Surface Engineering Enabled Capacitive Gas‐Phase Water Molecule Sensors in Carbon Nanodots
Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas‐phase water sensors with high sensitivity remains a significant challenge...
Saved in:
Published in | Advanced science Vol. 12; no. 21; pp. e2414611 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.06.2025
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas‐phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)‐based sensors for H2O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H2O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 105 pF/RH and an impressive response of 1.8 × 108% at 98% RH. These CDs‐based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors.
A surface engineering strategy is developed to tune the molecular affinity of carbon nanodots (CDs), leading to capacitive sensors with an impressive detection range from 11% to 98% relative humidity (RH). These sensors demonstrate high sensitivity, with 3.3 × 105 pF/RH, and an exceptional response of 1.8 × 108 % at 98% RH. This approach unlocks new possibilities for CDs in practical applications, such as respiratory monitoring, contactless recognition of finger trajectories, and environmental sensing. The findings offer significant potential for future molecular sensor designs and wide‐ranging industrial applications. |
---|---|
AbstractList | Gas-phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas-phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)-based sensors for H2O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H2O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 105 pF/RH and an impressive response of 1.8 × 108% at 98% RH. These CDs-based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors.Gas-phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas-phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)-based sensors for H2O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H2O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 105 pF/RH and an impressive response of 1.8 × 108% at 98% RH. These CDs-based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors. Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas‐phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)‐based sensors for H 2 O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H 2 O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 10 5 pF/RH and an impressive response of 1.8 × 10 8 % at 98% RH. These CDs‐based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors. A surface engineering strategy is developed to tune the molecular affinity of carbon nanodots (CDs), leading to capacitive sensors with an impressive detection range from 11% to 98% relative humidity (RH). These sensors demonstrate high sensitivity, with 3.3 × 10 5 pF/RH, and an exceptional response of 1.8 × 10 8 % at 98% RH. This approach unlocks new possibilities for CDs in practical applications, such as respiratory monitoring, contactless recognition of finger trajectories, and environmental sensing. The findings offer significant potential for future molecular sensor designs and wide‐ranging industrial applications. Gas-phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas-phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)-based sensors for H O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 10 pF/RH and an impressive response of 1.8 × 10 % at 98% RH. These CDs-based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors. Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas‐phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)‐based sensors for H2O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H2O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 105 pF/RH and an impressive response of 1.8 × 108% at 98% RH. These CDs‐based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors. A surface engineering strategy is developed to tune the molecular affinity of carbon nanodots (CDs), leading to capacitive sensors with an impressive detection range from 11% to 98% relative humidity (RH). These sensors demonstrate high sensitivity, with 3.3 × 105 pF/RH, and an exceptional response of 1.8 × 108 % at 98% RH. This approach unlocks new possibilities for CDs in practical applications, such as respiratory monitoring, contactless recognition of finger trajectories, and environmental sensing. The findings offer significant potential for future molecular sensor designs and wide‐ranging industrial applications. Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas‐phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)‐based sensors for H2O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H2O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 105 pF/RH and an impressive response of 1.8 × 108% at 98% RH. These CDs‐based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors. Abstract Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas‐phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)‐based sensors for H2O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H2O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 105 pF/RH and an impressive response of 1.8 × 108% at 98% RH. These CDs‐based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors. Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas‐phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)‐based sensors for H 2 O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H 2 O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 10 5 pF/RH and an impressive response of 1.8 × 10 8 % at 98% RH. These CDs‐based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors. |
Author | Deng, Yuan Liu, Hang Yang, Xi‐Gui Lv, Chao‐Fan Liu, Lan Shen, Cheng‐Long Lai, Shou‐Long Shan, Chong‐Xin Zhang, Ying‐Jie Zhang, Wu‐You Li, Lei Qin, Jin‐Xu |
AuthorAffiliation | 3 Institute of Quantum Materials and Physics Henan Academy of Sciences Zhengzhou 450046 China 1 Henan Key Laboratory of Diamond Optoelectronic Material and Devices Key Laboratory of Integrated Circuit Ministry of Education School of Physics Zhengzhou University Zhengzhou 450052 China 2 School of Computational Science and Electronics Hunan Institute of Engineering Xiangtan 411104 China |
AuthorAffiliation_xml | – name: 3 Institute of Quantum Materials and Physics Henan Academy of Sciences Zhengzhou 450046 China – name: 1 Henan Key Laboratory of Diamond Optoelectronic Material and Devices Key Laboratory of Integrated Circuit Ministry of Education School of Physics Zhengzhou University Zhengzhou 450052 China – name: 2 School of Computational Science and Electronics Hunan Institute of Engineering Xiangtan 411104 China |
Author_xml | – sequence: 1 givenname: Jin‐Xu surname: Qin fullname: Qin, Jin‐Xu organization: Zhengzhou University – sequence: 2 givenname: Cheng‐Long orcidid: 0000-0003-2170-152X surname: Shen fullname: Shen, Cheng‐Long email: phyclshen@zzu.edu.cn organization: Zhengzhou University – sequence: 3 givenname: Wu‐You surname: Zhang fullname: Zhang, Wu‐You organization: Zhengzhou University – sequence: 4 givenname: Yuan surname: Deng fullname: Deng, Yuan organization: Hunan Institute of Engineering – sequence: 5 givenname: Shou‐Long surname: Lai fullname: Lai, Shou‐Long organization: Zhengzhou University – sequence: 6 givenname: Chao‐Fan surname: Lv fullname: Lv, Chao‐Fan organization: Zhengzhou University – sequence: 7 givenname: Hang surname: Liu fullname: Liu, Hang organization: Zhengzhou University – sequence: 8 givenname: Ying‐Jie surname: Zhang fullname: Zhang, Ying‐Jie organization: Zhengzhou University – sequence: 9 givenname: Lan surname: Liu fullname: Liu, Lan organization: Zhengzhou University – sequence: 10 givenname: Lei surname: Li fullname: Li, Lei organization: Zhengzhou University – sequence: 11 givenname: Xi‐Gui surname: Yang fullname: Yang, Xi‐Gui email: yangxg@zzu.edu.cn organization: Henan Academy of Sciences – sequence: 12 givenname: Chong‐Xin surname: Shan fullname: Shan, Chong‐Xin email: cxshan@zzu.edu.cn organization: Zhengzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40285652$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuEzEUhkeoiJbSLUs0Ehs2CT6-jD0rVIVSKpWLFC4bJMvjOZM6mtipPZOquz4Cz8iT4JIStWxY-cj-zqdj-39a7PngsSieA5kCIfS1aTdpSgnlwCuAR8UBhVpNmOJ87169XxyltCSEgGCSg3pS7HNClagEPSh-zMfYGYvliV84jxidX-TaND225cysjXWD22B5atKvm5-fL0zC8rsZMJYfQo927LGco08hptL53BCb4MuPxoc2DOlZ8bgzfcKju_Ww-Pru5Mvs_eT80-nZ7Ph8YrlSMOk6ni9RCStBdEYQCaaiTSVJY3lHatlUVlaNFIp3HGUuOKt4VQsiWsWZMuywONt622CWeh3dysRrHYzTfzZCXGgTB2d71CCbxlDbGWI5t7Wt8zMRJrIe0dpOZNebrWs9NitsLfohmv6B9OGJdxd6ETYaKHDCgGXDqztDDJcjpkGvXLLY98ZjGJNmUAupOAGS0Zf_oMswRp_fSjMKFaGsVnWmXtwfaTfL31_MwHQL2BhSitjtECD6Nin6Nil6l5TcILYNV67H6__Q-vjttznkNAH7DVcKwFA |
Cites_doi | 10.1038/s41467-024-50797-w 10.1016/j.scib.2020.05.027 10.1002/anie.201206791 10.1039/C4RA02692F 10.1002/adfm.201303352 10.1016/j.colsurfa.2024.134740 10.1103/PhysRevB.54.11169 10.1002/adma.202404694 10.1002/advs.202404178 10.1002/adfm.201907449 10.5194/amt-17-6425-2024 10.1002/adfm.201200166 10.1002/adma.201800676 10.1002/advs.201903525 10.1021/acs.jpclett.1c01011 10.1016/j.nanoen.2022.107549 10.1016/j.matt.2024.05.007 10.1021/acsnano.1c10004 10.1002/smll.202205890 10.1016/j.ceramint.2021.05.191 10.1016/j.nantod.2020.100954 10.1002/smll.202206723 10.1021/acsnano.6b05274 10.1021/jacs.3c03938 10.1021/acsami.2c21051 10.1103/PhysRevLett.77.3865 10.1021/acsaelm.3c00660 10.1063/1.3382344 10.1002/adma.201801435 10.1002/adfm.201904549 10.1021/acsami.0c12868 10.1002/anie.201906222 10.1038/s41377-023-01149-8 10.1002/adma.202200905 10.1002/advs.201802331 10.1002/tee.23140 10.1021/acsaelm.0c00660 10.1038/s41377-022-00865-x 10.1103/PhysRevB.59.1758 10.1021/acsphotonics.0c00976 10.1002/anie.202103336 10.1021/acs.nanolett.2c02674 10.1021/acs.nanolett.2c00603 10.1038/s41467-023-42959-z 10.1016/j.ceramint.2023.05.020 10.1038/lsa.2016.120 10.1016/j.sna.2016.09.007 10.1002/adfm.201804004 10.3390/s24051352 10.1021/acsmaterialslett.1c00157 10.1038/lsa.2015.137 10.1021/acssensors.7b00014 10.1002/adma.201704740 10.1002/anie.202006545 10.1002/smll.202304594 10.1002/anie.202103086 10.1021/acs.chemmater.7b05178 10.1002/adma.202304420 10.1039/C5TC04096E 10.1021/acsanm.3c01131 10.1002/advs.201600404 10.1039/C9TC00233B 10.1016/j.snb.2023.134445 10.1038/s41467-019-09830-6 10.1007/s12274-023-5837-1 10.1088/0957-4484/17/21/026 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. – notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202414611 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Research Library (NC LIVE) Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Engineering |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_17bba2cfa0c44c9c92190356b7eeccf5 PMC12140313 40285652 10_1002_advs_202414611 ADVS11981 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2024YFE0105200 – fundername: Innovative Research Group Project of the National Natural Science Foundation of China funderid: 62204223; 12374016; 12174348; 62027816; U21A2070 – fundername: China Postdoctoral Science Foundation funderid: 2022TQ0307 – fundername: National Key R&D Program of China grantid: 2024YFE0105200 – fundername: Innovative Research Group Project of the National Natural Science Foundation of China grantid: 62027816 – fundername: Innovative Research Group Project of the National Natural Science Foundation of China grantid: 62204223 – fundername: Innovative Research Group Project of the National Natural Science Foundation of China grantid: 12374016 – fundername: Innovative Research Group Project of the National Natural Science Foundation of China grantid: 12174348 – fundername: Innovative Research Group Project of the National Natural Science Foundation of China grantid: U21A2070 – fundername: China Postdoctoral Science Foundation grantid: 2022TQ0307 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PMFND PQQKQ PROAC ROL RPM AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION EJD WIN NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c4881-ff420265c715fa5071a62b670bc4f097b6c76b7584f4e7b75436469505d8438a3 |
IEDL.DBID | DOA |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:19:08 EDT 2025 Thu Aug 21 18:25:22 EDT 2025 Fri Jul 11 18:31:37 EDT 2025 Wed Aug 13 04:08:41 EDT 2025 Sun Jun 08 01:33:10 EDT 2025 Thu Aug 14 00:12:12 EDT 2025 Fri Jun 06 09:21:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | carbon nanodots molecular affinity surface engineering capacitive sensor |
Language | English |
License | Attribution 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4881-ff420265c715fa5071a62b670bc4f097b6c76b7584f4e7b75436469505d8438a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2170-152X |
OpenAccessLink | https://doaj.org/article/17bba2cfa0c44c9c92190356b7eeccf5 |
PMID | 40285652 |
PQID | 3216023989 |
PQPubID | 4365299 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_17bba2cfa0c44c9c92190356b7eeccf5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12140313 proquest_miscellaneous_3195784010 proquest_journals_3216023989 pubmed_primary_40285652 crossref_primary_10_1002_advs_202414611 wiley_primary_10_1002_advs_202414611_ADVS11981 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2023; 35 2017; 2 2017; 4 2023; 5 2023; 6 2013; 24 2019; 10 2023; 145 2019; 58 2020; 59 2020; 15 2020; 12 2022; 22 2024; 36 2012; 51 1996; 77 2020; 7 2017; 30 2014; 4 2020; 2 2024; 7 1999; 59 2022; 34 2019; 29 2024; 20 2018; 30 2024; 24 2012; 22 2021; 47 2019; 7 2018; 28 2023; 14 2015; 4 2019; 6 2021; 3 2023; 12 2019; 30 2023; 15 2023; 16 2006; 17 2023; 19 2016; 10 2020; 35 2024; 11 2024; 15 2024; 17 1996; 54 2016; 4 2022; 101 2016; 5 2021; 16 2021; 12 2024; 699 2023; 394 2023; 49 2010; 132 2020; 65 2022; 11 2021; 60 2016; 250 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 30 start-page: 1695 year: 2018 publication-title: Chem. Mater. – volume: 15 start-page: 965 year: 2020 publication-title: IEEJ Trans. Electr. Electron. Eng. – volume: 145 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 30 year: 2017 publication-title: Adv. Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 250 start-page: 1 year: 2016 publication-title: Sens. Actuators, A – volume: 7 start-page: 2923 year: 2020 publication-title: ACS Photonics – volume: 12 start-page: 4079 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 17 start-page: 5441 year: 2006 publication-title: Nanotechnology – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 22 start-page: 7203 year: 2022 publication-title: Nano Lett. – volume: 699 year: 2024 publication-title: Colloids Surf., A – volume: 22 start-page: 5127 year: 2022 publication-title: Nano Lett. – volume: 51 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 172 year: 2022 publication-title: Light: Sci. Appl. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 6425 year: 2024 publication-title: Atmos. Meas. Tech. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 5 year: 2016 publication-title: Light: Sci. Appl. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 24 start-page: 1352 year: 2024 publication-title: Sensors – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 19 year: 2023 publication-title: Small – volume: 20 year: 2024 publication-title: Small – volume: 5 start-page: 4473 year: 2023 publication-title: ACS Appl. Electron. Mater. – volume: 49 year: 2023 publication-title: Ceramics Inter. – volume: 14 start-page: 7261 year: 2023 publication-title: Nat. Commun. – volume: 47 year: 2021 publication-title: Ceram. Int. – volume: 7 start-page: 2351 year: 2024 publication-title: Matter – volume: 16 start-page: 1511 year: 2021 publication-title: ACS Nano – volume: 7 start-page: 5468 year: 2019 publication-title: J. Mater. Chem. C – volume: 15 start-page: 9740 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 101 year: 2022 publication-title: Nano Energy – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 394 year: 2023 publication-title: Sens. Actuators, B – volume: 10 start-page: 9009 year: 2016 publication-title: ACS Nano – volume: 2 start-page: 3593 year: 2020 publication-title: ACS Appl. Electron. Mater. – volume: 12 start-page: 104 year: 2023 publication-title: Light: Sci. Appl. – volume: 15 start-page: 6431 year: 2024 publication-title: Nat. Commun. – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 4 year: 2014 publication-title: RSC Adv. – volume: 2 start-page: 740 year: 2017 publication-title: ACS Sens. – volume: 11 year: 2024 publication-title: Adv. Sci. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 10 start-page: 1789 year: 2019 publication-title: Nat. Commun. – volume: 6 start-page: 7011 year: 2023 publication-title: ACS Appl. Nano Mater – volume: 4 year: 2015 publication-title: Light: Sci. Appl. – volume: 22 start-page: 2971 year: 2012 publication-title: Adv. Funct. Mater. – volume: 16 year: 2023 publication-title: Nano Res. – volume: 30 year: 2019 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 2598 year: 2016 publication-title: J. Mater. Chem. C – volume: 65 start-page: 1650 year: 2020 publication-title: Sci. Bull. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 24 start-page: 2689 year: 2013 publication-title: Adv. Funct. Mater. – volume: 35 year: 2020 publication-title: Nano Today – volume: 3 start-page: 826 year: 2021 publication-title: ACS Materials Lett. – volume: 132 year: 2010 publication-title: J. Chem. Phys. – ident: e_1_2_8_10_1 doi: 10.1038/s41467-024-50797-w – ident: e_1_2_8_20_1 doi: 10.1016/j.scib.2020.05.027 – ident: e_1_2_8_29_1 doi: 10.1002/anie.201206791 – ident: e_1_2_8_31_1 doi: 10.1039/C4RA02692F – ident: e_1_2_8_28_1 doi: 10.1002/adfm.201303352 – ident: e_1_2_8_34_1 doi: 10.1016/j.colsurfa.2024.134740 – ident: e_1_2_8_63_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_27_1 doi: 10.1002/adma.202404694 – ident: e_1_2_8_2_1 doi: 10.1002/advs.202404178 – ident: e_1_2_8_33_1 doi: 10.1002/adfm.201907449 – ident: e_1_2_8_5_1 doi: 10.5194/amt-17-6425-2024 – ident: e_1_2_8_55_1 doi: 10.1002/adfm.201200166 – ident: e_1_2_8_57_1 doi: 10.1002/adma.201800676 – ident: e_1_2_8_39_1 doi: 10.1002/advs.201903525 – ident: e_1_2_8_16_1 doi: 10.1021/acs.jpclett.1c01011 – ident: e_1_2_8_18_1 doi: 10.1016/j.nanoen.2022.107549 – ident: e_1_2_8_13_1 doi: 10.1016/j.matt.2024.05.007 – ident: e_1_2_8_12_1 doi: 10.1021/acsnano.1c10004 – ident: e_1_2_8_51_1 doi: 10.1002/smll.202205890 – ident: e_1_2_8_61_1 doi: 10.1016/j.ceramint.2021.05.191 – ident: e_1_2_8_26_1 doi: 10.1016/j.nantod.2020.100954 – ident: e_1_2_8_56_1 doi: 10.1002/smll.202206723 – ident: e_1_2_8_14_1 doi: 10.1021/acsnano.6b05274 – ident: e_1_2_8_50_1 doi: 10.1021/jacs.3c03938 – ident: e_1_2_8_62_1 doi: 10.1021/acsami.2c21051 – ident: e_1_2_8_65_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_37_1 doi: 10.1021/acsaelm.3c00660 – ident: e_1_2_8_66_1 doi: 10.1063/1.3382344 – ident: e_1_2_8_11_1 doi: 10.1002/adma.201801435 – ident: e_1_2_8_32_1 doi: 10.1002/adfm.201904549 – ident: e_1_2_8_36_1 doi: 10.1021/acsami.0c12868 – ident: e_1_2_8_15_1 doi: 10.1002/anie.201906222 – ident: e_1_2_8_41_1 doi: 10.1038/s41377-023-01149-8 – ident: e_1_2_8_42_1 doi: 10.1002/adma.202200905 – ident: e_1_2_8_38_1 doi: 10.1002/advs.201802331 – ident: e_1_2_8_35_1 doi: 10.1002/tee.23140 – ident: e_1_2_8_30_1 doi: 10.1021/acsaelm.0c00660 – ident: e_1_2_8_54_1 doi: 10.1038/s41377-022-00865-x – ident: e_1_2_8_64_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_8_3_1 doi: 10.1021/acsphotonics.0c00976 – ident: e_1_2_8_21_1 doi: 10.1002/anie.202103336 – ident: e_1_2_8_47_1 doi: 10.1021/acs.nanolett.2c02674 – ident: e_1_2_8_49_1 doi: 10.1021/acs.nanolett.2c00603 – ident: e_1_2_8_17_1 doi: 10.1038/s41467-023-42959-z – ident: e_1_2_8_8_1 doi: 10.1016/j.ceramint.2023.05.020 – ident: e_1_2_8_23_1 doi: 10.1038/lsa.2016.120 – ident: e_1_2_8_4_1 doi: 10.1016/j.sna.2016.09.007 – ident: e_1_2_8_52_1 doi: 10.1002/adfm.201804004 – ident: e_1_2_8_59_1 doi: 10.3390/s24051352 – ident: e_1_2_8_46_1 doi: 10.1021/acsmaterialslett.1c00157 – ident: e_1_2_8_22_1 doi: 10.1038/lsa.2015.137 – ident: e_1_2_8_6_1 doi: 10.1021/acssensors.7b00014 – ident: e_1_2_8_24_1 doi: 10.1002/adma.201704740 – ident: e_1_2_8_25_1 doi: 10.1002/anie.202006545 – ident: e_1_2_8_53_1 doi: 10.1002/smll.202304594 – ident: e_1_2_8_40_1 doi: 10.1002/anie.202103086 – ident: e_1_2_8_43_1 doi: 10.1021/acs.chemmater.7b05178 – ident: e_1_2_8_7_1 doi: 10.1002/adma.202304420 – ident: e_1_2_8_45_1 doi: 10.1039/C5TC04096E – ident: e_1_2_8_9_1 doi: 10.1021/acsanm.3c01131 – ident: e_1_2_8_1_1 doi: 10.1002/advs.201600404 – ident: e_1_2_8_44_1 doi: 10.1039/C9TC00233B – ident: e_1_2_8_58_1 doi: 10.1016/j.snb.2023.134445 – ident: e_1_2_8_48_1 doi: 10.1038/s41467-019-09830-6 – ident: e_1_2_8_19_1 doi: 10.1007/s12274-023-5837-1 – ident: e_1_2_8_60_1 doi: 10.1088/0957-4484/17/21/026 |
SSID | ssj0001537418 |
Score | 2.3226044 |
Snippet | Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety,... Gas-phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety,... Abstract Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2414611 |
SubjectTerms | Adsorption capacitive sensor Carbon carbon nanodots Engineering Gases Humidity Microscopy molecular affinity Nanomaterials Nanoparticles NMR Nuclear magnetic resonance Process controls Sensors surface engineering |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB5Be4EDouUvUJCRkIBDqO04TnJCtGqpkFpVlIoekCL_0l6SknQ58wg8I0_C2PFudwWCWxQ7kuPxzHwztr8BeCGMppY6l6O7oXGbMVdlUeYIZb2trFBNLNN5eCQPTsWHs_IsJdzGdKxybhOjoba9CTny7YIzGS5i1s3by295qBoVdldTCY2bsI4muMbga31n7-j443WWpSwCPcucrZHybWW_B5ZudFxCMrbijSJp_9-Q5p8HJpeBbPRE-3fhToKQ5N0k8w244bpNuL1ELLgJG0llR_Iq8Uq_vgdfTmaDV8aRpa74HO5OWbKLTtPEc0TkvRp__fh5fI7-jXxGKDqQw6mGriMnGPT2w0guOvxg0H1H0DqHwHa8D6f7e592D_JUXCE3qLMs917gLMjSVKz0KqBCJbmWFdVGeNpUWppKaowmhBeuwgdRSAylETDZWhS1Kh7AWtd37hEQj1bDaIPg0FdCl6amlrPAlu60lVy4DF7OJ7m9nDg02oktmbdBHO1CHBnsBBksegXu6_iiH762SZVaVmmtuPGKGiFMYxo0urQocbAO16MvM9iaS7BNCjm218sng-eLZlSlsD-iOtfPsA9r0H5hwEkzeDgJfDESDLNrxL48g3plKawMdbWluziPdN2MB05EVmTwJq6a_8xBi3gEfUxTs8f__pEncIuHYsQxJbQFa1fDzD1FhHSlnyU1-A1cPA9r priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9YwFA4yb7wR52d1SgaCelGW77aXOtzGYDKYw10IJUkTt5tW2r1e-xP8jf4Sz0n7dm9RkN2VJilpTk7Oc5Kc5xDyWnnHGhZCDuaGpWPG3Gqpc4CysSkaZauUpvPkkzk6V8cX-mIjin_kh5g33FAz0nqNCm7dsHdDGmqbH0i3DRZIGQzuvYvxtcieL9TpzS6LlkjPghnmwLvOZanUmrmRib3lJxaWKRH4_wt1_n15chPUJqt08IDcn-AkfT_Kf5vcCe1Dsj0p7EDfTqzS7x6Rr2erPlof6AYDITxj5FRD98Fk-nSLiB7a4ffPX6eXYN3oFwCiPT0ZM-gGegYub9cP9KqFBr3rWgprM7q1w2NyfvDx8_5RPqVWyD1oLM9jVPDfRvuC62gRE1ojnCmY8yqyqnDGF8aBL6GiCgU8KGnAkQa41JRKllY-IVtt14ZnhEZYM7zzAA1joZz2JWsER6704BojVMjIm_Ww1t9HBo165EoWNQqgngWQkQ846nMtZL5OL7r-Wz0pUs0L56zw0TKvlK98BYJlUkNnA8zGqDOys5ZZPanjUEvBDUbxllVGdudiUCQ8HbFt6FZQh1eweoG7yTLydBTx3BNwsktAviIj5UL4i64uS9qry0TWzQUyInKZkXE2_2cMakAjYGGqkj-_bYMX5J7A5MRpi2iHbF33q_ASENO1e5WU4g8-Sg4o priority: 102 providerName: Wiley-Blackwell |
Title | Surface Engineering Enabled Capacitive Gas‐Phase Water Molecule Sensors in Carbon Nanodots |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202414611 https://www.ncbi.nlm.nih.gov/pubmed/40285652 https://www.proquest.com/docview/3216023989 https://www.proquest.com/docview/3195784010 https://pubmed.ncbi.nlm.nih.gov/PMC12140313 https://doaj.org/article/17bba2cfa0c44c9c92190356b7eeccf5 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BuXBBlM9AWRkJCTiE2o5jJ8e2tFSIrVYsFT0gWbZjq71kUdLlzE_gN_JLGDvZ1a5A6oVTojhRnJmM35vEfgPwSjhLG-p9jnBD02_G3JRFmSOVDY1qhKlTmc7pmTw9Fx8vyouNUl9xTtggDzwYbp8paw13wVAnhKtdjSFGi1Ja5fHuIamXIuZtJFPD-uAiyrKsVBop3zfNj6jOjYAlJGNbKJTE-v_FMP-eKLlJYBMCndyHeyN1JAdDl3fhlm8fwO4YnD15MypIv30I3-bLLhjnyYbaIO7HVVINOUJ4dGnGEPlg-t8_f80uEcnIVySdHZkO1XI9mWN6u-h6ctXiBZ1dtATH4ZjC9o_g_OT4y9FpPpZRyB1GJ8tDEPjcsnSKlcFE_mckt1JR60SgtbLSKTQnMpEgvMIdUUhMmpEaNZUoKlM8hp120fqnQAKOD846pIFBCVu6ijacRV10bxvJhc_g9cqs-vuglqEHXWSuowP02gEZHEarr8-KKtfpAPpej77XN_k-g72Vz_QYer0uOJNxxW5VZ_By3YxBE_-EmNYvlngOq3GkwtSSZvBkcPG6J5hQV8hyeQbVlvO3urrd0l5dJmFuxqP6ISsyeJfekxtsoJF5IJrUFXv2P6zxHO7yWJw4fSLag53rbulfIGO6thO4zcVsAncO3k8_zXF7eHw2-zxJIfMHgsAXKA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gA9IFoeDRQwEgg4hNqO8zogREvLlnZXFW3VHpCC7di0l6QkXRA3fgK_hB_FL2Gcx3ZXIDj1FtlO5HjGM9_48Q3AY6EVzakxProb2mwz-jIMQh-hrM3jXMi0SdM5HEWDQ_HuODyeg5_9XRh3rLK3iY2hzkvt1sjXAs4idxEzSV-dffZd1ii3u9qn0GjVYsd8-4ohW_1y-w3K9wnnW5sHGwO_yyrga1RW5lsrMOCPQh2z0EoHh2TEVRRTpYWlaawiHUcKYbSwwsT4IIIIY0hECnkigkQG-N0rsIClFA3BwvrmaO_9xapOGDg6mJ4dkvI1mX9xrODoKEXE2Iz3a5IE_A3Z_nlAcxo4N55v6wZc7yAred3q2BLMmWIZFqeIDJdhqTMRNXnW8Vg_vwkf9seVldqQqab47O5q5WQDnbRuzi2Rt7L-9f3H3gn6U3KE0LciwzZnryH7GGSXVU1OC3yhUmVB0Bu4QLq-BYeXMuy3Yb4oC7MCxKKV0kojGLWxUKFOaM6ZY2c3Ko-4MB487Qc5O2s5O7KWnZlnThzZRBwerDsZTFo5ru2moKw-Zd3UzVislOTaSqqF0KlO0cjTIMTOGtR_G3qw2ksw6wxAnV2oqwePJtU4dd1-jCxMOcY2LEV7iQEu9eBOK_BJTzCsTxBrcw-SGVWY6epsTXF60tCDM-44GFngwYtGa_4zBhniH_RpacLu_vtHHsLVwcFwN9vdHu3cg2vcJUJulqNWYf68Gpv7iM7O1YNuShD4eNmz8DeCSUl6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qUwnBAtHyChQwEghYhLEd57VAiD6GltLRiFLRBVKwHZt2k5SkA2LHJ_A9fA5fwnUe0xmBYNVdlDiR4_s6149zAR4KrWhOjfEx3NBmmdGXYRD6CGVtHudCpk2Zzr1xtH0gXh-Gh0vwsz8L47ZV9j6xcdR5qd0c-TDgLHIHMZN0aLttEZPN0YuTz76rIOVWWvtyGq2K7JpvXzF9q5_vbKKsH3E-2nq3se13FQZ8jYrLfGsFJv9RqGMWWumgkYy4imKqtLA0jVWk40ghpBZWmBgvRBBhPomoIU9EkMgAv3sBlmPMiugAlte3xpO3ZzM8YeCoYXqmSMqHMv_iGMIxaIqIsYVI2BQM-BvK_XOz5jyIbqLg6Cpc6eArednq2wosmWIVLs-RGq7CSucuavKk47R-eg0-7E8rK7Uhc03x2p3byskGBmzd7GEir2T96_uPyRHGVvIeYXBF9tr6vYbsY8JdVjU5LvCFSpUFwcjgkur6Ohycy7DfgEFRFuYWEIseSyuNwNTGQoU6oTlnjqndqDziwnjwuB_k7KTl78hapmaeOXFkM3F4sO5kMGvleLebG2X1KevMOGOxUpJrK6kWQqc6RYdPgxA7a9AWbOjBWi_BrHMGdXamuh48mD1GM3ZrM7Iw5RTbsBR9Jya71IObrcBnPcEUP0HczT1IFlRhoauLT4rjo4YqnHHHx8gCD541WvOfMcgQC2F8SxN2-98_ch8uovVlb3bGu3fgEnc1kZuZqTUYnFZTcxeB2qm611kEgY_nbYS_AfiVTa8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Engineering+Enabled+Capacitive+Gas-Phase+Water+Molecule+Sensors+in+Carbon+Nanodots&rft.jtitle=Advanced+science&rft.au=Qin%2C+Jin-Xu&rft.au=Shen%2C+Cheng-Long&rft.au=Zhang%2C+Wu-You&rft.au=Deng%2C+Yuan&rft.date=2025-06-01&rft.eissn=2198-3844&rft.volume=12&rft.issue=21&rft.spage=e2414611&rft_id=info:doi/10.1002%2Fadvs.202414611&rft_id=info%3Apmid%2F40285652&rft.externalDocID=40285652 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |