Machine Learning‐Based Radiomics in Malignancy Prediction of Pancreatic Cystic Lesions: Evidence from Cyst Fluid Multi‐Omics

The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical‐radiomic models using preoperative CT images to predict the malignant potential of PCLs. It also investigates the...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 12; no. 20; pp. e2409488 - n/a
Main Authors Cheng, Sihang, Hu, Ge, Zhang, Shenbo, Lv, Rui, Sun, Limeng, Zhang, Zhe, Jin, Zhengyu, Wu, Yanyan, Huang, Chen, Ye, Lu, Feng, Yunlu, Chen, Zhe‐Sheng, Wang, Zhiwei, Xue, Huadan, Yang, Aiming
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.05.2025
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical‐radiomic models using preoperative CT images to predict the malignant potential of PCLs. It also investigates the biological mechanisms underlying these models. Patients from two retrospective and one prospective cohort, all undergoing surgical resection for PCLs, are divided into four datasets: training, internal test, external test, and prospective application sets. Eleven machine learning classifiers are employed to construct radiomic models based on selected features. Cyst fluid from the prospective cohort is collected for proteomic and lipidomic analysis. The radiomic models demonstrated high accuracy, with area under the receiver operating characteristic curves (AUCs) > 0.93 across the training (n = 262), internal test (n = 50), and external test (n = 50) sets. AUCs ranged from 0.92 to 0.96 for the prospective cohort (n = 34). Meanwhile, differentially‐expressed proteins and lipid molecules, along with their associated signaling pathways, are identified between high and low groups of clinical‐radiomic scores. This models can effectively and accurately predict the malignant potential of PCLs, with multi‐omics evidence suggesting the biological mechanisms involving secretion function and lipid metabolism underlying clinical‐radiomic models. This study develops noninvasive clinical‐radiomic models using preoperative CT images to predict the malignant potential of pancreatic cystic lesions. It demonstrates the models' high accuracy across various datasets, with AUCs exceeding 0.92. Additionally, multi‐omics analyses uncover key biological mechanisms, including secretion function and lipid metabolism, driving these predictive models.
AbstractList The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical‐radiomic models using preoperative CT images to predict the malignant potential of PCLs. It also investigates the biological mechanisms underlying these models. Patients from two retrospective and one prospective cohort, all undergoing surgical resection for PCLs, are divided into four datasets: training, internal test, external test, and prospective application sets. Eleven machine learning classifiers are employed to construct radiomic models based on selected features. Cyst fluid from the prospective cohort is collected for proteomic and lipidomic analysis. The radiomic models demonstrated high accuracy, with area under the receiver operating characteristic curves (AUCs) > 0.93 across the training (n = 262), internal test (n = 50), and external test (n = 50) sets. AUCs ranged from 0.92 to 0.96 for the prospective cohort (n = 34). Meanwhile, differentially‐expressed proteins and lipid molecules, along with their associated signaling pathways, are identified between high and low groups of clinical‐radiomic scores. This models can effectively and accurately predict the malignant potential of PCLs, with multi‐omics evidence suggesting the biological mechanisms involving secretion function and lipid metabolism underlying clinical‐radiomic models.
The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical-radiomic models using preoperative CT images to predict the malignant potential of PCLs. It also investigates the biological mechanisms underlying these models. Patients from two retrospective and one prospective cohort, all undergoing surgical resection for PCLs, are divided into four datasets: training, internal test, external test, and prospective application sets. Eleven machine learning classifiers are employed to construct radiomic models based on selected features. Cyst fluid from the prospective cohort is collected for proteomic and lipidomic analysis. The radiomic models demonstrated high accuracy, with area under the receiver operating characteristic curves (AUCs) > 0.93 across the training (n = 262), internal test (n = 50), and external test (n = 50) sets. AUCs ranged from 0.92 to 0.96 for the prospective cohort (n = 34). Meanwhile, differentially-expressed proteins and lipid molecules, along with their associated signaling pathways, are identified between high and low groups of clinical-radiomic scores. This models can effectively and accurately predict the malignant potential of PCLs, with multi-omics evidence suggesting the biological mechanisms involving secretion function and lipid metabolism underlying clinical-radiomic models.The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical-radiomic models using preoperative CT images to predict the malignant potential of PCLs. It also investigates the biological mechanisms underlying these models. Patients from two retrospective and one prospective cohort, all undergoing surgical resection for PCLs, are divided into four datasets: training, internal test, external test, and prospective application sets. Eleven machine learning classifiers are employed to construct radiomic models based on selected features. Cyst fluid from the prospective cohort is collected for proteomic and lipidomic analysis. The radiomic models demonstrated high accuracy, with area under the receiver operating characteristic curves (AUCs) > 0.93 across the training (n = 262), internal test (n = 50), and external test (n = 50) sets. AUCs ranged from 0.92 to 0.96 for the prospective cohort (n = 34). Meanwhile, differentially-expressed proteins and lipid molecules, along with their associated signaling pathways, are identified between high and low groups of clinical-radiomic scores. This models can effectively and accurately predict the malignant potential of PCLs, with multi-omics evidence suggesting the biological mechanisms involving secretion function and lipid metabolism underlying clinical-radiomic models.
The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical-radiomic models using preoperative CT images to predict the malignant potential of PCLs. It also investigates the biological mechanisms underlying these models. Patients from two retrospective and one prospective cohort, all undergoing surgical resection for PCLs, are divided into four datasets: training, internal test, external test, and prospective application sets. Eleven machine learning classifiers are employed to construct radiomic models based on selected features. Cyst fluid from the prospective cohort is collected for proteomic and lipidomic analysis. The radiomic models demonstrated high accuracy, with area under the receiver operating characteristic curves (AUCs) > 0.93 across the training (n = 262), internal test (n = 50), and external test (n = 50) sets. AUCs ranged from 0.92 to 0.96 for the prospective cohort (n = 34). Meanwhile, differentially-expressed proteins and lipid molecules, along with their associated signaling pathways, are identified between high and low groups of clinical-radiomic scores. This models can effectively and accurately predict the malignant potential of PCLs, with multi-omics evidence suggesting the biological mechanisms involving secretion function and lipid metabolism underlying clinical-radiomic models.
Abstract The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical‐radiomic models using preoperative CT images to predict the malignant potential of PCLs. It also investigates the biological mechanisms underlying these models. Patients from two retrospective and one prospective cohort, all undergoing surgical resection for PCLs, are divided into four datasets: training, internal test, external test, and prospective application sets. Eleven machine learning classifiers are employed to construct radiomic models based on selected features. Cyst fluid from the prospective cohort is collected for proteomic and lipidomic analysis. The radiomic models demonstrated high accuracy, with area under the receiver operating characteristic curves (AUCs) > 0.93 across the training (n = 262), internal test (n = 50), and external test (n = 50) sets. AUCs ranged from 0.92 to 0.96 for the prospective cohort (n = 34). Meanwhile, differentially‐expressed proteins and lipid molecules, along with their associated signaling pathways, are identified between high and low groups of clinical‐radiomic scores. This models can effectively and accurately predict the malignant potential of PCLs, with multi‐omics evidence suggesting the biological mechanisms involving secretion function and lipid metabolism underlying clinical‐radiomic models.
The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical‐radiomic models using preoperative CT images to predict the malignant potential of PCLs. It also investigates the biological mechanisms underlying these models. Patients from two retrospective and one prospective cohort, all undergoing surgical resection for PCLs, are divided into four datasets: training, internal test, external test, and prospective application sets. Eleven machine learning classifiers are employed to construct radiomic models based on selected features. Cyst fluid from the prospective cohort is collected for proteomic and lipidomic analysis. The radiomic models demonstrated high accuracy, with area under the receiver operating characteristic curves (AUCs) > 0.93 across the training (n = 262), internal test (n = 50), and external test (n = 50) sets. AUCs ranged from 0.92 to 0.96 for the prospective cohort (n = 34). Meanwhile, differentially‐expressed proteins and lipid molecules, along with their associated signaling pathways, are identified between high and low groups of clinical‐radiomic scores. This models can effectively and accurately predict the malignant potential of PCLs, with multi‐omics evidence suggesting the biological mechanisms involving secretion function and lipid metabolism underlying clinical‐radiomic models. This study develops noninvasive clinical‐radiomic models using preoperative CT images to predict the malignant potential of pancreatic cystic lesions. It demonstrates the models' high accuracy across various datasets, with AUCs exceeding 0.92. Additionally, multi‐omics analyses uncover key biological mechanisms, including secretion function and lipid metabolism, driving these predictive models.
Author Feng, Yunlu
Chen, Zhe‐Sheng
Jin, Zhengyu
Huang, Chen
Cheng, Sihang
Sun, Limeng
Zhang, Zhe
Ye, Lu
Zhang, Shenbo
Wang, Zhiwei
Yang, Aiming
Wu, Yanyan
Lv, Rui
Hu, Ge
Xue, Huadan
AuthorAffiliation 1 Department of Radiology Peking Union Medical College Hospital Chinese Academy of Medical Sciences Beijing 100730 China
3 Department of Gastroenterology Peking Union Medical College Hospital Chinese Academy of Medical Sciences Beijing 100730 China
6 Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens NY 11439 USA
5 Interventional Center Chengdu First People's Hospital Chengdu 610041 China
4 Department of Interventional Radiology The Affiliated Panyu Central Hospital of Guangzhou Medical University Guangzhou 511400 China
2 Theranostics and Translational Research Center National Infrastructures for Translational Medicine Institute of Clinical Medicine Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100730 China
AuthorAffiliation_xml – name: 3 Department of Gastroenterology Peking Union Medical College Hospital Chinese Academy of Medical Sciences Beijing 100730 China
– name: 6 Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens NY 11439 USA
– name: 1 Department of Radiology Peking Union Medical College Hospital Chinese Academy of Medical Sciences Beijing 100730 China
– name: 5 Interventional Center Chengdu First People's Hospital Chengdu 610041 China
– name: 2 Theranostics and Translational Research Center National Infrastructures for Translational Medicine Institute of Clinical Medicine Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100730 China
– name: 4 Department of Interventional Radiology The Affiliated Panyu Central Hospital of Guangzhou Medical University Guangzhou 511400 China
Author_xml – sequence: 1
  givenname: Sihang
  orcidid: 0000-0002-6082-0401
  surname: Cheng
  fullname: Cheng, Sihang
  organization: Chinese Academy of Medical Sciences
– sequence: 2
  givenname: Ge
  surname: Hu
  fullname: Hu, Ge
  organization: Chinese Academy of Medical Sciences and Peking Union Medical College
– sequence: 3
  givenname: Shenbo
  surname: Zhang
  fullname: Zhang, Shenbo
  organization: Chinese Academy of Medical Sciences
– sequence: 4
  givenname: Rui
  surname: Lv
  fullname: Lv, Rui
  organization: Chinese Academy of Medical Sciences
– sequence: 5
  givenname: Limeng
  surname: Sun
  fullname: Sun, Limeng
  organization: Chinese Academy of Medical Sciences
– sequence: 6
  givenname: Zhe
  surname: Zhang
  fullname: Zhang, Zhe
  organization: Chinese Academy of Medical Sciences
– sequence: 7
  givenname: Zhengyu
  surname: Jin
  fullname: Jin, Zhengyu
  organization: Chinese Academy of Medical Sciences
– sequence: 8
  givenname: Yanyan
  surname: Wu
  fullname: Wu, Yanyan
  organization: Chinese Academy of Medical Sciences
– sequence: 9
  givenname: Chen
  surname: Huang
  fullname: Huang, Chen
  organization: The Affiliated Panyu Central Hospital of Guangzhou Medical University
– sequence: 10
  givenname: Lu
  surname: Ye
  fullname: Ye, Lu
  organization: Chengdu First People's Hospital
– sequence: 11
  givenname: Yunlu
  surname: Feng
  fullname: Feng, Yunlu
  email: fengyl@pumch.cn
  organization: Chinese Academy of Medical Sciences
– sequence: 12
  givenname: Zhe‐Sheng
  surname: Chen
  fullname: Chen, Zhe‐Sheng
  email: chenz@stjohns.edu
  organization: St. John's University
– sequence: 13
  givenname: Zhiwei
  surname: Wang
  fullname: Wang, Zhiwei
  email: wangzhiwei@pumch.cn
  organization: Chinese Academy of Medical Sciences
– sequence: 14
  givenname: Huadan
  surname: Xue
  fullname: Xue, Huadan
  email: xuehd@pumch.cn
  organization: Chinese Academy of Medical Sciences
– sequence: 15
  givenname: Aiming
  surname: Yang
  fullname: Yang, Aiming
  email: yangam@pumch.cn
  organization: Chinese Academy of Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40289610$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuUzEQho9QEb3QLUtkiQ2bBI99LjYbVNIWKiVqxW1rTWyf1NGJ3do5Qdn1EXhGngSnKVHLhtVYM_98M7b_w2LPB2-L4hXQIVDK3qFZpSGjrKSyFOJZccBAigEXZbn36LxfHKc0p5RCxZsSxItiv6RMyBroQXE3QX3tvCVji9E7P_t99-sjJmvIFzQuLJxOxHkywc7NPHq9JlfRGqeXLngSWnKVc9Hi0mkyWqdNGNuUa-k9OVs5Y722pI1hcV8l513vDJn03dLlOZcb-svieYtdsscP8aj4fn72bfR5ML78dDE6GQ90vhobTNFQ3QJoRmuGtJGcCc5lK1pBASpEM2VTCUBRi5JakKZpJUNAEGAYan5UXGy5JuBc3US3wLhWAZ26T4Q4Uxjz_p1VBhm3aGtZl7LUAkVTt5IaoKURtZQb1oct66afLqzR1i8jdk-gTyveXatZWClgwGhT0Ux4-0CI4ba3aakWLmnbdeht6JPiIKtGSkqrLH3zj3Qe-ujzWynOgENVN7zMqtePV9rt8vens2C4FegYUoq23UmAqo2b1MZNauem3FBtG366zq7_o1Ynpz--QnYc438AKj7O8w
Cites_doi 10.1148/radiol.222778
10.1136/gutjnl-2018-316027
10.1016/j.plipres.2023.101267
10.7554/eLife.23421
10.1016/j.canlet.2011.07.010
10.1016/j.pan.2017.07.007
10.1158/0008-5472.CAN-15-2841
10.3389/fonc.2022.941744
10.1186/s12967-023-04702-6
10.1038/s41467-020-17917-8
10.1186/s40425-019-0739-1
10.1111/jcmm.15832
10.1002/ctm2.1126
10.1016/j.jacr.2017.07.018
10.3389/fcell.2020.00549
10.1007/s00232-020-00163-w
10.1038/s41467-021-27765-9
10.1158/0008-5472.CAN-19-2578
10.1007/s11010-012-1404-x
10.3748/wjg.v18.i2.175
10.1186/s12885-022-10273-4
10.1016/j.canlet.2019.10.023
10.1159/000504247
10.1038/s41598-019-46634-6
10.1016/j.yexcr.2019.03.022
10.1001/jamanetworkopen.2020.28086
10.1093/jncics/pkab048
10.3934/mbe.2021241
10.3390/biom3030435
10.12998/wjcc.v9.i35.10884
10.21037/qims-22-1192
10.1016/S1043-6618(03)00050-1
10.1016/j.pan.2023.12.002
10.1016/S0016-5107(05)01581-6
10.1158/2326-6066.CIR-23-0205
10.1016/j.molmet.2024.101936
10.1158/0008-5472.CAN-17-0339
10.1016/j.acra.2023.09.043
10.1038/s41575-019-0195-x
10.1016/j.pan.2018.11.014
10.1007/s00330-023-10158-5
10.1148/radiol.2021219005
10.1053/j.gastro.2021.09.073
10.1007/s00109-014-1148-z
10.1016/j.suronc.2022.101849
10.1159/000181173
10.1038/s41467-024-55594-z
10.1038/s41416-023-02242-w
10.1038/ajg.2018.14
10.1016/j.tranon.2018.03.005
10.1148/radiol.2021202553
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH
2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH
– notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202409488
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
MEDLINE



CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_da23eae696494c8a876f90d104d8699c
PMC12120750
40289610
10_1002_advs_202409488
ADVS11982
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Beijing Natural Science Foundation
  funderid: 7232116
– fundername: Non‐profit Central Research Institute Fund of Chinese Academy of Medical Sciences
  funderid: 2023‐JKCS‐01
– fundername: Peking Union Medical College Hospital Young Reserve Talent Development Program
  funderid: UHB11857
– fundername: National High‐Level Hospital Clinical Research Funding
  funderid: 2022‐PUMCH‐B‐68; 2022‐PUMCH‐D‐001
– fundername: National Natural Science Foundation of China
  funderid: 82202268; 32370946; 22232006; 82470700
– fundername: CAMS Innovation Fund for Medical Sciences (CIFMS)
  funderid: 2024‐I2M‐ZD‐001
– fundername: National Natural Science Foundation of China
  grantid: 82202268
– fundername: Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
  grantid: 2023-JKCS-01
– fundername: Beijing Natural Science Foundation
  grantid: 7232116
– fundername: CAMS Innovation Fund for Medical Sciences (CIFMS)
  grantid: 2024-I2M-ZD-001
– fundername: National High-Level Hospital Clinical Research Funding
  grantid: 2022-PUMCH-B-68
– fundername: National High-Level Hospital Clinical Research Funding
  grantid: 2022-PUMCH-D-001
– fundername: National Natural Science Foundation of China
  grantid: 32370946
– fundername: National Natural Science Foundation of China
  grantid: 82470700
– fundername: Peking Union Medical College Hospital Young Reserve Talent Development Program
  grantid: UHB11857
– fundername: National Natural Science Foundation of China
  grantid: 22232006
– fundername: Non‐profit Central Research Institute Fund of Chinese Academy of Medical Sciences
  grantid: 2023‐JKCS‐01
– fundername: CAMS Innovation Fund for Medical Sciences (CIFMS)
  grantid: 2024‐I2M‐ZD‐001
– fundername: National High‐Level Hospital Clinical Research Funding
  grantid: 2022‐PUMCH‐B‐68; 2022‐PUMCH‐D‐001
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PMFND
PQQKQ
PROAC
ROL
RPM
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
EJD
WIN
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c4882-bad0cf11c2062a079328339f8f80115aadb2b9110ac840e19d7f92a1a181d2ac3
IEDL.DBID DOA
ISSN 2198-3844
IngestDate Wed Aug 27 01:19:08 EDT 2025
Thu Aug 21 18:36:42 EDT 2025
Fri Jul 11 18:30:35 EDT 2025
Wed Aug 13 11:06:17 EDT 2025
Sun Jun 01 01:35:36 EDT 2025
Thu Aug 14 00:04:50 EDT 2025
Thu May 29 13:08:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords lipidomic
pancreatic cystic lesions
radiomics
proteomic
artificial intelligence
Language English
License Attribution
2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4882-bad0cf11c2062a079328339f8f80115aadb2b9110ac840e19d7f92a1a181d2ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6082-0401
OpenAccessLink https://doaj.org/article/da23eae696494c8a876f90d104d8699c
PMID 40289610
PQID 3213156734
PQPubID 4365299
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_da23eae696494c8a876f90d104d8699c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12120750
proquest_miscellaneous_3195799005
proquest_journals_3213156734
pubmed_primary_40289610
crossref_primary_10_1002_advs_202409488
wiley_primary_10_1002_advs_202409488_ADVS11982
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2025
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 6
2013; 3
2023; 34
2023; 8
2016; 76
2005; 62
2019; 16
2019; 19
2024; 31
2023; 308
2012; 18
2020; 11
2022; 22
2012; 370
2020; 8
2023; 21
2022; 162
2020; 3
2019; 64
2017; 77
2003; 47
2024; 24
2021; 9
2019; 7
2019; 9
2021; 5
2023; 13
2014; 92
2020; 80
2023; 128
2020; 469
2025; 16
2024; 12
2022; 44
2018; 67
2017; 14
2021; 299
2017; 17
2018; 113
2021; 18
2024; 93
2022; 12
2019; 379
2013; 332
2024; 83
2022; 13
2009; 9
2020; 24
2021; 298
2021; 254
2018; 11
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
Cui M. (e_1_2_8_21_1) 2023; 8
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 5
  year: 2021
  publication-title: JNCI Cancer Spectr.
– volume: 13
  start-page: 6395
  year: 2023
  publication-title: Quant. Imaging Med. Surg.
– volume: 308
  year: 2023
  publication-title: Radiology
– volume: 13
  start-page: 124
  year: 2022
  publication-title: Nat. Commun.
– volume: 6
  year: 2017
  publication-title: Elife
– volume: 12
  year: 2022
  publication-title: Clin. Transl. Med.
– volume: 62
  start-page: 383
  year: 2005
  publication-title: Gastrointest. Endosc.
– volume: 11
  start-page: 4085
  year: 2020
  publication-title: Nat. Commun.
– volume: 128
  start-page: 2000
  year: 2023
  publication-title: Br. J. Cancer
– volume: 92
  start-page: 465
  year: 2014
  publication-title: J. Mol. Med.
– volume: 31
  start-page: 1889
  year: 2024
  publication-title: Acad. Radiol.
– volume: 8
  start-page: 406
  year: 2023
  publication-title: Signal Transd. Targ. Ther.
– volume: 24
  year: 2020
  publication-title: J. Cell. Mol. Med.
– volume: 64
  start-page: 177
  year: 2019
  publication-title: Chemotherapy
– volume: 332
  start-page: 286
  year: 2013
  publication-title: Cancer Lett.
– volume: 379
  start-page: 30
  year: 2019
  publication-title: Exp. Cell Res.
– volume: 47
  start-page: 383
  year: 2003
  publication-title: Pharmacol. Res.
– volume: 3
  year: 2020
  publication-title: JAMA Netw. Open
– volume: 21
  start-page: 838
  year: 2023
  publication-title: J. Transl. Med.
– volume: 12
  year: 2022
  publication-title: Front. Oncol.
– volume: 298
  start-page: 505
  year: 2021
  publication-title: Radiology
– volume: 162
  start-page: 379
  year: 2022
  publication-title: Gastroenterology
– volume: 14
  start-page: 1429
  year: 2017
  publication-title: J. Am. Coll. Radiol.
– volume: 18
  start-page: 4743
  year: 2021
  publication-title: Math. Biosci. Eng.
– volume: 113
  start-page: 464
  year: 2018
  publication-title: Am. J. Gastroenterol.
– volume: 93
  year: 2024
  publication-title: Prog. Lipid Res.
– volume: 254
  start-page: 127
  year: 2021
  publication-title: J. Membr. Biol.
– volume: 19
  start-page: 2
  year: 2019
  publication-title: Pancreatology
– volume: 83
  year: 2024
  publication-title: Mol. Metab.
– volume: 3
  start-page: 435
  year: 2013
  publication-title: Biomolecules
– volume: 370
  start-page: 127
  year: 2012
  publication-title: Mol. Cell. Biochem.
– volume: 77
  year: 2017
  publication-title: Cancer Res.
– volume: 9
  start-page: 631
  year: 2009
  publication-title: Pancreatology
– volume: 11
  start-page: 691
  year: 2018
  publication-title: Transl. Oncol.
– volume: 80
  start-page: 1461
  year: 2020
  publication-title: Cancer Res.
– volume: 16
  start-page: 84
  year: 2025
  publication-title: Nat. Commun.
– volume: 44
  year: 2022
  publication-title: Surg. Oncol.
– volume: 9
  year: 2019
  publication-title: Sci. Rep.
– volume: 22
  start-page: 1237
  year: 2022
  publication-title: BMC Cancer
– volume: 12
  start-page: 72
  year: 2024
  publication-title: Cancer Immunol. Res.
– volume: 76
  start-page: 3838
  year: 2016
  publication-title: Cancer Res.
– volume: 16
  start-page: 676
  year: 2019
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 67
  start-page: 789
  year: 2018
  publication-title: Gut
– volume: 7
  start-page: 259
  year: 2019
  publication-title: J. Immunother. Cancer
– volume: 9
  year: 2021
  publication-title: World J. Clin. Cases
– volume: 299
  start-page: E256
  year: 2021
  publication-title: Radiology
– volume: 34
  start-page: 1222
  year: 2023
  publication-title: Eur. Radiol.
– volume: 8
  start-page: 549
  year: 2020
  publication-title: Front. Cell Dev. Biol.
– volume: 17
  start-page: 738
  year: 2017
  publication-title: Pancreatology
– volume: 24
  start-page: 48
  year: 2024
  publication-title: Pancreatology
– volume: 18
  start-page: 175
  year: 2012
  publication-title: World J. Gastroenterol.
– volume: 469
  start-page: 228
  year: 2020
  publication-title: Cancer Lett
– ident: e_1_2_8_1_1
  doi: 10.1148/radiol.222778
– ident: e_1_2_8_6_1
  doi: 10.1136/gutjnl-2018-316027
– ident: e_1_2_8_47_1
  doi: 10.1016/j.plipres.2023.101267
– ident: e_1_2_8_14_1
  doi: 10.7554/eLife.23421
– ident: e_1_2_8_44_1
  doi: 10.1016/j.canlet.2011.07.010
– ident: e_1_2_8_9_1
  doi: 10.1016/j.pan.2017.07.007
– ident: e_1_2_8_29_1
  doi: 10.1158/0008-5472.CAN-15-2841
– ident: e_1_2_8_20_1
  doi: 10.3389/fonc.2022.941744
– ident: e_1_2_8_49_1
  doi: 10.1186/s12967-023-04702-6
– ident: e_1_2_8_3_1
  doi: 10.1038/s41467-020-17917-8
– ident: e_1_2_8_33_1
  doi: 10.1186/s40425-019-0739-1
– ident: e_1_2_8_48_1
  doi: 10.1111/jcmm.15832
– ident: e_1_2_8_26_1
  doi: 10.1002/ctm2.1126
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jacr.2017.07.018
– ident: e_1_2_8_38_1
  doi: 10.3389/fcell.2020.00549
– ident: e_1_2_8_46_1
  doi: 10.1007/s00232-020-00163-w
– ident: e_1_2_8_50_1
  doi: 10.1038/s41467-021-27765-9
– ident: e_1_2_8_27_1
  doi: 10.1158/0008-5472.CAN-19-2578
– ident: e_1_2_8_37_1
  doi: 10.1007/s11010-012-1404-x
– ident: e_1_2_8_30_1
  doi: 10.3748/wjg.v18.i2.175
– ident: e_1_2_8_18_1
  doi: 10.1186/s12885-022-10273-4
– ident: e_1_2_8_19_1
  doi: 10.1016/j.canlet.2019.10.023
– ident: e_1_2_8_32_1
  doi: 10.1159/000504247
– ident: e_1_2_8_42_1
  doi: 10.1038/s41598-019-46634-6
– ident: e_1_2_8_39_1
  doi: 10.1016/j.yexcr.2019.03.022
– ident: e_1_2_8_25_1
  doi: 10.1001/jamanetworkopen.2020.28086
– ident: e_1_2_8_13_1
  doi: 10.1093/jncics/pkab048
– ident: e_1_2_8_22_1
  doi: 10.3934/mbe.2021241
– ident: e_1_2_8_43_1
  doi: 10.3390/biom3030435
– ident: e_1_2_8_51_1
  doi: 10.12998/wjcc.v9.i35.10884
– ident: e_1_2_8_16_1
  doi: 10.21037/qims-22-1192
– ident: e_1_2_8_41_1
  doi: 10.1016/S1043-6618(03)00050-1
– ident: e_1_2_8_17_1
  doi: 10.3389/fonc.2022.941744
– ident: e_1_2_8_10_1
  doi: 10.1016/j.pan.2023.12.002
– ident: e_1_2_8_36_1
  doi: 10.1016/S0016-5107(05)01581-6
– ident: e_1_2_8_28_1
  doi: 10.1158/2326-6066.CIR-23-0205
– ident: e_1_2_8_45_1
  doi: 10.1016/j.molmet.2024.101936
– ident: e_1_2_8_53_1
  doi: 10.1158/0008-5472.CAN-17-0339
– volume: 8
  start-page: 406
  year: 2023
  ident: e_1_2_8_21_1
  publication-title: Signal Transd. Targ. Ther.
– ident: e_1_2_8_11_1
  doi: 10.1016/j.acra.2023.09.043
– ident: e_1_2_8_2_1
  doi: 10.1038/s41575-019-0195-x
– ident: e_1_2_8_5_1
  doi: 10.1016/j.pan.2018.11.014
– ident: e_1_2_8_23_1
  doi: 10.1007/s00330-023-10158-5
– ident: e_1_2_8_15_1
  doi: 10.1148/radiol.2021219005
– ident: e_1_2_8_4_1
  doi: 10.1053/j.gastro.2021.09.073
– ident: e_1_2_8_31_1
  doi: 10.1007/s00109-014-1148-z
– ident: e_1_2_8_34_1
  doi: 10.1016/j.suronc.2022.101849
– ident: e_1_2_8_52_1
  doi: 10.1159/000181173
– ident: e_1_2_8_24_1
  doi: 10.1038/s41467-024-55594-z
– ident: e_1_2_8_40_1
  doi: 10.1038/s41416-023-02242-w
– ident: e_1_2_8_7_1
  doi: 10.1038/ajg.2018.14
– ident: e_1_2_8_35_1
  doi: 10.1016/j.tranon.2018.03.005
– ident: e_1_2_8_12_1
  doi: 10.1148/radiol.2021202553
SSID ssj0001537418
Score 2.3262393
Snippet The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to...
Abstract The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2409488
SubjectTerms Adult
Aged
Antigens
artificial intelligence
Biomarkers
Cyst Fluid - metabolism
Cysts
Datasets
Female
Hospitals
Humans
lipidomic
Machine Learning
Male
Middle Aged
Multiomics
Pancreatic Cyst - diagnosis
Pancreatic Cyst - diagnostic imaging
Pancreatic Cyst - metabolism
Pancreatic Cyst - pathology
pancreatic cystic lesions
Pancreatic Neoplasms - diagnosis
Pancreatic Neoplasms - diagnostic imaging
Pancreatic Neoplasms - metabolism
Pancreatic Neoplasms - pathology
Prospective Studies
proteomic
Proteomics - methods
Radiomics
Retrospective Studies
Surveillance
Tomography, X-Ray Computed - methods
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB7B9sIFUX5DCzISEnAITRwna3NBbNVVhbRlVVGpt8ixne1KKCmbbqXe-gg8I0_CjNfZZQWCaxw5jufHnz2ebwBea52IqqC0X8OzWMjcxppbEVMSaGK0MpmkbOTJSXF8Jj6f5-fhwK0L1yp7n-gdtW0NnZEfZDzNcK8xzMTHy-8xVY2i6GoooXEXdtAFSzmAndHRyfR0c8qSZ0TP0rM1JvxA22ti6ea0r_HlVjarkSft_xvS_PPC5O9A1q9E4wdwP0BI9mkl812445qHsBuMtGNvA5P0u0dwO_FXJR0LLKqzn7c_RrhsWXaq7ZzykTs2b9gEsfiMiDdu2HRBgRsSFmtrNsVnHlQadnhDhM7YEZ2udR9YX42UUX6Kb2Xjb8u5ZT6jF7_zhXp_DGfjo6-Hx3EouRAbQVi70jYxdZoanhRcE3kewo9M1bKWhB21thWv0D8m2uDO0KXKDmvFdaoRKFiuTfYEBk3buGfA6txkhbRFgRBMpHaoclm7oTNW1hxxjY3gTT_15eWKWaNccSjzkoRUroUUwYgks36LGLH9g3YxK4OBlVbzzGlXqEIoYaRGL1-rxOJu08pCKRPBfi_XMphpV26UKoJX62Y0MIqa6Ma1S3wnpUimQm8VwdOVGqxHIihOiwA0ArmlIFtD3W5p5heexDtFhSW4FsF7r0v_mYMSUQquPEry5__-kT24x6lEsb-TuQ-Dq8XSvUDcdFW9DMbxC4_aGUE
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fi9QwEB_0fPFFPP9WT4kgqA_l2iTtJr55h8shrC7iwb2VaZKuC9KV3Vvh3u4j-Bn9JM6k3d4VBfE1SdOQyUx-k8z8AvASMdN1yWm_TqpUm8KnKL1OOQk0c2idMpyNPPtYnpzqD2fF2bUs_o4fYjhwY82I9poVHOvN4RVpKPofTLct2UEx5ibc4vxaDuqTen51ylIopmfhF-bIu06V0XrH3JjJw3EXo50pEvj_DXX-GTx5HdTGXWl6F-70cFK86-S_DzdCew_2e4XdiNc9q_Sb-3A5i2GTQfSMqotflz-PaAvz4jP6Jecmb8SyFTPC5Qsm4bgQ8zVf4rDgxKoRcyqLANOJ4wsmd6aO-KRt81bsXiYVnKsSa8X023bpRczupf984t4fwOn0_Zfjk7R_fiF1mnF3jT5zTZ47mZUSmUiPoIiyjWkM40hEX8uabGWGjrzEkFs_aazEHAk0eIlOPYS9dtWGxyCawqnS-LIkOKZzP7GFacIkOG8aSRjHJ_BqN_XV945lo-r4lGXFQqoGISVwxJIZWjE7dixYrRdVr2yVR6kChtKW2mpnkCx-YzNPnqc3pbUugYOdXKteZTeVkrkiZ3aidAIvhmpSNr5BwTasttQm51tNS5YrgUfdMhhGovnOlsBoAma0QEZDHde0y6-R0Dsn_MDQLYFuxf9jDipCLLQLWSOf_O8HT-G25AeMY8TmAeydr7fhGaGq8_p5VJzftS0cuA
  priority: 102
  providerName: Wiley-Blackwell
Title Machine Learning‐Based Radiomics in Malignancy Prediction of Pancreatic Cystic Lesions: Evidence from Cyst Fluid Multi‐Omics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202409488
https://www.ncbi.nlm.nih.gov/pubmed/40289610
https://www.proquest.com/docview/3213156734
https://www.proquest.com/docview/3195799005
https://pubmed.ncbi.nlm.nih.gov/PMC12120750
https://doaj.org/article/da23eae696494c8a876f90d104d8699c
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbhMxEB5BuXBBlN-FEhkJCTgs3bUdx-bWlEYVIiUqVOpt5fVPGwltUNMg9dZH4Bl5Ema8m5AIpF44rWRbu5ZnxvPN2vMNwCtrC1krSvt1XORS931uuZc5JYEWzhonNGUjj4_U4Yn8eNo_XSv1RXfCWnrgduF2veUi2KCMkkY6bdF6oyk8RhFeK2Mc7b7o89aCqTY_WBAty5KlseC71v8gdm5O8Uwqs_LHCyWy_n8hzL8vSq4D2OSBRvfhXgcd2V475W24FZoHsN0Z55y96Rik3z6E63G6IhlYx5569uv65xDdlWfH1k8pD3nOpg0bIwY_I8KNKza5oAMbEhKbRTbBtgQmHdu_IiJnfBH9VZu_Z8sqpIzyUlIvG31bTD1Lmbz4nc_09kdwMjr4un-Yd6UWcicJY9fWFy6WpeOF4pZI8xB2CBN11IQZrfU1r3FfLKzDiDCUxg-i4ba0CBA8t048hq1m1oSnwGLfCaW9Ugi9ZOkHpq9jGATndeSIZ3wGr5dLX31vGTWqljuZVySkaiWkDIYkmdUoYsJODagfVacf1U36kcHOUq5VZ57zSvBSYOA6EDKDl6tuNCw6LbFNmC1wTEknmAZ3qQyetGqwmomk81kEnhnoDQXZmOpmTzM9T-TdJWIFgmkZvEu6dMMaVIhO0OMYzZ_9j9V4Dnc5FTBONzZ3YOvyYhFeIKq6rHtwm8tJD-7sfRh_-oLP4cHR5LiXzOo3PKYkWA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6V9ACXivK7UMBIIOCw7a7X2dhICJHSKKVNiKpW6m1xbG8aCW1K0oBy6yPwJDwUT8KMs5sQgeDU63rl_ZnxzDcezzcAz7SORD-lsl_Dk1DIug01tyKkItDIaGUSSdXInW7aPhEfTuuna_CjqoWhY5WVTfSG2o4M7ZHvJDxOMNZoJOLt-ZeQukZRdrVqoTFXiwM3-4Yh2-TN_nuU73POW3vHu-2w7CoQGkFwsq9tZPI4NjxKuSZ-OPSwicplLgkeaW37vI8mINIGgx8XK9vIFdexRl9ouTYJznsN1kWCX1iD9eZet3e03NWpJ0QHU7FDRnxH26_ECs4pjvLtXZbezzcJ-Buy_fOA5u_A2Xu-1k3YKCErezfXsU1Yc8Ut2CyNwoS9LJmrX92Gy44_mulYydo6-Hn5vYlu0rIjbYdU_zxhw4J1EPsPiOhjxnpjShSRcrBRznp4zYNYw3ZnRCCNE9Fu3uQ1q7qfMqqH8aOs9Xk6tMxXEONzPtLsd-DkSoRxF2rFqHD3geV1k6TSpilCPhHbhqrL3DWcsTLniKNsAC-qX5-dz5k8sjlnM89ISNlCSAE0STKLu4iB218YjQdZuaAzq3nitEtVKpQwUqNXyVVkMbq1MlXKBLBVyTUrzcIkWypxAE8Xw7igKUujCzea4j0xZU4VWscA7s3VYPEmgvLCCHgDkCsKsvKqqyPF8MyThseIUQgeBrDtdek__yBDVISeTkn-4N8f8gSut487h9nhfvfgIdzg1B7ZnwfdgtrFeOoeIWa76D8uFwqDT1e9Nn8BCNRVFg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVEJcEOXXUGCRQMDBxF47zi4SQqRt1FISoopKvZn17jpEQnaJG1BufQSeh8fhSZjZ2AkRCE69eq31z8zOfLOz8w3AY6WCOEuo7FfzyI9Fx_iKm9inItBAK6kjQdXIg2Gyfxy_PemcbMCPphaGjlU2NtEZalNq2iNvRzyMMNboRnE7r49FjHb7r0-_-NRBijKtTTuNhYoc2vk3DN-qVwe7KOsnnPf3Puzs-3WHAV_HBC0zZQKdh6HmQcIVccWht41kLnJBUEkpk_EMzUGgNAZCNpSmm0uuQoV-0XClI5z3Emx2KSpqwWZvbzg6Wu3wdCKihmmYIgPeVuYrMYRziqlcq5eVJ3QNA_6Gcv88rPk7iHZesH8Nrtbwlb1Z6NsWbNjiOmzVBqJiz2oW6-c34HzgjmlaVjO4jn-ef--hyzTsSJkJ1UJXbFKwAcYBYyL9mLPRlJJGpCiszNkIrzlAq9nOnMikcSLa2atesqYTKqPaGDfK-p9nE8NcNTE-5z3NfhOOL0QYt6BVlIW9Ayzv6CgRJkkQ_sWh6cqOyG3XaiNyjqIyHjxtfn16umD1SBf8zTwlIaVLIXnQI8ks7yI2bnehnI7TenGnRvHIKpvIJJaxFgo9TC4Dg5GuEYmU2oPtRq5pbSKqdKXQHjxaDuPipoyNKmw5w3tCyqJKtJQe3F6owfJNYsoRI_j1QKwpyNqrro8Uk0-OQDxEvEJQ0YMXTpf-8w9SREjo9aTgd__9IQ_hMq7J9N3B8PAeXOHUKdkdDd2G1tl0Zu8jfDvLHtTrhMHHi16avwDapFlL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Radiomics+in+Malignancy+Prediction+of+Pancreatic+Cystic+Lesions%3A+Evidence+from+Cyst+Fluid+Multi-Omics&rft.jtitle=Advanced+science&rft.au=Cheng%2C+Sihang&rft.au=Hu%2C+Ge&rft.au=Zhang%2C+Shenbo&rft.au=Lv%2C+Rui&rft.date=2025-05-01&rft.eissn=2198-3844&rft.volume=12&rft.issue=20&rft.spage=e2409488&rft_id=info:doi/10.1002%2Fadvs.202409488&rft_id=info%3Apmid%2F40289610&rft.externalDocID=40289610
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon