Machine Learning‐Based Radiomics in Malignancy Prediction of Pancreatic Cystic Lesions: Evidence from Cyst Fluid Multi‐Omics
The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical‐radiomic models using preoperative CT images to predict the malignant potential of PCLs. It also investigates the...
Saved in:
Published in | Advanced science Vol. 12; no. 20; pp. e2409488 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.05.2025
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical‐radiomic models using preoperative CT images to predict the malignant potential of PCLs. It also investigates the biological mechanisms underlying these models. Patients from two retrospective and one prospective cohort, all undergoing surgical resection for PCLs, are divided into four datasets: training, internal test, external test, and prospective application sets. Eleven machine learning classifiers are employed to construct radiomic models based on selected features. Cyst fluid from the prospective cohort is collected for proteomic and lipidomic analysis. The radiomic models demonstrated high accuracy, with area under the receiver operating characteristic curves (AUCs) > 0.93 across the training (n = 262), internal test (n = 50), and external test (n = 50) sets. AUCs ranged from 0.92 to 0.96 for the prospective cohort (n = 34). Meanwhile, differentially‐expressed proteins and lipid molecules, along with their associated signaling pathways, are identified between high and low groups of clinical‐radiomic scores. This models can effectively and accurately predict the malignant potential of PCLs, with multi‐omics evidence suggesting the biological mechanisms involving secretion function and lipid metabolism underlying clinical‐radiomic models.
This study develops noninvasive clinical‐radiomic models using preoperative CT images to predict the malignant potential of pancreatic cystic lesions. It demonstrates the models' high accuracy across various datasets, with AUCs exceeding 0.92. Additionally, multi‐omics analyses uncover key biological mechanisms, including secretion function and lipid metabolism, driving these predictive models. |
---|---|
AbstractList | The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical‐radiomic models using preoperative CT images to predict the malignant potential of PCLs. It also investigates the biological mechanisms underlying these models. Patients from two retrospective and one prospective cohort, all undergoing surgical resection for PCLs, are divided into four datasets: training, internal test, external test, and prospective application sets. Eleven machine learning classifiers are employed to construct radiomic models based on selected features. Cyst fluid from the prospective cohort is collected for proteomic and lipidomic analysis. The radiomic models demonstrated high accuracy, with area under the receiver operating characteristic curves (AUCs) > 0.93 across the training (n = 262), internal test (n = 50), and external test (n = 50) sets. AUCs ranged from 0.92 to 0.96 for the prospective cohort (n = 34). Meanwhile, differentially‐expressed proteins and lipid molecules, along with their associated signaling pathways, are identified between high and low groups of clinical‐radiomic scores. This models can effectively and accurately predict the malignant potential of PCLs, with multi‐omics evidence suggesting the biological mechanisms involving secretion function and lipid metabolism underlying clinical‐radiomic models. The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical-radiomic models using preoperative CT images to predict the malignant potential of PCLs. It also investigates the biological mechanisms underlying these models. Patients from two retrospective and one prospective cohort, all undergoing surgical resection for PCLs, are divided into four datasets: training, internal test, external test, and prospective application sets. Eleven machine learning classifiers are employed to construct radiomic models based on selected features. Cyst fluid from the prospective cohort is collected for proteomic and lipidomic analysis. The radiomic models demonstrated high accuracy, with area under the receiver operating characteristic curves (AUCs) > 0.93 across the training (n = 262), internal test (n = 50), and external test (n = 50) sets. AUCs ranged from 0.92 to 0.96 for the prospective cohort (n = 34). Meanwhile, differentially-expressed proteins and lipid molecules, along with their associated signaling pathways, are identified between high and low groups of clinical-radiomic scores. This models can effectively and accurately predict the malignant potential of PCLs, with multi-omics evidence suggesting the biological mechanisms involving secretion function and lipid metabolism underlying clinical-radiomic models.The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical-radiomic models using preoperative CT images to predict the malignant potential of PCLs. It also investigates the biological mechanisms underlying these models. Patients from two retrospective and one prospective cohort, all undergoing surgical resection for PCLs, are divided into four datasets: training, internal test, external test, and prospective application sets. Eleven machine learning classifiers are employed to construct radiomic models based on selected features. Cyst fluid from the prospective cohort is collected for proteomic and lipidomic analysis. The radiomic models demonstrated high accuracy, with area under the receiver operating characteristic curves (AUCs) > 0.93 across the training (n = 262), internal test (n = 50), and external test (n = 50) sets. AUCs ranged from 0.92 to 0.96 for the prospective cohort (n = 34). Meanwhile, differentially-expressed proteins and lipid molecules, along with their associated signaling pathways, are identified between high and low groups of clinical-radiomic scores. This models can effectively and accurately predict the malignant potential of PCLs, with multi-omics evidence suggesting the biological mechanisms involving secretion function and lipid metabolism underlying clinical-radiomic models. The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical-radiomic models using preoperative CT images to predict the malignant potential of PCLs. It also investigates the biological mechanisms underlying these models. Patients from two retrospective and one prospective cohort, all undergoing surgical resection for PCLs, are divided into four datasets: training, internal test, external test, and prospective application sets. Eleven machine learning classifiers are employed to construct radiomic models based on selected features. Cyst fluid from the prospective cohort is collected for proteomic and lipidomic analysis. The radiomic models demonstrated high accuracy, with area under the receiver operating characteristic curves (AUCs) > 0.93 across the training (n = 262), internal test (n = 50), and external test (n = 50) sets. AUCs ranged from 0.92 to 0.96 for the prospective cohort (n = 34). Meanwhile, differentially-expressed proteins and lipid molecules, along with their associated signaling pathways, are identified between high and low groups of clinical-radiomic scores. This models can effectively and accurately predict the malignant potential of PCLs, with multi-omics evidence suggesting the biological mechanisms involving secretion function and lipid metabolism underlying clinical-radiomic models. Abstract The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical‐radiomic models using preoperative CT images to predict the malignant potential of PCLs. It also investigates the biological mechanisms underlying these models. Patients from two retrospective and one prospective cohort, all undergoing surgical resection for PCLs, are divided into four datasets: training, internal test, external test, and prospective application sets. Eleven machine learning classifiers are employed to construct radiomic models based on selected features. Cyst fluid from the prospective cohort is collected for proteomic and lipidomic analysis. The radiomic models demonstrated high accuracy, with area under the receiver operating characteristic curves (AUCs) > 0.93 across the training (n = 262), internal test (n = 50), and external test (n = 50) sets. AUCs ranged from 0.92 to 0.96 for the prospective cohort (n = 34). Meanwhile, differentially‐expressed proteins and lipid molecules, along with their associated signaling pathways, are identified between high and low groups of clinical‐radiomic scores. This models can effectively and accurately predict the malignant potential of PCLs, with multi‐omics evidence suggesting the biological mechanisms involving secretion function and lipid metabolism underlying clinical‐radiomic models. The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical‐radiomic models using preoperative CT images to predict the malignant potential of PCLs. It also investigates the biological mechanisms underlying these models. Patients from two retrospective and one prospective cohort, all undergoing surgical resection for PCLs, are divided into four datasets: training, internal test, external test, and prospective application sets. Eleven machine learning classifiers are employed to construct radiomic models based on selected features. Cyst fluid from the prospective cohort is collected for proteomic and lipidomic analysis. The radiomic models demonstrated high accuracy, with area under the receiver operating characteristic curves (AUCs) > 0.93 across the training (n = 262), internal test (n = 50), and external test (n = 50) sets. AUCs ranged from 0.92 to 0.96 for the prospective cohort (n = 34). Meanwhile, differentially‐expressed proteins and lipid molecules, along with their associated signaling pathways, are identified between high and low groups of clinical‐radiomic scores. This models can effectively and accurately predict the malignant potential of PCLs, with multi‐omics evidence suggesting the biological mechanisms involving secretion function and lipid metabolism underlying clinical‐radiomic models. This study develops noninvasive clinical‐radiomic models using preoperative CT images to predict the malignant potential of pancreatic cystic lesions. It demonstrates the models' high accuracy across various datasets, with AUCs exceeding 0.92. Additionally, multi‐omics analyses uncover key biological mechanisms, including secretion function and lipid metabolism, driving these predictive models. |
Author | Feng, Yunlu Chen, Zhe‐Sheng Jin, Zhengyu Huang, Chen Cheng, Sihang Sun, Limeng Zhang, Zhe Ye, Lu Zhang, Shenbo Wang, Zhiwei Yang, Aiming Wu, Yanyan Lv, Rui Hu, Ge Xue, Huadan |
AuthorAffiliation | 1 Department of Radiology Peking Union Medical College Hospital Chinese Academy of Medical Sciences Beijing 100730 China 3 Department of Gastroenterology Peking Union Medical College Hospital Chinese Academy of Medical Sciences Beijing 100730 China 6 Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens NY 11439 USA 5 Interventional Center Chengdu First People's Hospital Chengdu 610041 China 4 Department of Interventional Radiology The Affiliated Panyu Central Hospital of Guangzhou Medical University Guangzhou 511400 China 2 Theranostics and Translational Research Center National Infrastructures for Translational Medicine Institute of Clinical Medicine Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100730 China |
AuthorAffiliation_xml | – name: 3 Department of Gastroenterology Peking Union Medical College Hospital Chinese Academy of Medical Sciences Beijing 100730 China – name: 6 Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens NY 11439 USA – name: 1 Department of Radiology Peking Union Medical College Hospital Chinese Academy of Medical Sciences Beijing 100730 China – name: 5 Interventional Center Chengdu First People's Hospital Chengdu 610041 China – name: 2 Theranostics and Translational Research Center National Infrastructures for Translational Medicine Institute of Clinical Medicine Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100730 China – name: 4 Department of Interventional Radiology The Affiliated Panyu Central Hospital of Guangzhou Medical University Guangzhou 511400 China |
Author_xml | – sequence: 1 givenname: Sihang orcidid: 0000-0002-6082-0401 surname: Cheng fullname: Cheng, Sihang organization: Chinese Academy of Medical Sciences – sequence: 2 givenname: Ge surname: Hu fullname: Hu, Ge organization: Chinese Academy of Medical Sciences and Peking Union Medical College – sequence: 3 givenname: Shenbo surname: Zhang fullname: Zhang, Shenbo organization: Chinese Academy of Medical Sciences – sequence: 4 givenname: Rui surname: Lv fullname: Lv, Rui organization: Chinese Academy of Medical Sciences – sequence: 5 givenname: Limeng surname: Sun fullname: Sun, Limeng organization: Chinese Academy of Medical Sciences – sequence: 6 givenname: Zhe surname: Zhang fullname: Zhang, Zhe organization: Chinese Academy of Medical Sciences – sequence: 7 givenname: Zhengyu surname: Jin fullname: Jin, Zhengyu organization: Chinese Academy of Medical Sciences – sequence: 8 givenname: Yanyan surname: Wu fullname: Wu, Yanyan organization: Chinese Academy of Medical Sciences – sequence: 9 givenname: Chen surname: Huang fullname: Huang, Chen organization: The Affiliated Panyu Central Hospital of Guangzhou Medical University – sequence: 10 givenname: Lu surname: Ye fullname: Ye, Lu organization: Chengdu First People's Hospital – sequence: 11 givenname: Yunlu surname: Feng fullname: Feng, Yunlu email: fengyl@pumch.cn organization: Chinese Academy of Medical Sciences – sequence: 12 givenname: Zhe‐Sheng surname: Chen fullname: Chen, Zhe‐Sheng email: chenz@stjohns.edu organization: St. John's University – sequence: 13 givenname: Zhiwei surname: Wang fullname: Wang, Zhiwei email: wangzhiwei@pumch.cn organization: Chinese Academy of Medical Sciences – sequence: 14 givenname: Huadan surname: Xue fullname: Xue, Huadan email: xuehd@pumch.cn organization: Chinese Academy of Medical Sciences – sequence: 15 givenname: Aiming surname: Yang fullname: Yang, Aiming email: yangam@pumch.cn organization: Chinese Academy of Medical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40289610$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuUzEQho9QEb3QLUtkiQ2bBI99LjYbVNIWKiVqxW1rTWyf1NGJ3do5Qdn1EXhGngSnKVHLhtVYM_98M7b_w2LPB2-L4hXQIVDK3qFZpSGjrKSyFOJZccBAigEXZbn36LxfHKc0p5RCxZsSxItiv6RMyBroQXE3QX3tvCVji9E7P_t99-sjJmvIFzQuLJxOxHkywc7NPHq9JlfRGqeXLngSWnKVc9Hi0mkyWqdNGNuUa-k9OVs5Y722pI1hcV8l513vDJn03dLlOZcb-svieYtdsscP8aj4fn72bfR5ML78dDE6GQ90vhobTNFQ3QJoRmuGtJGcCc5lK1pBASpEM2VTCUBRi5JakKZpJUNAEGAYan5UXGy5JuBc3US3wLhWAZ26T4Q4Uxjz_p1VBhm3aGtZl7LUAkVTt5IaoKURtZQb1oct66afLqzR1i8jdk-gTyveXatZWClgwGhT0Ux4-0CI4ba3aakWLmnbdeht6JPiIKtGSkqrLH3zj3Qe-ujzWynOgENVN7zMqtePV9rt8vens2C4FegYUoq23UmAqo2b1MZNauem3FBtG366zq7_o1Ynpz--QnYc438AKj7O8w |
Cites_doi | 10.1148/radiol.222778 10.1136/gutjnl-2018-316027 10.1016/j.plipres.2023.101267 10.7554/eLife.23421 10.1016/j.canlet.2011.07.010 10.1016/j.pan.2017.07.007 10.1158/0008-5472.CAN-15-2841 10.3389/fonc.2022.941744 10.1186/s12967-023-04702-6 10.1038/s41467-020-17917-8 10.1186/s40425-019-0739-1 10.1111/jcmm.15832 10.1002/ctm2.1126 10.1016/j.jacr.2017.07.018 10.3389/fcell.2020.00549 10.1007/s00232-020-00163-w 10.1038/s41467-021-27765-9 10.1158/0008-5472.CAN-19-2578 10.1007/s11010-012-1404-x 10.3748/wjg.v18.i2.175 10.1186/s12885-022-10273-4 10.1016/j.canlet.2019.10.023 10.1159/000504247 10.1038/s41598-019-46634-6 10.1016/j.yexcr.2019.03.022 10.1001/jamanetworkopen.2020.28086 10.1093/jncics/pkab048 10.3934/mbe.2021241 10.3390/biom3030435 10.12998/wjcc.v9.i35.10884 10.21037/qims-22-1192 10.1016/S1043-6618(03)00050-1 10.1016/j.pan.2023.12.002 10.1016/S0016-5107(05)01581-6 10.1158/2326-6066.CIR-23-0205 10.1016/j.molmet.2024.101936 10.1158/0008-5472.CAN-17-0339 10.1016/j.acra.2023.09.043 10.1038/s41575-019-0195-x 10.1016/j.pan.2018.11.014 10.1007/s00330-023-10158-5 10.1148/radiol.2021219005 10.1053/j.gastro.2021.09.073 10.1007/s00109-014-1148-z 10.1016/j.suronc.2022.101849 10.1159/000181173 10.1038/s41467-024-55594-z 10.1038/s41416-023-02242-w 10.1038/ajg.2018.14 10.1016/j.tranon.2018.03.005 10.1148/radiol.2021202553 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. – notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202409488 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_da23eae696494c8a876f90d104d8699c PMC12120750 40289610 10_1002_advs_202409488 ADVS11982 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Beijing Natural Science Foundation funderid: 7232116 – fundername: Non‐profit Central Research Institute Fund of Chinese Academy of Medical Sciences funderid: 2023‐JKCS‐01 – fundername: Peking Union Medical College Hospital Young Reserve Talent Development Program funderid: UHB11857 – fundername: National High‐Level Hospital Clinical Research Funding funderid: 2022‐PUMCH‐B‐68; 2022‐PUMCH‐D‐001 – fundername: National Natural Science Foundation of China funderid: 82202268; 32370946; 22232006; 82470700 – fundername: CAMS Innovation Fund for Medical Sciences (CIFMS) funderid: 2024‐I2M‐ZD‐001 – fundername: National Natural Science Foundation of China grantid: 82202268 – fundername: Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences grantid: 2023-JKCS-01 – fundername: Beijing Natural Science Foundation grantid: 7232116 – fundername: CAMS Innovation Fund for Medical Sciences (CIFMS) grantid: 2024-I2M-ZD-001 – fundername: National High-Level Hospital Clinical Research Funding grantid: 2022-PUMCH-B-68 – fundername: National High-Level Hospital Clinical Research Funding grantid: 2022-PUMCH-D-001 – fundername: National Natural Science Foundation of China grantid: 32370946 – fundername: National Natural Science Foundation of China grantid: 82470700 – fundername: Peking Union Medical College Hospital Young Reserve Talent Development Program grantid: UHB11857 – fundername: National Natural Science Foundation of China grantid: 22232006 – fundername: Non‐profit Central Research Institute Fund of Chinese Academy of Medical Sciences grantid: 2023‐JKCS‐01 – fundername: CAMS Innovation Fund for Medical Sciences (CIFMS) grantid: 2024‐I2M‐ZD‐001 – fundername: National High‐Level Hospital Clinical Research Funding grantid: 2022‐PUMCH‐B‐68; 2022‐PUMCH‐D‐001 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PMFND PQQKQ PROAC ROL RPM AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION EJD WIN CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c4882-bad0cf11c2062a079328339f8f80115aadb2b9110ac840e19d7f92a1a181d2ac3 |
IEDL.DBID | DOA |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:19:08 EDT 2025 Thu Aug 21 18:36:42 EDT 2025 Fri Jul 11 18:30:35 EDT 2025 Wed Aug 13 11:06:17 EDT 2025 Sun Jun 01 01:35:36 EDT 2025 Thu Aug 14 00:04:50 EDT 2025 Thu May 29 13:08:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | lipidomic pancreatic cystic lesions radiomics proteomic artificial intelligence |
Language | English |
License | Attribution 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4882-bad0cf11c2062a079328339f8f80115aadb2b9110ac840e19d7f92a1a181d2ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6082-0401 |
OpenAccessLink | https://doaj.org/article/da23eae696494c8a876f90d104d8699c |
PMID | 40289610 |
PQID | 3213156734 |
PQPubID | 4365299 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_da23eae696494c8a876f90d104d8699c pubmedcentral_primary_oai_pubmedcentral_nih_gov_12120750 proquest_miscellaneous_3195799005 proquest_journals_3213156734 pubmed_primary_40289610 crossref_primary_10_1002_advs_202409488 wiley_primary_10_1002_advs_202409488_ADVS11982 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2017; 6 2013; 3 2023; 34 2023; 8 2016; 76 2005; 62 2019; 16 2019; 19 2024; 31 2023; 308 2012; 18 2020; 11 2022; 22 2012; 370 2020; 8 2023; 21 2022; 162 2020; 3 2019; 64 2017; 77 2003; 47 2024; 24 2021; 9 2019; 7 2019; 9 2021; 5 2023; 13 2014; 92 2020; 80 2023; 128 2020; 469 2025; 16 2024; 12 2022; 44 2018; 67 2017; 14 2021; 299 2017; 17 2018; 113 2021; 18 2024; 93 2022; 12 2019; 379 2013; 332 2024; 83 2022; 13 2009; 9 2020; 24 2021; 298 2021; 254 2018; 11 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 Cui M. (e_1_2_8_21_1) 2023; 8 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 5 year: 2021 publication-title: JNCI Cancer Spectr. – volume: 13 start-page: 6395 year: 2023 publication-title: Quant. Imaging Med. Surg. – volume: 308 year: 2023 publication-title: Radiology – volume: 13 start-page: 124 year: 2022 publication-title: Nat. Commun. – volume: 6 year: 2017 publication-title: Elife – volume: 12 year: 2022 publication-title: Clin. Transl. Med. – volume: 62 start-page: 383 year: 2005 publication-title: Gastrointest. Endosc. – volume: 11 start-page: 4085 year: 2020 publication-title: Nat. Commun. – volume: 128 start-page: 2000 year: 2023 publication-title: Br. J. Cancer – volume: 92 start-page: 465 year: 2014 publication-title: J. Mol. Med. – volume: 31 start-page: 1889 year: 2024 publication-title: Acad. Radiol. – volume: 8 start-page: 406 year: 2023 publication-title: Signal Transd. Targ. Ther. – volume: 24 year: 2020 publication-title: J. Cell. Mol. Med. – volume: 64 start-page: 177 year: 2019 publication-title: Chemotherapy – volume: 332 start-page: 286 year: 2013 publication-title: Cancer Lett. – volume: 379 start-page: 30 year: 2019 publication-title: Exp. Cell Res. – volume: 47 start-page: 383 year: 2003 publication-title: Pharmacol. Res. – volume: 3 year: 2020 publication-title: JAMA Netw. Open – volume: 21 start-page: 838 year: 2023 publication-title: J. Transl. Med. – volume: 12 year: 2022 publication-title: Front. Oncol. – volume: 298 start-page: 505 year: 2021 publication-title: Radiology – volume: 162 start-page: 379 year: 2022 publication-title: Gastroenterology – volume: 14 start-page: 1429 year: 2017 publication-title: J. Am. Coll. Radiol. – volume: 18 start-page: 4743 year: 2021 publication-title: Math. Biosci. Eng. – volume: 113 start-page: 464 year: 2018 publication-title: Am. J. Gastroenterol. – volume: 93 year: 2024 publication-title: Prog. Lipid Res. – volume: 254 start-page: 127 year: 2021 publication-title: J. Membr. Biol. – volume: 19 start-page: 2 year: 2019 publication-title: Pancreatology – volume: 83 year: 2024 publication-title: Mol. Metab. – volume: 3 start-page: 435 year: 2013 publication-title: Biomolecules – volume: 370 start-page: 127 year: 2012 publication-title: Mol. Cell. Biochem. – volume: 77 year: 2017 publication-title: Cancer Res. – volume: 9 start-page: 631 year: 2009 publication-title: Pancreatology – volume: 11 start-page: 691 year: 2018 publication-title: Transl. Oncol. – volume: 80 start-page: 1461 year: 2020 publication-title: Cancer Res. – volume: 16 start-page: 84 year: 2025 publication-title: Nat. Commun. – volume: 44 year: 2022 publication-title: Surg. Oncol. – volume: 9 year: 2019 publication-title: Sci. Rep. – volume: 22 start-page: 1237 year: 2022 publication-title: BMC Cancer – volume: 12 start-page: 72 year: 2024 publication-title: Cancer Immunol. Res. – volume: 76 start-page: 3838 year: 2016 publication-title: Cancer Res. – volume: 16 start-page: 676 year: 2019 publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 67 start-page: 789 year: 2018 publication-title: Gut – volume: 7 start-page: 259 year: 2019 publication-title: J. Immunother. Cancer – volume: 9 year: 2021 publication-title: World J. Clin. Cases – volume: 299 start-page: E256 year: 2021 publication-title: Radiology – volume: 34 start-page: 1222 year: 2023 publication-title: Eur. Radiol. – volume: 8 start-page: 549 year: 2020 publication-title: Front. Cell Dev. Biol. – volume: 17 start-page: 738 year: 2017 publication-title: Pancreatology – volume: 24 start-page: 48 year: 2024 publication-title: Pancreatology – volume: 18 start-page: 175 year: 2012 publication-title: World J. Gastroenterol. – volume: 469 start-page: 228 year: 2020 publication-title: Cancer Lett – ident: e_1_2_8_1_1 doi: 10.1148/radiol.222778 – ident: e_1_2_8_6_1 doi: 10.1136/gutjnl-2018-316027 – ident: e_1_2_8_47_1 doi: 10.1016/j.plipres.2023.101267 – ident: e_1_2_8_14_1 doi: 10.7554/eLife.23421 – ident: e_1_2_8_44_1 doi: 10.1016/j.canlet.2011.07.010 – ident: e_1_2_8_9_1 doi: 10.1016/j.pan.2017.07.007 – ident: e_1_2_8_29_1 doi: 10.1158/0008-5472.CAN-15-2841 – ident: e_1_2_8_20_1 doi: 10.3389/fonc.2022.941744 – ident: e_1_2_8_49_1 doi: 10.1186/s12967-023-04702-6 – ident: e_1_2_8_3_1 doi: 10.1038/s41467-020-17917-8 – ident: e_1_2_8_33_1 doi: 10.1186/s40425-019-0739-1 – ident: e_1_2_8_48_1 doi: 10.1111/jcmm.15832 – ident: e_1_2_8_26_1 doi: 10.1002/ctm2.1126 – ident: e_1_2_8_8_1 doi: 10.1016/j.jacr.2017.07.018 – ident: e_1_2_8_38_1 doi: 10.3389/fcell.2020.00549 – ident: e_1_2_8_46_1 doi: 10.1007/s00232-020-00163-w – ident: e_1_2_8_50_1 doi: 10.1038/s41467-021-27765-9 – ident: e_1_2_8_27_1 doi: 10.1158/0008-5472.CAN-19-2578 – ident: e_1_2_8_37_1 doi: 10.1007/s11010-012-1404-x – ident: e_1_2_8_30_1 doi: 10.3748/wjg.v18.i2.175 – ident: e_1_2_8_18_1 doi: 10.1186/s12885-022-10273-4 – ident: e_1_2_8_19_1 doi: 10.1016/j.canlet.2019.10.023 – ident: e_1_2_8_32_1 doi: 10.1159/000504247 – ident: e_1_2_8_42_1 doi: 10.1038/s41598-019-46634-6 – ident: e_1_2_8_39_1 doi: 10.1016/j.yexcr.2019.03.022 – ident: e_1_2_8_25_1 doi: 10.1001/jamanetworkopen.2020.28086 – ident: e_1_2_8_13_1 doi: 10.1093/jncics/pkab048 – ident: e_1_2_8_22_1 doi: 10.3934/mbe.2021241 – ident: e_1_2_8_43_1 doi: 10.3390/biom3030435 – ident: e_1_2_8_51_1 doi: 10.12998/wjcc.v9.i35.10884 – ident: e_1_2_8_16_1 doi: 10.21037/qims-22-1192 – ident: e_1_2_8_41_1 doi: 10.1016/S1043-6618(03)00050-1 – ident: e_1_2_8_17_1 doi: 10.3389/fonc.2022.941744 – ident: e_1_2_8_10_1 doi: 10.1016/j.pan.2023.12.002 – ident: e_1_2_8_36_1 doi: 10.1016/S0016-5107(05)01581-6 – ident: e_1_2_8_28_1 doi: 10.1158/2326-6066.CIR-23-0205 – ident: e_1_2_8_45_1 doi: 10.1016/j.molmet.2024.101936 – ident: e_1_2_8_53_1 doi: 10.1158/0008-5472.CAN-17-0339 – volume: 8 start-page: 406 year: 2023 ident: e_1_2_8_21_1 publication-title: Signal Transd. Targ. Ther. – ident: e_1_2_8_11_1 doi: 10.1016/j.acra.2023.09.043 – ident: e_1_2_8_2_1 doi: 10.1038/s41575-019-0195-x – ident: e_1_2_8_5_1 doi: 10.1016/j.pan.2018.11.014 – ident: e_1_2_8_23_1 doi: 10.1007/s00330-023-10158-5 – ident: e_1_2_8_15_1 doi: 10.1148/radiol.2021219005 – ident: e_1_2_8_4_1 doi: 10.1053/j.gastro.2021.09.073 – ident: e_1_2_8_31_1 doi: 10.1007/s00109-014-1148-z – ident: e_1_2_8_34_1 doi: 10.1016/j.suronc.2022.101849 – ident: e_1_2_8_52_1 doi: 10.1159/000181173 – ident: e_1_2_8_24_1 doi: 10.1038/s41467-024-55594-z – ident: e_1_2_8_40_1 doi: 10.1038/s41416-023-02242-w – ident: e_1_2_8_7_1 doi: 10.1038/ajg.2018.14 – ident: e_1_2_8_35_1 doi: 10.1016/j.tranon.2018.03.005 – ident: e_1_2_8_12_1 doi: 10.1148/radiol.2021202553 |
SSID | ssj0001537418 |
Score | 2.3262393 |
Snippet | The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to... Abstract The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2409488 |
SubjectTerms | Adult Aged Antigens artificial intelligence Biomarkers Cyst Fluid - metabolism Cysts Datasets Female Hospitals Humans lipidomic Machine Learning Male Middle Aged Multiomics Pancreatic Cyst - diagnosis Pancreatic Cyst - diagnostic imaging Pancreatic Cyst - metabolism Pancreatic Cyst - pathology pancreatic cystic lesions Pancreatic Neoplasms - diagnosis Pancreatic Neoplasms - diagnostic imaging Pancreatic Neoplasms - metabolism Pancreatic Neoplasms - pathology Prospective Studies proteomic Proteomics - methods Radiomics Retrospective Studies Surveillance Tomography, X-Ray Computed - methods Tumors |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB7B9sIFUX5DCzISEnAITRwna3NBbNVVhbRlVVGpt8ixne1KKCmbbqXe-gg8I0_CjNfZZQWCaxw5jufHnz2ebwBea52IqqC0X8OzWMjcxppbEVMSaGK0MpmkbOTJSXF8Jj6f5-fhwK0L1yp7n-gdtW0NnZEfZDzNcK8xzMTHy-8xVY2i6GoooXEXdtAFSzmAndHRyfR0c8qSZ0TP0rM1JvxA22ti6ea0r_HlVjarkSft_xvS_PPC5O9A1q9E4wdwP0BI9mkl812445qHsBuMtGNvA5P0u0dwO_FXJR0LLKqzn7c_RrhsWXaq7ZzykTs2b9gEsfiMiDdu2HRBgRsSFmtrNsVnHlQadnhDhM7YEZ2udR9YX42UUX6Kb2Xjb8u5ZT6jF7_zhXp_DGfjo6-Hx3EouRAbQVi70jYxdZoanhRcE3kewo9M1bKWhB21thWv0D8m2uDO0KXKDmvFdaoRKFiuTfYEBk3buGfA6txkhbRFgRBMpHaoclm7oTNW1hxxjY3gTT_15eWKWaNccSjzkoRUroUUwYgks36LGLH9g3YxK4OBlVbzzGlXqEIoYaRGL1-rxOJu08pCKRPBfi_XMphpV26UKoJX62Y0MIqa6Ma1S3wnpUimQm8VwdOVGqxHIihOiwA0ArmlIFtD3W5p5heexDtFhSW4FsF7r0v_mYMSUQquPEry5__-kT24x6lEsb-TuQ-Dq8XSvUDcdFW9DMbxC4_aGUE priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fi9QwEB_0fPFFPP9WT4kgqA_l2iTtJr55h8shrC7iwb2VaZKuC9KV3Vvh3u4j-Bn9JM6k3d4VBfE1SdOQyUx-k8z8AvASMdN1yWm_TqpUm8KnKL1OOQk0c2idMpyNPPtYnpzqD2fF2bUs_o4fYjhwY82I9poVHOvN4RVpKPofTLct2UEx5ibc4vxaDuqTen51ylIopmfhF-bIu06V0XrH3JjJw3EXo50pEvj_DXX-GTx5HdTGXWl6F-70cFK86-S_DzdCew_2e4XdiNc9q_Sb-3A5i2GTQfSMqotflz-PaAvz4jP6Jecmb8SyFTPC5Qsm4bgQ8zVf4rDgxKoRcyqLANOJ4wsmd6aO-KRt81bsXiYVnKsSa8X023bpRczupf984t4fwOn0_Zfjk7R_fiF1mnF3jT5zTZ47mZUSmUiPoIiyjWkM40hEX8uabGWGjrzEkFs_aazEHAk0eIlOPYS9dtWGxyCawqnS-LIkOKZzP7GFacIkOG8aSRjHJ_BqN_XV945lo-r4lGXFQqoGISVwxJIZWjE7dixYrRdVr2yVR6kChtKW2mpnkCx-YzNPnqc3pbUugYOdXKteZTeVkrkiZ3aidAIvhmpSNr5BwTasttQm51tNS5YrgUfdMhhGovnOlsBoAma0QEZDHde0y6-R0Dsn_MDQLYFuxf9jDipCLLQLWSOf_O8HT-G25AeMY8TmAeydr7fhGaGq8_p5VJzftS0cuA priority: 102 providerName: Wiley-Blackwell |
Title | Machine Learning‐Based Radiomics in Malignancy Prediction of Pancreatic Cystic Lesions: Evidence from Cyst Fluid Multi‐Omics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202409488 https://www.ncbi.nlm.nih.gov/pubmed/40289610 https://www.proquest.com/docview/3213156734 https://www.proquest.com/docview/3195799005 https://pubmed.ncbi.nlm.nih.gov/PMC12120750 https://doaj.org/article/da23eae696494c8a876f90d104d8699c |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbhMxEB5BuXBBlN-FEhkJCTgs3bUdx-bWlEYVIiUqVOpt5fVPGwltUNMg9dZH4Bl5Ema8m5AIpF44rWRbu5ZnxvPN2vMNwCtrC1krSvt1XORS931uuZc5JYEWzhonNGUjj4_U4Yn8eNo_XSv1RXfCWnrgduF2veUi2KCMkkY6bdF6oyk8RhFeK2Mc7b7o89aCqTY_WBAty5KlseC71v8gdm5O8Uwqs_LHCyWy_n8hzL8vSq4D2OSBRvfhXgcd2V475W24FZoHsN0Z55y96Rik3z6E63G6IhlYx5569uv65xDdlWfH1k8pD3nOpg0bIwY_I8KNKza5oAMbEhKbRTbBtgQmHdu_IiJnfBH9VZu_Z8sqpIzyUlIvG31bTD1Lmbz4nc_09kdwMjr4un-Yd6UWcicJY9fWFy6WpeOF4pZI8xB2CBN11IQZrfU1r3FfLKzDiDCUxg-i4ba0CBA8t048hq1m1oSnwGLfCaW9Ugi9ZOkHpq9jGATndeSIZ3wGr5dLX31vGTWqljuZVySkaiWkDIYkmdUoYsJODagfVacf1U36kcHOUq5VZ57zSvBSYOA6EDKDl6tuNCw6LbFNmC1wTEknmAZ3qQyetGqwmomk81kEnhnoDQXZmOpmTzM9T-TdJWIFgmkZvEu6dMMaVIhO0OMYzZ_9j9V4Dnc5FTBONzZ3YOvyYhFeIKq6rHtwm8tJD-7sfRh_-oLP4cHR5LiXzOo3PKYkWA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6V9ACXivK7UMBIIOCw7a7X2dhICJHSKKVNiKpW6m1xbG8aCW1K0oBy6yPwJDwUT8KMs5sQgeDU63rl_ZnxzDcezzcAz7SORD-lsl_Dk1DIug01tyKkItDIaGUSSdXInW7aPhEfTuuna_CjqoWhY5WVTfSG2o4M7ZHvJDxOMNZoJOLt-ZeQukZRdrVqoTFXiwM3-4Yh2-TN_nuU73POW3vHu-2w7CoQGkFwsq9tZPI4NjxKuSZ-OPSwicplLgkeaW37vI8mINIGgx8XK9vIFdexRl9ouTYJznsN1kWCX1iD9eZet3e03NWpJ0QHU7FDRnxH26_ECs4pjvLtXZbezzcJ-Buy_fOA5u_A2Xu-1k3YKCErezfXsU1Yc8Ut2CyNwoS9LJmrX92Gy44_mulYydo6-Hn5vYlu0rIjbYdU_zxhw4J1EPsPiOhjxnpjShSRcrBRznp4zYNYw3ZnRCCNE9Fu3uQ1q7qfMqqH8aOs9Xk6tMxXEONzPtLsd-DkSoRxF2rFqHD3geV1k6TSpilCPhHbhqrL3DWcsTLniKNsAC-qX5-dz5k8sjlnM89ISNlCSAE0STKLu4iB218YjQdZuaAzq3nitEtVKpQwUqNXyVVkMbq1MlXKBLBVyTUrzcIkWypxAE8Xw7igKUujCzea4j0xZU4VWscA7s3VYPEmgvLCCHgDkCsKsvKqqyPF8MyThseIUQgeBrDtdek__yBDVISeTkn-4N8f8gSut487h9nhfvfgIdzg1B7ZnwfdgtrFeOoeIWa76D8uFwqDT1e9Nn8BCNRVFg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVEJcEOXXUGCRQMDBxF47zi4SQqRt1FISoopKvZn17jpEQnaJG1BufQSeh8fhSZjZ2AkRCE69eq31z8zOfLOz8w3AY6WCOEuo7FfzyI9Fx_iKm9inItBAK6kjQdXIg2Gyfxy_PemcbMCPphaGjlU2NtEZalNq2iNvRzyMMNboRnE7r49FjHb7r0-_-NRBijKtTTuNhYoc2vk3DN-qVwe7KOsnnPf3Puzs-3WHAV_HBC0zZQKdh6HmQcIVccWht41kLnJBUEkpk_EMzUGgNAZCNpSmm0uuQoV-0XClI5z3Emx2KSpqwWZvbzg6Wu3wdCKihmmYIgPeVuYrMYRziqlcq5eVJ3QNA_6Gcv88rPk7iHZesH8Nrtbwlb1Z6NsWbNjiOmzVBqJiz2oW6-c34HzgjmlaVjO4jn-ef--hyzTsSJkJ1UJXbFKwAcYBYyL9mLPRlJJGpCiszNkIrzlAq9nOnMikcSLa2atesqYTKqPaGDfK-p9nE8NcNTE-5z3NfhOOL0QYt6BVlIW9Ayzv6CgRJkkQ_sWh6cqOyG3XaiNyjqIyHjxtfn16umD1SBf8zTwlIaVLIXnQI8ks7yI2bnehnI7TenGnRvHIKpvIJJaxFgo9TC4Dg5GuEYmU2oPtRq5pbSKqdKXQHjxaDuPipoyNKmw5w3tCyqJKtJQe3F6owfJNYsoRI_j1QKwpyNqrro8Uk0-OQDxEvEJQ0YMXTpf-8w9SREjo9aTgd__9IQ_hMq7J9N3B8PAeXOHUKdkdDd2G1tl0Zu8jfDvLHtTrhMHHi16avwDapFlL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Radiomics+in+Malignancy+Prediction+of+Pancreatic+Cystic+Lesions%3A+Evidence+from+Cyst+Fluid+Multi-Omics&rft.jtitle=Advanced+science&rft.au=Cheng%2C+Sihang&rft.au=Hu%2C+Ge&rft.au=Zhang%2C+Shenbo&rft.au=Lv%2C+Rui&rft.date=2025-05-01&rft.eissn=2198-3844&rft.volume=12&rft.issue=20&rft.spage=e2409488&rft_id=info:doi/10.1002%2Fadvs.202409488&rft_id=info%3Apmid%2F40289610&rft.externalDocID=40289610 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |