High‐Speed Slot‐Die Coating with Donor‐Priority Rapid Aggregation Kinetics for Improved Morphology and Efficiency in Ecofriendly Organic Solar Cells
Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high‐throughput manufacturing rema...
Saved in:
Published in | Advanced science Vol. 12; no. 27; pp. e2502077 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.07.2025
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high‐throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long‐duration morphology evolution during high‐speed coating process with ecofriendly solvents. Here, a donor‐priority rapid aggregation process (DP‐RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP‐RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP‐RAP) for ultra‐high speed coated PM6:BTP‐eC9 devices in atmosphere, which is one of the highest values for non‐halogenated solvent‐processed solar cells at coating speeds of 500 mm s−1. Moreover, the DP‐RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20–500 mm s−1), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high‐speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies.
A donor‐priority rapid aggregation strategy is developed to efficiently improve the film‐forming kinetics as well as film morphology. The resultant slot‐die coated ecofriendly organic solar cells exhibit high power conversion efficiency of 17.4% at ultrahigh coating speed of 500 mm s−1, without the need for additives or complex post‐treatment. |
---|---|
AbstractList | Solution-processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco-compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high-throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long-duration morphology evolution during high-speed coating process with ecofriendly solvents. Here, a donor-priority rapid aggregation process (DP-RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP-RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP-RAP) for ultra-high speed coated PM6:BTP-eC9 devices in atmosphere, which is one of the highest values for non-halogenated solvent-processed solar cells at coating speeds of 500 mm s-1. Moreover, the DP-RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20-500 mm s-1), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high-speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies.Solution-processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco-compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high-throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long-duration morphology evolution during high-speed coating process with ecofriendly solvents. Here, a donor-priority rapid aggregation process (DP-RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP-RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP-RAP) for ultra-high speed coated PM6:BTP-eC9 devices in atmosphere, which is one of the highest values for non-halogenated solvent-processed solar cells at coating speeds of 500 mm s-1. Moreover, the DP-RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20-500 mm s-1), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high-speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies. Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high‐throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long‐duration morphology evolution during high‐speed coating process with ecofriendly solvents. Here, a donor‐priority rapid aggregation process (DP‐RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP‐RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP‐RAP) for ultra‐high speed coated PM6:BTP‐eC9 devices in atmosphere, which is one of the highest values for non‐halogenated solvent‐processed solar cells at coating speeds of 500 mm s−1. Moreover, the DP‐RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20–500 mm s−1), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high‐speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies. Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high‐throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long‐duration morphology evolution during high‐speed coating process with ecofriendly solvents. Here, a donor‐priority rapid aggregation process (DP‐RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP‐RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP‐RAP) for ultra‐high speed coated PM6:BTP‐eC9 devices in atmosphere, which is one of the highest values for non‐halogenated solvent‐processed solar cells at coating speeds of 500 mm s−1. Moreover, the DP‐RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20–500 mm s−1), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high‐speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies. A donor‐priority rapid aggregation strategy is developed to efficiently improve the film‐forming kinetics as well as film morphology. The resultant slot‐die coated ecofriendly organic solar cells exhibit high power conversion efficiency of 17.4% at ultrahigh coating speed of 500 mm s−1, without the need for additives or complex post‐treatment. Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high‐throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long‐duration morphology evolution during high‐speed coating process with ecofriendly solvents. Here, a donor‐priority rapid aggregation process (DP‐RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP‐RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP‐RAP) for ultra‐high speed coated PM6:BTP‐eC9 devices in atmosphere, which is one of the highest values for non‐halogenated solvent‐processed solar cells at coating speeds of 500 mm s −1 . Moreover, the DP‐RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20–500 mm s −1 ), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high‐speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies. A donor‐priority rapid aggregation strategy is developed to efficiently improve the film‐forming kinetics as well as film morphology. The resultant slot‐die coated ecofriendly organic solar cells exhibit high power conversion efficiency of 17.4% at ultrahigh coating speed of 500 mm s −1 , without the need for additives or complex post‐treatment. Abstract Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high‐throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long‐duration morphology evolution during high‐speed coating process with ecofriendly solvents. Here, a donor‐priority rapid aggregation process (DP‐RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP‐RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP‐RAP) for ultra‐high speed coated PM6:BTP‐eC9 devices in atmosphere, which is one of the highest values for non‐halogenated solvent‐processed solar cells at coating speeds of 500 mm s−1. Moreover, the DP‐RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20–500 mm s−1), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high‐speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies. Solution-processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco-compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high-throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long-duration morphology evolution during high-speed coating process with ecofriendly solvents. Here, a donor-priority rapid aggregation process (DP-RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP-RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP-RAP) for ultra-high speed coated PM6:BTP-eC9 devices in atmosphere, which is one of the highest values for non-halogenated solvent-processed solar cells at coating speeds of 500 mm s . Moreover, the DP-RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20-500 mm s ), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high-speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies. Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high‐throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long‐duration morphology evolution during high‐speed coating process with ecofriendly solvents. Here, a donor‐priority rapid aggregation process (DP‐RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP‐RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP‐RAP) for ultra‐high speed coated PM6:BTP‐eC9 devices in atmosphere, which is one of the highest values for non‐halogenated solvent‐processed solar cells at coating speeds of 500 mm s −1 . Moreover, the DP‐RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20–500 mm s −1 ), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high‐speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies. |
Author | Ma, Wei Zhou, Ke Jiang, Long Wu, Baohua Wang, Ke Xue, Jingwei Bi, Zhaozhao Tang, Lingxiao Liu, Chang |
AuthorAffiliation | 1 State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China 2 Tubular Goods Research Institute of CNPC Xi'an 710049 China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China – name: 2 Tubular Goods Research Institute of CNPC Xi'an 710049 China |
Author_xml | – sequence: 1 givenname: Zhaozhao surname: Bi fullname: Bi, Zhaozhao organization: Xi'an Jiaotong University – sequence: 2 givenname: Baohua surname: Wu fullname: Wu, Baohua organization: Xi'an Jiaotong University – sequence: 3 givenname: Ke surname: Wang fullname: Wang, Ke organization: Xi'an Jiaotong University – sequence: 4 givenname: Jingwei surname: Xue fullname: Xue, Jingwei organization: Tubular Goods Research Institute of CNPC – sequence: 5 givenname: Chang surname: Liu fullname: Liu, Chang organization: Xi'an Jiaotong University – sequence: 6 givenname: Lingxiao surname: Tang fullname: Tang, Lingxiao organization: Xi'an Jiaotong University – sequence: 7 givenname: Ke surname: Zhou fullname: Zhou, Ke email: msekzhou@mail.xjtu.edu.cn organization: Xi'an Jiaotong University – sequence: 8 givenname: Long surname: Jiang fullname: Jiang, Long email: jianglong003@cnpc.com.cn organization: Tubular Goods Research Institute of CNPC – sequence: 9 givenname: Wei orcidid: 0000-0002-7239-2010 surname: Ma fullname: Ma, Wei email: msewma@xjtu.edu.cn organization: Xi'an Jiaotong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40285647$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1uEzEUhUeoiJbSLUtkiQ2bBP_GnhWKkkAjWhURYGs5_pk4mtiDZ5JqdjwCax6PJ8EhbdSyYWVf33M_HV-d58VJiMEWxUsEhwhC_FaZXTvEEDOIIedPijOMSjEggtKTB_fT4qJt1xBCxAinSDwrTinEgo0oPyt-Xfpq9fvHz0VjrQGLOna5mHoLJlF1PlTg1ncrMI0hptz4lHxMvuvBZ9V4A8ZVlWyVdTGAjz7YzusWuJjAfNOkuMvA65iaVaxj1QMVDJg557W3QffABzDT0aVcmboHN6lSwWuwiLVKYGLrun1RPHWqbu3F3XlefH0_-zK5HFzdfJhPxlcDTYXAA60VtJoppktKMDUj5rAlUIiR4Ew4h0wJLXR0xJeUIAUhd9oiZwxVJYe6JOfF_MA1Ua1lk_xGpV5G5eXfh5gqqVL-Wm0lJ5wLgVjeLaGOaVWOrF0aqLFAHCGeWe8OrGa73FijbeiSqh9BH3eCX8kq7iTCmJeYwEx4c0dI8fvWtp3c-Fbnfahg47aVBJWMC8oZy9LX_0jXcZtC3pUkGcX3NmlWvXpo6ejlPgNZMDwIdIptm6w7ShCU-5zJfc7kMWd5gB0Gbn1t-_-o5Xj6bYEwzI7-AL7Y2X0 |
Cites_doi | 10.1038/s41467-023-42018-7 10.1103/PhysRevLett.94.126602 10.1002/anie.202404297 10.1002/adma.202202659 10.1038/s41928-023-00971-7 10.1002/adma.202400342 10.1039/D4EE04036H 10.1002/adma.202208926 10.1088/1742-6596/247/1/012007 10.1073/pnas.2000398117 10.1126/science.adj3654 10.1002/aenm.201802521 10.1038/s41560-024-01557-z 10.1039/D4EE01717J 10.1039/D4EE04585H 10.1002/adma.202308608 10.1063/1.2821368 10.1038/s41563-024-02062-0 10.1002/adma.201908205 10.1002/adma.202209030 10.1039/D4EE00680A 10.1038/s41563-023-01579-0 10.1038/s41560-022-01140-4 10.1002/adma.202208279 10.1039/D3EE01189E 10.1002/adma.201103006 10.1016/j.joule.2017.08.002 10.1002/adma.202313098 10.1002/adfm.202409315 10.1039/c3tc32077d 10.1021/jacs.5b07228 10.1063/1.1521244 10.1002/solr.202400437 10.1002/aenm.202100098 10.1002/adfm.202414463 10.1021/acs.langmuir.6b02769 10.1038/s41560-022-01167-7 10.1002/aenm.202203465 10.1039/D2EE03966D 10.1038/s41560-024-01678-5 10.1002/adma.201404040 10.1039/D1TA04623C 10.1103/PhysRevB.82.245207 10.1038/s41467-018-02833-9 10.1103/PhysRevB.84.045203 10.1002/adma.202108508 10.1002/adfm.202205711 10.1002/adma.202002302 10.1126/sciadv.aaw7757 10.1002/adfm.202315825 10.1021/jacs.4c01503 10.1002/adma.201502110 10.1038/s41563-022-01244-y 10.1021/acsenergylett.3c00891 10.1039/D3EE00294B |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. – notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202502077 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_7377881521934f5ca96eebd0c2817117 PMC12279230 40285647 10_1002_advs_202502077 ADVS12032 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Postdoctoral Research Project of Shaanxi Province funderid: 2023BSHEDZZ24 – fundername: Fundamental Research Funds for the Central Universities funderid: xzy012023169 – fundername: Key Scientific and Technological Innovation Team Project of Shaanxi Province funderid: 2020TD‐002 – fundername: National Natural Science Foundation of China funderid: W2411049; 52303247; 52173023 – fundername: 111 Project 2.0 funderid: BP0618008 – fundername: Fundamental Research Funds for the Central Universities grantid: xzy012023169 – fundername: National Natural Science Foundation of China grantid: W2411049 – fundername: Postdoctoral Research Project of Shaanxi Province grantid: 2023BSHEDZZ24 – fundername: National Natural Science Foundation of China grantid: 52173023 – fundername: 111 Project 2.0 grantid: BP0618008 – fundername: National Natural Science Foundation of China grantid: 52303247 – fundername: Key Scientific and Technological Innovation Team Project of Shaanxi Province grantid: 2020TD-002 – fundername: ; grantid: 2023BSHEDZZ24 – fundername: ; grantid: BP0618008 – fundername: ; grantid: 2020TD‐002 – fundername: ; grantid: xzy012023169 – fundername: ; grantid: W2411049; 52303247; 52173023 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAMMB AAZKR ABDBF ABUWG ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN AEFGJ AFBPY AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC ROL RPM AAYXX CITATION EJD NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PUEGO Q9U WIN 7X8 5PM |
ID | FETCH-LOGICAL-c4882-cca0ec5a5c94324d65f2e308868758ff1d90e0f467b431a007fce1fdd4a970c93 |
IEDL.DBID | DOA |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:02:56 EDT 2025 Thu Aug 21 18:25:16 EDT 2025 Fri Jul 11 18:30:20 EDT 2025 Sat Aug 30 12:42:01 EDT 2025 Thu Jul 24 02:17:07 EDT 2025 Thu Jul 24 01:55:00 EDT 2025 Thu Jul 17 09:30:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | slot‐die coating morphology engineering high‐speed printing molecular aggregation kinetics non‐halogenated solvent |
Language | English |
License | Attribution 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4882-cca0ec5a5c94324d65f2e308868758ff1d90e0f467b431a007fce1fdd4a970c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7239-2010 |
OpenAccessLink | https://doaj.org/article/7377881521934f5ca96eebd0c2817117 |
PMID | 40285647 |
PQID | 3230752194 |
PQPubID | 4365299 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7377881521934f5ca96eebd0c2817117 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12279230 proquest_miscellaneous_3195784755 proquest_journals_3230752194 pubmed_primary_40285647 crossref_primary_10_1002_advs_202502077 wiley_primary_10_1002_advs_202502077_ADVS12032 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2021; 9 2019; 9 2017; 1 2023; 35 2023; 13 2023; 14 2023; 36 2019; 5 2023; 382 2023; 6 2023; 16 2023; 8 2010; 247 2011; 84 2016; 32 2007; 91 2025; 18 2024; 10 2002; 81 2024; 146 2025; 35 2024; 34 2022; 21 2020; 32 2024; 36 2024; 17 2010; 82 2018; 9 2015; 27 2023; 22 2021; 11 2014; 2 2015; 137 2024; 8 2022; 7 2024; 9 2022; 8 2022; 34 2024; 63 2020; 117 2011; 23 2025; 24 2022; 32 2005; 94 e_1_2_7_5_1 Zeng R. (e_1_2_7_9_1) 2024; 9 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 91 year: 2007 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 443 year: 2023 publication-title: Nat. Electron. – volume: 16 start-page: 6035 year: 2023 publication-title: Energy Environ. Sci. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 4636 year: 2011 publication-title: Adv. Mater. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 2 start-page: 3373 year: 2014 publication-title: J. Mater. Chem. C – volume: 17 start-page: 2935 year: 2024 publication-title: Energy Environ. Sci. – volume: 22 start-page: 1304 year: 2023 publication-title: Nat. Mater. – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 24 start-page: 444 year: 2025 publication-title: Nat. Mater. – volume: 1 start-page: 274 year: 2017 publication-title: Joule – volume: 18 start-page: 674 year: 2025 publication-title: Energy Environ. Sci. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 84 year: 2011 publication-title: Phys. Rev. B – volume: 21 start-page: 656 year: 2022 publication-title: Nat. Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 94 year: 2005 publication-title: Phys. Rev. Lett. – volume: 18 start-page: 774 year: 2025 publication-title: Energy Environ. Sci. – volume: 16 start-page: 2316 year: 2023 publication-title: Energy Environ. Sci. – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 382 start-page: 1291 year: 2023 publication-title: Science – volume: 10 start-page: 124 year: 2024 publication-title: Nat. Energy – volume: 81 start-page: 3885 year: 2002 publication-title: Appl. Phys. Lett. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 16 start-page: 1711 year: 2023 publication-title: Energy Environ. Sci. – volume: 27 start-page: 886 year: 2015 publication-title: Adv. Mater. – volume: 9 start-page: 1117 year: 2024 publication-title: Nat. Energy – volume: 8 year: 2024 publication-title: Sol. RRL – volume: 35 year: 2025 publication-title: Adv. Funct. Mater. – volume: 146 year: 2024 publication-title: J. Am. Chem. Soc. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 82 year: 2010 publication-title: Phys. Rev. B – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 17 start-page: 5173 year: 2024 publication-title: Energy Environ. Sci. – volume: 117 year: 2020 publication-title: Proc. Natl. Acad. Sci. USA – volume: 32 year: 2016 publication-title: Langmuir – volume: 27 start-page: 4655 year: 2015 publication-title: Adv. Mater. – volume: 9 start-page: 975 year: 2024 publication-title: Nat. Energy – volume: 8 start-page: 62 year: 2022 publication-title: Nat. Energy – volume: 247 year: 2010 publication-title: J. Phys.: Conf. Ser. – volume: 8 start-page: 3038 year: 2023 publication-title: ACS Energy Lett. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 14 start-page: 6312 year: 2023 publication-title: Nat. Commun. – volume: 7 start-page: 1087 year: 2022 publication-title: Nat. Energy – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 36 year: 2023 publication-title: Adv. Mater. – volume: 9 start-page: 534 year: 2018 publication-title: Nat. Commun. – ident: e_1_2_7_40_1 doi: 10.1038/s41467-023-42018-7 – ident: e_1_2_7_56_1 doi: 10.1103/PhysRevLett.94.126602 – ident: e_1_2_7_28_1 doi: 10.1002/anie.202404297 – ident: e_1_2_7_17_1 doi: 10.1002/adma.202202659 – ident: e_1_2_7_19_1 doi: 10.1038/s41928-023-00971-7 – ident: e_1_2_7_5_1 doi: 10.1002/adma.202400342 – ident: e_1_2_7_2_1 doi: 10.1039/D4EE04036H – ident: e_1_2_7_45_1 doi: 10.1002/adma.202208926 – ident: e_1_2_7_49_1 doi: 10.1088/1742-6596/247/1/012007 – ident: e_1_2_7_35_1 doi: 10.1073/pnas.2000398117 – ident: e_1_2_7_1_1 doi: 10.1126/science.adj3654 – ident: e_1_2_7_6_1 doi: 10.1002/aenm.201802521 – ident: e_1_2_7_4_1 doi: 10.1038/s41560-024-01557-z – ident: e_1_2_7_37_1 doi: 10.1039/D4EE01717J – ident: e_1_2_7_11_1 doi: 10.1039/D4EE04585H – ident: e_1_2_7_44_1 doi: 10.1002/adma.202308608 – ident: e_1_2_7_55_1 doi: 10.1063/1.2821368 – ident: e_1_2_7_33_1 doi: 10.1038/s41563-024-02062-0 – ident: e_1_2_7_42_1 doi: 10.1002/adma.201908205 – ident: e_1_2_7_18_1 doi: 10.1002/adma.202209030 – ident: e_1_2_7_24_1 doi: 10.1039/D4EE00680A – ident: e_1_2_7_25_1 doi: 10.1038/s41563-023-01579-0 – ident: e_1_2_7_7_1 doi: 10.1038/s41560-022-01140-4 – ident: e_1_2_7_12_1 doi: 10.1002/adma.202208279 – ident: e_1_2_7_15_1 doi: 10.1039/D3EE01189E – ident: e_1_2_7_53_1 doi: 10.1002/adma.201103006 – ident: e_1_2_7_8_1 doi: 10.1016/j.joule.2017.08.002 – ident: e_1_2_7_36_1 doi: 10.1002/adma.202313098 – ident: e_1_2_7_32_1 doi: 10.1002/adfm.202409315 – ident: e_1_2_7_46_1 doi: 10.1039/c3tc32077d – ident: e_1_2_7_38_1 doi: 10.1021/jacs.5b07228 – ident: e_1_2_7_52_1 doi: 10.1063/1.1521244 – volume: 9 start-page: 1117 year: 2024 ident: e_1_2_7_9_1 publication-title: Nat. Energy – ident: e_1_2_7_16_1 doi: 10.1002/solr.202400437 – ident: e_1_2_7_22_1 doi: 10.1002/aenm.202100098 – ident: e_1_2_7_23_1 doi: 10.1002/adfm.202414463 – ident: e_1_2_7_48_1 doi: 10.1021/acs.langmuir.6b02769 – ident: e_1_2_7_10_1 doi: 10.1038/s41560-022-01167-7 – ident: e_1_2_7_27_1 doi: 10.1002/aenm.202203465 – ident: e_1_2_7_20_1 doi: 10.1039/D2EE03966D – ident: e_1_2_7_30_1 doi: 10.1038/s41560-024-01678-5 – ident: e_1_2_7_39_1 doi: 10.1002/adma.201404040 – ident: e_1_2_7_50_1 doi: 10.1039/D1TA04623C – ident: e_1_2_7_54_1 doi: 10.1103/PhysRevB.82.245207 – ident: e_1_2_7_13_1 doi: 10.1038/s41467-018-02833-9 – ident: e_1_2_7_51_1 doi: 10.1103/PhysRevB.84.045203 – ident: e_1_2_7_14_1 doi: 10.1002/adma.202108508 – ident: e_1_2_7_47_1 doi: 10.1002/adfm.202205711 – ident: e_1_2_7_29_1 doi: 10.1002/adma.202002302 – ident: e_1_2_7_21_1 doi: 10.1126/sciadv.aaw7757 – ident: e_1_2_7_34_1 doi: 10.1002/adfm.202315825 – ident: e_1_2_7_3_1 doi: 10.1021/jacs.4c01503 – ident: e_1_2_7_41_1 doi: 10.1002/adma.201502110 – ident: e_1_2_7_43_1 doi: 10.1038/s41563-022-01244-y – ident: e_1_2_7_26_1 doi: 10.1021/acsenergylett.3c00891 – ident: e_1_2_7_31_1 doi: 10.1039/D3EE00294B |
SSID | ssj0001537418 |
Score | 2.3314114 |
Snippet | Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible... Solution-processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco-compatible... Abstract Solution‐processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco‐compatible... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2502077 |
SubjectTerms | Efficiency high‐speed printing Hydrocarbons Manufacturing Microscopy molecular aggregation kinetics Morphology morphology engineering non‐halogenated solvent Optimization slot‐die coating Solvents Temperature |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZge-GCKM9AQUZCAg6hdmInzgm1260qUKuqS6XeIsePbaRVvOxuK_XGT-DMz-OXMJNkt6xAcEzsWEnm9c1k8pmQN0wJK5g3sVNaxaKoVKxtJWPmLaQTieW5xnrH8Ul2dC4-XciLvuC26NsqVz6xddQ2GKyR76bYsQyxphAfZ19j3DUKv672W2jcJVvggpUakK390cnp2W2VRaZIz7Jia2TJrrbXyNINkT9heb4RjVrS_r8hzT8bJn8Hsm0kOnxA7vcQku51Mt8md1zzkGz3Rrqg73om6fePyA_s4vj57ft4BjGKjqdhCQcHtaPDoLHdmWIVlh6EJsxh4HReB9zKjp7pWW3p3gRS8UkrOPoZsCjyOVOAuLSrQ8CCxwGE1JblqW4sHbVsFPgrJ60bOjLBI4eynd7Q7odPQ8eYR9Ohm04Xj8n54ejL8CjuN2OIjUAUDpJmzkgtTYEkfjaTPnEp-KgMMh7lPbcFc8yD360Ak2iAHt447q0VusiZKdInZNCExj0j1PlK6hQSM68LkakUKeBzVjiYbxKpeUTeroRSzjrOjbJjV05KFF-5Fl9E9lFm61nIld2eCPNJ2Ztemac5cuaj7qTCS6OLzLnKMpMonnMOi-ysJF72Brwob9UtIq_Xw2B6-D1FNy5cwRxegL8TuZQRedopyPpOQM-VzAQsrjZUZ-NWN0ea-rKl9-YdqSOLyIdWy_7zDkrAL2OesDR5_u8HeUHu4UVdr_EOGSznV-4lIKpl9ao3m1_gsSQo priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWgbNggyjNQkJGQgEVUJ7GTeFmmU1WgooqhUneR48c00igezUyRuusnsObz-BLujTNpI5AQy8QPWTm-9rk318eEvGUlN5w5HdtSlTGXdRkrU4uYOQPuRGqSQmG84-RLfnzGP52L81un-IM-xBBwQ8vo1ms0cFWv929EQ5X5jnLbsIWnrCjuknt4vhaT-lJ-ehNlERnKs-ANc-Bdx1nJ-Va5kaX74y5GO1Mn4P831vln8uRtUtvtSkcPyYOeTtKDgP8uuWPbR2S3N9g1fd-rSn94TH5iRsev6x-zJexXdLbwG3g4bCydeIWpzxQjsvTQt34FBaerxuO1dvSrWjaGHszBLZ93INLP8OVQ25kC3aUhJgEdnngArAvRU9UaOu2UKfBYJ21aOtXeoZ6yWVzRcPhT0xn61HRiF4v1E3J2NP02OY77ixlizZGRA-rMaqGElijoZ3LhUpvBepWD91M6lxjJLHOwBtfATxTQEKdt4ozhShZMy-wp2Wl9a58Tal0tVAZOmlOS52WGcvAFkxbq61SoJCLvtqBUy6C_UQWl5bRC-KoBvoh8RMyGWqib3b3wq3nVm2FVZAXq5wNnkRl3QiuZW1sbptMyKZIEOtnbIl71xryuMkyWxyY8Im-GYjBD_LeiWusvoU4iYe3jhRAReRYmyDASmPOlyDl0Xo6mzmio45K2ueikvpMg8MgiEmzhH9-gAi4zS1KWpS_-t8FLch_fhkzkPbKzWV3aV8C3NvXrzqR-A37eJ3g priority: 102 providerName: Wiley-Blackwell |
Title | High‐Speed Slot‐Die Coating with Donor‐Priority Rapid Aggregation Kinetics for Improved Morphology and Efficiency in Ecofriendly Organic Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202502077 https://www.ncbi.nlm.nih.gov/pubmed/40285647 https://www.proquest.com/docview/3230752194 https://www.proquest.com/docview/3195784755 https://pubmed.ncbi.nlm.nih.gov/PMC12279230 https://doaj.org/article/7377881521934f5ca96eebd0c2817117 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZguXBBLM_AUhkJCTiEtRM7j2O37WoFdFVtWGlvkePHEqlKqraLxI2fwJmfxy9hJk6rViDthVOV2rEsz9jzzWTmMyFvWCaMYE6HNlNZKPIqC5WpZMicAXciMjxVGO-Ynidnl-LjlbzaueoLc8I8PbBfuOM0TpHxHKxMHgsntcoTayvDdJTxlPOujhxs3o4z5euDY6Rl2bA0suhYmW_Izg0WP2JpumeFOrL-fyHMvxMldwFsZ4FOH5IHPXSkQz_lQ3LHNo_IYb85V_RdzyD9_jH5hdkbv3_8LBZgm2gxb9fwMK4tHbUK05wpRl_puG3aJTTMlnWLV9jRC7WoDR1egwt-3QmMfgIMijzOFKAt9fEHGHDagnC6cDxVjaGTjoUCSzhp3dCJbh1yJ5v5d-oLPTUt0H-mIzufr56Qy9PJl9FZ2F_CEGqB6BskzKyWSuocyftMIl1kYzibEvB0Mue4yZllDs7bCrCIAsjhtOXOGKHylOk8fkoOmraxzwm1rpIqBofMqVwkWYzU7ynLLfTXkVQ8IG83QikXnmuj9KzKUYniK7fiC8gJymzbCzmyuz9Ac8pec8rbNCcgRxuJl_3GXZUxJsbjKyIgr7fNsOXwO4pqbHsDfXgO55xIpQzIM68g25mAfmcyETB4tqc6e1Pdb2nqrx2tN_dkjiwgHzotu2UNSsAtBY9YHL34H6vxktzHoX0m8hE5WC9v7CvAW-tqQO5GYjYg94bj6ecCfk8m57OLQbfh_gAFzS4B |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFLWqdAEbRHkGChgJBCyGejz2PBYItUmqlDRR1bRSd1OPHyFSNBOSFNQdn8Caj-Cj-BLunZmkRCBYdZnYspzc1_H19bmEvGCxMII57dlYxZ5IsthTJpMecwaOE9z4kcJ8R38Qdk_FhzN5tkF-LN_CYFnl0ieWjtoUGnPkOwFWLEOsScT76ScPu0bh7eqyhUalFj17-QWObPN3B22Q70vO9zsnra5XdxXwtEA4CVtmVksldYJsdCaUjtsAjC0E6B4755uEWebAgWQQXBXEUKet74wRKomYRvIlcPmbIggZb5DNvc7g6PgqqyMDpINZskMyvqPMZ2QFB6TBWRStRb-yScDfkO2fBZq_A-cy8u3fJrdqyEp3Kx3bIhs2v0O2aqcwp69r5uo3d8l3rBr5-fXbcAoxkQ4nxQI-tMeWtgqF5dUUs760XeTFDAaOZuMCW-fRYzUdG7o7gqP_qFQU2gPsi_zRFCA1rfIesGC_AKUorwGoyg3tlOwX-HSUjnPa0YVDzmYzuaTVA1NNh3hupy07mczvkdNrEdN90siL3D4k1LpMqgAOgk4lIowDpJyPWGJhvuZS-U3yaimUdFpxfKQVmzNPUXzpSnxNsocyW81Cbu7yi2I2SmtTT6MgQo5-1NVAOKlVElqbGaZ57Ee-D4tsLyWe1g5jnl6pd5M8Xw2DqeP9jcptcQFz_AT8q4ikbJIHlYKsdgJ2FctQwOLxmuqsbXV9JB9_LOnE_YpEkjXJ21LL_vMfpICXhj5nAX_07x_yjNzonvQP08ODQe8xuYkLVHXO26SxmF3YJ4DmFtnT2oQoOb9uq_0FCzBgwQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5VqYS4IMpqKDBIIOBgMrZnvBwQarOoJTSKGir15o5nCZEiOyQpqDd-Amd-Cj-HX8J7XlIiEJx6tGcyGuftb958j5BnLOaaM6tcE8vY5UkWu1JnwmVWQzjhay-SmO84GoYHJ_zdqTjdIj-auzBYVtnoxFJR60JhjrwdYMUy2JqEt21dFjHq9t_OP7nYQQpPWpt2GhWLDMzFFwjflm8Ou0Dr577f733oHLh1hwFXcXQtYfvMKCGFShCZTofC-iYAwQvBjY-t9XTCDLOgTDIwtBLsqVXGs1pzmURMIRATqP_tCKOiFtne7w1Hx5cZHhEgNEyDFMn8ttSfESEcvA6fRdGGJSwbBvzNy_2zWPN3J7q0gv2b5EbtvtK9it92yJbJb5GdWkEs6csaxfrVbfIdK0h-fv02noN9pONZsYKH7tTQTiGx1JpiBph2i7xYwMBoMS2wjR49lvOppnuTycJMSqahA_CDEUuagntNqxwILHhUAIOURwJU5pr2SiQMvEZKpzntqcIifrOeXdDqsqmiY4zhacfMZss75ORKyHSXtPIiN_cJNTYTMoCg0MqEh3GA8PMRSwzMV76QnkNeNERJ5xXeR1ohO_spki9dk88h-0iz9SzE6S5fFItJWot9GgUR4vUj3wbcCiWT0JhMM-XHXuR5sMhuQ_G0Vh7L9JLVHfJ0PQxij2c5MjfFOczxEtC1PBLCIfcqBlnvBGQsFiGHxeMN1tnY6uZIPv1YQot7FaAkc8jrksv-8x-k4DuNPZ8F_oN_f8gTcg2kNX1_OBw8JNfx91XJ8y5prRbn5hE4dqvscS1BlJxdtdD-Ak3aZPY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Speed+Slot%E2%80%90Die+Coating+with+Donor%E2%80%90Priority+Rapid+Aggregation+Kinetics+for+Improved+Morphology+and+Efficiency+in+Ecofriendly+Organic+Solar+Cells&rft.jtitle=Advanced+science&rft.au=Bi%2C+Zhaozhao&rft.au=Wu%2C+Baohua&rft.au=Wang%2C+Ke&rft.au=Xue%2C+Jingwei&rft.date=2025-07-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=12&rft.issue=27&rft_id=info:doi/10.1002%2Fadvs.202502077&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202502077 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |