NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells

The flowing blood generates shear stress at the endothelial cell surface. In endothelial cells, NAD(P)H oxidase complexes have been identified as major sources of superoxide anion (·O 2 − ) formation. In this study, we analysed the effect of laminar shear stress on ·O 2 − formation by cytochro...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 576; no. 2; pp. 557 - 567
Main Authors Duerrschmidt, Nicole, Stielow, Claudia, Muller, Gregor, Pagano, Patrick J., Morawietz, Henning
Format Journal Article
LanguageEnglish
Published Oxford, UK The Physiological Society 15.10.2006
Blackwell Publishing Ltd
Blackwell Science Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The flowing blood generates shear stress at the endothelial cell surface. In endothelial cells, NAD(P)H oxidase complexes have been identified as major sources of superoxide anion (·O 2 − ) formation. In this study, we analysed the effect of laminar shear stress on ·O 2 − formation by cytochrome c reduction assay and on NAD(P)H oxidase subunit expression by standard calibrated competitive reverse transcription-polymerase chain reaction and Western blot in human endothelial cells. Primary cultures of human umbilical vein endothelial cells were exposed to laminar shear stress in a cone-and-plate viscometer for up to 24 h. Short-term application of shear stress transiently induced ·O 2 − formation. This was inhibited by NAD(P)H oxidase inhibitor gp91ds- tat , but NAD(P)H oxidase subunit expression was unchanged. Long-term arterial laminar shear stress (30 dyne cm −2 , 24 h) down-regulated ·O 2 − formation, and mRNA and protein expression of NAD(P)H oxidase subunits Nox2/gp91 phox and p47 phox . In parallel, endothelial NO formation and eNOS, but not Cu/Zn SOD, protein expression was increased. Down-regulation of ·O 2 − formation, gp91 phox and p47 phox expression by long-term laminar shear stress was blocked by l -NAME. NO donor DETA-NO down-regulates ·O 2 − formation, gp91 phox and p47 phox expression in static cultures. In conclusion, our data suggest a transient activation of ·O 2 − formation by short-term shear stress, followed by a down-regulation of endothelial NAD(P)H oxidase in response to long-term laminar shear stress. NO-mediated down-regulation by shear stress preferentially affects the gp91 phox /p47 phox -containing NAD(P)H oxidase complex. This mechanism might contribute to the regulation of endothelial NO/·O 2 − balance and the vasoprotective potential of physiological levels of laminar shear stress.
AbstractList The flowing blood generates shear stress at the endothelial cell surface. In endothelial cells, NAD(P)H oxidase complexes have been identified as major sources of superoxide anion (·O2−) formation. In this study, we analysed the effect of laminar shear stress on ·O2− formation by cytochrome c reduction assay and on NAD(P)H oxidase subunit expression by standard calibrated competitive reverse transcription‐polymerase chain reaction and Western blot in human endothelial cells. Primary cultures of human umbilical vein endothelial cells were exposed to laminar shear stress in a cone‐and‐plate viscometer for up to 24 h. Short‐term application of shear stress transiently induced ·O2− formation. This was inhibited by NAD(P)H oxidase inhibitor gp91ds‐tat, but NAD(P)H oxidase subunit expression was unchanged. Long‐term arterial laminar shear stress (30 dyne cm−2, 24 h) down‐regulated ·O2− formation, and mRNA and protein expression of NAD(P)H oxidase subunits Nox2/gp91phox and p47phox. In parallel, endothelial NO formation and eNOS, but not Cu/Zn SOD, protein expression was increased. Down‐regulation of ·O2− formation, gp91phox and p47phox expression by long‐term laminar shear stress was blocked by l‐NAME. NO donor DETA‐NO down‐regulates ·O2− formation, gp91phox and p47phox expression in static cultures. In conclusion, our data suggest a transient activation of ·O2− formation by short‐term shear stress, followed by a down‐regulation of endothelial NAD(P)H oxidase in response to long‐term laminar shear stress. NO‐mediated down‐regulation by shear stress preferentially affects the gp91phox/p47phox‐containing NAD(P)H oxidase complex. This mechanism might contribute to the regulation of endothelial NO/·O2− balance and the vasoprotective potential of physiological levels of laminar shear stress.
The flowing blood generates shear stress at the endothelial cell surface. In endothelial cells, NAD(P)H oxidase complexes have been identified as major sources of superoxide anion (.O(2)(-)) formation. In this study, we analysed the effect of laminar shear stress on .O(2)(-) formation by cytochrome c reduction assay and on NAD(P)H oxidase subunit expression by standard calibrated competitive reverse transcription-polymerase chain reaction and Western blot in human endothelial cells. Primary cultures of human umbilical vein endothelial cells were exposed to laminar shear stress in a cone-and-plate viscometer for up to 24 h. Short-term application of shear stress transiently induced .O(2)(-) formation. This was inhibited by NAD(P)H oxidase inhibitor gp91ds-tat, but NAD(P)H oxidase subunit expression was unchanged. Long-term arterial laminar shear stress (30 dyne cm(-2), 24 h) down-regulated .O(2)(-) formation, and mRNA and protein expression of NAD(P)H oxidase subunits Nox2/gp91(phox) and p47(phox). In parallel, endothelial NO formation and eNOS, but not Cu/Zn SOD, protein expression was increased. Down-regulation of .O(2)(-) formation, gp91(phox) and p47(phox) expression by long-term laminar shear stress was blocked by l-NAME. NO donor DETA-NO down-regulates .O(2)(-) formation, gp91(phox) and p47(phox) expression in static cultures. In conclusion, our data suggest a transient activation of .O(2)(-) formation by short-term shear stress, followed by a down-regulation of endothelial NAD(P)H oxidase in response to long-term laminar shear stress. NO-mediated down-regulation by shear stress preferentially affects the gp91(phox)/p47(phox)-containing NAD(P)H oxidase complex. This mechanism might contribute to the regulation of endothelial NO/.O(2)(-) balance and the vasoprotective potential of physiological levels of laminar shear stress.
The flowing blood generates shear stress at the endothelial cell surface. In endothelial cells, NAD(P)H oxidase complexes have been identified as major sources of superoxide anion (·O 2 − ) formation. In this study, we analysed the effect of laminar shear stress on ·O 2 − formation by cytochrome c reduction assay and on NAD(P)H oxidase subunit expression by standard calibrated competitive reverse transcription-polymerase chain reaction and Western blot in human endothelial cells. Primary cultures of human umbilical vein endothelial cells were exposed to laminar shear stress in a cone-and-plate viscometer for up to 24 h. Short-term application of shear stress transiently induced ·O 2 − formation. This was inhibited by NAD(P)H oxidase inhibitor gp91ds- tat , but NAD(P)H oxidase subunit expression was unchanged. Long-term arterial laminar shear stress (30 dyne cm −2 , 24 h) down-regulated ·O 2 − formation, and mRNA and protein expression of NAD(P)H oxidase subunits Nox2/gp91 phox and p47 phox . In parallel, endothelial NO formation and eNOS, but not Cu/Zn SOD, protein expression was increased. Down-regulation of ·O 2 − formation, gp91 phox and p47 phox expression by long-term laminar shear stress was blocked by l -NAME. NO donor DETA-NO down-regulates ·O 2 − formation, gp91 phox and p47 phox expression in static cultures. In conclusion, our data suggest a transient activation of ·O 2 − formation by short-term shear stress, followed by a down-regulation of endothelial NAD(P)H oxidase in response to long-term laminar shear stress. NO-mediated down-regulation by shear stress preferentially affects the gp91 phox /p47 phox -containing NAD(P)H oxidase complex. This mechanism might contribute to the regulation of endothelial NO/·O 2 − balance and the vasoprotective potential of physiological levels of laminar shear stress.
The flowing blood generates shear stress at the endothelial cell surface. In endothelial cells, NAD(P)H oxidase complexes have been identified as major sources of superoxide anion (·O 2 − ) formation. In this study, we analysed the effect of laminar shear stress on ·O 2 − formation by cytochrome c reduction assay and on NAD(P)H oxidase subunit expression by standard calibrated competitive reverse transcription-polymerase chain reaction and Western blot in human endothelial cells. Primary cultures of human umbilical vein endothelial cells were exposed to laminar shear stress in a cone-and-plate viscometer for up to 24 h. Short-term application of shear stress transiently induced ·O 2 − formation. This was inhibited by NAD(P)H oxidase inhibitor gp91ds- tat , but NAD(P)H oxidase subunit expression was unchanged. Long-term arterial laminar shear stress (30 dyne cm −2 , 24 h) down-regulated ·O 2 − formation, and mRNA and protein expression of NAD(P)H oxidase subunits Nox2/gp91 phox and p47 phox . In parallel, endothelial NO formation and eNOS, but not Cu/Zn SOD, protein expression was increased. Down-regulation of ·O 2 − formation, gp91 phox and p47 phox expression by long-term laminar shear stress was blocked by l -NAME. NO donor DETA-NO down-regulates ·O 2 − formation, gp91 phox and p47 phox expression in static cultures. In conclusion, our data suggest a transient activation of ·O 2 − formation by short-term shear stress, followed by a down-regulation of endothelial NAD(P)H oxidase in response to long-term laminar shear stress. NO-mediated down-regulation by shear stress preferentially affects the gp91 phox /p47 phox -containing NAD(P)H oxidase complex. This mechanism might contribute to the regulation of endothelial NO/·O 2 − balance and the vasoprotective potential of physiological levels of laminar shear stress.
Author Nicole Duerrschmidt
Patrick J. Pagano
Henning Morawietz
Claudia Stielow
Gregor Muller
Author_xml – sequence: 1
  givenname: Nicole
  surname: Duerrschmidt
  fullname: Duerrschmidt, Nicole
– sequence: 2
  givenname: Claudia
  surname: Stielow
  fullname: Stielow, Claudia
– sequence: 3
  givenname: Gregor
  surname: Muller
  fullname: Muller, Gregor
– sequence: 4
  givenname: Patrick J.
  surname: Pagano
  fullname: Pagano, Patrick J.
– sequence: 5
  givenname: Henning
  surname: Morawietz
  fullname: Morawietz, Henning
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16873416$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1TAQhS1URG8L_wAhr6AsUvyI7XiDVJVHQVXbRdkhWU4yuXHlxLd2Qpt_T6JcXjs2Y419vjMenSN00IceEHpJySmllL-727VTcsGfMkLkckUUeYI2NJc6U0rzA7QhhLGMK0EP0VFKd4RQTrR-hg6pLBTPqdyg71fXWQe1swPUOMJ29HZwocehwVdnH05u3l7g8OhqmwCXE_a2c72NOLWw1CFCStj1uB0722Po6zC04J31uALv03P0tLE-wYv9eYy-ffp4e36RXV5__nJ-dplVeVHkmdLQSJsr4IWVuixzxRTTjSp5zoS2RSEaITStqobVupk7AnlNqprVTAtdCX6M3q--u7Gcl6mgH6L1ZhddZ-NkgnXm35fetWYbfhhaaMKlmg1e7w1iuB8hDaZzaVnB9hDGZGShJeeMz8J8FVYxpBSh-T2EErPEYn7FYpZYzBrLjL36-4N_oH0Os0CvggfnYfovU3P79YbO9My-WdnWbdsHF8Gs6hQqB8NkhJKGGSEU_wl2JK4j
CitedBy_id crossref_primary_10_1089_ars_2013_5414
crossref_primary_10_1089_ars_2008_2408
crossref_primary_10_1089_ars_2008_2403
crossref_primary_10_1152_ajpheart_00138_2007
crossref_primary_10_1007_s10439_009_9822_y
crossref_primary_10_1161_CIRCRESAHA_111_243972
crossref_primary_10_1152_ajpheart_00408_2015
crossref_primary_10_1097_JES_0b013e318279cbbd
crossref_primary_10_1016_j_niox_2015_01_003
crossref_primary_10_1186_1423_0127_21_3
crossref_primary_10_3389_fcimb_2022_883448
crossref_primary_10_1016_j_pharmthera_2008_08_005
crossref_primary_10_1124_jpet_108_145557
crossref_primary_10_1016_j_freeradbiomed_2011_11_002
crossref_primary_10_1016_j_freeradbiomed_2017_02_049
crossref_primary_10_1152_physrev_00004_2012
crossref_primary_10_1038_jcbfm_2015_102
crossref_primary_10_1016_j_atherosclerosissup_2017_05_039
crossref_primary_10_1016_j_clnesp_2016_06_009
crossref_primary_10_1007_s12195_014_0357_4
crossref_primary_10_1007_s11552_010_9289_1
crossref_primary_10_1249_MSS_0000000000002014
crossref_primary_10_1016_j_freeradbiomed_2019_09_029
crossref_primary_10_1016_j_freeradbiomed_2006_10_043
crossref_primary_10_1093_cvr_cvp154
crossref_primary_10_1111_1440_1681_12338
crossref_primary_10_1089_ars_2018_7720
crossref_primary_10_1123_jpah_2018_0568
crossref_primary_10_1016_j_jmbbm_2022_105545
crossref_primary_10_1155_2020_5245308
crossref_primary_10_1113_EP087576
crossref_primary_10_1074_jbc_M115_713149
crossref_primary_10_3389_fendo_2022_892184
crossref_primary_10_1152_ajpheart_00828_2013
crossref_primary_10_1016_j_redox_2021_102150
crossref_primary_10_1016_j_sna_2023_114841
crossref_primary_10_1111_j_1440_1681_2009_05317_x
crossref_primary_10_1016_j_abb_2009_01_022
crossref_primary_10_1165_rcmb_2010_0331RT
crossref_primary_10_1016_j_freeradbiomed_2017_01_025
crossref_primary_10_1016_j_atherosclerosissup_2017_05_023
crossref_primary_10_1039_D4AN00507D
crossref_primary_10_1016_j_lfs_2008_04_010
crossref_primary_10_1016_j_redox_2022_102549
crossref_primary_10_2174_1381612826666200318152049
crossref_primary_10_1016_j_atherosclerosissup_2012_10_013
crossref_primary_10_1016_j_scispo_2008_10_003
crossref_primary_10_1016_j_freeradbiomed_2013_02_025
crossref_primary_10_1016_j_jvs_2008_06_039
crossref_primary_10_1371_journal_pone_0111409
crossref_primary_10_1016_j_atherosclerosissup_2015_02_010
crossref_primary_10_1093_cvr_cvt127
crossref_primary_10_1007_s10439_011_0436_9
crossref_primary_10_1016_j_biocel_2009_05_011
crossref_primary_10_1002_jcp_30075
crossref_primary_10_1111_j_1440_1681_2008_05055_x
crossref_primary_10_1152_ajpheart_00114_2008
crossref_primary_10_1016_j_redox_2017_04_008
crossref_primary_10_1007_s00018_012_1009_2
crossref_primary_10_1089_ars_2009_2561
crossref_primary_10_1089_ars_2013_5620
crossref_primary_10_1007_s00395_011_0170_3
crossref_primary_10_1007_s11906_011_0238_3
crossref_primary_10_1016_j_freeradbiomed_2018_12_026
crossref_primary_10_1139_apnm_2018_0420
crossref_primary_10_1016_j_abb_2015_11_005
crossref_primary_10_1152_ajpheart_00727_2008
crossref_primary_10_1007_s00395_011_0188_6
crossref_primary_10_1249_MSS_0b013e318199cee8
crossref_primary_10_1002_jcp_22629
crossref_primary_10_1111_apha_12725
crossref_primary_10_1089_ars_2010_3679
crossref_primary_10_1111_jsm_12391
Cites_doi 10.1172/JCI107470
10.1161/01.CIR.94.7.1682
10.1161/01.RES.0000078604.47063.2B
10.1161/01.ATV.0000035392.38687.65
10.1152/ajpheart.1999.277.4.H1647
10.1172/JCI116092
10.1006/bbrc.2000.2354
10.1161/01.CIR.0000154560.88933.7E
10.1161/hc4001.097056
10.1161/hh1701.096037
10.1161/01.RES.0000181759.63239.21
10.1161/hh2301.100806
10.1161/01.ATV.19.3.656
10.1152/ajpheart.00025.2004
10.1161/01.RES.87.1.26
10.1161/01.CIR.0000093661.90582.c4
10.1152/ajpcell.1992.263.2.C389
10.1161/01.ATV.18.5.677
10.1161/01.RES.86.5.494
10.1152/ajpheart.2000.278.1.H233
10.1074/jbc.M305150200
10.1111/j.1464-410X.2006.06059.x
10.1161/01.ATV.20.8.1903
10.1016/j.bbrc.2005.08.157
10.1161/01.RES.87.12.1188
10.1038/sj.jcbfm.9600235
10.1161/01.RES.0000104087.29395.66
10.1152/ajpregu.00323.2002
10.1161/01.ATV.0000158311.24443.af
10.1152/ajpheart.00515.2003
10.1161/01.RES.0000091261.19387.AE
10.1161/01.RES.79.1.32
10.1161/01.RES.78.5.750
10.1111/j.1469-7793.2000.00761.x
10.1161/01.RES.86.1.e7
10.1172/JCI11235
10.1016/j.cardiores.2005.04.032
10.1161/01.RES.82.10.1094
10.1002/bit.20263
ContentType Journal Article
Copyright 2006 The Journal of Physiology © 2006 The Physiological Society
2006 The Authors. Journal compilation © 2006 The Physiological Society 2006
Copyright_xml – notice: 2006 The Journal of Physiology © 2006 The Physiological Society
– notice: 2006 The Authors. Journal compilation © 2006 The Physiological Society 2006
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1113/jphysiol.2006.111070
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 567
ExternalDocumentID 10_1113_jphysiol_2006_111070
16873416
TJP1734
576_2_557
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
05W
0R
0YM
10A
123
1OB
1OC
24P
29L
2WC
31
33P
3N
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
55
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAONW
AAVGM
AAZKR
ABCUV
ABFLS
ABHUG
ABITZ
ABIVO
ABOCM
ABPPZ
ABPTK
ABPVW
ABUFD
ABWRO
ACAHQ
ACFBH
ACGFS
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACXME
ACXQS
ADACO
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADXAS
ADZMN
AEIMD
AEUQT
AFBPY
AFFNX
AFPWT
AFZJQ
AGJLS
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DZ
E3Z
EBS
EJD
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GA
GJ
GODZA
GX1
H.X
H13
HZ
HZI
IA
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LI0
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NEJ
NF
O0-
O66
O9-
OHT
OK1
OVD
P2P
P2W
P2X
P2Z
P4A
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SUPJJ
TLM
TN5
UB1
UNR
UPT
UQL
V8K
VH1
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WT
WXI
WYISQ
X
X7M
XG1
Y3
YZZ
ZA5
ZZTAW
---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
0R~
18M
31~
36B
3EH
AAFWJ
AAHHS
AANLZ
AASGY
AAXRX
AAYJJ
ABCQN
ABEML
ABJNI
ABQWH
ABXGK
ACCFJ
ACCZN
ACGFO
ACGOF
ACSCC
ACXBN
ADBTR
ADKYN
ADMGS
ADOZA
AEEZP
AEGXH
AEIGN
AEQDE
AEUYR
AFEBI
AFFPM
AFGKR
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AMYDB
AOIJS
CHEAL
EMOBN
FA8
HF~
HGLYW
HZ~
H~9
IPNFZ
KBYEO
LH4
NF~
OIG
SAMSI
TEORI
TR2
UKR
W8F
WHG
WXSBR
XOL
YBU
YHG
YKV
YQT
YSK
YXB
YYP
ZGI
ZXP
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c4884-79ef6a47e38a69bb472729f7b34259a885f5591ccf2d9f85f0e4d0cd2d2959c53
IEDL.DBID RPM
ISSN 0022-3751
IngestDate Tue Sep 17 20:53:29 EDT 2024
Fri Oct 25 06:14:45 EDT 2024
Fri Aug 23 00:48:19 EDT 2024
Sat Sep 28 07:40:54 EDT 2024
Sat Aug 24 00:53:38 EDT 2024
Fri Jan 15 01:58:32 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4884-79ef6a47e38a69bb472729f7b34259a885f5591ccf2d9f85f0e4d0cd2d2959c53
Notes N. Duerrschmidt and C. Stielow contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1890367
PMID 16873416
PQID 68963323
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1890367
proquest_miscellaneous_68963323
crossref_primary_10_1113_jphysiol_2006_111070
pubmed_primary_16873416
wiley_primary_10_1113_jphysiol_2006_111070_TJP1734
highwire_physiosociety_576_2_557
PublicationCentury 2000
PublicationDate 2006-10-15
PublicationDateYYYYMMDD 2006-10-15
PublicationDate_xml – month: 10
  year: 2006
  text: 2006-10-15
  day: 15
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2006
Publisher The Physiological Society
Blackwell Publishing Ltd
Blackwell Science Inc
Publisher_xml – name: The Physiological Society
– name: Blackwell Publishing Ltd
– name: Blackwell Science Inc
References 2004; 88
2003b; 278
2006; 97
1973; 52
2000; 278
2005; 111
1992; 263
2000; 87
2000; 20
2000; 86
2005; 338
1996; 94
1998; 82
2001; 108
2003; 93
2001; 89
1996; 79
2001; 104
2005; 67
1996; 78
2005; 25
1992; 90
1998; 18
2003; 108
2003a; 93
2003; 92
1999; 19
2000; 269
2005; 288
2000; 525
2006; 26
2002; 22
1996; 271
2005; 97
1999; 277
2003; 285
2003; 284
12482742 - Am J Physiol Regul Integr Comp Physiol. 2003 Jan;284(1):R1-12
15331375 - Am J Physiol Heart Circ Physiol. 2005 Jan;288(1):H336-43
10720409 - Circ Res. 2000 Mar 17;86(5):494-501
12958034 - Am J Physiol Heart Circ Physiol. 2003 Dec;285(6):H2290-7
11532901 - Circ Res. 2001 Aug 31;89(5):408-14
11696579 - J Clin Invest. 2001 Nov;108(9):1341-8
10644603 - Am J Physiol Heart Circ Physiol. 2000 Jan;278(1):H233-8
10884368 - Circ Res. 2000 Jul 7;87(1):26-32
16643490 - BJU Int. 2006 May;97(5):1047-52
11110777 - Circ Res. 2000 Dec 8;87(12):1188-94
11717166 - Circ Res. 2001 Nov 23;89(11):1073-80
10720482 - Biochem Biophys Res Commun. 2000 Mar 24;269(3):713-7
12764025 - Circ Res. 2003 Jun 27;92(12):1344-51
12426214 - Arterioscler Thromb Vasc Biol. 2002 Nov 1;22(11):1845-51
15692095 - Arterioscler Thromb Vasc Biol. 2005 Apr;25(4):809-14
16153593 - Biochem Biophys Res Commun. 2005 Dec 9;338(1):536-42
12958309 - J Biol Chem. 2003 Nov 21;278(47):47291-8
1514586 - Am J Physiol. 1992 Aug;263(2 Pt 1):C389-96
8840861 - Circulation. 1996 Oct 1;94(7):1682-9
10625313 - Circ Res. 2000 Jan 7;86(1):E7-E12
15699275 - Circulation. 2005 Feb 8;111(5):555-62
10856127 - J Physiol. 2000 Jun 15;525 Pt 3:761-70
10516206 - Am J Physiol. 1999 Oct;277(4 Pt 2):H1647-53
8620594 - Circ Res. 1996 May;78(5):750-8
16109921 - Circ Res. 2005 Sep 16;97(6):533-40
16222243 - J Cereb Blood Flow Metab. 2006 Jun;26(6):836-45
11591612 - Circulation. 2001 Oct 9;104(15):1767-72
1385480 - J Clin Invest. 1992 Nov;90(5):2092-6
15532041 - Biotechnol Bioeng. 2004 Dec 20;88(6):750-8
4355998 - J Clin Invest. 1973 Nov;52(11):2745-56
8897960 - Am J Physiol. 1996 Oct;271(4 Pt 2):H1626-34
10073970 - Arterioscler Thromb Vasc Biol. 1999 Mar;19(3):656-64
10938010 - Arterioscler Thromb Vasc Biol. 2000 Aug;20(8):1903-11
14593003 - Circ Res. 2003 Dec 12;93(12):1225-32
9598824 - Arterioscler Thromb Vasc Biol. 1998 May;18(5):677-85
9622162 - Circ Res. 1998 Jun 1;82(10):1094-101
14581381 - Circulation. 2003 Oct 28;108(17):2034-40
8925565 - Circ Res. 1996 Jul;79(1):32-7
15935334 - Cardiovasc Res. 2005 Aug 1;67(2):187-97
12919951 - Circ Res. 2003 Sep 19;93(6):573-80
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
Jones SA (e_1_2_5_22_1) 1996; 271
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 90
  start-page: 2092
  year: 1992
  end-page: 2096
  article-title: Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase
  publication-title: J Clin Invest
– volume: 111
  start-page: 555
  year: 2005
  end-page: 562
  article-title: Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease
  publication-title: Circulation
– volume: 22
  start-page: 1845
  year: 2002
  end-page: 1851
  article-title: Dose‐dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 93
  start-page: 573
  year: 2003
  end-page: 580
  article-title: Mitochondrial sources of H O generation play a key role in flow‐mediated dilation in human coronary resistance arteries
  publication-title: Circ Res
– volume: 87
  start-page: 1188
  year: 2000
  end-page: 1194
  article-title: Shear stress‐dependent regulation of the human β‐tubulin folding cofactor D gene
  publication-title: Circ Res
– volume: 26
  start-page: 836
  year: 2006
  end-page: 845
  article-title: Flow‐induced cerebral vasodilatation involves activation of phosphatidylinositol‐3 kinase, NADPH‐oxidase, and nitric oxide synthase
  publication-title: J Cereb Blood Flow Metab
– volume: 92
  start-page: 1344
  year: 2003
  end-page: 1351
  article-title: Effect of steady versus oscillatory flow on porcine coronary arterioles: involvement of NO and superoxide anion
  publication-title: Circ Res
– volume: 97
  start-page: 1047
  year: 2006
  end-page: 1052
  article-title: Fluid shear stress‐induced nitric oxide production in human cavernosal endothelial cells: inhibition by hyperglycaemia
  publication-title: BJU Int
– volume: 78
  start-page: 750
  year: 1996
  end-page: 758
  article-title: Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress‐induced nitric oxide production in native endothelial cells
  publication-title: Circ Res
– volume: 18
  start-page: 677
  year: 1998
  end-page: 685
  article-title: Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 108
  start-page: 1341
  year: 2001
  end-page: 1348
  article-title: Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site
  publication-title: J Clin Invest
– volume: 52
  start-page: 2745
  year: 1973
  end-page: 2756
  article-title: Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria
  publication-title: J Clin Invest
– volume: 94
  start-page: 1682
  year: 1996
  end-page: 1689
  article-title: Fluid flow inhibits endothelial adhesiveness. Nitric oxide and transcriptional regulation of VCAM‐1
  publication-title: Circulation
– volume: 79
  start-page: 32
  year: 1996
  end-page: 37
  article-title: Shear stress modulates expression of Cu/Zn superoxide dismutase in human aortic endothelial cells
  publication-title: Circ Res
– volume: 271
  start-page: H1626
  year: 1996
  end-page: H1634
  article-title: Expression of phagocyte NADPH oxidase components in human endothelial cells
  publication-title: Am J Physiol
– volume: 86
  start-page: e7
  year: 2000
  end-page: e12
  article-title: Effects of long‐term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS III‐mediated superoxide production, and vascular NO bioavailability
  publication-title: Circ Res
– volume: 89
  start-page: 1073
  year: 2001
  end-page: 1080
  article-title: Shear stress regulates endothelial nitric oxide synthase expression through c‐Src by divergent signaling pathways
  publication-title: Circ Res
– volume: 97
  start-page: 533
  year: 2005
  end-page: 540
  article-title: p47phox‐dependent NADPH oxidase regulates flow‐induced vascular remodeling
  publication-title: Circ Res
– volume: 278
  start-page: H233
  year: 2000
  end-page: H238
  article-title: Cross talk of shear‐induced production of prostacyclin and nitric oxide in endothelial cells
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 269
  start-page: 713
  year: 2000
  end-page: 717
  article-title: Endothelin‐1 induces NAD(P)H oxidase in human endothelial cells
  publication-title: Biochem Biophys Res Commun
– volume: 104
  start-page: 1767
  year: 2001
  end-page: 1772
  article-title: Induction of NAD(P)H oxidase by oxidized low‐density lipoprotein in human endothelial cells: antioxidative potential of hydroxymethylglutaryl coenzyme A reductase inhibitor therapy
  publication-title: Circulation
– volume: 82
  start-page: 1094
  year: 1998
  end-page: 1101
  article-title: Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide‐producing NADH oxidase
  publication-title: Circ Res
– volume: 88
  start-page: 750
  year: 2004
  end-page: 758
  article-title: Synergistic effect of shear stress and streptavidin‐biotin on the expression of endothelial vasodilator and cytoskeleton genes
  publication-title: Biotechnol Bioeng
– volume: 86
  start-page: 494
  year: 2000
  end-page: 501
  article-title: NAD(P)H oxidase: role in cardiovascular biology and disease
  publication-title: Circ Res
– volume: 284
  start-page: R1
  year: 2003
  end-page: R12
  article-title: Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 277
  start-page: H1647
  year: 1999
  end-page: H1653
  article-title: Evidence for peroxynitrite as a signaling molecule in flow‐dependent activation of c‐Jun NH ‐terminal kinase
  publication-title: Am J Physiol
– volume: 108
  start-page: 2034
  year: 2003
  end-page: 2040
  article-title: Oxidative stress and cardiovascular injury: Part II: animal and human studies
  publication-title: Circulation
– volume: 285
  start-page: H2290
  year: 2003
  end-page: H2297
  article-title: Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 89
  start-page: 408
  year: 2001
  end-page: 414
  article-title: Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O and systolic blood pressure in mice
  publication-title: Circ Res
– volume: 67
  start-page: 187
  year: 2005
  end-page: 197
  article-title: Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy?
  publication-title: Cardiovasc Res
– volume: 19
  start-page: 656
  year: 1999
  end-page: 664
  article-title: Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis‐suppressive effects of shear stress on endothelial cells
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 20
  start-page: 1903
  year: 2000
  end-page: 1911
  article-title: Molecular characterization and localization of the NAD(P)H oxidase components gp91‐phox and p22‐phox in endothelial cells
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 278
  start-page: 47291
  year: 2003b
  end-page: 47298
  article-title: Oscillatory shear stress stimulates endothelial production of O from p47phox‐dependent NAD(P)H oxidases, leading to monocyte adhesion
  publication-title: J Biol Chem
– volume: 338
  start-page: 536
  year: 2005
  end-page: 542
  article-title: Redox regulation of vascular prostanoid synthesis by the nitric oxide‐superoxide system
  publication-title: Biochem Biophys Res Commun
– volume: 288
  start-page: H336
  year: 2005
  end-page: H343
  article-title: Membrane depolarization and NADPH oxidase activation in aortic endothelium during ischemia reflect altered mechanotransduction
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 25
  start-page: 809
  year: 2005
  end-page: 814
  article-title: Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 263
  start-page: C389
  year: 1992
  end-page: C396
  article-title: Physiological fluid shear stress causes downregulation of endothelin‐1 mRNA in bovine aortic endothelium
  publication-title: Am J Physiol
– volume: 93
  start-page: 1225
  year: 2003a
  end-page: 1232
  article-title: Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: implication for native LDL oxidation
  publication-title: Circ Res
– volume: 87
  start-page: 26
  year: 2000
  end-page: 32
  article-title: A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall
  publication-title: Circ Res
– volume: 525
  start-page: 761
  year: 2000
  end-page: 770
  article-title: Regulation of the endothelin system by shear stress in human endothelial cells
  publication-title: J Physiol
– ident: e_1_2_5_21_1
  doi: 10.1172/JCI107470
– volume: 271
  start-page: H1626
  year: 1996
  ident: e_1_2_5_22_1
  article-title: Expression of phagocyte NADPH oxidase components in human endothelial cells
  publication-title: Am J Physiol
  contributor:
    fullname: Jones SA
– ident: e_1_2_5_40_1
  doi: 10.1161/01.CIR.94.7.1682
– ident: e_1_2_5_38_1
  doi: 10.1161/01.RES.0000078604.47063.2B
– ident: e_1_2_5_36_1
  doi: 10.1161/01.ATV.0000035392.38687.65
– ident: e_1_2_5_14_1
  doi: 10.1152/ajpheart.1999.277.4.H1647
– ident: e_1_2_5_31_1
  doi: 10.1172/JCI116092
– ident: e_1_2_5_12_1
  doi: 10.1006/bbrc.2000.2354
– ident: e_1_2_5_2_1
  doi: 10.1161/01.CIR.0000154560.88933.7E
– ident: e_1_2_5_35_1
  doi: 10.1161/hc4001.097056
– ident: e_1_2_5_34_1
  doi: 10.1161/hh1701.096037
– ident: e_1_2_5_6_1
  doi: 10.1161/01.RES.0000181759.63239.21
– ident: e_1_2_5_8_1
  doi: 10.1161/hh2301.100806
– ident: e_1_2_5_10_1
  doi: 10.1161/01.ATV.19.3.656
– ident: e_1_2_5_27_1
  doi: 10.1152/ajpheart.00025.2004
– ident: e_1_2_5_15_1
  doi: 10.1161/01.RES.87.1.26
– ident: e_1_2_5_16_1
  doi: 10.1161/01.CIR.0000093661.90582.c4
– ident: e_1_2_5_26_1
  doi: 10.1152/ajpcell.1992.263.2.C389
– ident: e_1_2_5_39_1
  doi: 10.1161/01.ATV.18.5.677
– ident: e_1_2_5_17_1
  doi: 10.1161/01.RES.86.5.494
– ident: e_1_2_5_32_1
  doi: 10.1152/ajpheart.2000.278.1.H233
– ident: e_1_2_5_19_1
  doi: 10.1074/jbc.M305150200
– ident: e_1_2_5_41_1
  doi: 10.1111/j.1464-410X.2006.06059.x
– ident: e_1_2_5_5_1
  doi: 10.1161/01.ATV.20.8.1903
– ident: e_1_2_5_4_1
  doi: 10.1016/j.bbrc.2005.08.157
– ident: e_1_2_5_37_1
  doi: 10.1161/01.RES.87.12.1188
– ident: e_1_2_5_33_1
  doi: 10.1038/sj.jcbfm.9600235
– ident: e_1_2_5_18_1
  doi: 10.1161/01.RES.0000104087.29395.66
– ident: e_1_2_5_13_1
  doi: 10.1152/ajpregu.00323.2002
– ident: e_1_2_5_24_1
  doi: 10.1161/01.ATV.0000158311.24443.af
– ident: e_1_2_5_28_1
  doi: 10.1152/ajpheart.00515.2003
– ident: e_1_2_5_25_1
  doi: 10.1161/01.RES.0000091261.19387.AE
– ident: e_1_2_5_20_1
  doi: 10.1161/01.RES.79.1.32
– ident: e_1_2_5_3_1
  doi: 10.1161/01.RES.78.5.750
– ident: e_1_2_5_29_1
  doi: 10.1111/j.1469-7793.2000.00761.x
– ident: e_1_2_5_30_1
  doi: 10.1161/01.RES.86.1.e7
– ident: e_1_2_5_11_1
  doi: 10.1172/JCI11235
– ident: e_1_2_5_23_1
  doi: 10.1016/j.cardiores.2005.04.032
– ident: e_1_2_5_9_1
  doi: 10.1161/01.RES.82.10.1094
– ident: e_1_2_5_7_1
  doi: 10.1002/bit.20263
SSID ssj0013099
Score 2.2343202
Snippet The flowing blood generates shear stress at the endothelial cell surface. In endothelial cells, NAD(P)H oxidase complexes have been identified as major sources...
The flowing blood generates shear stress at the endothelial cell surface. In endothelial cells, NAD(P)H oxidase complexes have been identified as major sources...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 557
SubjectTerms Basement Membrane
Cardiovascular
Cells, Cultured
Down-Regulation - drug effects
Down-Regulation - physiology
Endothelium, Vascular - cytology
Endothelium, Vascular - metabolism
Enzyme Inhibitors - pharmacology
Humans
Membrane Glycoproteins - genetics
Membrane Glycoproteins - metabolism
NADPH Oxidase 2
NADPH Oxidases - genetics
NADPH Oxidases - metabolism
NG-Nitroarginine Methyl Ester - pharmacology
Nitric Oxide - genetics
Nitric Oxide - metabolism
Nitric Oxide Synthase Type III - genetics
Nitric Oxide Synthase Type III - metabolism
Oxygen - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
Stress, Mechanical
Superoxides - metabolism
Up-Regulation - drug effects
Up-Regulation - physiology
SummonAdditionalLinks – databaseName: Wiley Online Library
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcFT1xIVXeYTy8AEhOKRs7DiJjyvKalWJZYVaqScsx4_tAk1Qd1diOfEJfCNfwthOtiz0gOAYO7Y19sx4xvMCeCqoUpY5nWpWuRTlf5VWuVKpzWnJdWZ0rnyg8JtJMT7Jj0756Q6M-liYmB9i8-DmKSPwa0_gqu6qkGQ-2cCHoPq30XzgGxF5kRVnrPSeXYfv6KUxYSDEJml4ybMugg6neXnVJNs3VJ81-CoJ9E9Hyl8F3HBDjW7ArIctOqZ8PFgt6wP99be0j_8P_E243gmxZBix7hbs2OY27A0bVODP1-QZmcZh7Wy9B-8nb398-x4CVFC4JRd21hUMI60jk-Hh8-mLMWm_zA1ep6ReE8RQHyJMFr7UNomhLGTekFBMkNjG-JCxT0g1xNscFnfgZPT6-NU47Yo6pBp5RZ6WwrpC5aVllSpEXefeEixcWTPkHkJVFXeo5GRaO2qEw6-Bzc1AG2qo4EJzdhd2m7ax94E4g82oP-YmQ9RyVa21oAYVSKVqrq1OIO0PUn6OuTtk1HmY7DfQl-EsZNzABEh_2jJ2L6LnrESlTFLJeZnAkx4LJNKhB1Q1tl0tZFEhK2OUJXAv4sTlkkVVoqxQJFBuYcvmB5_he7unmZ-FTN9ZJVDCwFVpQIa_gkIeH00zXPDBvwzah2vhjcm77PCHsLu8WNlHKHUt68eBpn4C5EErkQ
  priority: 102
  providerName: Wiley-Blackwell
Title NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells
URI http://jp.physoc.org/content/576/2/557.abstract
https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2006.111070
https://www.ncbi.nlm.nih.gov/pubmed/16873416
https://search.proquest.com/docview/68963323
https://pubmed.ncbi.nlm.nih.gov/PMC1890367
Volume 576
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61PXFBQHkESvEBITiku3HsJD6uCtVS1GWFWqkHJMvxAxZ1k6rbSt1_z9iOCys4IC6RYkeynW_GnvG8AF4LqpQtnc512bgc5X-VN0yp3DJac10YzZQPFD6ZVdMzdnzOz7eAp1iY4LSv28VBd7E86Bbfg2_l5VKPkp_YaH5yWDQCN956tA3bSKBJRU-mg7EQdynCa14M8XJFUY5-hNuCPlocfBPSu88aWjU1bubV5tGU0gX_TfT804Pyd8k2HE1HD-D-IFOSSZz7Q9iy3SPYnXSoTy_X5A2Zx_n039a78HX2OQ_RIihpkqtYiB6hIb0js8n7t_N3U9LfLgyebaRdEyQXH69LVr7uNYlxJWTRkVDZj9jO-PitCyRh4g0Aq8dwdvTh9HCaDxUWco2My_JaWFcpVtuyUZVoW-bNssLVbYmsLFTTcIcaR6G1o0Y4fBtbZsbaUEMFF5qXT2Cn6zv7DIgz2IzKHDMF4uyaVmtBDWpzSrVcW51Bnn6uvIyJNGRUQEqZcPE1MSsZccmAJARk7F5FN1aJGpKkkvM6g1cJGYlM4ReqOtvfrGTV4L5S0jKDpxGnX0MOWGdQbyB494FPt73Zg1QY0m4PVJcBDVj_0yrk6fG8wAGf__dwL-BeuPXxTjR8D3aur27sS5SDrtt91AA-fvLPL3Q_8MBPMAgKaA
link.rule.ids 230,315,730,783,787,888,1378,27936,27937,46306,46730,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LbtQwcFTKAS68yiO86gNCcEjZOHFiH1eUspR2WaGt1BOW40e7LSSouyuxnPgEvpEvYRwnWxZ6QIhj7NjW2DPjGc8L4ImgStnU6Vin3MUo_6uYZ0rFNqMF04nRmfKBwvvDfHCQ7R6ywzV43cXChPwQywc3TxkNv_YE7h-kWyr32QZOGt2_DvYD34jYewkuI-WnvobD9nt6bk7oCbFMG16wpI2hw3leXDTL6h3V5Q2-SAb905XyVxG3uaN2rsNxB11wTTndms_KLf31t8SP_wH8G3CtlWNJPyDeTViz1S3Y6Feow39akKdkFIbVR4sN-DB89-Pb9yZGBeVbcmaP2pphpHZk2N9-Nno-IPWXicEblZQLgkjqo4TJ1FfbJiGahUwq0tQTJLYyPmrsIxIO8WaH6W042Hk1fjmI27oOsUZ2kcWFsC5XWWFTrnJRlpk3BgtXlCkyEKE4Zw71nERrR41w-NWzmelpQw0VTGiW3oH1qq7sPSDOYDOqkJlJELscL7UW1KAOqVTJtNURxN1Jys8hfYcMak8quw30lThzGTYwAtIdtwzd0-A8K1Evk1QyVkSw2aGBRFL0gKrK1vOpzDlys5SmEdwNSHG-ZM4LFBfyCIoVdFn-4JN8r_ZUk-Mm2XfCBQoZuCptsOGvoJDj3VGCC97_l0GbcGUw3t-Te2-Gbx_A1ebJyXvwsIewPjub20cohM3Kxw2B_QRkGy-p
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIiEuvMojvOoDQnBIu3HsJD6uKKulwLJCrdQTluPHsi0kVXdXYjnxE_iN_BLGcbJloQcEx9ixrbFn7G88nhmAJ4IqZVOnY50WLkb8r-KCKRVbRnOuE6OZ8o7Cb0fZ8JDtH_GjDRh0vjAhPsTqws1LRrNfewE_Na4Vch9s4LhR_etgPvCFyLyX4DLLEAR7cPSenlsTekKsoobnPGld6LCf3Yt6WT-iurDBF0HQP19S_opwmyNqcB0mHXHhZcrJzmJe7uivv8V9_H_qb8C1FsWSfmC7m7Bhq1uw1a9Qg_-8JE_JODSrJ8st-DB69-Pb98ZDBdEtObOTNmMYqR0Z9feejZ8PSf1lavA8JeWSIIt6H2Ey87m2SfBlIdOKNNkEia2M9xn7hGJDvNFhdhsOBy8PXgzjNqtDrHGzYHEurMsUy21aqEyUJfOmYOHyMsXtQ6ii4A61nERrR41w-NWzzPS0oYYKLjRP78BmVVf2HhBnsBgVSGYS5C1XlFoLalCDVKrk2uoI4m4h5WkI3iGD0pPKbgJ9Hs5MhgmMgHSrLUP1LDydlaiVSSo5zyPY7rhAoiB6QlVl68VMZgXuZSlNI7gbeOJ8yKzIESxkEeRr3LL6wYf4Xq-pph-bUN9JIRBi4Ki0YYa_okIe7I8THPD-vzTahivjvYF882r0-gFcbe6b_PMd_hA252cL-wgR2Lx83IjXT8FMLlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NO-mediated+regulation+of+NAD%28P%29H+oxidase+by+laminar+shear+stress+in+human+endothelial+cells&rft.jtitle=The+Journal+of+physiology&rft.au=Duerrschmidt%2C+Nicole&rft.au=Stielow%2C+Claudia&rft.au=Muller%2C+Gregor&rft.au=Pagano%2C+Patrick+J&rft.date=2006-10-15&rft.issn=0022-3751&rft.volume=576&rft.spage=557&rft.epage=567&rft_id=info:doi/10.1113%2Fjphysiol.2006.111070&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon