NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells
The flowing blood generates shear stress at the endothelial cell surface. In endothelial cells, NAD(P)H oxidase complexes have been identified as major sources of superoxide anion (·O 2 â ) formation. In this study, we analysed the effect of laminar shear stress on ·O 2 â formation by cytochro...
Saved in:
Published in | The Journal of physiology Vol. 576; no. 2; pp. 557 - 567 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
The Physiological Society
15.10.2006
Blackwell Publishing Ltd Blackwell Science Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The flowing blood generates shear stress at the endothelial cell surface. In endothelial cells, NAD(P)H oxidase complexes
have been identified as major sources of superoxide anion (·O 2 â ) formation. In this study, we analysed the effect of laminar shear stress on ·O 2 â formation by cytochrome c reduction assay and on NAD(P)H oxidase subunit expression by standard calibrated competitive reverse transcription-polymerase
chain reaction and Western blot in human endothelial cells. Primary cultures of human umbilical vein endothelial cells were
exposed to laminar shear stress in a cone-and-plate viscometer for up to 24 h. Short-term application of shear stress transiently
induced ·O 2 â formation. This was inhibited by NAD(P)H oxidase inhibitor gp91ds- tat , but NAD(P)H oxidase subunit expression was unchanged. Long-term arterial laminar shear stress (30 dyne cm â2 , 24 h) down-regulated ·O 2 â formation, and mRNA and protein expression of NAD(P)H oxidase subunits Nox2/gp91 phox and p47 phox . In parallel, endothelial NO formation and eNOS, but not Cu/Zn SOD, protein expression was increased. Down-regulation of
·O 2 â formation, gp91 phox and p47 phox expression by long-term laminar shear stress was blocked by l -NAME. NO donor DETA-NO down-regulates ·O 2 â formation, gp91 phox and p47 phox expression in static cultures. In conclusion, our data suggest a transient activation of ·O 2 â formation by short-term shear stress, followed by a down-regulation of endothelial NAD(P)H oxidase in response to long-term
laminar shear stress. NO-mediated down-regulation by shear stress preferentially affects the gp91 phox /p47 phox -containing NAD(P)H oxidase complex. This mechanism might contribute to the regulation of endothelial NO/·O 2 â balance and the vasoprotective potential of physiological levels of laminar shear stress. |
---|---|
AbstractList | The flowing blood generates shear stress at the endothelial cell surface. In endothelial cells, NAD(P)H oxidase complexes have been identified as major sources of superoxide anion (·O2−) formation. In this study, we analysed the effect of laminar shear stress on ·O2− formation by cytochrome c reduction assay and on NAD(P)H oxidase subunit expression by standard calibrated competitive reverse transcription‐polymerase chain reaction and Western blot in human endothelial cells. Primary cultures of human umbilical vein endothelial cells were exposed to laminar shear stress in a cone‐and‐plate viscometer for up to 24 h. Short‐term application of shear stress transiently induced ·O2− formation. This was inhibited by NAD(P)H oxidase inhibitor gp91ds‐tat, but NAD(P)H oxidase subunit expression was unchanged. Long‐term arterial laminar shear stress (30 dyne cm−2, 24 h) down‐regulated ·O2− formation, and mRNA and protein expression of NAD(P)H oxidase subunits Nox2/gp91phox and p47phox. In parallel, endothelial NO formation and eNOS, but not Cu/Zn SOD, protein expression was increased. Down‐regulation of ·O2− formation, gp91phox and p47phox expression by long‐term laminar shear stress was blocked by l‐NAME. NO donor DETA‐NO down‐regulates ·O2− formation, gp91phox and p47phox expression in static cultures. In conclusion, our data suggest a transient activation of ·O2− formation by short‐term shear stress, followed by a down‐regulation of endothelial NAD(P)H oxidase in response to long‐term laminar shear stress. NO‐mediated down‐regulation by shear stress preferentially affects the gp91phox/p47phox‐containing NAD(P)H oxidase complex. This mechanism might contribute to the regulation of endothelial NO/·O2− balance and the vasoprotective potential of physiological levels of laminar shear stress. The flowing blood generates shear stress at the endothelial cell surface. In endothelial cells, NAD(P)H oxidase complexes have been identified as major sources of superoxide anion (.O(2)(-)) formation. In this study, we analysed the effect of laminar shear stress on .O(2)(-) formation by cytochrome c reduction assay and on NAD(P)H oxidase subunit expression by standard calibrated competitive reverse transcription-polymerase chain reaction and Western blot in human endothelial cells. Primary cultures of human umbilical vein endothelial cells were exposed to laminar shear stress in a cone-and-plate viscometer for up to 24 h. Short-term application of shear stress transiently induced .O(2)(-) formation. This was inhibited by NAD(P)H oxidase inhibitor gp91ds-tat, but NAD(P)H oxidase subunit expression was unchanged. Long-term arterial laminar shear stress (30 dyne cm(-2), 24 h) down-regulated .O(2)(-) formation, and mRNA and protein expression of NAD(P)H oxidase subunits Nox2/gp91(phox) and p47(phox). In parallel, endothelial NO formation and eNOS, but not Cu/Zn SOD, protein expression was increased. Down-regulation of .O(2)(-) formation, gp91(phox) and p47(phox) expression by long-term laminar shear stress was blocked by l-NAME. NO donor DETA-NO down-regulates .O(2)(-) formation, gp91(phox) and p47(phox) expression in static cultures. In conclusion, our data suggest a transient activation of .O(2)(-) formation by short-term shear stress, followed by a down-regulation of endothelial NAD(P)H oxidase in response to long-term laminar shear stress. NO-mediated down-regulation by shear stress preferentially affects the gp91(phox)/p47(phox)-containing NAD(P)H oxidase complex. This mechanism might contribute to the regulation of endothelial NO/.O(2)(-) balance and the vasoprotective potential of physiological levels of laminar shear stress. The flowing blood generates shear stress at the endothelial cell surface. In endothelial cells, NAD(P)H oxidase complexes have been identified as major sources of superoxide anion (·O 2 − ) formation. In this study, we analysed the effect of laminar shear stress on ·O 2 − formation by cytochrome c reduction assay and on NAD(P)H oxidase subunit expression by standard calibrated competitive reverse transcription-polymerase chain reaction and Western blot in human endothelial cells. Primary cultures of human umbilical vein endothelial cells were exposed to laminar shear stress in a cone-and-plate viscometer for up to 24 h. Short-term application of shear stress transiently induced ·O 2 − formation. This was inhibited by NAD(P)H oxidase inhibitor gp91ds- tat , but NAD(P)H oxidase subunit expression was unchanged. Long-term arterial laminar shear stress (30 dyne cm −2 , 24 h) down-regulated ·O 2 − formation, and mRNA and protein expression of NAD(P)H oxidase subunits Nox2/gp91 phox and p47 phox . In parallel, endothelial NO formation and eNOS, but not Cu/Zn SOD, protein expression was increased. Down-regulation of ·O 2 − formation, gp91 phox and p47 phox expression by long-term laminar shear stress was blocked by l -NAME. NO donor DETA-NO down-regulates ·O 2 − formation, gp91 phox and p47 phox expression in static cultures. In conclusion, our data suggest a transient activation of ·O 2 − formation by short-term shear stress, followed by a down-regulation of endothelial NAD(P)H oxidase in response to long-term laminar shear stress. NO-mediated down-regulation by shear stress preferentially affects the gp91 phox /p47 phox -containing NAD(P)H oxidase complex. This mechanism might contribute to the regulation of endothelial NO/·O 2 − balance and the vasoprotective potential of physiological levels of laminar shear stress. The flowing blood generates shear stress at the endothelial cell surface. In endothelial cells, NAD(P)H oxidase complexes have been identified as major sources of superoxide anion (·O 2 â ) formation. In this study, we analysed the effect of laminar shear stress on ·O 2 â formation by cytochrome c reduction assay and on NAD(P)H oxidase subunit expression by standard calibrated competitive reverse transcription-polymerase chain reaction and Western blot in human endothelial cells. Primary cultures of human umbilical vein endothelial cells were exposed to laminar shear stress in a cone-and-plate viscometer for up to 24 h. Short-term application of shear stress transiently induced ·O 2 â formation. This was inhibited by NAD(P)H oxidase inhibitor gp91ds- tat , but NAD(P)H oxidase subunit expression was unchanged. Long-term arterial laminar shear stress (30 dyne cm â2 , 24 h) down-regulated ·O 2 â formation, and mRNA and protein expression of NAD(P)H oxidase subunits Nox2/gp91 phox and p47 phox . In parallel, endothelial NO formation and eNOS, but not Cu/Zn SOD, protein expression was increased. Down-regulation of ·O 2 â formation, gp91 phox and p47 phox expression by long-term laminar shear stress was blocked by l -NAME. NO donor DETA-NO down-regulates ·O 2 â formation, gp91 phox and p47 phox expression in static cultures. In conclusion, our data suggest a transient activation of ·O 2 â formation by short-term shear stress, followed by a down-regulation of endothelial NAD(P)H oxidase in response to long-term laminar shear stress. NO-mediated down-regulation by shear stress preferentially affects the gp91 phox /p47 phox -containing NAD(P)H oxidase complex. This mechanism might contribute to the regulation of endothelial NO/·O 2 â balance and the vasoprotective potential of physiological levels of laminar shear stress. |
Author | Nicole Duerrschmidt Patrick J. Pagano Henning Morawietz Claudia Stielow Gregor Muller |
Author_xml | – sequence: 1 givenname: Nicole surname: Duerrschmidt fullname: Duerrschmidt, Nicole – sequence: 2 givenname: Claudia surname: Stielow fullname: Stielow, Claudia – sequence: 3 givenname: Gregor surname: Muller fullname: Muller, Gregor – sequence: 4 givenname: Patrick J. surname: Pagano fullname: Pagano, Patrick J. – sequence: 5 givenname: Henning surname: Morawietz fullname: Morawietz, Henning |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16873416$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1TAQhS1URG8L_wAhr6AsUvyI7XiDVJVHQVXbRdkhWU4yuXHlxLd2Qpt_T6JcXjs2Y419vjMenSN00IceEHpJySmllL-727VTcsGfMkLkckUUeYI2NJc6U0rzA7QhhLGMK0EP0VFKd4RQTrR-hg6pLBTPqdyg71fXWQe1swPUOMJ29HZwocehwVdnH05u3l7g8OhqmwCXE_a2c72NOLWw1CFCStj1uB0722Po6zC04J31uALv03P0tLE-wYv9eYy-ffp4e36RXV5__nJ-dplVeVHkmdLQSJsr4IWVuixzxRTTjSp5zoS2RSEaITStqobVupk7AnlNqprVTAtdCX6M3q--u7Gcl6mgH6L1ZhddZ-NkgnXm35fetWYbfhhaaMKlmg1e7w1iuB8hDaZzaVnB9hDGZGShJeeMz8J8FVYxpBSh-T2EErPEYn7FYpZYzBrLjL36-4N_oH0Os0CvggfnYfovU3P79YbO9My-WdnWbdsHF8Gs6hQqB8NkhJKGGSEU_wl2JK4j |
CitedBy_id | crossref_primary_10_1089_ars_2013_5414 crossref_primary_10_1089_ars_2008_2408 crossref_primary_10_1089_ars_2008_2403 crossref_primary_10_1152_ajpheart_00138_2007 crossref_primary_10_1007_s10439_009_9822_y crossref_primary_10_1161_CIRCRESAHA_111_243972 crossref_primary_10_1152_ajpheart_00408_2015 crossref_primary_10_1097_JES_0b013e318279cbbd crossref_primary_10_1016_j_niox_2015_01_003 crossref_primary_10_1186_1423_0127_21_3 crossref_primary_10_3389_fcimb_2022_883448 crossref_primary_10_1016_j_pharmthera_2008_08_005 crossref_primary_10_1124_jpet_108_145557 crossref_primary_10_1016_j_freeradbiomed_2011_11_002 crossref_primary_10_1016_j_freeradbiomed_2017_02_049 crossref_primary_10_1152_physrev_00004_2012 crossref_primary_10_1038_jcbfm_2015_102 crossref_primary_10_1016_j_atherosclerosissup_2017_05_039 crossref_primary_10_1016_j_clnesp_2016_06_009 crossref_primary_10_1007_s12195_014_0357_4 crossref_primary_10_1007_s11552_010_9289_1 crossref_primary_10_1249_MSS_0000000000002014 crossref_primary_10_1016_j_freeradbiomed_2019_09_029 crossref_primary_10_1016_j_freeradbiomed_2006_10_043 crossref_primary_10_1093_cvr_cvp154 crossref_primary_10_1111_1440_1681_12338 crossref_primary_10_1089_ars_2018_7720 crossref_primary_10_1123_jpah_2018_0568 crossref_primary_10_1016_j_jmbbm_2022_105545 crossref_primary_10_1155_2020_5245308 crossref_primary_10_1113_EP087576 crossref_primary_10_1074_jbc_M115_713149 crossref_primary_10_3389_fendo_2022_892184 crossref_primary_10_1152_ajpheart_00828_2013 crossref_primary_10_1016_j_redox_2021_102150 crossref_primary_10_1016_j_sna_2023_114841 crossref_primary_10_1111_j_1440_1681_2009_05317_x crossref_primary_10_1016_j_abb_2009_01_022 crossref_primary_10_1165_rcmb_2010_0331RT crossref_primary_10_1016_j_freeradbiomed_2017_01_025 crossref_primary_10_1016_j_atherosclerosissup_2017_05_023 crossref_primary_10_1039_D4AN00507D crossref_primary_10_1016_j_lfs_2008_04_010 crossref_primary_10_1016_j_redox_2022_102549 crossref_primary_10_2174_1381612826666200318152049 crossref_primary_10_1016_j_atherosclerosissup_2012_10_013 crossref_primary_10_1016_j_scispo_2008_10_003 crossref_primary_10_1016_j_freeradbiomed_2013_02_025 crossref_primary_10_1016_j_jvs_2008_06_039 crossref_primary_10_1371_journal_pone_0111409 crossref_primary_10_1016_j_atherosclerosissup_2015_02_010 crossref_primary_10_1093_cvr_cvt127 crossref_primary_10_1007_s10439_011_0436_9 crossref_primary_10_1016_j_biocel_2009_05_011 crossref_primary_10_1002_jcp_30075 crossref_primary_10_1111_j_1440_1681_2008_05055_x crossref_primary_10_1152_ajpheart_00114_2008 crossref_primary_10_1016_j_redox_2017_04_008 crossref_primary_10_1007_s00018_012_1009_2 crossref_primary_10_1089_ars_2009_2561 crossref_primary_10_1089_ars_2013_5620 crossref_primary_10_1007_s00395_011_0170_3 crossref_primary_10_1007_s11906_011_0238_3 crossref_primary_10_1016_j_freeradbiomed_2018_12_026 crossref_primary_10_1139_apnm_2018_0420 crossref_primary_10_1016_j_abb_2015_11_005 crossref_primary_10_1152_ajpheart_00727_2008 crossref_primary_10_1007_s00395_011_0188_6 crossref_primary_10_1249_MSS_0b013e318199cee8 crossref_primary_10_1002_jcp_22629 crossref_primary_10_1111_apha_12725 crossref_primary_10_1089_ars_2010_3679 crossref_primary_10_1111_jsm_12391 |
Cites_doi | 10.1172/JCI107470 10.1161/01.CIR.94.7.1682 10.1161/01.RES.0000078604.47063.2B 10.1161/01.ATV.0000035392.38687.65 10.1152/ajpheart.1999.277.4.H1647 10.1172/JCI116092 10.1006/bbrc.2000.2354 10.1161/01.CIR.0000154560.88933.7E 10.1161/hc4001.097056 10.1161/hh1701.096037 10.1161/01.RES.0000181759.63239.21 10.1161/hh2301.100806 10.1161/01.ATV.19.3.656 10.1152/ajpheart.00025.2004 10.1161/01.RES.87.1.26 10.1161/01.CIR.0000093661.90582.c4 10.1152/ajpcell.1992.263.2.C389 10.1161/01.ATV.18.5.677 10.1161/01.RES.86.5.494 10.1152/ajpheart.2000.278.1.H233 10.1074/jbc.M305150200 10.1111/j.1464-410X.2006.06059.x 10.1161/01.ATV.20.8.1903 10.1016/j.bbrc.2005.08.157 10.1161/01.RES.87.12.1188 10.1038/sj.jcbfm.9600235 10.1161/01.RES.0000104087.29395.66 10.1152/ajpregu.00323.2002 10.1161/01.ATV.0000158311.24443.af 10.1152/ajpheart.00515.2003 10.1161/01.RES.0000091261.19387.AE 10.1161/01.RES.79.1.32 10.1161/01.RES.78.5.750 10.1111/j.1469-7793.2000.00761.x 10.1161/01.RES.86.1.e7 10.1172/JCI11235 10.1016/j.cardiores.2005.04.032 10.1161/01.RES.82.10.1094 10.1002/bit.20263 |
ContentType | Journal Article |
Copyright | 2006 The Journal of Physiology © 2006 The Physiological Society 2006 The Authors. Journal compilation © 2006 The Physiological Society 2006 |
Copyright_xml | – notice: 2006 The Journal of Physiology © 2006 The Physiological Society – notice: 2006 The Authors. Journal compilation © 2006 The Physiological Society 2006 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1113/jphysiol.2006.111070 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 567 |
ExternalDocumentID | 10_1113_jphysiol_2006_111070 16873416 TJP1734 576_2_557 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 05W 0R 0YM 10A 123 1OB 1OC 24P 29L 2WC 31 33P 3N 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 55 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAONW AAVGM AAZKR ABCUV ABFLS ABHUG ABITZ ABIVO ABOCM ABPPZ ABPTK ABPVW ABUFD ABWRO ACAHQ ACFBH ACGFS ACIWK ACMXC ACNCT ACPOU ACPRK ACXME ACXQS ADACO ADAWD ADBBV ADDAD ADEOM ADIZJ ADXAS ADZMN AEIMD AEUQT AFBPY AFFNX AFPWT AFZJQ AGJLS ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DZ E3Z EBS EJD EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GA GJ GODZA GX1 H.X H13 HZ HZI IA IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LI0 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NEJ NF O0- O66 O9- OHT OK1 OVD P2P P2W P2X P2Z P4A P4B P4D Q.N Q11 QB0 R.K RIG ROL RPM RX1 SUPJJ TLM TN5 UB1 UNR UPT UQL V8K VH1 W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WT WXI WYISQ X X7M XG1 Y3 YZZ ZA5 ZZTAW --- -DZ -~X .3N .55 .GA .GJ .Y3 0R~ 18M 31~ 36B 3EH AAFWJ AAHHS AANLZ AASGY AAXRX AAYJJ ABCQN ABEML ABJNI ABQWH ABXGK ACCFJ ACCZN ACGFO ACGOF ACSCC ACXBN ADBTR ADKYN ADMGS ADOZA AEEZP AEGXH AEIGN AEQDE AEUYR AFEBI AFFPM AFGKR AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE AMYDB AOIJS CHEAL EMOBN FA8 HF~ HGLYW HZ~ H~9 IPNFZ KBYEO LH4 NF~ OIG SAMSI TEORI TR2 UKR W8F WHG WXSBR XOL YBU YHG YKV YQT YSK YXB YYP ZGI ZXP ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c4884-79ef6a47e38a69bb472729f7b34259a885f5591ccf2d9f85f0e4d0cd2d2959c53 |
IEDL.DBID | RPM |
ISSN | 0022-3751 |
IngestDate | Tue Sep 17 20:53:29 EDT 2024 Fri Oct 25 06:14:45 EDT 2024 Fri Aug 23 00:48:19 EDT 2024 Sat Sep 28 07:40:54 EDT 2024 Sat Aug 24 00:53:38 EDT 2024 Fri Jan 15 01:58:32 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4884-79ef6a47e38a69bb472729f7b34259a885f5591ccf2d9f85f0e4d0cd2d2959c53 |
Notes | N. Duerrschmidt and C. Stielow contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1890367 |
PMID | 16873416 |
PQID | 68963323 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1890367 proquest_miscellaneous_68963323 crossref_primary_10_1113_jphysiol_2006_111070 pubmed_primary_16873416 wiley_primary_10_1113_jphysiol_2006_111070_TJP1734 highwire_physiosociety_576_2_557 |
PublicationCentury | 2000 |
PublicationDate | 2006-10-15 |
PublicationDateYYYYMMDD | 2006-10-15 |
PublicationDate_xml | – month: 10 year: 2006 text: 2006-10-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2006 |
Publisher | The Physiological Society Blackwell Publishing Ltd Blackwell Science Inc |
Publisher_xml | – name: The Physiological Society – name: Blackwell Publishing Ltd – name: Blackwell Science Inc |
References | 2004; 88 2003b; 278 2006; 97 1973; 52 2000; 278 2005; 111 1992; 263 2000; 87 2000; 20 2000; 86 2005; 338 1996; 94 1998; 82 2001; 108 2003; 93 2001; 89 1996; 79 2001; 104 2005; 67 1996; 78 2005; 25 1992; 90 1998; 18 2003; 108 2003a; 93 2003; 92 1999; 19 2000; 269 2005; 288 2000; 525 2006; 26 2002; 22 1996; 271 2005; 97 1999; 277 2003; 285 2003; 284 12482742 - Am J Physiol Regul Integr Comp Physiol. 2003 Jan;284(1):R1-12 15331375 - Am J Physiol Heart Circ Physiol. 2005 Jan;288(1):H336-43 10720409 - Circ Res. 2000 Mar 17;86(5):494-501 12958034 - Am J Physiol Heart Circ Physiol. 2003 Dec;285(6):H2290-7 11532901 - Circ Res. 2001 Aug 31;89(5):408-14 11696579 - J Clin Invest. 2001 Nov;108(9):1341-8 10644603 - Am J Physiol Heart Circ Physiol. 2000 Jan;278(1):H233-8 10884368 - Circ Res. 2000 Jul 7;87(1):26-32 16643490 - BJU Int. 2006 May;97(5):1047-52 11110777 - Circ Res. 2000 Dec 8;87(12):1188-94 11717166 - Circ Res. 2001 Nov 23;89(11):1073-80 10720482 - Biochem Biophys Res Commun. 2000 Mar 24;269(3):713-7 12764025 - Circ Res. 2003 Jun 27;92(12):1344-51 12426214 - Arterioscler Thromb Vasc Biol. 2002 Nov 1;22(11):1845-51 15692095 - Arterioscler Thromb Vasc Biol. 2005 Apr;25(4):809-14 16153593 - Biochem Biophys Res Commun. 2005 Dec 9;338(1):536-42 12958309 - J Biol Chem. 2003 Nov 21;278(47):47291-8 1514586 - Am J Physiol. 1992 Aug;263(2 Pt 1):C389-96 8840861 - Circulation. 1996 Oct 1;94(7):1682-9 10625313 - Circ Res. 2000 Jan 7;86(1):E7-E12 15699275 - Circulation. 2005 Feb 8;111(5):555-62 10856127 - J Physiol. 2000 Jun 15;525 Pt 3:761-70 10516206 - Am J Physiol. 1999 Oct;277(4 Pt 2):H1647-53 8620594 - Circ Res. 1996 May;78(5):750-8 16109921 - Circ Res. 2005 Sep 16;97(6):533-40 16222243 - J Cereb Blood Flow Metab. 2006 Jun;26(6):836-45 11591612 - Circulation. 2001 Oct 9;104(15):1767-72 1385480 - J Clin Invest. 1992 Nov;90(5):2092-6 15532041 - Biotechnol Bioeng. 2004 Dec 20;88(6):750-8 4355998 - J Clin Invest. 1973 Nov;52(11):2745-56 8897960 - Am J Physiol. 1996 Oct;271(4 Pt 2):H1626-34 10073970 - Arterioscler Thromb Vasc Biol. 1999 Mar;19(3):656-64 10938010 - Arterioscler Thromb Vasc Biol. 2000 Aug;20(8):1903-11 14593003 - Circ Res. 2003 Dec 12;93(12):1225-32 9598824 - Arterioscler Thromb Vasc Biol. 1998 May;18(5):677-85 9622162 - Circ Res. 1998 Jun 1;82(10):1094-101 14581381 - Circulation. 2003 Oct 28;108(17):2034-40 8925565 - Circ Res. 1996 Jul;79(1):32-7 15935334 - Cardiovasc Res. 2005 Aug 1;67(2):187-97 12919951 - Circ Res. 2003 Sep 19;93(6):573-80 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 Jones SA (e_1_2_5_22_1) 1996; 271 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 90 start-page: 2092 year: 1992 end-page: 2096 article-title: Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase publication-title: J Clin Invest – volume: 111 start-page: 555 year: 2005 end-page: 562 article-title: Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease publication-title: Circulation – volume: 22 start-page: 1845 year: 2002 end-page: 1851 article-title: Dose‐dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease publication-title: Arterioscler Thromb Vasc Biol – volume: 93 start-page: 573 year: 2003 end-page: 580 article-title: Mitochondrial sources of H O generation play a key role in flow‐mediated dilation in human coronary resistance arteries publication-title: Circ Res – volume: 87 start-page: 1188 year: 2000 end-page: 1194 article-title: Shear stress‐dependent regulation of the human β‐tubulin folding cofactor D gene publication-title: Circ Res – volume: 26 start-page: 836 year: 2006 end-page: 845 article-title: Flow‐induced cerebral vasodilatation involves activation of phosphatidylinositol‐3 kinase, NADPH‐oxidase, and nitric oxide synthase publication-title: J Cereb Blood Flow Metab – volume: 92 start-page: 1344 year: 2003 end-page: 1351 article-title: Effect of steady versus oscillatory flow on porcine coronary arterioles: involvement of NO and superoxide anion publication-title: Circ Res – volume: 97 start-page: 1047 year: 2006 end-page: 1052 article-title: Fluid shear stress‐induced nitric oxide production in human cavernosal endothelial cells: inhibition by hyperglycaemia publication-title: BJU Int – volume: 78 start-page: 750 year: 1996 end-page: 758 article-title: Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress‐induced nitric oxide production in native endothelial cells publication-title: Circ Res – volume: 18 start-page: 677 year: 1998 end-page: 685 article-title: Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force publication-title: Arterioscler Thromb Vasc Biol – volume: 108 start-page: 1341 year: 2001 end-page: 1348 article-title: Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site publication-title: J Clin Invest – volume: 52 start-page: 2745 year: 1973 end-page: 2756 article-title: Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria publication-title: J Clin Invest – volume: 94 start-page: 1682 year: 1996 end-page: 1689 article-title: Fluid flow inhibits endothelial adhesiveness. Nitric oxide and transcriptional regulation of VCAM‐1 publication-title: Circulation – volume: 79 start-page: 32 year: 1996 end-page: 37 article-title: Shear stress modulates expression of Cu/Zn superoxide dismutase in human aortic endothelial cells publication-title: Circ Res – volume: 271 start-page: H1626 year: 1996 end-page: H1634 article-title: Expression of phagocyte NADPH oxidase components in human endothelial cells publication-title: Am J Physiol – volume: 86 start-page: e7 year: 2000 end-page: e12 article-title: Effects of long‐term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS III‐mediated superoxide production, and vascular NO bioavailability publication-title: Circ Res – volume: 89 start-page: 1073 year: 2001 end-page: 1080 article-title: Shear stress regulates endothelial nitric oxide synthase expression through c‐Src by divergent signaling pathways publication-title: Circ Res – volume: 97 start-page: 533 year: 2005 end-page: 540 article-title: p47phox‐dependent NADPH oxidase regulates flow‐induced vascular remodeling publication-title: Circ Res – volume: 278 start-page: H233 year: 2000 end-page: H238 article-title: Cross talk of shear‐induced production of prostacyclin and nitric oxide in endothelial cells publication-title: Am J Physiol Heart Circ Physiol – volume: 269 start-page: 713 year: 2000 end-page: 717 article-title: Endothelin‐1 induces NAD(P)H oxidase in human endothelial cells publication-title: Biochem Biophys Res Commun – volume: 104 start-page: 1767 year: 2001 end-page: 1772 article-title: Induction of NAD(P)H oxidase by oxidized low‐density lipoprotein in human endothelial cells: antioxidative potential of hydroxymethylglutaryl coenzyme A reductase inhibitor therapy publication-title: Circulation – volume: 82 start-page: 1094 year: 1998 end-page: 1101 article-title: Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide‐producing NADH oxidase publication-title: Circ Res – volume: 88 start-page: 750 year: 2004 end-page: 758 article-title: Synergistic effect of shear stress and streptavidin‐biotin on the expression of endothelial vasodilator and cytoskeleton genes publication-title: Biotechnol Bioeng – volume: 86 start-page: 494 year: 2000 end-page: 501 article-title: NAD(P)H oxidase: role in cardiovascular biology and disease publication-title: Circ Res – volume: 284 start-page: R1 year: 2003 end-page: R12 article-title: Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 277 start-page: H1647 year: 1999 end-page: H1653 article-title: Evidence for peroxynitrite as a signaling molecule in flow‐dependent activation of c‐Jun NH ‐terminal kinase publication-title: Am J Physiol – volume: 108 start-page: 2034 year: 2003 end-page: 2040 article-title: Oxidative stress and cardiovascular injury: Part II: animal and human studies publication-title: Circulation – volume: 285 start-page: H2290 year: 2003 end-page: H2297 article-title: Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress publication-title: Am J Physiol Heart Circ Physiol – volume: 89 start-page: 408 year: 2001 end-page: 414 article-title: Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O and systolic blood pressure in mice publication-title: Circ Res – volume: 67 start-page: 187 year: 2005 end-page: 197 article-title: Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy? publication-title: Cardiovasc Res – volume: 19 start-page: 656 year: 1999 end-page: 664 article-title: Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis‐suppressive effects of shear stress on endothelial cells publication-title: Arterioscler Thromb Vasc Biol – volume: 20 start-page: 1903 year: 2000 end-page: 1911 article-title: Molecular characterization and localization of the NAD(P)H oxidase components gp91‐phox and p22‐phox in endothelial cells publication-title: Arterioscler Thromb Vasc Biol – volume: 278 start-page: 47291 year: 2003b end-page: 47298 article-title: Oscillatory shear stress stimulates endothelial production of O from p47phox‐dependent NAD(P)H oxidases, leading to monocyte adhesion publication-title: J Biol Chem – volume: 338 start-page: 536 year: 2005 end-page: 542 article-title: Redox regulation of vascular prostanoid synthesis by the nitric oxide‐superoxide system publication-title: Biochem Biophys Res Commun – volume: 288 start-page: H336 year: 2005 end-page: H343 article-title: Membrane depolarization and NADPH oxidase activation in aortic endothelium during ischemia reflect altered mechanotransduction publication-title: Am J Physiol Heart Circ Physiol – volume: 25 start-page: 809 year: 2005 end-page: 814 article-title: Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis publication-title: Arterioscler Thromb Vasc Biol – volume: 263 start-page: C389 year: 1992 end-page: C396 article-title: Physiological fluid shear stress causes downregulation of endothelin‐1 mRNA in bovine aortic endothelium publication-title: Am J Physiol – volume: 93 start-page: 1225 year: 2003a end-page: 1232 article-title: Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: implication for native LDL oxidation publication-title: Circ Res – volume: 87 start-page: 26 year: 2000 end-page: 32 article-title: A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall publication-title: Circ Res – volume: 525 start-page: 761 year: 2000 end-page: 770 article-title: Regulation of the endothelin system by shear stress in human endothelial cells publication-title: J Physiol – ident: e_1_2_5_21_1 doi: 10.1172/JCI107470 – volume: 271 start-page: H1626 year: 1996 ident: e_1_2_5_22_1 article-title: Expression of phagocyte NADPH oxidase components in human endothelial cells publication-title: Am J Physiol contributor: fullname: Jones SA – ident: e_1_2_5_40_1 doi: 10.1161/01.CIR.94.7.1682 – ident: e_1_2_5_38_1 doi: 10.1161/01.RES.0000078604.47063.2B – ident: e_1_2_5_36_1 doi: 10.1161/01.ATV.0000035392.38687.65 – ident: e_1_2_5_14_1 doi: 10.1152/ajpheart.1999.277.4.H1647 – ident: e_1_2_5_31_1 doi: 10.1172/JCI116092 – ident: e_1_2_5_12_1 doi: 10.1006/bbrc.2000.2354 – ident: e_1_2_5_2_1 doi: 10.1161/01.CIR.0000154560.88933.7E – ident: e_1_2_5_35_1 doi: 10.1161/hc4001.097056 – ident: e_1_2_5_34_1 doi: 10.1161/hh1701.096037 – ident: e_1_2_5_6_1 doi: 10.1161/01.RES.0000181759.63239.21 – ident: e_1_2_5_8_1 doi: 10.1161/hh2301.100806 – ident: e_1_2_5_10_1 doi: 10.1161/01.ATV.19.3.656 – ident: e_1_2_5_27_1 doi: 10.1152/ajpheart.00025.2004 – ident: e_1_2_5_15_1 doi: 10.1161/01.RES.87.1.26 – ident: e_1_2_5_16_1 doi: 10.1161/01.CIR.0000093661.90582.c4 – ident: e_1_2_5_26_1 doi: 10.1152/ajpcell.1992.263.2.C389 – ident: e_1_2_5_39_1 doi: 10.1161/01.ATV.18.5.677 – ident: e_1_2_5_17_1 doi: 10.1161/01.RES.86.5.494 – ident: e_1_2_5_32_1 doi: 10.1152/ajpheart.2000.278.1.H233 – ident: e_1_2_5_19_1 doi: 10.1074/jbc.M305150200 – ident: e_1_2_5_41_1 doi: 10.1111/j.1464-410X.2006.06059.x – ident: e_1_2_5_5_1 doi: 10.1161/01.ATV.20.8.1903 – ident: e_1_2_5_4_1 doi: 10.1016/j.bbrc.2005.08.157 – ident: e_1_2_5_37_1 doi: 10.1161/01.RES.87.12.1188 – ident: e_1_2_5_33_1 doi: 10.1038/sj.jcbfm.9600235 – ident: e_1_2_5_18_1 doi: 10.1161/01.RES.0000104087.29395.66 – ident: e_1_2_5_13_1 doi: 10.1152/ajpregu.00323.2002 – ident: e_1_2_5_24_1 doi: 10.1161/01.ATV.0000158311.24443.af – ident: e_1_2_5_28_1 doi: 10.1152/ajpheart.00515.2003 – ident: e_1_2_5_25_1 doi: 10.1161/01.RES.0000091261.19387.AE – ident: e_1_2_5_20_1 doi: 10.1161/01.RES.79.1.32 – ident: e_1_2_5_3_1 doi: 10.1161/01.RES.78.5.750 – ident: e_1_2_5_29_1 doi: 10.1111/j.1469-7793.2000.00761.x – ident: e_1_2_5_30_1 doi: 10.1161/01.RES.86.1.e7 – ident: e_1_2_5_11_1 doi: 10.1172/JCI11235 – ident: e_1_2_5_23_1 doi: 10.1016/j.cardiores.2005.04.032 – ident: e_1_2_5_9_1 doi: 10.1161/01.RES.82.10.1094 – ident: e_1_2_5_7_1 doi: 10.1002/bit.20263 |
SSID | ssj0013099 |
Score | 2.2343202 |
Snippet | The flowing blood generates shear stress at the endothelial cell surface. In endothelial cells, NAD(P)H oxidase complexes
have been identified as major sources... The flowing blood generates shear stress at the endothelial cell surface. In endothelial cells, NAD(P)H oxidase complexes have been identified as major sources... |
SourceID | pubmedcentral proquest crossref pubmed wiley highwire |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 557 |
SubjectTerms | Basement Membrane Cardiovascular Cells, Cultured Down-Regulation - drug effects Down-Regulation - physiology Endothelium, Vascular - cytology Endothelium, Vascular - metabolism Enzyme Inhibitors - pharmacology Humans Membrane Glycoproteins - genetics Membrane Glycoproteins - metabolism NADPH Oxidase 2 NADPH Oxidases - genetics NADPH Oxidases - metabolism NG-Nitroarginine Methyl Ester - pharmacology Nitric Oxide - genetics Nitric Oxide - metabolism Nitric Oxide Synthase Type III - genetics Nitric Oxide Synthase Type III - metabolism Oxygen - metabolism RNA, Messenger - genetics RNA, Messenger - metabolism Stress, Mechanical Superoxides - metabolism Up-Regulation - drug effects Up-Regulation - physiology |
SummonAdditionalLinks | – databaseName: Wiley Online Library dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcFT1xIVXeYTy8AEhOKRs7DiJjyvKalWJZYVaqScsx4_tAk1Qd1diOfEJfCNfwthOtiz0gOAYO7Y19sx4xvMCeCqoUpY5nWpWuRTlf5VWuVKpzWnJdWZ0rnyg8JtJMT7Jj0756Q6M-liYmB9i8-DmKSPwa0_gqu6qkGQ-2cCHoPq30XzgGxF5kRVnrPSeXYfv6KUxYSDEJml4ybMugg6neXnVJNs3VJ81-CoJ9E9Hyl8F3HBDjW7ArIctOqZ8PFgt6wP99be0j_8P_E243gmxZBix7hbs2OY27A0bVODP1-QZmcZh7Wy9B-8nb398-x4CVFC4JRd21hUMI60jk-Hh8-mLMWm_zA1ep6ReE8RQHyJMFr7UNomhLGTekFBMkNjG-JCxT0g1xNscFnfgZPT6-NU47Yo6pBp5RZ6WwrpC5aVllSpEXefeEixcWTPkHkJVFXeo5GRaO2qEw6-Bzc1AG2qo4EJzdhd2m7ax94E4g82oP-YmQ9RyVa21oAYVSKVqrq1OIO0PUn6OuTtk1HmY7DfQl-EsZNzABEh_2jJ2L6LnrESlTFLJeZnAkx4LJNKhB1Q1tl0tZFEhK2OUJXAv4sTlkkVVoqxQJFBuYcvmB5_he7unmZ-FTN9ZJVDCwFVpQIa_gkIeH00zXPDBvwzah2vhjcm77PCHsLu8WNlHKHUt68eBpn4C5EErkQ priority: 102 providerName: Wiley-Blackwell |
Title | NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells |
URI | http://jp.physoc.org/content/576/2/557.abstract https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2006.111070 https://www.ncbi.nlm.nih.gov/pubmed/16873416 https://search.proquest.com/docview/68963323 https://pubmed.ncbi.nlm.nih.gov/PMC1890367 |
Volume | 576 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61PXFBQHkESvEBITiku3HsJD6uCtVS1GWFWqkHJMvxAxZ1k6rbSt1_z9iOCys4IC6RYkeynW_GnvG8AF4LqpQtnc512bgc5X-VN0yp3DJac10YzZQPFD6ZVdMzdnzOz7eAp1iY4LSv28VBd7E86Bbfg2_l5VKPkp_YaH5yWDQCN956tA3bSKBJRU-mg7EQdynCa14M8XJFUY5-hNuCPlocfBPSu88aWjU1bubV5tGU0gX_TfT804Pyd8k2HE1HD-D-IFOSSZz7Q9iy3SPYnXSoTy_X5A2Zx_n039a78HX2OQ_RIihpkqtYiB6hIb0js8n7t_N3U9LfLgyebaRdEyQXH69LVr7uNYlxJWTRkVDZj9jO-PitCyRh4g0Aq8dwdvTh9HCaDxUWco2My_JaWFcpVtuyUZVoW-bNssLVbYmsLFTTcIcaR6G1o0Y4fBtbZsbaUEMFF5qXT2Cn6zv7DIgz2IzKHDMF4uyaVmtBDWpzSrVcW51Bnn6uvIyJNGRUQEqZcPE1MSsZccmAJARk7F5FN1aJGpKkkvM6g1cJGYlM4ReqOtvfrGTV4L5S0jKDpxGnX0MOWGdQbyB494FPt73Zg1QY0m4PVJcBDVj_0yrk6fG8wAGf__dwL-BeuPXxTjR8D3aur27sS5SDrtt91AA-fvLPL3Q_8MBPMAgKaA |
link.rule.ids | 230,315,730,783,787,888,1378,27936,27937,46306,46730,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LbtQwcFTKAS68yiO86gNCcEjZOHFiH1eUspR2WaGt1BOW40e7LSSouyuxnPgEvpEvYRwnWxZ6QIhj7NjW2DPjGc8L4ImgStnU6Vin3MUo_6uYZ0rFNqMF04nRmfKBwvvDfHCQ7R6ywzV43cXChPwQywc3TxkNv_YE7h-kWyr32QZOGt2_DvYD34jYewkuI-WnvobD9nt6bk7oCbFMG16wpI2hw3leXDTL6h3V5Q2-SAb905XyVxG3uaN2rsNxB11wTTndms_KLf31t8SP_wH8G3CtlWNJPyDeTViz1S3Y6Feow39akKdkFIbVR4sN-DB89-Pb9yZGBeVbcmaP2pphpHZk2N9-Nno-IPWXicEblZQLgkjqo4TJ1FfbJiGahUwq0tQTJLYyPmrsIxIO8WaH6W042Hk1fjmI27oOsUZ2kcWFsC5XWWFTrnJRlpk3BgtXlCkyEKE4Zw71nERrR41w-NWzmelpQw0VTGiW3oH1qq7sPSDOYDOqkJlJELscL7UW1KAOqVTJtNURxN1Jys8hfYcMak8quw30lThzGTYwAtIdtwzd0-A8K1Evk1QyVkSw2aGBRFL0gKrK1vOpzDlys5SmEdwNSHG-ZM4LFBfyCIoVdFn-4JN8r_ZUk-Mm2XfCBQoZuCptsOGvoJDj3VGCC97_l0GbcGUw3t-Te2-Gbx_A1ebJyXvwsIewPjub20cohM3Kxw2B_QRkGy-p |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIiEuvMojvOoDQnBIu3HsJD6uKKulwLJCrdQTluPHsi0kVXdXYjnxE_iN_BLGcbJloQcEx9ixrbFn7G88nhmAJ4IqZVOnY50WLkb8r-KCKRVbRnOuE6OZ8o7Cb0fZ8JDtH_GjDRh0vjAhPsTqws1LRrNfewE_Na4Vch9s4LhR_etgPvCFyLyX4DLLEAR7cPSenlsTekKsoobnPGld6LCf3Yt6WT-iurDBF0HQP19S_opwmyNqcB0mHXHhZcrJzmJe7uivv8V9_H_qb8C1FsWSfmC7m7Bhq1uw1a9Qg_-8JE_JODSrJ8st-DB69-Pb98ZDBdEtObOTNmMYqR0Z9feejZ8PSf1lavA8JeWSIIt6H2Ey87m2SfBlIdOKNNkEia2M9xn7hGJDvNFhdhsOBy8PXgzjNqtDrHGzYHEurMsUy21aqEyUJfOmYOHyMsXtQ6ii4A61nERrR41w-NWzzPS0oYYKLjRP78BmVVf2HhBnsBgVSGYS5C1XlFoLalCDVKrk2uoI4m4h5WkI3iGD0pPKbgJ9Hs5MhgmMgHSrLUP1LDydlaiVSSo5zyPY7rhAoiB6QlVl68VMZgXuZSlNI7gbeOJ8yKzIESxkEeRr3LL6wYf4Xq-pph-bUN9JIRBi4Ki0YYa_okIe7I8THPD-vzTahivjvYF882r0-gFcbe6b_PMd_hA252cL-wgR2Lx83IjXT8FMLlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NO-mediated+regulation+of+NAD%28P%29H+oxidase+by+laminar+shear+stress+in+human+endothelial+cells&rft.jtitle=The+Journal+of+physiology&rft.au=Duerrschmidt%2C+Nicole&rft.au=Stielow%2C+Claudia&rft.au=Muller%2C+Gregor&rft.au=Pagano%2C+Patrick+J&rft.date=2006-10-15&rft.issn=0022-3751&rft.volume=576&rft.spage=557&rft.epage=567&rft_id=info:doi/10.1113%2Fjphysiol.2006.111070&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |