Surface Engineering Enabled Capacitive Gas‐Phase Water Molecule Sensors in Carbon Nanodots

Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas‐phase water sensors with high sensitivity remains a significant challenge...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 12; no. 21; pp. e2414611 - n/a
Main Authors Qin, Jin‐Xu, Shen, Cheng‐Long, Zhang, Wu‐You, Deng, Yuan, Lai, Shou‐Long, Lv, Chao‐Fan, Liu, Hang, Zhang, Ying‐Jie, Liu, Lan, Li, Lei, Yang, Xi‐Gui, Shan, Chong‐Xin
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.06.2025
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas‐phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)‐based sensors for H2O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H2O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 105 pF/RH and an impressive response of 1.8 × 108% at 98% RH. These CDs‐based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors. A surface engineering strategy is developed to tune the molecular affinity of carbon nanodots (CDs), leading to capacitive sensors with an impressive detection range from 11% to 98% relative humidity (RH). These sensors demonstrate high sensitivity, with 3.3 × 105 pF/RH, and an exceptional response of 1.8 × 108 % at 98% RH. This approach unlocks new possibilities for CDs in practical applications, such as respiratory monitoring, contactless recognition of finger trajectories, and environmental sensing. The findings offer significant potential for future molecular sensor designs and wide‐ranging industrial applications.
AbstractList Gas-phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas-phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)-based sensors for H2O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H2O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 105 pF/RH and an impressive response of 1.8 × 108% at 98% RH. These CDs-based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors.Gas-phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas-phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)-based sensors for H2O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H2O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 105 pF/RH and an impressive response of 1.8 × 108% at 98% RH. These CDs-based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors.
Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas‐phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)‐based sensors for H 2 O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H 2 O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 10 5 pF/RH and an impressive response of 1.8 × 10 8 % at 98% RH. These CDs‐based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors. A surface engineering strategy is developed to tune the molecular affinity of carbon nanodots (CDs), leading to capacitive sensors with an impressive detection range from 11% to 98% relative humidity (RH). These sensors demonstrate high sensitivity, with 3.3 × 10 5 pF/RH, and an exceptional response of 1.8 × 10 8 % at 98% RH. This approach unlocks new possibilities for CDs in practical applications, such as respiratory monitoring, contactless recognition of finger trajectories, and environmental sensing. The findings offer significant potential for future molecular sensor designs and wide‐ranging industrial applications.
Gas-phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas-phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)-based sensors for H O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 10 pF/RH and an impressive response of 1.8 × 10 % at 98% RH. These CDs-based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors.
Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas‐phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)‐based sensors for H2O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H2O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 105 pF/RH and an impressive response of 1.8 × 108% at 98% RH. These CDs‐based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors. A surface engineering strategy is developed to tune the molecular affinity of carbon nanodots (CDs), leading to capacitive sensors with an impressive detection range from 11% to 98% relative humidity (RH). These sensors demonstrate high sensitivity, with 3.3 × 105 pF/RH, and an exceptional response of 1.8 × 108 % at 98% RH. This approach unlocks new possibilities for CDs in practical applications, such as respiratory monitoring, contactless recognition of finger trajectories, and environmental sensing. The findings offer significant potential for future molecular sensor designs and wide‐ranging industrial applications.
Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas‐phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)‐based sensors for H2O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H2O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 105 pF/RH and an impressive response of 1.8 × 108% at 98% RH. These CDs‐based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors.
Abstract Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas‐phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)‐based sensors for H2O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H2O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 105 pF/RH and an impressive response of 1.8 × 108% at 98% RH. These CDs‐based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors.
Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas‐phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)‐based sensors for H 2 O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H 2 O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 10 5 pF/RH and an impressive response of 1.8 × 10 8 % at 98% RH. These CDs‐based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors.
Author Deng, Yuan
Liu, Hang
Yang, Xi‐Gui
Lv, Chao‐Fan
Liu, Lan
Shen, Cheng‐Long
Lai, Shou‐Long
Shan, Chong‐Xin
Zhang, Ying‐Jie
Zhang, Wu‐You
Li, Lei
Qin, Jin‐Xu
AuthorAffiliation 3 Institute of Quantum Materials and Physics Henan Academy of Sciences Zhengzhou 450046 China
1 Henan Key Laboratory of Diamond Optoelectronic Material and Devices Key Laboratory of Integrated Circuit Ministry of Education School of Physics Zhengzhou University Zhengzhou 450052 China
2 School of Computational Science and Electronics Hunan Institute of Engineering Xiangtan 411104 China
AuthorAffiliation_xml – name: 3 Institute of Quantum Materials and Physics Henan Academy of Sciences Zhengzhou 450046 China
– name: 1 Henan Key Laboratory of Diamond Optoelectronic Material and Devices Key Laboratory of Integrated Circuit Ministry of Education School of Physics Zhengzhou University Zhengzhou 450052 China
– name: 2 School of Computational Science and Electronics Hunan Institute of Engineering Xiangtan 411104 China
Author_xml – sequence: 1
  givenname: Jin‐Xu
  surname: Qin
  fullname: Qin, Jin‐Xu
  organization: Zhengzhou University
– sequence: 2
  givenname: Cheng‐Long
  orcidid: 0000-0003-2170-152X
  surname: Shen
  fullname: Shen, Cheng‐Long
  email: phyclshen@zzu.edu.cn
  organization: Zhengzhou University
– sequence: 3
  givenname: Wu‐You
  surname: Zhang
  fullname: Zhang, Wu‐You
  organization: Zhengzhou University
– sequence: 4
  givenname: Yuan
  surname: Deng
  fullname: Deng, Yuan
  organization: Hunan Institute of Engineering
– sequence: 5
  givenname: Shou‐Long
  surname: Lai
  fullname: Lai, Shou‐Long
  organization: Zhengzhou University
– sequence: 6
  givenname: Chao‐Fan
  surname: Lv
  fullname: Lv, Chao‐Fan
  organization: Zhengzhou University
– sequence: 7
  givenname: Hang
  surname: Liu
  fullname: Liu, Hang
  organization: Zhengzhou University
– sequence: 8
  givenname: Ying‐Jie
  surname: Zhang
  fullname: Zhang, Ying‐Jie
  organization: Zhengzhou University
– sequence: 9
  givenname: Lan
  surname: Liu
  fullname: Liu, Lan
  organization: Zhengzhou University
– sequence: 10
  givenname: Lei
  surname: Li
  fullname: Li, Lei
  organization: Zhengzhou University
– sequence: 11
  givenname: Xi‐Gui
  surname: Yang
  fullname: Yang, Xi‐Gui
  email: yangxg@zzu.edu.cn
  organization: Henan Academy of Sciences
– sequence: 12
  givenname: Chong‐Xin
  surname: Shan
  fullname: Shan, Chong‐Xin
  email: cxshan@zzu.edu.cn
  organization: Zhengzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40285652$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhkeoiJbSLUs0Ehs2CT6-jD0rVIVSKpWLFC4bJMvjOZM6mtipPZOquz4Cz8iT4JIStWxY-cj-zqdj-39a7PngsSieA5kCIfS1aTdpSgnlwCuAR8UBhVpNmOJ87169XxyltCSEgGCSg3pS7HNClagEPSh-zMfYGYvliV84jxidX-TaND225cysjXWD22B5atKvm5-fL0zC8rsZMJYfQo927LGco08hptL53BCb4MuPxoc2DOlZ8bgzfcKju_Ww-Pru5Mvs_eT80-nZ7Ph8YrlSMOk6ni9RCStBdEYQCaaiTSVJY3lHatlUVlaNFIp3HGUuOKt4VQsiWsWZMuywONt622CWeh3dysRrHYzTfzZCXGgTB2d71CCbxlDbGWI5t7Wt8zMRJrIe0dpOZNebrWs9NitsLfohmv6B9OGJdxd6ETYaKHDCgGXDqztDDJcjpkGvXLLY98ZjGJNmUAupOAGS0Zf_oMswRp_fSjMKFaGsVnWmXtwfaTfL31_MwHQL2BhSitjtECD6Nin6Nil6l5TcILYNV67H6__Q-vjttznkNAH7DVcKwFA
Cites_doi 10.1038/s41467-024-50797-w
10.1016/j.scib.2020.05.027
10.1002/anie.201206791
10.1039/C4RA02692F
10.1002/adfm.201303352
10.1016/j.colsurfa.2024.134740
10.1103/PhysRevB.54.11169
10.1002/adma.202404694
10.1002/advs.202404178
10.1002/adfm.201907449
10.5194/amt-17-6425-2024
10.1002/adfm.201200166
10.1002/adma.201800676
10.1002/advs.201903525
10.1021/acs.jpclett.1c01011
10.1016/j.nanoen.2022.107549
10.1016/j.matt.2024.05.007
10.1021/acsnano.1c10004
10.1002/smll.202205890
10.1016/j.ceramint.2021.05.191
10.1016/j.nantod.2020.100954
10.1002/smll.202206723
10.1021/acsnano.6b05274
10.1021/jacs.3c03938
10.1021/acsami.2c21051
10.1103/PhysRevLett.77.3865
10.1021/acsaelm.3c00660
10.1063/1.3382344
10.1002/adma.201801435
10.1002/adfm.201904549
10.1021/acsami.0c12868
10.1002/anie.201906222
10.1038/s41377-023-01149-8
10.1002/adma.202200905
10.1002/advs.201802331
10.1002/tee.23140
10.1021/acsaelm.0c00660
10.1038/s41377-022-00865-x
10.1103/PhysRevB.59.1758
10.1021/acsphotonics.0c00976
10.1002/anie.202103336
10.1021/acs.nanolett.2c02674
10.1021/acs.nanolett.2c00603
10.1038/s41467-023-42959-z
10.1016/j.ceramint.2023.05.020
10.1038/lsa.2016.120
10.1016/j.sna.2016.09.007
10.1002/adfm.201804004
10.3390/s24051352
10.1021/acsmaterialslett.1c00157
10.1038/lsa.2015.137
10.1021/acssensors.7b00014
10.1002/adma.201704740
10.1002/anie.202006545
10.1002/smll.202304594
10.1002/anie.202103086
10.1021/acs.chemmater.7b05178
10.1002/adma.202304420
10.1039/C5TC04096E
10.1021/acsanm.3c01131
10.1002/advs.201600404
10.1039/C9TC00233B
10.1016/j.snb.2023.134445
10.1038/s41467-019-09830-6
10.1007/s12274-023-5837-1
10.1088/0957-4484/17/21/026
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH
2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH
– notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202414611
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Research Library (NC LIVE)
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_17bba2cfa0c44c9c92190356b7eeccf5
PMC12140313
40285652
10_1002_advs_202414611
ADVS11981
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2024YFE0105200
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  funderid: 62204223; 12374016; 12174348; 62027816; U21A2070
– fundername: China Postdoctoral Science Foundation
  funderid: 2022TQ0307
– fundername: National Key R&D Program of China
  grantid: 2024YFE0105200
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  grantid: 62027816
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  grantid: 62204223
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  grantid: 12374016
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  grantid: 12174348
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  grantid: U21A2070
– fundername: China Postdoctoral Science Foundation
  grantid: 2022TQ0307
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PMFND
PQQKQ
PROAC
ROL
RPM
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
EJD
WIN
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c4881-ff420265c715fa5071a62b670bc4f097b6c76b7584f4e7b75436469505d8438a3
IEDL.DBID DOA
ISSN 2198-3844
IngestDate Wed Aug 27 01:19:08 EDT 2025
Thu Aug 21 18:25:22 EDT 2025
Fri Jul 11 18:31:37 EDT 2025
Wed Aug 13 04:08:41 EDT 2025
Sun Jun 08 01:33:10 EDT 2025
Thu Aug 14 00:12:12 EDT 2025
Fri Jun 06 09:21:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords carbon nanodots
molecular affinity
surface engineering
capacitive sensor
Language English
License Attribution
2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4881-ff420265c715fa5071a62b670bc4f097b6c76b7584f4e7b75436469505d8438a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2170-152X
OpenAccessLink https://doaj.org/article/17bba2cfa0c44c9c92190356b7eeccf5
PMID 40285652
PQID 3216023989
PQPubID 4365299
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_17bba2cfa0c44c9c92190356b7eeccf5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12140313
proquest_miscellaneous_3195784010
proquest_journals_3216023989
pubmed_primary_40285652
crossref_primary_10_1002_advs_202414611
wiley_primary_10_1002_advs_202414611_ADVS11981
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2025
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2023; 35
2017; 2
2017; 4
2023; 5
2023; 6
2013; 24
2019; 10
2023; 145
2019; 58
2020; 59
2020; 15
2020; 12
2022; 22
2024; 36
2012; 51
1996; 77
2020; 7
2017; 30
2014; 4
2020; 2
2024; 7
1999; 59
2022; 34
2019; 29
2024; 20
2018; 30
2024; 24
2012; 22
2021; 47
2019; 7
2018; 28
2023; 14
2015; 4
2019; 6
2021; 3
2023; 12
2019; 30
2023; 15
2023; 16
2006; 17
2023; 19
2016; 10
2020; 35
2024; 11
2024; 15
2024; 17
1996; 54
2016; 4
2022; 101
2016; 5
2021; 16
2021; 12
2024; 699
2023; 394
2023; 49
2010; 132
2020; 65
2022; 11
2021; 60
2016; 250
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 30
  start-page: 1695
  year: 2018
  publication-title: Chem. Mater.
– volume: 15
  start-page: 965
  year: 2020
  publication-title: IEEJ Trans. Electr. Electron. Eng.
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  year: 2017
  publication-title: Adv. Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 250
  start-page: 1
  year: 2016
  publication-title: Sens. Actuators, A
– volume: 7
  start-page: 2923
  year: 2020
  publication-title: ACS Photonics
– volume: 12
  start-page: 4079
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 17
  start-page: 5441
  year: 2006
  publication-title: Nanotechnology
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 22
  start-page: 7203
  year: 2022
  publication-title: Nano Lett.
– volume: 699
  year: 2024
  publication-title: Colloids Surf., A
– volume: 22
  start-page: 5127
  year: 2022
  publication-title: Nano Lett.
– volume: 51
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 172
  year: 2022
  publication-title: Light: Sci. Appl.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 6425
  year: 2024
  publication-title: Atmos. Meas. Tech.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 5
  year: 2016
  publication-title: Light: Sci. Appl.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 24
  start-page: 1352
  year: 2024
  publication-title: Sensors
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 20
  year: 2024
  publication-title: Small
– volume: 5
  start-page: 4473
  year: 2023
  publication-title: ACS Appl. Electron. Mater.
– volume: 49
  year: 2023
  publication-title: Ceramics Inter.
– volume: 14
  start-page: 7261
  year: 2023
  publication-title: Nat. Commun.
– volume: 47
  year: 2021
  publication-title: Ceram. Int.
– volume: 7
  start-page: 2351
  year: 2024
  publication-title: Matter
– volume: 16
  start-page: 1511
  year: 2021
  publication-title: ACS Nano
– volume: 7
  start-page: 5468
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 15
  start-page: 9740
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 101
  year: 2022
  publication-title: Nano Energy
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 394
  year: 2023
  publication-title: Sens. Actuators, B
– volume: 10
  start-page: 9009
  year: 2016
  publication-title: ACS Nano
– volume: 2
  start-page: 3593
  year: 2020
  publication-title: ACS Appl. Electron. Mater.
– volume: 12
  start-page: 104
  year: 2023
  publication-title: Light: Sci. Appl.
– volume: 15
  start-page: 6431
  year: 2024
  publication-title: Nat. Commun.
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 4
  year: 2014
  publication-title: RSC Adv.
– volume: 2
  start-page: 740
  year: 2017
  publication-title: ACS Sens.
– volume: 11
  year: 2024
  publication-title: Adv. Sci.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1789
  year: 2019
  publication-title: Nat. Commun.
– volume: 6
  start-page: 7011
  year: 2023
  publication-title: ACS Appl. Nano Mater
– volume: 4
  year: 2015
  publication-title: Light: Sci. Appl.
– volume: 22
  start-page: 2971
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 16
  year: 2023
  publication-title: Nano Res.
– volume: 30
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 2598
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 65
  start-page: 1650
  year: 2020
  publication-title: Sci. Bull.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 24
  start-page: 2689
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 35
  year: 2020
  publication-title: Nano Today
– volume: 3
  start-page: 826
  year: 2021
  publication-title: ACS Materials Lett.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– ident: e_1_2_8_10_1
  doi: 10.1038/s41467-024-50797-w
– ident: e_1_2_8_20_1
  doi: 10.1016/j.scib.2020.05.027
– ident: e_1_2_8_29_1
  doi: 10.1002/anie.201206791
– ident: e_1_2_8_31_1
  doi: 10.1039/C4RA02692F
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.201303352
– ident: e_1_2_8_34_1
  doi: 10.1016/j.colsurfa.2024.134740
– ident: e_1_2_8_63_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_27_1
  doi: 10.1002/adma.202404694
– ident: e_1_2_8_2_1
  doi: 10.1002/advs.202404178
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.201907449
– ident: e_1_2_8_5_1
  doi: 10.5194/amt-17-6425-2024
– ident: e_1_2_8_55_1
  doi: 10.1002/adfm.201200166
– ident: e_1_2_8_57_1
  doi: 10.1002/adma.201800676
– ident: e_1_2_8_39_1
  doi: 10.1002/advs.201903525
– ident: e_1_2_8_16_1
  doi: 10.1021/acs.jpclett.1c01011
– ident: e_1_2_8_18_1
  doi: 10.1016/j.nanoen.2022.107549
– ident: e_1_2_8_13_1
  doi: 10.1016/j.matt.2024.05.007
– ident: e_1_2_8_12_1
  doi: 10.1021/acsnano.1c10004
– ident: e_1_2_8_51_1
  doi: 10.1002/smll.202205890
– ident: e_1_2_8_61_1
  doi: 10.1016/j.ceramint.2021.05.191
– ident: e_1_2_8_26_1
  doi: 10.1016/j.nantod.2020.100954
– ident: e_1_2_8_56_1
  doi: 10.1002/smll.202206723
– ident: e_1_2_8_14_1
  doi: 10.1021/acsnano.6b05274
– ident: e_1_2_8_50_1
  doi: 10.1021/jacs.3c03938
– ident: e_1_2_8_62_1
  doi: 10.1021/acsami.2c21051
– ident: e_1_2_8_65_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_37_1
  doi: 10.1021/acsaelm.3c00660
– ident: e_1_2_8_66_1
  doi: 10.1063/1.3382344
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.201801435
– ident: e_1_2_8_32_1
  doi: 10.1002/adfm.201904549
– ident: e_1_2_8_36_1
  doi: 10.1021/acsami.0c12868
– ident: e_1_2_8_15_1
  doi: 10.1002/anie.201906222
– ident: e_1_2_8_41_1
  doi: 10.1038/s41377-023-01149-8
– ident: e_1_2_8_42_1
  doi: 10.1002/adma.202200905
– ident: e_1_2_8_38_1
  doi: 10.1002/advs.201802331
– ident: e_1_2_8_35_1
  doi: 10.1002/tee.23140
– ident: e_1_2_8_30_1
  doi: 10.1021/acsaelm.0c00660
– ident: e_1_2_8_54_1
  doi: 10.1038/s41377-022-00865-x
– ident: e_1_2_8_64_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_8_3_1
  doi: 10.1021/acsphotonics.0c00976
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.202103336
– ident: e_1_2_8_47_1
  doi: 10.1021/acs.nanolett.2c02674
– ident: e_1_2_8_49_1
  doi: 10.1021/acs.nanolett.2c00603
– ident: e_1_2_8_17_1
  doi: 10.1038/s41467-023-42959-z
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ceramint.2023.05.020
– ident: e_1_2_8_23_1
  doi: 10.1038/lsa.2016.120
– ident: e_1_2_8_4_1
  doi: 10.1016/j.sna.2016.09.007
– ident: e_1_2_8_52_1
  doi: 10.1002/adfm.201804004
– ident: e_1_2_8_59_1
  doi: 10.3390/s24051352
– ident: e_1_2_8_46_1
  doi: 10.1021/acsmaterialslett.1c00157
– ident: e_1_2_8_22_1
  doi: 10.1038/lsa.2015.137
– ident: e_1_2_8_6_1
  doi: 10.1021/acssensors.7b00014
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.201704740
– ident: e_1_2_8_25_1
  doi: 10.1002/anie.202006545
– ident: e_1_2_8_53_1
  doi: 10.1002/smll.202304594
– ident: e_1_2_8_40_1
  doi: 10.1002/anie.202103086
– ident: e_1_2_8_43_1
  doi: 10.1021/acs.chemmater.7b05178
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.202304420
– ident: e_1_2_8_45_1
  doi: 10.1039/C5TC04096E
– ident: e_1_2_8_9_1
  doi: 10.1021/acsanm.3c01131
– ident: e_1_2_8_1_1
  doi: 10.1002/advs.201600404
– ident: e_1_2_8_44_1
  doi: 10.1039/C9TC00233B
– ident: e_1_2_8_58_1
  doi: 10.1016/j.snb.2023.134445
– ident: e_1_2_8_48_1
  doi: 10.1038/s41467-019-09830-6
– ident: e_1_2_8_19_1
  doi: 10.1007/s12274-023-5837-1
– ident: e_1_2_8_60_1
  doi: 10.1088/0957-4484/17/21/026
SSID ssj0001537418
Score 2.3226044
Snippet Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety,...
Gas-phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety,...
Abstract Gas‐phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2414611
SubjectTerms Adsorption
capacitive sensor
Carbon
carbon nanodots
Engineering
Gases
Humidity
Microscopy
molecular affinity
Nanomaterials
Nanoparticles
NMR
Nuclear magnetic resonance
Process controls
Sensors
surface engineering
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB5Be4EDouUvUJCRkIBDqO04TnJCtGqpkFpVlIoekCL_0l6SknQ58wg8I0_C2PFudwWCWxQ7kuPxzHwztr8BeCGMppY6l6O7oXGbMVdlUeYIZb2trFBNLNN5eCQPTsWHs_IsJdzGdKxybhOjoba9CTny7YIzGS5i1s3by295qBoVdldTCY2bsI4muMbga31n7-j443WWpSwCPcucrZHybWW_B5ZudFxCMrbijSJp_9-Q5p8HJpeBbPRE-3fhToKQ5N0k8w244bpNuL1ELLgJG0llR_Iq8Uq_vgdfTmaDV8aRpa74HO5OWbKLTtPEc0TkvRp__fh5fI7-jXxGKDqQw6mGriMnGPT2w0guOvxg0H1H0DqHwHa8D6f7e592D_JUXCE3qLMs917gLMjSVKz0KqBCJbmWFdVGeNpUWppKaowmhBeuwgdRSAylETDZWhS1Kh7AWtd37hEQj1bDaIPg0FdCl6amlrPAlu60lVy4DF7OJ7m9nDg02oktmbdBHO1CHBnsBBksegXu6_iiH762SZVaVmmtuPGKGiFMYxo0urQocbAO16MvM9iaS7BNCjm218sng-eLZlSlsD-iOtfPsA9r0H5hwEkzeDgJfDESDLNrxL48g3plKawMdbWluziPdN2MB05EVmTwJq6a_8xBi3gEfUxTs8f__pEncIuHYsQxJbQFa1fDzD1FhHSlnyU1-A1cPA9r
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9YwFA4yb7wR52d1SgaCelGW77aXOtzGYDKYw10IJUkTt5tW2r1e-xP8jf4Sz0n7dm9RkN2VJilpTk7Oc5Kc5xDyWnnHGhZCDuaGpWPG3Gqpc4CysSkaZauUpvPkkzk6V8cX-mIjin_kh5g33FAz0nqNCm7dsHdDGmqbH0i3DRZIGQzuvYvxtcieL9TpzS6LlkjPghnmwLvOZanUmrmRib3lJxaWKRH4_wt1_n15chPUJqt08IDcn-AkfT_Kf5vcCe1Dsj0p7EDfTqzS7x6Rr2erPlof6AYDITxj5FRD98Fk-nSLiB7a4ffPX6eXYN3oFwCiPT0ZM-gGegYub9cP9KqFBr3rWgprM7q1w2NyfvDx8_5RPqVWyD1oLM9jVPDfRvuC62gRE1ojnCmY8yqyqnDGF8aBL6GiCgU8KGnAkQa41JRKllY-IVtt14ZnhEZYM7zzAA1joZz2JWsER6704BojVMjIm_Ww1t9HBo165EoWNQqgngWQkQ846nMtZL5OL7r-Wz0pUs0L56zw0TKvlK98BYJlUkNnA8zGqDOys5ZZPanjUEvBDUbxllVGdudiUCQ8HbFt6FZQh1eweoG7yTLydBTx3BNwsktAviIj5UL4i64uS9qry0TWzQUyInKZkXE2_2cMakAjYGGqkj-_bYMX5J7A5MRpi2iHbF33q_ASENO1e5WU4g8-Sg4o
  priority: 102
  providerName: Wiley-Blackwell
Title Surface Engineering Enabled Capacitive Gas‐Phase Water Molecule Sensors in Carbon Nanodots
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202414611
https://www.ncbi.nlm.nih.gov/pubmed/40285652
https://www.proquest.com/docview/3216023989
https://www.proquest.com/docview/3195784010
https://pubmed.ncbi.nlm.nih.gov/PMC12140313
https://doaj.org/article/17bba2cfa0c44c9c92190356b7eeccf5
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BuXBBlM9AWRkJCTiE2o5jJ8e2tFSIrVYsFT0gWbZjq71kUdLlzE_gN_JLGDvZ1a5A6oVTojhRnJmM35vEfgPwSjhLG-p9jnBD02_G3JRFmSOVDY1qhKlTmc7pmTw9Fx8vyouNUl9xTtggDzwYbp8paw13wVAnhKtdjSFGi1Ja5fHuIamXIuZtJFPD-uAiyrKsVBop3zfNj6jOjYAlJGNbKJTE-v_FMP-eKLlJYBMCndyHeyN1JAdDl3fhlm8fwO4YnD15MypIv30I3-bLLhjnyYbaIO7HVVINOUJ4dGnGEPlg-t8_f80uEcnIVySdHZkO1XI9mWN6u-h6ctXiBZ1dtATH4ZjC9o_g_OT4y9FpPpZRyB1GJ8tDEPjcsnSKlcFE_mckt1JR60SgtbLSKTQnMpEgvMIdUUhMmpEaNZUoKlM8hp120fqnQAKOD846pIFBCVu6ijacRV10bxvJhc_g9cqs-vuglqEHXWSuowP02gEZHEarr8-KKtfpAPpej77XN_k-g72Vz_QYer0uOJNxxW5VZ_By3YxBE_-EmNYvlngOq3GkwtSSZvBkcPG6J5hQV8hyeQbVlvO3urrd0l5dJmFuxqP6ISsyeJfekxtsoJF5IJrUFXv2P6zxHO7yWJw4fSLag53rbulfIGO6thO4zcVsAncO3k8_zXF7eHw2-zxJIfMHgsAXKA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gA9IFoeDRQwEgg4hNqO8zogREvLlnZXFW3VHpCC7di0l6QkXRA3fgK_hB_FL2Gcx3ZXIDj1FtlO5HjGM9_48Q3AY6EVzakxProb2mwz-jIMQh-hrM3jXMi0SdM5HEWDQ_HuODyeg5_9XRh3rLK3iY2hzkvt1sjXAs4idxEzSV-dffZd1ii3u9qn0GjVYsd8-4ohW_1y-w3K9wnnW5sHGwO_yyrga1RW5lsrMOCPQh2z0EoHh2TEVRRTpYWlaawiHUcKYbSwwsT4IIIIY0hECnkigkQG-N0rsIClFA3BwvrmaO_9xapOGDg6mJ4dkvI1mX9xrODoKEXE2Iz3a5IE_A3Z_nlAcxo4N55v6wZc7yAred3q2BLMmWIZFqeIDJdhqTMRNXnW8Vg_vwkf9seVldqQqab47O5q5WQDnbRuzi2Rt7L-9f3H3gn6U3KE0LciwzZnryH7GGSXVU1OC3yhUmVB0Bu4QLq-BYeXMuy3Yb4oC7MCxKKV0kojGLWxUKFOaM6ZY2c3Ko-4MB487Qc5O2s5O7KWnZlnThzZRBwerDsZTFo5ru2moKw-Zd3UzVislOTaSqqF0KlO0cjTIMTOGtR_G3qw2ksw6wxAnV2oqwePJtU4dd1-jCxMOcY2LEV7iQEu9eBOK_BJTzCsTxBrcw-SGVWY6epsTXF60tCDM-44GFngwYtGa_4zBhniH_RpacLu_vtHHsLVwcFwN9vdHu3cg2vcJUJulqNWYf68Gpv7iM7O1YNuShD4eNmz8DeCSUl6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qUwnBAtHyChQwEghYhLEd57VAiD6GltLRiFLRBVKwHZt2k5SkA2LHJ_A9fA5fwnUe0xmBYNVdlDiR4_s6149zAR4KrWhOjfEx3NBmmdGXYRD6CGVtHudCpk2Zzr1xtH0gXh-Gh0vwsz8L47ZV9j6xcdR5qd0c-TDgLHIHMZN0aLttEZPN0YuTz76rIOVWWvtyGq2K7JpvXzF9q5_vbKKsH3E-2nq3se13FQZ8jYrLfGsFJv9RqGMWWumgkYy4imKqtLA0jVWk40ghpBZWmBgvRBBhPomoIU9EkMgAv3sBlmPMiugAlte3xpO3ZzM8YeCoYXqmSMqHMv_iGMIxaIqIsYVI2BQM-BvK_XOz5jyIbqLg6Cpc6eArednq2wosmWIVLs-RGq7CSucuavKk47R-eg0-7E8rK7Uhc03x2p3byskGBmzd7GEir2T96_uPyRHGVvIeYXBF9tr6vYbsY8JdVjU5LvCFSpUFwcjgkur6Ohycy7DfgEFRFuYWEIseSyuNwNTGQoU6oTlnjqndqDziwnjwuB_k7KTl78hapmaeOXFkM3F4sO5kMGvleLebG2X1KevMOGOxUpJrK6kWQqc6RYdPgxA7a9AWbOjBWi_BrHMGdXamuh48mD1GM3ZrM7Iw5RTbsBR9Jya71IObrcBnPcEUP0HczT1IFlRhoauLT4rjo4YqnHHHx8gCD541WvOfMcgQC2F8SxN2-98_ch8uovVlb3bGu3fgEnc1kZuZqTUYnFZTcxeB2qm611kEgY_nbYS_AfiVTa8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Engineering+Enabled+Capacitive+Gas-Phase+Water+Molecule+Sensors+in+Carbon+Nanodots&rft.jtitle=Advanced+science&rft.au=Qin%2C+Jin-Xu&rft.au=Shen%2C+Cheng-Long&rft.au=Zhang%2C+Wu-You&rft.au=Deng%2C+Yuan&rft.date=2025-06-01&rft.eissn=2198-3844&rft.volume=12&rft.issue=21&rft.spage=e2414611&rft_id=info:doi/10.1002%2Fadvs.202414611&rft_id=info%3Apmid%2F40285652&rft.externalDocID=40285652
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon