High‐Speed Slot‐Die Coating with Donor‐Priority Rapid Aggregation Kinetics for Improved Morphology and Efficiency in Ecofriendly Organic Solar Cells

Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high‐throughput manufacturing rema...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 12; no. 27; pp. e2502077 - n/a
Main Authors Bi, Zhaozhao, Wu, Baohua, Wang, Ke, Xue, Jingwei, Liu, Chang, Tang, Lingxiao, Zhou, Ke, Jiang, Long, Ma, Wei
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.07.2025
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high‐throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long‐duration morphology evolution during high‐speed coating process with ecofriendly solvents. Here, a donor‐priority rapid aggregation process (DP‐RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP‐RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP‐RAP) for ultra‐high speed coated PM6:BTP‐eC9 devices in atmosphere, which is one of the highest values for non‐halogenated solvent‐processed solar cells at coating speeds of 500 mm s−1. Moreover, the DP‐RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20–500 mm s−1), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high‐speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies. A donor‐priority rapid aggregation strategy is developed to efficiently improve the film‐forming kinetics as well as film morphology. The resultant slot‐die coated ecofriendly organic solar cells exhibit high power conversion efficiency of 17.4% at ultrahigh coating speed of 500 mm s−1, without the need for additives or complex post‐treatment.
AbstractList Solution-processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco-compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high-throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long-duration morphology evolution during high-speed coating process with ecofriendly solvents. Here, a donor-priority rapid aggregation process (DP-RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP-RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP-RAP) for ultra-high speed coated PM6:BTP-eC9 devices in atmosphere, which is one of the highest values for non-halogenated solvent-processed solar cells at coating speeds of 500 mm s-1. Moreover, the DP-RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20-500 mm s-1), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high-speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies.Solution-processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco-compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high-throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long-duration morphology evolution during high-speed coating process with ecofriendly solvents. Here, a donor-priority rapid aggregation process (DP-RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP-RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP-RAP) for ultra-high speed coated PM6:BTP-eC9 devices in atmosphere, which is one of the highest values for non-halogenated solvent-processed solar cells at coating speeds of 500 mm s-1. Moreover, the DP-RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20-500 mm s-1), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high-speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies.
Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high‐throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long‐duration morphology evolution during high‐speed coating process with ecofriendly solvents. Here, a donor‐priority rapid aggregation process (DP‐RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP‐RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP‐RAP) for ultra‐high speed coated PM6:BTP‐eC9 devices in atmosphere, which is one of the highest values for non‐halogenated solvent‐processed solar cells at coating speeds of 500 mm s−1. Moreover, the DP‐RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20–500 mm s−1), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high‐speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies.
Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high‐throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long‐duration morphology evolution during high‐speed coating process with ecofriendly solvents. Here, a donor‐priority rapid aggregation process (DP‐RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP‐RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP‐RAP) for ultra‐high speed coated PM6:BTP‐eC9 devices in atmosphere, which is one of the highest values for non‐halogenated solvent‐processed solar cells at coating speeds of 500 mm s−1. Moreover, the DP‐RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20–500 mm s−1), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high‐speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies. A donor‐priority rapid aggregation strategy is developed to efficiently improve the film‐forming kinetics as well as film morphology. The resultant slot‐die coated ecofriendly organic solar cells exhibit high power conversion efficiency of 17.4% at ultrahigh coating speed of 500 mm s−1, without the need for additives or complex post‐treatment.
Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high‐throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long‐duration morphology evolution during high‐speed coating process with ecofriendly solvents. Here, a donor‐priority rapid aggregation process (DP‐RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP‐RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP‐RAP) for ultra‐high speed coated PM6:BTP‐eC9 devices in atmosphere, which is one of the highest values for non‐halogenated solvent‐processed solar cells at coating speeds of 500 mm s −1 . Moreover, the DP‐RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20–500 mm s −1 ), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high‐speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies. A donor‐priority rapid aggregation strategy is developed to efficiently improve the film‐forming kinetics as well as film morphology. The resultant slot‐die coated ecofriendly organic solar cells exhibit high power conversion efficiency of 17.4% at ultrahigh coating speed of 500 mm s −1 , without the need for additives or complex post‐treatment.
Abstract Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high‐throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long‐duration morphology evolution during high‐speed coating process with ecofriendly solvents. Here, a donor‐priority rapid aggregation process (DP‐RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP‐RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP‐RAP) for ultra‐high speed coated PM6:BTP‐eC9 devices in atmosphere, which is one of the highest values for non‐halogenated solvent‐processed solar cells at coating speeds of 500 mm s−1. Moreover, the DP‐RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20–500 mm s−1), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high‐speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies.
Solution-processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco-compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high-throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long-duration morphology evolution during high-speed coating process with ecofriendly solvents. Here, a donor-priority rapid aggregation process (DP-RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP-RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP-RAP) for ultra-high speed coated PM6:BTP-eC9 devices in atmosphere, which is one of the highest values for non-halogenated solvent-processed solar cells at coating speeds of 500 mm s . Moreover, the DP-RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20-500 mm s ), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high-speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies.
Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high‐throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long‐duration morphology evolution during high‐speed coating process with ecofriendly solvents. Here, a donor‐priority rapid aggregation process (DP‐RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP‐RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP‐RAP) for ultra‐high speed coated PM6:BTP‐eC9 devices in atmosphere, which is one of the highest values for non‐halogenated solvent‐processed solar cells at coating speeds of 500 mm s −1 . Moreover, the DP‐RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20–500 mm s −1 ), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high‐speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies.
Author Ma, Wei
Zhou, Ke
Jiang, Long
Wu, Baohua
Wang, Ke
Xue, Jingwei
Bi, Zhaozhao
Tang, Lingxiao
Liu, Chang
AuthorAffiliation 1 State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China
2 Tubular Goods Research Institute of CNPC Xi'an 710049 China
AuthorAffiliation_xml – name: 1 State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China
– name: 2 Tubular Goods Research Institute of CNPC Xi'an 710049 China
Author_xml – sequence: 1
  givenname: Zhaozhao
  surname: Bi
  fullname: Bi, Zhaozhao
  organization: Xi'an Jiaotong University
– sequence: 2
  givenname: Baohua
  surname: Wu
  fullname: Wu, Baohua
  organization: Xi'an Jiaotong University
– sequence: 3
  givenname: Ke
  surname: Wang
  fullname: Wang, Ke
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Jingwei
  surname: Xue
  fullname: Xue, Jingwei
  organization: Tubular Goods Research Institute of CNPC
– sequence: 5
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  organization: Xi'an Jiaotong University
– sequence: 6
  givenname: Lingxiao
  surname: Tang
  fullname: Tang, Lingxiao
  organization: Xi'an Jiaotong University
– sequence: 7
  givenname: Ke
  surname: Zhou
  fullname: Zhou, Ke
  email: msekzhou@mail.xjtu.edu.cn
  organization: Xi'an Jiaotong University
– sequence: 8
  givenname: Long
  surname: Jiang
  fullname: Jiang, Long
  email: jianglong003@cnpc.com.cn
  organization: Tubular Goods Research Institute of CNPC
– sequence: 9
  givenname: Wei
  orcidid: 0000-0002-7239-2010
  surname: Ma
  fullname: Ma, Wei
  email: msewma@xjtu.edu.cn
  organization: Xi'an Jiaotong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40285647$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEUhUeoiJbSLUtkiQ2bBP_GnhWKkkAjWhURYGs5_pk4mtiDZ5JqdjwCax6PJ8EhbdSyYWVf33M_HV-d58VJiMEWxUsEhwhC_FaZXTvEEDOIIedPijOMSjEggtKTB_fT4qJt1xBCxAinSDwrTinEgo0oPyt-Xfpq9fvHz0VjrQGLOna5mHoLJlF1PlTg1ncrMI0hptz4lHxMvuvBZ9V4A8ZVlWyVdTGAjz7YzusWuJjAfNOkuMvA65iaVaxj1QMVDJg557W3QffABzDT0aVcmboHN6lSwWuwiLVKYGLrun1RPHWqbu3F3XlefH0_-zK5HFzdfJhPxlcDTYXAA60VtJoppktKMDUj5rAlUIiR4Ew4h0wJLXR0xJeUIAUhd9oiZwxVJYe6JOfF_MA1Ua1lk_xGpV5G5eXfh5gqqVL-Wm0lJ5wLgVjeLaGOaVWOrF0aqLFAHCGeWe8OrGa73FijbeiSqh9BH3eCX8kq7iTCmJeYwEx4c0dI8fvWtp3c-Fbnfahg47aVBJWMC8oZy9LX_0jXcZtC3pUkGcX3NmlWvXpo6ejlPgNZMDwIdIptm6w7ShCU-5zJfc7kMWd5gB0Gbn1t-_-o5Xj6bYEwzI7-AL7Y2X0
Cites_doi 10.1038/s41467-023-42018-7
10.1103/PhysRevLett.94.126602
10.1002/anie.202404297
10.1002/adma.202202659
10.1038/s41928-023-00971-7
10.1002/adma.202400342
10.1039/D4EE04036H
10.1002/adma.202208926
10.1088/1742-6596/247/1/012007
10.1073/pnas.2000398117
10.1126/science.adj3654
10.1002/aenm.201802521
10.1038/s41560-024-01557-z
10.1039/D4EE01717J
10.1039/D4EE04585H
10.1002/adma.202308608
10.1063/1.2821368
10.1038/s41563-024-02062-0
10.1002/adma.201908205
10.1002/adma.202209030
10.1039/D4EE00680A
10.1038/s41563-023-01579-0
10.1038/s41560-022-01140-4
10.1002/adma.202208279
10.1039/D3EE01189E
10.1002/adma.201103006
10.1016/j.joule.2017.08.002
10.1002/adma.202313098
10.1002/adfm.202409315
10.1039/c3tc32077d
10.1021/jacs.5b07228
10.1063/1.1521244
10.1002/solr.202400437
10.1002/aenm.202100098
10.1002/adfm.202414463
10.1021/acs.langmuir.6b02769
10.1038/s41560-022-01167-7
10.1002/aenm.202203465
10.1039/D2EE03966D
10.1038/s41560-024-01678-5
10.1002/adma.201404040
10.1039/D1TA04623C
10.1103/PhysRevB.82.245207
10.1038/s41467-018-02833-9
10.1103/PhysRevB.84.045203
10.1002/adma.202108508
10.1002/adfm.202205711
10.1002/adma.202002302
10.1126/sciadv.aaw7757
10.1002/adfm.202315825
10.1021/jacs.4c01503
10.1002/adma.201502110
10.1038/s41563-022-01244-y
10.1021/acsenergylett.3c00891
10.1039/D3EE00294B
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH
2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH
– notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202502077
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database



PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_7377881521934f5ca96eebd0c2817117
PMC12279230
40285647
10_1002_advs_202502077
ADVS12032
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Postdoctoral Research Project of Shaanxi Province
  funderid: 2023BSHEDZZ24
– fundername: Fundamental Research Funds for the Central Universities
  funderid: xzy012023169
– fundername: Key Scientific and Technological Innovation Team Project of Shaanxi Province
  funderid: 2020TD‐002
– fundername: National Natural Science Foundation of China
  funderid: W2411049; 52303247; 52173023
– fundername: 111 Project 2.0
  funderid: BP0618008
– fundername: Fundamental Research Funds for the Central Universities
  grantid: xzy012023169
– fundername: National Natural Science Foundation of China
  grantid: W2411049
– fundername: Postdoctoral Research Project of Shaanxi Province
  grantid: 2023BSHEDZZ24
– fundername: National Natural Science Foundation of China
  grantid: 52173023
– fundername: 111 Project 2.0
  grantid: BP0618008
– fundername: National Natural Science Foundation of China
  grantid: 52303247
– fundername: Key Scientific and Technological Innovation Team Project of Shaanxi Province
  grantid: 2020TD-002
– fundername: ;
  grantid: 2023BSHEDZZ24
– fundername: ;
  grantid: BP0618008
– fundername: ;
  grantid: 2020TD‐002
– fundername: ;
  grantid: xzy012023169
– fundername: ;
  grantid: W2411049; 52303247; 52173023
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAMMB
AAZKR
ABDBF
ABUWG
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
AEFGJ
AFBPY
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
ROL
RPM
AAYXX
CITATION
EJD
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PUEGO
Q9U
WIN
7X8
5PM
ID FETCH-LOGICAL-c4882-cca0ec5a5c94324d65f2e308868758ff1d90e0f467b431a007fce1fdd4a970c93
IEDL.DBID DOA
ISSN 2198-3844
IngestDate Wed Aug 27 01:02:56 EDT 2025
Thu Aug 21 18:25:16 EDT 2025
Fri Jul 11 18:30:20 EDT 2025
Sat Aug 30 12:42:01 EDT 2025
Thu Jul 24 02:17:07 EDT 2025
Thu Jul 24 01:55:00 EDT 2025
Thu Jul 17 09:30:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords slot‐die coating
morphology engineering
high‐speed printing
molecular aggregation kinetics
non‐halogenated solvent
Language English
License Attribution
2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4882-cca0ec5a5c94324d65f2e308868758ff1d90e0f467b431a007fce1fdd4a970c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7239-2010
OpenAccessLink https://doaj.org/article/7377881521934f5ca96eebd0c2817117
PMID 40285647
PQID 3230752194
PQPubID 4365299
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_7377881521934f5ca96eebd0c2817117
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12279230
proquest_miscellaneous_3195784755
proquest_journals_3230752194
pubmed_primary_40285647
crossref_primary_10_1002_advs_202502077
wiley_primary_10_1002_advs_202502077_ADVS12032
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2025
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2021; 9
2019; 9
2017; 1
2023; 35
2023; 13
2023; 14
2023; 36
2019; 5
2023; 382
2023; 6
2023; 16
2023; 8
2010; 247
2011; 84
2016; 32
2007; 91
2025; 18
2024; 10
2002; 81
2024; 146
2025; 35
2024; 34
2022; 21
2020; 32
2024; 36
2024; 17
2010; 82
2018; 9
2015; 27
2023; 22
2021; 11
2014; 2
2015; 137
2024; 8
2022; 7
2024; 9
2022; 8
2022; 34
2024; 63
2020; 117
2011; 23
2025; 24
2022; 32
2005; 94
e_1_2_7_5_1
Zeng R. (e_1_2_7_9_1) 2024; 9
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 91
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 443
  year: 2023
  publication-title: Nat. Electron.
– volume: 16
  start-page: 6035
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 4636
  year: 2011
  publication-title: Adv. Mater.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 2
  start-page: 3373
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 17
  start-page: 2935
  year: 2024
  publication-title: Energy Environ. Sci.
– volume: 22
  start-page: 1304
  year: 2023
  publication-title: Nat. Mater.
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 24
  start-page: 444
  year: 2025
  publication-title: Nat. Mater.
– volume: 1
  start-page: 274
  year: 2017
  publication-title: Joule
– volume: 18
  start-page: 674
  year: 2025
  publication-title: Energy Environ. Sci.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 84
  year: 2011
  publication-title: Phys. Rev. B
– volume: 21
  start-page: 656
  year: 2022
  publication-title: Nat. Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 94
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 774
  year: 2025
  publication-title: Energy Environ. Sci.
– volume: 16
  start-page: 2316
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 382
  start-page: 1291
  year: 2023
  publication-title: Science
– volume: 10
  start-page: 124
  year: 2024
  publication-title: Nat. Energy
– volume: 81
  start-page: 3885
  year: 2002
  publication-title: Appl. Phys. Lett.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 1711
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 886
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1117
  year: 2024
  publication-title: Nat. Energy
– volume: 8
  year: 2024
  publication-title: Sol. RRL
– volume: 35
  year: 2025
  publication-title: Adv. Funct. Mater.
– volume: 146
  year: 2024
  publication-title: J. Am. Chem. Soc.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 82
  year: 2010
  publication-title: Phys. Rev. B
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 5173
  year: 2024
  publication-title: Energy Environ. Sci.
– volume: 117
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 32
  year: 2016
  publication-title: Langmuir
– volume: 27
  start-page: 4655
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  start-page: 975
  year: 2024
  publication-title: Nat. Energy
– volume: 8
  start-page: 62
  year: 2022
  publication-title: Nat. Energy
– volume: 247
  year: 2010
  publication-title: J. Phys.: Conf. Ser.
– volume: 8
  start-page: 3038
  year: 2023
  publication-title: ACS Energy Lett.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 14
  start-page: 6312
  year: 2023
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1087
  year: 2022
  publication-title: Nat. Energy
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 36
  year: 2023
  publication-title: Adv. Mater.
– volume: 9
  start-page: 534
  year: 2018
  publication-title: Nat. Commun.
– ident: e_1_2_7_40_1
  doi: 10.1038/s41467-023-42018-7
– ident: e_1_2_7_56_1
  doi: 10.1103/PhysRevLett.94.126602
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.202404297
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.202202659
– ident: e_1_2_7_19_1
  doi: 10.1038/s41928-023-00971-7
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.202400342
– ident: e_1_2_7_2_1
  doi: 10.1039/D4EE04036H
– ident: e_1_2_7_45_1
  doi: 10.1002/adma.202208926
– ident: e_1_2_7_49_1
  doi: 10.1088/1742-6596/247/1/012007
– ident: e_1_2_7_35_1
  doi: 10.1073/pnas.2000398117
– ident: e_1_2_7_1_1
  doi: 10.1126/science.adj3654
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.201802521
– ident: e_1_2_7_4_1
  doi: 10.1038/s41560-024-01557-z
– ident: e_1_2_7_37_1
  doi: 10.1039/D4EE01717J
– ident: e_1_2_7_11_1
  doi: 10.1039/D4EE04585H
– ident: e_1_2_7_44_1
  doi: 10.1002/adma.202308608
– ident: e_1_2_7_55_1
  doi: 10.1063/1.2821368
– ident: e_1_2_7_33_1
  doi: 10.1038/s41563-024-02062-0
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.201908205
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.202209030
– ident: e_1_2_7_24_1
  doi: 10.1039/D4EE00680A
– ident: e_1_2_7_25_1
  doi: 10.1038/s41563-023-01579-0
– ident: e_1_2_7_7_1
  doi: 10.1038/s41560-022-01140-4
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.202208279
– ident: e_1_2_7_15_1
  doi: 10.1039/D3EE01189E
– ident: e_1_2_7_53_1
  doi: 10.1002/adma.201103006
– ident: e_1_2_7_8_1
  doi: 10.1016/j.joule.2017.08.002
– ident: e_1_2_7_36_1
  doi: 10.1002/adma.202313098
– ident: e_1_2_7_32_1
  doi: 10.1002/adfm.202409315
– ident: e_1_2_7_46_1
  doi: 10.1039/c3tc32077d
– ident: e_1_2_7_38_1
  doi: 10.1021/jacs.5b07228
– ident: e_1_2_7_52_1
  doi: 10.1063/1.1521244
– volume: 9
  start-page: 1117
  year: 2024
  ident: e_1_2_7_9_1
  publication-title: Nat. Energy
– ident: e_1_2_7_16_1
  doi: 10.1002/solr.202400437
– ident: e_1_2_7_22_1
  doi: 10.1002/aenm.202100098
– ident: e_1_2_7_23_1
  doi: 10.1002/adfm.202414463
– ident: e_1_2_7_48_1
  doi: 10.1021/acs.langmuir.6b02769
– ident: e_1_2_7_10_1
  doi: 10.1038/s41560-022-01167-7
– ident: e_1_2_7_27_1
  doi: 10.1002/aenm.202203465
– ident: e_1_2_7_20_1
  doi: 10.1039/D2EE03966D
– ident: e_1_2_7_30_1
  doi: 10.1038/s41560-024-01678-5
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.201404040
– ident: e_1_2_7_50_1
  doi: 10.1039/D1TA04623C
– ident: e_1_2_7_54_1
  doi: 10.1103/PhysRevB.82.245207
– ident: e_1_2_7_13_1
  doi: 10.1038/s41467-018-02833-9
– ident: e_1_2_7_51_1
  doi: 10.1103/PhysRevB.84.045203
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.202108508
– ident: e_1_2_7_47_1
  doi: 10.1002/adfm.202205711
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.202002302
– ident: e_1_2_7_21_1
  doi: 10.1126/sciadv.aaw7757
– ident: e_1_2_7_34_1
  doi: 10.1002/adfm.202315825
– ident: e_1_2_7_3_1
  doi: 10.1021/jacs.4c01503
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.201502110
– ident: e_1_2_7_43_1
  doi: 10.1038/s41563-022-01244-y
– ident: e_1_2_7_26_1
  doi: 10.1021/acsenergylett.3c00891
– ident: e_1_2_7_31_1
  doi: 10.1039/D3EE00294B
SSID ssj0001537418
Score 2.3314114
Snippet Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible...
Solution-processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco-compatible...
Abstract Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2502077
SubjectTerms Efficiency
high‐speed printing
Hydrocarbons
Manufacturing
Microscopy
molecular aggregation kinetics
Morphology
morphology engineering
non‐halogenated solvent
Optimization
slot‐die coating
Solvents
Temperature
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZge-GCKM9AQUZCAg6hdmInzgm1260qUKuqS6XeIsePbaRVvOxuK_XGT-DMz-OXMJNkt6xAcEzsWEnm9c1k8pmQN0wJK5g3sVNaxaKoVKxtJWPmLaQTieW5xnrH8Ul2dC4-XciLvuC26NsqVz6xddQ2GKyR76bYsQyxphAfZ19j3DUKv672W2jcJVvggpUakK390cnp2W2VRaZIz7Jia2TJrrbXyNINkT9heb4RjVrS_r8hzT8bJn8Hsm0kOnxA7vcQku51Mt8md1zzkGz3Rrqg73om6fePyA_s4vj57ft4BjGKjqdhCQcHtaPDoLHdmWIVlh6EJsxh4HReB9zKjp7pWW3p3gRS8UkrOPoZsCjyOVOAuLSrQ8CCxwGE1JblqW4sHbVsFPgrJ60bOjLBI4eynd7Q7odPQ8eYR9Ohm04Xj8n54ejL8CjuN2OIjUAUDpJmzkgtTYEkfjaTPnEp-KgMMh7lPbcFc8yD360Ak2iAHt447q0VusiZKdInZNCExj0j1PlK6hQSM68LkakUKeBzVjiYbxKpeUTeroRSzjrOjbJjV05KFF-5Fl9E9lFm61nIld2eCPNJ2Ztemac5cuaj7qTCS6OLzLnKMpMonnMOi-ysJF72Brwob9UtIq_Xw2B6-D1FNy5cwRxegL8TuZQRedopyPpOQM-VzAQsrjZUZ-NWN0ea-rKl9-YdqSOLyIdWy_7zDkrAL2OesDR5_u8HeUHu4UVdr_EOGSznV-4lIKpl9ao3m1_gsSQo
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWgbNggyjNQkJGQgEVUJ7GTeFmmU1WgooqhUneR48c00igezUyRuusnsObz-BLujTNpI5AQy8QPWTm-9rk318eEvGUlN5w5HdtSlTGXdRkrU4uYOQPuRGqSQmG84-RLfnzGP52L81un-IM-xBBwQ8vo1ms0cFWv929EQ5X5jnLbsIWnrCjuknt4vhaT-lJ-ehNlERnKs-ANc-Bdx1nJ-Va5kaX74y5GO1Mn4P831vln8uRtUtvtSkcPyYOeTtKDgP8uuWPbR2S3N9g1fd-rSn94TH5iRsev6x-zJexXdLbwG3g4bCydeIWpzxQjsvTQt34FBaerxuO1dvSrWjaGHszBLZ93INLP8OVQ25kC3aUhJgEdnngArAvRU9UaOu2UKfBYJ21aOtXeoZ6yWVzRcPhT0xn61HRiF4v1E3J2NP02OY77ixlizZGRA-rMaqGElijoZ3LhUpvBepWD91M6lxjJLHOwBtfATxTQEKdt4ozhShZMy-wp2Wl9a58Tal0tVAZOmlOS52WGcvAFkxbq61SoJCLvtqBUy6C_UQWl5bRC-KoBvoh8RMyGWqib3b3wq3nVm2FVZAXq5wNnkRl3QiuZW1sbptMyKZIEOtnbIl71xryuMkyWxyY8Im-GYjBD_LeiWusvoU4iYe3jhRAReRYmyDASmPOlyDl0Xo6mzmio45K2ueikvpMg8MgiEmzhH9-gAi4zS1KWpS_-t8FLch_fhkzkPbKzWV3aV8C3NvXrzqR-A37eJ3g
  priority: 102
  providerName: Wiley-Blackwell
Title High‐Speed Slot‐Die Coating with Donor‐Priority Rapid Aggregation Kinetics for Improved Morphology and Efficiency in Ecofriendly Organic Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202502077
https://www.ncbi.nlm.nih.gov/pubmed/40285647
https://www.proquest.com/docview/3230752194
https://www.proquest.com/docview/3195784755
https://pubmed.ncbi.nlm.nih.gov/PMC12279230
https://doaj.org/article/7377881521934f5ca96eebd0c2817117
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZguXBBLM_AUhkJCTiEtRM7j2O37WoFdFVtWGlvkePHEqlKqraLxI2fwJmfxy9hJk6rViDthVOV2rEsz9jzzWTmMyFvWCaMYE6HNlNZKPIqC5WpZMicAXciMjxVGO-Ynidnl-LjlbzaueoLc8I8PbBfuOM0TpHxHKxMHgsntcoTayvDdJTxlPOujhxs3o4z5euDY6Rl2bA0suhYmW_Izg0WP2JpumeFOrL-fyHMvxMldwFsZ4FOH5IHPXSkQz_lQ3LHNo_IYb85V_RdzyD9_jH5hdkbv3_8LBZgm2gxb9fwMK4tHbUK05wpRl_puG3aJTTMlnWLV9jRC7WoDR1egwt-3QmMfgIMijzOFKAt9fEHGHDagnC6cDxVjaGTjoUCSzhp3dCJbh1yJ5v5d-oLPTUt0H-mIzufr56Qy9PJl9FZ2F_CEGqB6BskzKyWSuocyftMIl1kYzibEvB0Mue4yZllDs7bCrCIAsjhtOXOGKHylOk8fkoOmraxzwm1rpIqBofMqVwkWYzU7ynLLfTXkVQ8IG83QikXnmuj9KzKUYniK7fiC8gJymzbCzmyuz9Ac8pec8rbNCcgRxuJl_3GXZUxJsbjKyIgr7fNsOXwO4pqbHsDfXgO55xIpQzIM68g25mAfmcyETB4tqc6e1Pdb2nqrx2tN_dkjiwgHzotu2UNSsAtBY9YHL34H6vxktzHoX0m8hE5WC9v7CvAW-tqQO5GYjYg94bj6ecCfk8m57OLQbfh_gAFzS4B
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFLWqdAEbRHkGChgJBCyGejz2PBYItUmqlDRR1bRSd1OPHyFSNBOSFNQdn8Caj-Cj-BLunZmkRCBYdZnYspzc1_H19bmEvGCxMII57dlYxZ5IsthTJpMecwaOE9z4kcJ8R38Qdk_FhzN5tkF-LN_CYFnl0ieWjtoUGnPkOwFWLEOsScT76ScPu0bh7eqyhUalFj17-QWObPN3B22Q70vO9zsnra5XdxXwtEA4CVtmVksldYJsdCaUjtsAjC0E6B4755uEWebAgWQQXBXEUKet74wRKomYRvIlcPmbIggZb5DNvc7g6PgqqyMDpINZskMyvqPMZ2QFB6TBWRStRb-yScDfkO2fBZq_A-cy8u3fJrdqyEp3Kx3bIhs2v0O2aqcwp69r5uo3d8l3rBr5-fXbcAoxkQ4nxQI-tMeWtgqF5dUUs760XeTFDAaOZuMCW-fRYzUdG7o7gqP_qFQU2gPsi_zRFCA1rfIesGC_AKUorwGoyg3tlOwX-HSUjnPa0YVDzmYzuaTVA1NNh3hupy07mczvkdNrEdN90siL3D4k1LpMqgAOgk4lIowDpJyPWGJhvuZS-U3yaimUdFpxfKQVmzNPUXzpSnxNsocyW81Cbu7yi2I2SmtTT6MgQo5-1NVAOKlVElqbGaZ57Ee-D4tsLyWe1g5jnl6pd5M8Xw2DqeP9jcptcQFz_AT8q4ikbJIHlYKsdgJ2FctQwOLxmuqsbXV9JB9_LOnE_YpEkjXJ21LL_vMfpICXhj5nAX_07x_yjNzonvQP08ODQe8xuYkLVHXO26SxmF3YJ4DmFtnT2oQoOb9uq_0FCzBgwQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5VqYS4IMpqKDBIIOBgMrZnvBwQarOoJTSKGir15o5nCZEiOyQpqDd-Amd-Cj-HX8J7XlIiEJx6tGcyGuftb958j5BnLOaaM6tcE8vY5UkWu1JnwmVWQzjhay-SmO84GoYHJ_zdqTjdIj-auzBYVtnoxFJR60JhjrwdYMUy2JqEt21dFjHq9t_OP7nYQQpPWpt2GhWLDMzFFwjflm8Ou0Dr577f733oHLh1hwFXcXQtYfvMKCGFShCZTofC-iYAwQvBjY-t9XTCDLOgTDIwtBLsqVXGs1pzmURMIRATqP_tCKOiFtne7w1Hx5cZHhEgNEyDFMn8ttSfESEcvA6fRdGGJSwbBvzNy_2zWPN3J7q0gv2b5EbtvtK9it92yJbJb5GdWkEs6csaxfrVbfIdK0h-fv02noN9pONZsYKH7tTQTiGx1JpiBph2i7xYwMBoMS2wjR49lvOppnuTycJMSqahA_CDEUuagntNqxwILHhUAIOURwJU5pr2SiQMvEZKpzntqcIifrOeXdDqsqmiY4zhacfMZss75ORKyHSXtPIiN_cJNTYTMoCg0MqEh3GA8PMRSwzMV76QnkNeNERJ5xXeR1ohO_spki9dk88h-0iz9SzE6S5fFItJWot9GgUR4vUj3wbcCiWT0JhMM-XHXuR5sMhuQ_G0Vh7L9JLVHfJ0PQxij2c5MjfFOczxEtC1PBLCIfcqBlnvBGQsFiGHxeMN1tnY6uZIPv1YQot7FaAkc8jrksv-8x-k4DuNPZ8F_oN_f8gTcg2kNX1_OBw8JNfx91XJ8y5prRbn5hE4dqvscS1BlJxdtdD-Ak3aZPY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Speed+Slot%E2%80%90Die+Coating+with+Donor%E2%80%90Priority+Rapid+Aggregation+Kinetics+for+Improved+Morphology+and+Efficiency+in+Ecofriendly+Organic+Solar+Cells&rft.jtitle=Advanced+science&rft.au=Bi%2C+Zhaozhao&rft.au=Wu%2C+Baohua&rft.au=Wang%2C+Ke&rft.au=Xue%2C+Jingwei&rft.date=2025-07-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=12&rft.issue=27&rft_id=info:doi/10.1002%2Fadvs.202502077&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202502077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon