WCB.0000066287.21705.21
10.1203/00006450-199412000-00003
10.1016/S0736-5748(02)00012-6
10.1016/0006-8993(94)90488-X
10.1203/00006450-200203000-00015
10.1016/0304-3940(91)90606-T
10.1097/01.CCM.0000069731.18472.61
10.1542/peds.108.5.1103
10.1097/00008480-199810060-00006
10.1111/j.1750-3639.2000.tb00243.x
10.1016/S0022-5223(19)34578-7
10.1097/00001756-199710200-00033
10.1016/S0140-6736(86)90718-X
10.1056/NEJM200102223440803
10.1097/00008506-199504000-00021
10.1203/00006450-199611000-00015
10.1097/00000542-200405000-00018
10.1542/peds.106.1.92
10.1523/JNEUROSCI.20-21-07994.2000
10.1161/01.STR.21.11.1600
10.1152/ajpheart.01112.2002
10.1016/j.pediatrneurol.2004.06.014
10.1016/0090-3019(95)80049-M
10.1203/00006450-199909000-00005
10.1097/00000539-199906000-00013
10.1542/peds.111.2.244
10.1161/01.STR.20.7.904
10.1016/S0095-5108(02)00057-X
10.1001/archneur.61.8.1254
10.1203/00006450-199707000-00004
10.1172/JCI119153
10.1002/ana.10402
10.1046/j.1442-200X.2003.01682.x
10.1007/BF00313599
10.1203/00006450-198905000-00004
10.1523/JNEUROSCI.15-11-07250.1995
10.1007/BF01000440
10.1016/S0730-725X(97)00017-9
10.1203/00006450-199704000-00009
ContentType Journal Article
Copyright Copyright © 2005 American Neurological Association
2005 INIST-CNRS
Copyright_xml – notice: Copyright © 2005 American Neurological Association
– notice: 2005 INIST-CNRS
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
DOI 10.1002/ana.20528
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Neurosciences Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8249
EndPage 87
ExternalDocumentID 10_1002_ana_20528
15984028
17017353
ANA20528
ark_67375_WNG_J0T3M3MV_P
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: Daiwa Anglo‐Japanese Foundation
– fundername: EPSRC
– fundername: Sir Stewart Halley Trust
– fundername: Medical Research Council
– fundername: SPARKS
  funderid: 03UCL01
– fundername: Kanzawa Medical Research Foundation
– fundername: Action Medical Research
  funderid: S/L3097
– fundername: University College London Hospitals NHS Trust
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OB
1OC
1ZS
23M
2QL
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEJM
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AAQQT
AASGY
AAVGM
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBMB
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRZS
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AEUQT
AEUYR
AFAZI
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AI.
AIACR
AIAGR
AIURR
AIWBW
AJBDE
AJJEV
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
F8P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
GOZPB
GRPMH
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LXL
LXN
LXY
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OHT
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.-
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
SAMSI
SJN
SUPJJ
TEORI
UB1
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XJT
XPP
XSW
XV2
YOC
YQJ
ZA5
ZGI
ZRF
ZRR
ZXP
ZZTAW
~IA
~WT
~X8
AITYG
HGLYW
OIG
08R
AAPBV
AAUGY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
ID FETCH-LOGICAL-c4888-ad165ff2f3f9e58e380c7c2a0c27cc2cb547bffc84ec160f96780443cf7b14463
IEDL.DBID DR2
ISSN 0364-5134
IngestDate Fri Aug 16 04:07:16 EDT 2024
Fri Aug 16 21:40:04 EDT 2024
Fri Aug 23 02:58:54 EDT 2024
Sat Sep 28 07:43:58 EDT 2024
Sun Oct 22 16:09:33 EDT 2023
Sat Aug 24 00:59:39 EDT 2024
Wed Jan 17 05:00:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Oxygen
Nervous system diseases
Cooling
Ischemia
Cardiovascular disease
Hypoxia
Depth
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4888-ad165ff2f3f9e58e380c7c2a0c27cc2cb547bffc84ec160f96780443cf7b14463
Notes Kanzawa Medical Research Foundation
Action Medical Research - No. S/L3097
ArticleID:ANA20528
Daiwa Anglo-Japanese Foundation
Medical Research Council
University College London Hospitals NHS Trust
EPSRC
SPARKS - No. 03UCL01
Sir Stewart Halley Trust
istex:5247EF887E42F22733254967FFE65DE00B255045
ark:/67375/WNG-J0T3M3MV-P
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 15984028
PQID 17346262
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_67996418
proquest_miscellaneous_17346262
crossref_primary_10_1002_ana_20528
pubmed_primary_15984028
pascalfrancis_primary_17017353
wiley_primary_10_1002_ana_20528_ANA20528
istex_primary_ark_67375_WNG_J0T3M3MV_P
PublicationCentury 2000
PublicationDate July 2005
PublicationDateYYYYMMDD 2005-07-01
PublicationDate_xml – month: 07
  year: 2005
  text: July 2005
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Annals of neurology
PublicationTitleAlternate Ann Neurol
PublicationYear 2005
Publisher Wiley Subscription Services, Inc., A Wiley Company
Willey-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Willey-Liss
References Amess PN, Penrice J, Cady EB, et al. Mild hypothermia after severe transient hypoxia-ischemia reduces the delayed rise in cerebral lactate in the newborn piglet. Pediatr Res 1997; 41: 803-808.
Leonov Y, Sterz F, Safar P, et al. Moderate hypothermia after cardiac arrest of 17 minutes in dogs. Effect on cerebral and cardiac outcome. Stroke 1990; 21: 1600-1606.
Shanmugalingam S, Thrnton JS, Iwata O, et al. Non-invasive cerebral temperature mapping by proton spectroscopic imaging. Pediatr Res 2004; 56: 504 (Abstract).
Gluckman PD, Wyatt JS, Azzopardi D, et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 2005; 365: 663-670.
Debillon T, Daoud P, Durand P, et al. Whole-body cooling after perinatal asphyxia: a pilot study in term neonates. Dev Med Child Neurol 2003; 45: 17-23.
Bacher A, Kwon JY, Zornow MH. Effects of temperature on cerebral tissue oxygen tension, carbon dioxide tension, and pH during transient global ischemia in rabbits. Anesthesiology 1998; 88: 403-409.
Iwata O, Iwata S, Tamura M, et al. Early head cooling in newborn piglets is neuroprotective even in the absence of profound systemic hypothermia. Pediatr Int 2003; 45: 522-529.
Haaland K, Loberg EM, Steen PA, et al. Posthypoxic hypothermia in newborn piglets. Pediatr Res 1997; 41: 505-512.
Johnston MV, Trescher WH, Ishida A, et al. Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res 2001; 49: 735-741.
Martin E, Buchli R, Ritter S, et al. Diagnostic and prognostic value of cerebral 31P magnetic resonance spectroscopy in neonates with perinatal asphyxia. Pediatr Res 1996; 40: 749-758.
Jensen FE. The role of glutamate receptor maturation in perinatal seizures and brain injury. Int J Dev Neurosci 2002; 20: 339-347.
Eger EI 2nd. The pharmacology of isoflurane. Br J Anaesth 1984; 56( suppl 1): 71-99.
Agnew DM, Koehler RC, Guerguerian AM, et al. Hypothermia for 24 hours after asphyxic cardiac arrest in piglets provides striatal neuroprotection that is sustained 10 days after rewarming. Pediatr Res 2003; 54: 253-262.
Colbourne F, Corbett D. Delayed postischemic hypothermia: a six month survival study using behavioral and histological assessments of neuroprotection. J Neurosci 1995; 15: 7250-7260.
Marion DW, Penrod LE, Kelsey SF, et al. Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med 1997; 336: 540-546.
Leonov Y, Sterz F, Safar P, et al. Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs. J Cereb Blood Flow Metab 1990; 10: 57-70.
Lorek A, Takei Y, Cady EB, et al. Delayed ("secondary") cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res 1994; 36: 699-706.
Yue X, Mehmet H, Penrice J, et al. Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia. Neuropathol Appl Neurobiol 1997; 23: 16-25.
Laptook AR, Corbett RJ, Burns DK, et al. A limited interval of delayed modest hypothermia for ischemic brain resuscitation is not beneficial in neonatal swine. Pediatr Res 1999; 46: 383-389.
Northington FJ, Ferriero DM, Graham EM, et al. Early neurodegeneration after hypoxia-ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis. Neurobiol Dis 2001; 8: 207-219.
Levene MI, Sands C, Grindulis H, et al. Comparison of two methods of predicting outcome in perinatal asphyxia. Lancet 1986; 1: 67-69.
Erecinska M, Silver IA. Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol 2001; 128: 263-276.
Tooley JR, Satas S, Porter H, et al. Head cooling with mild systemic hypothermia in anesthetized piglets is neuroprotective. Ann Neurol 2003; 53: 65-72.
Frank SM, Higgins MS, Fleisher LA, et al. Adrenergic, respiratory, and cardiovascular effects of core cooling in humans. Am J Physiol 1997; 272: R557-R562.
Cervos-Navarro J, Diemer NH. Selective vulnerability in brain hypoxia. Crit Rev Neurobiol 1991; 6: 149-182.
Schubert A. Side effects of mild hypothermia. J Neurosurg Anesthesiol 1995; 7: 139-147.
Cook DJ. Changing temperature management for cardiopulmonary bypass. Anesth Analg 1999; 88: 1254-1271.
Rorke LB. Anatomical features of the developing brain implicated in pathogenesis of hypoxic-ischemic injury. Brain Pathol 1992; 2: 211-221.
Erecinska M, Thoresen M, Silver IA. Effects of hypothermia on energy metabolism in mammalian central nervous system. J Cereb Blood Flow Metab 2003; 23: 513-530.
Battin MR, Penrice J, Gunn TR, et al. Treatment of term infants with head cooling and mild systemic hypothermia (35.0 degrees C and 34.5 degrees C) after perinatal asphyxia. Pediatrics 2003; 111: 244-251.
Laptook AR, Shalak L, Corbett RJ. Differences in brain temperature and cerebral blood flow during selective head versus whole-body cooling. Pediatrics 2001; 108: 1103-1110.
Takahashi T, Shirane R, Sato S, et al. Developmental changes of cerebral blood flow and oxygen metabolism in children. AJNR Am J Neuroradiol 1999; 20: 917-922.
Black SM, Bedolli MA, Martinez S, et al. Expression of neuronal nitric oxide synthase corresponds to regions of selective vulnerability to hypoxia-ischaemia in the developing rat brain. Neurobiol Dis 1995; 2: 145-155.
Nedelcu J, Klein MA, Aguzzi A, et al. Resuscitative hypothermia protects the neonatal rat brain from hypoxic-ischemic injury. Brain Pathol 2000; 10: 61-71.
Busto R, Globus MY, Dietrich WD, et al. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke 1989; 20: 904-910.
Mitani A, Andou Y, Masuda S, et al. Transient forebrain ischemia of three-minute duration consistently induces severe neuronal damage in field CA1 of the hippocampus in the normothermic gerbil. Neurosci Lett 1991; 131: 171-174.
Gunn AJ, Bennet L, Gunning MI, et al. Cerebral hypothermia is not neuroprotective when started after postischemic seizures in fetal sheep. Pediatr Res 1999; 46: 274-280.
Eicher DJ, Wagner CL, Katikaneni LP, et al. Moderate hypothermia in neonatal encephalopathy: safety outcomes. Pediatr Neurol 2005; 32: 18-24.
Gunn AJ, Gunn TR, Gunning MI, et al. Neuroprotection with prolonged head cooling started before postischemic seizures in fetal sheep. Pediatrics 1998; 102: 1098-1106.
Azzopardi D, Wyatt JS, Cady EB, et al. Prognosis of newborn infants with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy. Pediatr Res 1989; 25: 445-451.
Mirsattari SM, Sharpe MD, Young GB, et al. Treatment of refractory status epilepticus with inhalational anesthetic agents isoflurane and desflurane. Arch Neurol 2004; 61: 1254-1259.
Wagner BP, Nedelcu J, Martin E. Delayed postischemic hypothermia improves long-term behavioral outcome after cerebral hypoxia-ischemia in neonatal rats. Pediatr Res 2002; 51: 354-360.
Laptook AR, Corbett RJ. The effects of temperature on hypoxic-ischemic brain injury. Clin Perinatol 2002; 29: 623-649.
Miller M, Kuhn PE. Neonatal transection of the infraorbital nerve increases the expression of proteins related to neuronal death in the principal sensory nucleus of the trigeminal nerve. Brain Res 1997; 769: 233-244.
Thorngren-Jerneck K, Ohlsson T, Sandell A, et al. Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res 2001; 49: 495-501.
Iwata O, Iwata S, Tamura M, et al. Brain temperature in newborn piglets under selective head cooling with minimal systemic hypothermia. Pediatr Int 2003; 45: 163-168.
Carroll M, Beek O. Protection against hippocampal CA1 cell loss by post-ischemic hypothermia is dependent on delay of initiation and duration. Metab Brain Dis 1992; 7: 45-50.
Mellergard P. Intracerebral temperature in neurosurgical patients: intracerebral temperature gradients and relationships to consciousness level. Surg Neurol 1995; 43: 91-95.
Cady EB, Amess P, Penrice J, et al. Early cerebral-metabolite quantification in perinatal hypoxic-ischaemic encephalopathy by proton and phosphorus magnetic resonance spectroscopy. Magn Reson Imaging 1997; 15: 605-611.
Clifton GL, Miller ER, Choi SC, et al. Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med 2001; 344: 556-563.
Thornton JS, Cady EB, Bainbridge A, et al. Cerebral temperature mapping by self-referenced proton spectroscopic imaging thermometry. Magn Reson Med 2004; 22: 2347 (Abstract).
Vannucci RC. Current and potentially new management strategies for perinatal hypoxic-ischemic encephalopathy. Pediatrics 1990; 85: 961-968.
Thoresen M, Satas S, Puka-Sundvall M, et al. Post-hypoxic hypothermia reduces cerebrocortical release of NO and excitotoxins. Neuroreport 1997; 8: 3359-3362.
Gunn AJ, Gunn TR, de Haan HH, et al. Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs. J Clin Invest 1997; 99: 248-256.
Coimbra C, Wieloch T. Moderate hypothermia mitigates neuronal damage in the rat brain when initiated several hours following transient cerebral ischemia. Acta Neuropathol (Berl) 1994; 87: 325-331.
Watanabe T, Orita H, Kobayashi M, et al. Brain tissue pH, oxygen tension, and carbon dioxide tension in profoundly hypothermic cardiopulmonary bypass. Comparative study of circulatory arrest, nonpulsatile low-flow perfusion, and pulsatile low-flow perfusion. J Thorac Cardiovasc Surg 1989; 97: 396-401.
Thoresen M, Whitelaw A. Cardiovascular changes during mild therapeutic hypothermia and rewarming in infants with hypoxic-ischemic encephalopathy. Pediatrics 2000; 106: 92-99.
Gupta AK, Al Rawi PG, Hutchinson PJ, et al. Effect of hypothermia on brain tissue oxygenation in patients with severe head injury. Br J Anaesth 2002; 88: 188-192.
Edwards AD, Yue X, Squier MV, et al. Specific inhibition of apoptosis after cerebral hypoxia-ischaemia by moderate post-insult hypothermia. Biochem Biophys Res Commun 1995; 217: 1193-1199.
Elsersy H, Sheng H, Lynch JR, et al. Effects of isoflurane ve
2004; 22
2001; 344
1990; 10
2004; 61
1994; 654
1993; 61
2002; 110
1995; 37
1997; 272
1997; 42
2002; 51
1997; 41
1999; 46
1995; 217
1996; 74
1999; 88
2001; 49
2001; 108
2003; 53
2003; 111
2003; 54
1998; 88
1997; 8
1990; 85
1992; 7
1986; 1
1997; 99
2001
1994; 181
2000; 10
1997; 15
1984; 56
2002; 88
1994; 36
2005; 32
1998; 10
1992; 2
2003; 285
2003; 45
1991; 131
2004; 100
1997; 336
1989; 20
1995; 15
1997; 23
2000; 20
1999; 67
1999; 20
1995; 2
1996; 16
1989; 25
2003; 31
1994; 87
1991; 6
2001; 128
1995; 7
1990; 21
2002; 29
1989; 97
1997; 769
2002; 20
2005; 365
2000; 106
2004; 56
2001; 8
1995; 43
1996; 40
1998; 5
1998; 102
2003; 23
e_1_2_6_51_2
e_1_2_6_72_2
e_1_2_6_53_2
e_1_2_6_74_2
e_1_2_6_30_2
e_1_2_6_70_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_62_2
e_1_2_6_20_2
e_1_2_6_41_2
Watanabe T (e_1_2_6_49_2) 1989; 97
Takahashi T (e_1_2_6_58_2) 1999; 20
e_1_2_6_60_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_5_2
Cervos‐Navarro J (e_1_2_6_24_2) 1991; 6
e_1_2_6_47_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_52_2
e_1_2_6_75_2
Thornton JS (e_1_2_6_76_2) 2004; 22
e_1_2_6_31_2
e_1_2_6_71_2
e_1_2_6_18_2
Frank SM (e_1_2_6_46_2) 1997; 272
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_77_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_61_2
Vannucci RC (e_1_2_6_3_2) 1990; 85
e_1_2_6_63_2
e_1_2_6_42_2
e_1_2_6_40_2
Eger EI (e_1_2_6_64_2) 1984; 56
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
Volpe JJ (e_1_2_6_22_2) 2001
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_65_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_67_2
e_1_2_6_25_2
References_xml – volume: 100
  start-page: 1160
  year: 2004
  end-page: 1166
  article-title: Effects of isoflurane versus fentanyl‐nitrous oxide anesthesia on long‐term outcome from severe forebrain ischemia in the rat
  publication-title: Anesthesiology
– volume: 15
  start-page: 605
  year: 1997
  end-page: 611
  article-title: Early cerebral‐metabolite quantification in perinatal hypoxic‐ischaemic encephalopathy by proton and phosphorus magnetic resonance spectroscopy
  publication-title: Magn Reson Imaging
– volume: 111
  start-page: 244
  year: 2003
  end-page: 251
  article-title: Treatment of term infants with head cooling and mild systemic hypothermia (35.0 degrees C and 34.5 degrees C) after perinatal asphyxia
  publication-title: Pediatrics
– volume: 15
  start-page: 7250
  year: 1995
  end-page: 7260
  article-title: Delayed postischemic hypothermia: a six month survival study using behavioral and histological assessments of neuroprotection
  publication-title: J Neurosci
– volume: 54
  start-page: 253
  year: 2003
  end-page: 262
  article-title: Hypothermia for 24 hours after asphyxic cardiac arrest in piglets provides striatal neuroprotection that is sustained 10 days after rewarming
  publication-title: Pediatr Res
– volume: 45
  start-page: 522
  year: 2003
  end-page: 529
  article-title: Early head cooling in newborn piglets is neuroprotective even in the absence of profound systemic hypothermia
  publication-title: Pediatr Int
– volume: 49
  start-page: 735
  year: 2001
  end-page: 741
  article-title: Neurobiology of hypoxic‐ischemic injury in the developing brain
  publication-title: Pediatr Res
– volume: 102
  start-page: 1098
  year: 1998
  end-page: 1106
  article-title: Neuroprotection with prolonged head cooling started before postischemic seizures in fetal sheep
  publication-title: Pediatrics
– volume: 49
  start-page: 495
  year: 2001
  end-page: 501
  article-title: Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy
  publication-title: Pediatr Res
– volume: 2
  start-page: 145
  year: 1995
  end-page: 155
  article-title: Expression of neuronal nitric oxide synthase corresponds to regions of selective vulnerability to hypoxia‐ischaemia in the developing rat brain
  publication-title: Neurobiol Dis
– volume: 110
  start-page: 377
  year: 2002
  end-page: 385
  article-title: Whole‐body hypothermia for neonatal encephalopathy: animal observations as a basis for a randomized, controlled pilot study in term infants
  publication-title: Pediatrics
– volume: 41
  start-page: 505
  year: 1997
  end-page: 512
  article-title: Posthypoxic hypothermia in newborn piglets
  publication-title: Pediatr Res
– volume: 10
  start-page: 57
  year: 1990
  end-page: 70
  article-title: Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs
  publication-title: J Cereb Blood Flow Metab
– volume: 87
  start-page: 325
  year: 1994
  end-page: 331
  article-title: Moderate hypothermia mitigates neuronal damage in the rat brain when initiated several hours following transient cerebral ischemia
  publication-title: Acta Neuropathol (Berl)
– volume: 2
  start-page: 211
  year: 1992
  end-page: 221
  article-title: Anatomical features of the developing brain implicated in pathogenesis of hypoxic‐ischemic injury
  publication-title: Brain Pathol
– volume: 8
  start-page: 207
  year: 2001
  end-page: 219
  article-title: Early neurodegeneration after hypoxia‐ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis
  publication-title: Neurobiol Dis
– volume: 46
  start-page: 274
  year: 1999
  end-page: 280
  article-title: Cerebral hypothermia is not neuroprotective when started after postischemic seizures in fetal sheep
  publication-title: Pediatr Res
– volume: 67
  start-page: 1895
  year: 1999
  end-page: 1899
  article-title: Cerebral metabolic suppression during hypothermic circulatory arrest in humans
  publication-title: Ann Thorac Surg
– volume: 7
  start-page: 139
  year: 1995
  end-page: 147
  article-title: Side effects of mild hypothermia
  publication-title: J Neurosurg Anesthesiol
– volume: 16
  start-page: 100
  year: 1996
  end-page: 106
  article-title: Brain temperature alters hydroxyl radical production during cerebral ischemia/reperfusion in rats
  publication-title: J Cereb Blood Flow Metab
– volume: 23
  start-page: 513
  year: 2003
  end-page: 530
  article-title: Effects of hypothermia on energy metabolism in mammalian central nervous system
  publication-title: J Cereb Blood Flow Metab
– volume: 56
  start-page: 504
  year: 2004
  article-title: Non‐invasive cerebral temperature mapping by proton spectroscopic imaging
  publication-title: Pediatr Res
– volume: 5
  start-page: 321
  year: 1998
  end-page: 329
  article-title: Relation of impaired energy metabolism to apoptosis and necrosis following transient cerebral hypoxia‐ischaemia
  publication-title: Cell Death Differ
– volume: 61
  start-page: 1254
  year: 2004
  end-page: 1259
  article-title: Treatment of refractory status epilepticus with inhalational anesthetic agents isoflurane and desflurane
  publication-title: Arch Neurol
– volume: 336
  start-page: 540
  year: 1997
  end-page: 546
  article-title: Treatment of traumatic brain injury with moderate hypothermia
  publication-title: N Engl J Med
– volume: 99
  start-page: 248
  year: 1997
  end-page: 256
  article-title: Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs
  publication-title: J Clin Invest
– volume: 40
  start-page: 749
  year: 1996
  end-page: 758
  article-title: Diagnostic and prognostic value of cerebral 31P magnetic resonance spectroscopy in neonates with perinatal asphyxia
  publication-title: Pediatr Res
– volume: 217
  start-page: 1193
  year: 1995
  end-page: 1199
  article-title: Specific inhibition of apoptosis after cerebral hypoxia‐ischaemia by moderate post‐insult hypothermia
  publication-title: Biochem Biophys Res Commun
– start-page: 296
  year: 2001
  end-page: 330
– volume: 20
  start-page: 904
  year: 1989
  end-page: 910
  article-title: Effect of mild hypothermia on ischemia‐induced release of neurotransmitters and free fatty acids in rat brain
  publication-title: Stroke
– volume: 20
  start-page: 917
  year: 1999
  end-page: 922
  article-title: Developmental changes of cerebral blood flow and oxygen metabolism in children
  publication-title: AJNR Am J Neuroradiol
– volume: 769
  start-page: 233
  year: 1997
  end-page: 244
  article-title: Neonatal transection of the infraorbital nerve increases the expression of proteins related to neuronal death in the principal sensory nucleus of the trigeminal nerve
  publication-title: Brain Res
– volume: 51
  start-page: 354
  year: 2002
  end-page: 360
  article-title: Delayed postischemic hypothermia improves long‐term behavioral outcome after cerebral hypoxia‐ischemia in neonatal rats
  publication-title: Pediatr Res
– volume: 10
  start-page: 575
  year: 1998
  end-page: 580
  article-title: Recent advances in developing neuroprotective strategies for perinatal asphyxia
  publication-title: Curr Opin Pediatr
– volume: 36
  start-page: 699
  year: 1994
  end-page: 706
  article-title: Delayed (“secondary”) cerebral energy failure after acute hypoxia‐ischemia in the newborn piglet: continuous 48‐hour studies by phosphorus magnetic resonance spectroscopy
  publication-title: Pediatr Res
– volume: 131
  start-page: 171
  year: 1991
  end-page: 174
  article-title: Transient forebrain ischemia of three‐minute duration consistently induces severe neuronal damage in field CA1 of the hippocampus in the normothermic gerbil
  publication-title: Neurosci Lett
– volume: 46
  start-page: 383
  year: 1999
  end-page: 389
  article-title: A limited interval of delayed modest hypothermia for ischemic brain resuscitation is not beneficial in neonatal swine
  publication-title: Pediatr Res
– volume: 108
  start-page: 1103
  year: 2001
  end-page: 1110
  article-title: Differences in brain temperature and cerebral blood flow during selective head versus whole‐body cooling
  publication-title: Pediatrics
– volume: 61
  start-page: 1445
  year: 1993
  end-page: 1453
  article-title: Hypothermia, metabolic stress, and NMDA‐mediated excitotoxicity
  publication-title: J Neurochem
– volume: 85
  start-page: 961
  year: 1990
  end-page: 968
  article-title: Current and potentially new management strategies for perinatal hypoxic‐ischemic encephalopathy
  publication-title: Pediatrics
– volume: 37
  start-page: 667
  year: 1995
  end-page: 670
  article-title: Mild hypothermia after severe transient hypoxia‐ischemia ameliorates delayed cerebral energy failure in the newborn piglet
  publication-title: Pediatr Res
– volume: 106
  start-page: 92
  year: 2000
  end-page: 99
  article-title: Cardiovascular changes during mild therapeutic hypothermia and rewarming in infants with hypoxic‐ischemic encephalopathy
  publication-title: Pediatrics
– volume: 1
  start-page: 67
  year: 1986
  end-page: 69
  article-title: Comparison of two methods of predicting outcome in perinatal asphyxia
  publication-title: Lancet
– volume: 181
  start-page: 121
  year: 1994
  end-page: 125
  article-title: Increased apoptosis in the cingulate sulcus of newborn piglets following transient hypoxia‐ischaemia is related to the degree of high energy phosphate depletion during the insult
  publication-title: Neurosci Lett
– volume: 8
  start-page: 3359
  year: 1997
  end-page: 3362
  article-title: Post‐hypoxic hypothermia reduces cerebrocortical release of NO and excitotoxins
  publication-title: Neuroreport
– volume: 365
  start-page: 663
  year: 2005
  end-page: 670
  article-title: Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial
  publication-title: Lancet
– volume: 128
  start-page: 263
  year: 2001
  end-page: 276
  article-title: Tissue oxygen tension and brain sensitivity to hypoxia
  publication-title: Respir Physiol
– volume: 6
  start-page: 149
  year: 1991
  end-page: 182
  article-title: Selective vulnerability in brain hypoxia
  publication-title: Crit Rev Neurobiol
– volume: 32
  start-page: 11
  year: 2005
  end-page: 17
  article-title: Moderate hypothermia in neonatal encephalopathy: efficacy outcomes
  publication-title: Pediatr Neurol
– volume: 43
  start-page: 91
  year: 1995
  end-page: 95
  article-title: Intracerebral temperature in neurosurgical patients: intracerebral temperature gradients and relationships to consciousness level
  publication-title: Surg Neurol
– volume: 654
  start-page: 265
  year: 1994
  end-page: 272
  article-title: Delayed and prolonged post‐ischemic hypothermia is neuroprotective in the gerbil
  publication-title: Brain Res
– volume: 23
  start-page: 16
  year: 1997
  end-page: 25
  article-title: Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia‐ischaemia
  publication-title: Neuropathol Appl Neurobiol
– volume: 20
  start-page: 339
  year: 2002
  end-page: 347
  article-title: The role of glutamate receptor maturation in perinatal seizures and brain injury
  publication-title: Int J Dev Neurosci
– volume: 42
  start-page: 17
  year: 1997
  end-page: 23
  article-title: Modest hypothermia provides partial neuroprotection when used for immediate resuscitation after brain ischemia
  publication-title: Pediatr Res
– volume: 88
  start-page: 188
  year: 2002
  end-page: 192
  article-title: Effect of hypothermia on brain tissue oxygenation in patients with severe head injury
  publication-title: Br J Anaesth
– volume: 56
  start-page: 71
  issue: suppl 1
  year: 1984
  end-page: 99
  article-title: The pharmacology of isoflurane
  publication-title: Br J Anaesth
– volume: 344
  start-page: 556
  year: 2001
  end-page: 563
  article-title: Lack of effect of induction of hypothermia after acute brain injury
  publication-title: N Engl J Med
– volume: 22
  start-page: 2347
  year: 2004
  article-title: Cerebral temperature mapping by self‐referenced proton spectroscopic imaging thermometry
  publication-title: Magn Reson Med
– volume: 272
  start-page: R557
  year: 1997
  end-page: R562
  article-title: Adrenergic, respiratory, and cardiovascular effects of core cooling in humans
  publication-title: Am J Physiol
– volume: 41
  start-page: 803
  year: 1997
  end-page: 808
  article-title: Mild hypothermia after severe transient hypoxia‐ischemia reduces the delayed rise in cerebral lactate in the newborn piglet
  publication-title: Pediatr Res
– volume: 20
  start-page: 7994
  year: 2000
  end-page: 8004
  article-title: Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat
  publication-title: J Neurosci
– volume: 74
  start-page: F3
  year: 1996
  end-page: F9
  article-title: Posthypoxic cooling of neonatal rats provides protection against brain injury
  publication-title: Arch Dis Child Fetal Neonatal Ed
– volume: 88
  start-page: 403
  year: 1998
  end-page: 409
  article-title: Effects of temperature on cerebral tissue oxygen tension, carbon dioxide tension, and pH during transient global ischemia in rabbits
  publication-title: Anesthesiology
– volume: 45
  start-page: 17
  year: 2003
  end-page: 23
  article-title: Whole‐body cooling after perinatal asphyxia: a pilot study in term neonates
  publication-title: Dev Med Child Neurol
– volume: 53
  start-page: 65
  year: 2003
  end-page: 72
  article-title: Head cooling with mild systemic hypothermia in anesthetized piglets is neuroprotective
  publication-title: Ann Neurol
– volume: 285
  start-page: H17
  year: 2003
  end-page: H25
  article-title: Neuroprotection in hypothermia linked to redistribution of oxygen in brain
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 25
  start-page: 445
  year: 1989
  end-page: 451
  article-title: Prognosis of newborn infants with hypoxic‐ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy
  publication-title: Pediatr Res
– volume: 10
  start-page: 61
  year: 2000
  end-page: 71
  article-title: Resuscitative hypothermia protects the neonatal rat brain from hypoxic‐ischemic injury
  publication-title: Brain Pathol
– volume: 7
  start-page: 45
  year: 1992
  end-page: 50
  article-title: Protection against hippocampal CA1 cell loss by post‐ischemic hypothermia is dependent on delay of initiation and duration
  publication-title: Metab Brain Dis
– volume: 88
  start-page: 1254
  year: 1999
  end-page: 1271
  article-title: Changing temperature management for cardiopulmonary bypass
  publication-title: Anesth Analg
– volume: 32
  start-page: 18
  year: 2005
  end-page: 24
  article-title: Moderate hypothermia in neonatal encephalopathy: safety outcomes
  publication-title: Pediatr Neurol
– volume: 29
  start-page: 623
  year: 2002
  end-page: 649
  article-title: The effects of temperature on hypoxic‐ischemic brain injury
  publication-title: Clin Perinatol
– volume: 97
  start-page: 396
  year: 1989
  end-page: 401
  article-title: Brain tissue pH, oxygen tension, and carbon dioxide tension in profoundly hypothermic cardiopulmonary bypass. Comparative study of circulatory arrest, nonpulsatile low‐flow perfusion, and pulsatile low‐flow perfusion
  publication-title: J Thorac Cardiovasc Surg
– volume: 45
  start-page: 163
  year: 2003
  end-page: 168
  article-title: Brain temperature in newborn piglets under selective head cooling with minimal systemic hypothermia
  publication-title: Pediatr Int
– volume: 31
  start-page: 2041
  year: 2003
  end-page: 2051
  article-title: Induced hypothermia in critical care medicine: a review
  publication-title: Crit Care Med
– volume: 21
  start-page: 1600
  year: 1990
  end-page: 1606
  article-title: Moderate hypothermia after cardiac arrest of 17 minutes in dogs. Effect on cerebral and cardiac outcome
  publication-title: Stroke
– ident: e_1_2_6_72_2
  doi: 10.1542/peds.110.2.377
– ident: e_1_2_6_7_2
  doi: 10.1038/sj.cdd.4400353
– ident: e_1_2_6_34_2
  doi: 10.1097/00004647-199601000-00012
– ident: e_1_2_6_48_2
  doi: 10.1097/00000542-199802000-00019
– volume: 272
  start-page: R557
  year: 1997
  ident: e_1_2_6_46_2
  article-title: Adrenergic, respiratory, and cardiovascular effects of core cooling in humans
  publication-title: Am J Physiol
  contributor:
    fullname: Frank SM
– ident: e_1_2_6_27_2
  doi: 10.1016/0304-3940(94)90574-6
– ident: e_1_2_6_21_2
  doi: 10.1111/j.1365-2990.1997.tb01181.x
– ident: e_1_2_6_26_2
  doi: 10.1006/nbdi.2000.0371
– volume: 20
  start-page: 917
  year: 1999
  ident: e_1_2_6_58_2
  article-title: Developmental changes of cerebral blood flow and oxygen metabolism in children
  publication-title: AJNR Am J Neuroradiol
  contributor:
    fullname: Takahashi T
– ident: e_1_2_6_71_2
  doi: 10.1111/j.1469-8749.2003.tb00854.x
– ident: e_1_2_6_14_2
  doi: 10.1542/peds.102.5.1098
– ident: e_1_2_6_41_2
  doi: 10.1016/j.pediatrneurol.2004.06.015
– ident: e_1_2_6_66_2
  doi: 10.1203/00006450-199910000-00005
– ident: e_1_2_6_36_2
  doi: 10.1046/j.1442-200X.2003.01784.x
– ident: e_1_2_6_51_2
  doi: 10.1203/00006450-200106000-00003
– ident: e_1_2_6_77_2
  doi: 10.1203/00006450-200409000-00259
– ident: e_1_2_6_10_2
  doi: 10.1203/01.PDR.0000072783.22373.FF
– ident: e_1_2_6_54_2
  doi: 10.1093/bja/88.2.188
– ident: e_1_2_6_39_2
  doi: 10.1136/fn.74.1.F3
– ident: e_1_2_6_33_2
  doi: 10.1111/j.1471-4159.1993.tb13639.x
– ident: e_1_2_6_53_2
  doi: 10.1038/jcbfm.1990.8
– volume: 85
  start-page: 961
  year: 1990
  ident: e_1_2_6_3_2
  article-title: Current and potentially new management strategies for perinatal hypoxic‐ischemic encephalopathy
  publication-title: Pediatrics
  doi: 10.1542/peds.85.6.961
  contributor:
    fullname: Vannucci RC
– ident: e_1_2_6_40_2
  doi: 10.1056/NEJM199702203360803
– ident: e_1_2_6_59_2
  doi: 10.1006/nbdi.1995.0016
– start-page: 296
  volume-title: Neurology of the newborn
  year: 2001
  ident: e_1_2_6_22_2
  contributor:
    fullname: Volpe JJ
– ident: e_1_2_6_57_2
  doi: 10.1203/00006450-200104000-00010
– ident: e_1_2_6_19_2
  doi: 10.1203/00006450-199505000-00019
– ident: e_1_2_6_23_2
  doi: 10.1111/j.1750-3639.1992.tb00694.x
– ident: e_1_2_6_61_2
  doi: 10.1016/S0006-8993(97)00713-0
– ident: e_1_2_6_47_2
  doi: 10.1016/S0034-5687(01)00306-1
– ident: e_1_2_6_18_2
  doi: 10.1016/S0140-6736(05)17946-X
– ident: e_1_2_6_9_2
  doi: 10.1006/bbrc.1995.2895
– ident: e_1_2_6_20_2
  doi: 10.1203/00006450-199706000-00002
– ident: e_1_2_6_28_2
  doi: 10.1016/S0003-4975(99)00441-5
– volume: 22
  start-page: 2347
  year: 2004
  ident: e_1_2_6_76_2
  article-title: Cerebral temperature mapping by self‐referenced proton spectroscopic imaging thermometry
  publication-title: Magn Reson Med
  contributor:
    fullname: Thornton JS
– ident: e_1_2_6_30_2
  doi: 10.1097/01.WCB.0000066287.21705.21
– volume: 56
  start-page: 71
  issue: 1
  year: 1984
  ident: e_1_2_6_64_2
  article-title: The pharmacology of isoflurane
  publication-title: Br J Anaesth
  contributor:
    fullname: Eger EI
– ident: e_1_2_6_6_2
  doi: 10.1203/00006450-199412000-00003
– ident: e_1_2_6_60_2
  doi: 10.1016/S0736-5748(02)00012-6
– ident: e_1_2_6_15_2
  doi: 10.1016/0006-8993(94)90488-X
– ident: e_1_2_6_17_2
  doi: 10.1203/00006450-200203000-00015
– ident: e_1_2_6_32_2
  doi: 10.1016/0304-3940(91)90606-T
– ident: e_1_2_6_43_2
  doi: 10.1097/01.CCM.0000069731.18472.61
– ident: e_1_2_6_74_2
  doi: 10.1542/peds.108.5.1103
– ident: e_1_2_6_8_2
  doi: 10.1097/00008480-199810060-00006
– ident: e_1_2_6_69_2
  doi: 10.1111/j.1750-3639.2000.tb00243.x
– volume: 97
  start-page: 396
  year: 1989
  ident: e_1_2_6_49_2
  article-title: Brain tissue pH, oxygen tension, and carbon dioxide tension in profoundly hypothermic cardiopulmonary bypass. Comparative study of circulatory arrest, nonpulsatile low‐flow perfusion, and pulsatile low‐flow perfusion
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/S0022-5223(19)34578-7
  contributor:
    fullname: Watanabe T
– ident: e_1_2_6_35_2
  doi: 10.1097/00001756-199710200-00033
– ident: e_1_2_6_2_2
  doi: 10.1016/S0140-6736(86)90718-X
– volume: 6
  start-page: 149
  year: 1991
  ident: e_1_2_6_24_2
  article-title: Selective vulnerability in brain hypoxia
  publication-title: Crit Rev Neurobiol
  contributor:
    fullname: Cervos‐Navarro J
– ident: e_1_2_6_37_2
  doi: 10.1056/NEJM200102223440803
– ident: e_1_2_6_44_2
  doi: 10.1097/00008506-199504000-00021
– ident: e_1_2_6_5_2
  doi: 10.1203/00006450-199611000-00015
– ident: e_1_2_6_62_2
  doi: 10.1097/00000542-200405000-00018
– ident: e_1_2_6_45_2
  doi: 10.1542/peds.106.1.92
– ident: e_1_2_6_25_2
  doi: 10.1523/JNEUROSCI.20-21-07994.2000
– ident: e_1_2_6_52_2
  doi: 10.1161/01.STR.21.11.1600
– ident: e_1_2_6_29_2
  doi: 10.1152/ajpheart.01112.2002
– ident: e_1_2_6_73_2
  doi: 10.1016/j.pediatrneurol.2004.06.014
– ident: e_1_2_6_56_2
  doi: 10.1016/0090-3019(95)80049-M
– ident: e_1_2_6_68_2
  doi: 10.1203/00006450-199909000-00005
– ident: e_1_2_6_50_2
  doi: 10.1097/00000539-199906000-00013
– ident: e_1_2_6_70_2
  doi: 10.1542/peds.111.2.244
– ident: e_1_2_6_31_2
  doi: 10.1161/01.STR.20.7.904
– ident: e_1_2_6_42_2
  doi: 10.1016/S0095-5108(02)00057-X
– ident: e_1_2_6_63_2
  doi: 10.1001/archneur.61.8.1254
– ident: e_1_2_6_65_2
  doi: 10.1203/00006450-199707000-00004
– ident: e_1_2_6_13_2
  doi: 10.1172/JCI119153
– ident: e_1_2_6_11_2
  doi: 10.1002/ana.10402
– ident: e_1_2_6_55_2
  doi: 10.1046/j.1442-200X.2003.01682.x
– ident: e_1_2_6_12_2
  doi: 10.1007/BF00313599
– ident: e_1_2_6_4_2
  doi: 10.1203/00006450-198905000-00004
– ident: e_1_2_6_16_2
  doi: 10.1523/JNEUROSCI.15-11-07250.1995
– ident: e_1_2_6_67_2
  doi: 10.1007/BF01000440
– ident: e_1_2_6_75_2
  doi: 10.1016/S0730-725X(97)00017-9
– ident: e_1_2_6_38_2
  doi: 10.1203/00006450-199704000-00009
SSID ssj0009610
Score 2.127251
Snippet Hypothermia after perinatal hypoxia‐ischemia (HI) is neuroprotective; the precise brain temperature that provides optimal protection is unknown. To assess the...
Hypothermia after perinatal hypoxia-ischemia (HI) is neuroprotective; the precise brain temperature that provides optimal protection is unknown. To assess the...
Abstract Hypothermia after perinatal hypoxia‐ischemia (HI) is neuroprotective; the precise brain temperature that provides optimal protection is unknown. To...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 75
SubjectTerms Animals
Animals, Newborn
Biological and medical sciences
Disease Models, Animal
Female
Hypothermia, Induced
Hypoxia-Ischemia, Brain - pathology
Hypoxia-Ischemia, Brain - therapy
Male
Medical sciences
Nerve Degeneration - prevention & control
Neurology
Neurons - pathology
Neuropharmacology
Neuroprotective agent
Pharmacology. Drug treatments
Swine
Temperature
Vascular diseases and vascular malformations of the nervous system
Title Depth of delayed cooling alters neuroprotection pattern after hypoxia-ischemia
URI https://api.istex.fr/ark:/67375/WNG-J0T3M3MV-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.20528
https://www.ncbi.nlm.nih.gov/pubmed/15984028
https://search.proquest.com/docview/17346262
https://search.proquest.com/docview/67996418
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3daxQxEMCHUkF88fvjWq1BRHzZdjcfu3v4dKi1FO4o0mofhJBkE3sUd4_eHbQ--Sf4N_qXOJO9vePEgviy7EM2JDOZZGYz-QXgJc8slyEVifIcAxTpQmIrL-lB-PMyNyZm-Y7ygxN5eKpON-BNdxam5UMsf7iRZcT5mgzc2OneChpqasIGKU4HfQmkRw7RxxU6qp9HEgFtsyUqE7KjCqV8b_nl2lp0g8R6SbmRZoriCe29Fn9zPNf92LgQ7d-BL10X2vyT8935zO6673_QHf-zj3fh9sJBZYN2RN2DDV_fh5vDxRb8Azh65yezM9YERnzJK18x19DFP19Z3HifskjIXOAfUOlsEgmeNYu3kbOzq0lzOTa_fvwcY1ztv43NQzjZf3_89iBZXMuQOLT2MjFVlqsQeBCh71XpRZm6wnGTOl44x51VsrAhuFJ6l-Vp6OcEOZLChcJS9CkewWbd1P4JMHQXfZobUWWqklZYGwxOIEIUBh2jKnU9eNEpSE9a-oZuOctco2x0lE0PXkXVLUuYi3NKVyuU_jz6oA_TYzEUw0_6qAc7a7pdVVngvCSU6MHzTtkarYy2Tkztm_kUSwiJoR-_vkReYOQoM2zN43aUrGpXfYyiqZ2vo66v74kejAbxZevfi27DrUiTjRnET2FzdjH3z9BPmtmdaBC_AYHtDp0
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3db9MwEMBPY5OAF8Y35WOzEEK8ZEv8kaTSXirGKGOtJtTBXibLdmxWTSTV2kobT_sT9jfyl3B2mlZFTEK8RHlwLPvOZ9_Zl58B3tBEU-5iFglLMUDhxkW6sNw_PP48T5UKWb79tHvE94_F8QrsNP_C1HyI-Yabt4wwX3sD9xvS2wtqqCo9N0jQ_BasobkLb5a7XxbwqHYaWAT-oC0SCeMNVyim2_NPl1ajNS_YC58dqcYoIFffbPE313PZkw1L0d46nDSdqDNQzramE71lfv7Bd_zfXt6HezMflXTqQfUAVmz5EG73Zqfwj-Bw144mp6RyxCMmL21BTOXv_vlOwtn7mARI5owAgXonowDxLEm4kJycXo6qi6H6dXU9xNDa_hiqx3C092HwvhvNbmaIDBp8HqkiSYVz1DHXtiK3LI9NZqiKDc2MoUYLnmnnTM6tSdLYtVPPOeLMuEz7AJQ9gdWyKu0zIOgx2jhVrEhEwTXT2imcQxjLFPpGRWxa8LrRkBzVAA5Zo5apRNnIIJsWvA26m5dQ52c-Yy0T8lv_o9yPB6zHel_lYQs2lpS7qDLDqYkJ1oLNRtsSDc2fnqjSVtMxlmAcoz96c4k0w-CRJ9iap_UwWdQu2hhI-3a-C8q-uSey0--El-f_XnQT7nQHvQN58Kn_-QXcDXDZkFD8ElYn51P7Ct2mid4I1vEbZEsSvQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ba9swFIAPXQtlL7u0u2SXVpQy-uLW1s0OewrLsrZrQijt1oeBkGRpDWW2aRJo97SfsN-4XzJJjhMyVhh7MX44FpaOjnSOdfwdgF2cKExtTCJmsAtQqLaRyg31F48_z7iUIct3wA_P6fEFu1iBt82_MDUfYv7BzVtGWK-9gVe5PVhAQ2XhsUEMZ_dgjXKCfeTVPV2wo9o8oAj8OVvEEkIbrFCMD-aPLm1Ga35cb3xypBy78bF1YYu_eZ7LjmzYiXoP4UvThzoB5Wp_OlH7-vsfeMf_7OQjeDDzUFGnnlKPYcUUG7Den53Bb8Kwa6rJJSot8oDJW5MjXfrKP19ROHkfo4DInPEfnNZRFRCeBQrlyNHlbVXejOSvHz9HLrA230byCZz33p-9O4xmdRki7cw9i2SecGYttsS2DcsMyWKdaixjjVOtsVaMpspanVGjEx7bNveUI0q0TZUPP8lTWC3KwjwH5PxFE3NJ8oTlVBGlrHQrCCGpdJ5RHusW7DQKElWN3xA1aBkLNzYijE0L3gTVzSXk9ZXPV0uZ-Dz4II7jM9In_U9i2IKtJd0umkzdwkQYacF2o2zhzMyfncjClNOxkyDUxX74bgmeutCRJu5tntWzZNE6a7sw2r_nXtD13T0RnUEn3Lz4d9FtWB92e-LkaPDxJdwPZNmQTfwKVifXU_Pa-UwTtRVs4zcmlhFs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depth+of+delayed+cooling+alters+neuroprotection+pattern+after+hypoxia-ischemia&rft.jtitle=Annals+of+neurology&rft.au=Iwata%2C+Osuke&rft.au=Thornton%2C+John+S&rft.au=Sellwood%2C+Mark+W&rft.au=Iwata%2C+Sachiko&rft.date=2005-07-01&rft.issn=0364-5134&rft.volume=58&rft.issue=1&rft.spage=75&rft.epage=87&rft_id=info:doi/10.1002%2Fana.20528&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon