The Central Role of the F-Actin Surface in Myosin Force Generation
Actin is one of the most abundant and versatile proteins in eukaryotic cells. As discussed in many contributions to this Special Issue, its transition from a monomeric G-actin to a filamentous F-actin form plays a critical role in a variety of cellular processes, including control of cell shape and...
Saved in:
Published in | Biology (Basel, Switzerland) Vol. 10; no. 12; p. 1221 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.11.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Actin is one of the most abundant and versatile proteins in eukaryotic cells. As discussed in many contributions to this Special Issue, its transition from a monomeric G-actin to a filamentous F-actin form plays a critical role in a variety of cellular processes, including control of cell shape and cell motility. Once polymerized from G-actin, F-actin forms the central core of muscle-thin filaments and acts as molecular tracks for myosin-based motor activity. The ATP-dependent cross-bridge cycle of myosin attachment and detachment drives the sliding of myosin thick filaments past thin filaments in muscle and the translocation of cargo in somatic cells. The variation in actin function is dependent on the variation in muscle and non-muscle myosin isoform behavior as well as interactions with a plethora of additional actin-binding proteins. Extensive work has been devoted to defining the kinetics of actin-based force generation powered by the ATPase activity of myosin. In addition, over the past decade, cryo-electron microscopy has revealed the atomic-evel details of the binding of myosin isoforms on the F-actin surface. Most accounts of the structural interactions between myosin and actin are described from the perspective of the myosin molecule. Here, we discuss myosin-binding to actin as viewed from the actin surface. We then describe conserved structural features of actin required for the binding of all or most myosin isoforms while also noting specific interactions unique to myosin isoforms. |
---|---|
AbstractList | Actin is one of the most abundant and versatile proteins in eukaryotic cells. As discussed in many contributions to this Special Issue, its transition from a monomeric G-actin to a filamentous F-actin form plays a critical role in a variety of cellular processes, including control of cell shape and cell motility. Once polymerized from G-actin, F-actin forms the central core of muscle-thin filaments and acts as molecular tracks for myosin-based motor activity. The ATP-dependent cross-bridge cycle of myosin attachment and detachment drives the sliding of myosin thick filaments past thin filaments in muscle and the translocation of cargo in somatic cells. The variation in actin function is dependent on the variation in muscle and non-muscle myosin isoform behavior as well as interactions with a plethora of additional actin-binding proteins. Extensive work has been devoted to defining the kinetics of actin-based force generation powered by the ATPase activity of myosin. In addition, over the past decade, cryo-electron microscopy has revealed the atomic-evel details of the binding of myosin isoforms on the F-actin surface. Most accounts of the structural interactions between myosin and actin are described from the perspective of the myosin molecule. Here, we discuss myosin-binding to actin as viewed from the actin surface. We then describe conserved structural features of actin required for the binding of all or most myosin isoforms while also noting specific interactions unique to myosin isoforms. Simple SummaryAlthough actin is a highly conserved protein, it is involved in many diverse cellular processes. Actin owes its diversity of function to its ability to bind to a host of actin-binding proteins (ABPs) that localize across its surface. Among the most studied ABPs is the molecular motor, myosin. Myosin generates force on actin filaments by pairing ATP hydrolysis, product release, and actin-binding to the conformational changes that lead to movement. Central to this process is the progression of myosin binding to the actin surface as it moves through its ATPase cycle. During binding, actin acts as a myosin ATPase activator, catalyzing essential hydrolysis release steps. Here, we use the current model of actin-myosin binding as a roadmap to describe the portions of the actin-myosin interface that are sequentially formed throughout the motor cycle. At each step, we compare the interactions of a diverse set of high-resolution actin-myosin cryo-electron microscopy structures to define what portions of the interface are conserved and which are isoform-specific.AbstractActin is one of the most abundant and versatile proteins in eukaryotic cells. As discussed in many contributions to this Special Issue, its transition from a monomeric G-actin to a filamentous F-actin form plays a critical role in a variety of cellular processes, including control of cell shape and cell motility. Once polymerized from G-actin, F-actin forms the central core of muscle-thin filaments and acts as molecular tracks for myosin-based motor activity. The ATP-dependent cross-bridge cycle of myosin attachment and detachment drives the sliding of myosin thick filaments past thin filaments in muscle and the translocation of cargo in somatic cells. The variation in actin function is dependent on the variation in muscle and non-muscle myosin isoform behavior as well as interactions with a plethora of additional actin-binding proteins. Extensive work has been devoted to defining the kinetics of actin-based force generation powered by the ATPase activity of myosin. In addition, over the past decade, cryo-electron microscopy has revealed the atomic-evel details of the binding of myosin isoforms on the F-actin surface. Most accounts of the structural interactions between myosin and actin are described from the perspective of the myosin molecule. Here, we discuss myosin-binding to actin as viewed from the actin surface. We then describe conserved structural features of actin required for the binding of all or most myosin isoforms while also noting specific interactions unique to myosin isoforms. Actin is one of the most abundant and versatile proteins in eukaryotic cells. As discussed in many contributions to this Special Issue, its transition from a monomeric G-actin to a filamentous F-actin form plays a critical role in a variety of cellular processes, including control of cell shape and cell motility. Once polymerized from G-actin, F-actin forms the central core of muscle-thin filaments and acts as molecular tracks for myosin-based motor activity. The ATP-dependent cross-bridge cycle of myosin attachment and detachment drives the sliding of myosin thick filaments past thin filaments in muscle and the translocation of cargo in somatic cells. The variation in actin function is dependent on the variation in muscle and non-muscle myosin isoform behavior as well as interactions with a plethora of additional actin-binding proteins. Extensive work has been devoted to defining the kinetics of actin-based force generation powered by the ATPase activity of myosin. In addition, over the past decade, cryo-electron microscopy has revealed the atomic-evel details of the binding of myosin isoforms on the F-actin surface. Most accounts of the structural interactions between myosin and actin are described from the perspective of the myosin molecule. Here, we discuss myosin-binding to actin as viewed from the actin surface. We then describe conserved structural features of actin required for the binding of all or most myosin isoforms while also noting specific interactions unique to myosin isoforms.Actin is one of the most abundant and versatile proteins in eukaryotic cells. As discussed in many contributions to this Special Issue, its transition from a monomeric G-actin to a filamentous F-actin form plays a critical role in a variety of cellular processes, including control of cell shape and cell motility. Once polymerized from G-actin, F-actin forms the central core of muscle-thin filaments and acts as molecular tracks for myosin-based motor activity. The ATP-dependent cross-bridge cycle of myosin attachment and detachment drives the sliding of myosin thick filaments past thin filaments in muscle and the translocation of cargo in somatic cells. The variation in actin function is dependent on the variation in muscle and non-muscle myosin isoform behavior as well as interactions with a plethora of additional actin-binding proteins. Extensive work has been devoted to defining the kinetics of actin-based force generation powered by the ATPase activity of myosin. In addition, over the past decade, cryo-electron microscopy has revealed the atomic-evel details of the binding of myosin isoforms on the F-actin surface. Most accounts of the structural interactions between myosin and actin are described from the perspective of the myosin molecule. Here, we discuss myosin-binding to actin as viewed from the actin surface. We then describe conserved structural features of actin required for the binding of all or most myosin isoforms while also noting specific interactions unique to myosin isoforms. |
Author | Doran, Matthew H Lehman, William |
AuthorAffiliation | Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA |
AuthorAffiliation_xml | – name: Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA |
Author_xml | – sequence: 1 givenname: Matthew H orcidid: 0000-0002-5224-4133 surname: Doran fullname: Doran, Matthew H organization: Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA – sequence: 2 givenname: William surname: Lehman fullname: Lehman, William organization: Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34943138$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1P3DAQhi1EBRQ4c6siceGS4m87l0qw6lIkqkoFzpZjT5assjbYCdL-ewwLCPBlxuN3HtvzfkfbIQZA6Ijgn4w1-LTt4xAXa4IJJZSSLbRHsWpqpZja_pDvosOcl7gshalkcgftMt5wRpjeQ-c3d1DNIIzJDtX_OEAVu2ostXl95sY-VNdT6qyDqqR_1zGXMI-p7C8gQLJjH8MB-tbZIcPha9xHt_PfN7M_9dW_i8vZ2VXtuFZjDa4tl0MjOgW4EV4z0YITlmHJZUuFo7IolPagvFBeEqBMYd1qLyX33rJ9dLnh-miX5j71K5vWJtrevBRiWhibxt4NYDpK2k4pWTiCc0ytb1jHnSKEa0E8LaxfG9b91K7Au80APkE_n4T-zizio9Gy0YrrAjh5BaT4MEEezarPDobBBohTNlQSTqkQhBTp8RfpMk4plFE9q2hxCGNeVKcblUsx5wTd-2MINs92my92l44fH__wrn8zlz0B6mumpg |
CitedBy_id | crossref_primary_10_1073_pnas_2215836120 crossref_primary_10_1021_acs_jafc_4c03467 crossref_primary_10_7554_eLife_82015 crossref_primary_10_1085_jgp_202213267 crossref_primary_10_1002_ps_7699 crossref_primary_10_1085_jgp_202413538 crossref_primary_10_1085_jgp_202313387 crossref_primary_10_1039_D3RA03917J |
Cites_doi | 10.1152/physrev.00001.2007 10.1146/annurev-cellbio-100809-151502 10.15252/embj.2019104006 10.1073/pnas.93.9.4459 10.1023/A:1024415409406 10.1016/S0969-2126(96)00103-7 10.1016/j.str.2010.05.009 10.1007/s10974-019-09501-5 10.1038/s41467-017-01367-w 10.1002/1873-3468.13486 10.1091/mbc.e06-05-0449 10.1101/cshperspect.a021931 10.1007/978-0-387-85766-4_3 10.1093/gbe/evu013 10.1016/S0022-2836(63)80081-9 10.1056/NEJM200012073432304 10.1073/pnas.93.1.21 10.1074/jbc.M001966200 10.1101/cshperspect.a021972 10.1038/nrm3609 10.1073/pnas.1517566112 10.1038/348217a0 10.1074/jbc.M006930200 10.1038/ncb3390 10.1161/01.CIR.0000066323.15244.54 10.1016/j.tibs.2004.09.004 10.1038/347037a0 10.1016/j.tibs.2016.09.006 10.1016/j.str.2018.08.007 10.1002/(SICI)1097-0029(19991015)47:2<93::AID-JEMT2>3.0.CO;2-P 10.1038/nature01927 10.1073/pnas.1516598113 10.1371/journal.pone.0084874 10.1038/ng1775 10.1073/pnas.1222257110 10.1021/bi701554a 10.1073/pnas.1718316115 10.1016/j.devcel.2015.03.025 10.1021/bi9826815 10.1242/jcs.094300 10.1016/j.jsb.2017.10.003 10.1074/jbc.M114.606665 10.1038/ncomms9314 10.1371/journal.pone.0070636 10.3389/fcell.2020.00342 10.1038/nature07685 10.1074/jbc.M808338200 10.1038/nature14033 10.1242/jcs.165563 10.1021/bi602439f 10.1073/pnas.0408784102 10.1016/j.bpj.2018.08.017 10.1038/gim.2016.90 10.1091/mbc.e06-08-0771 10.1042/BST0391115 10.1038/s41413-020-0095-2 10.1136/heart.89.10.1179 10.1016/j.jmb.2007.01.071 10.1016/0092-8674(90)90274-I 10.1073/pnas.1807028115 10.1038/s41467-021-22093-4 10.7554/eLife.31125 10.3389/fnsyn.2018.00010 10.1126/science.164.3886.1356 10.1038/nature18295 10.1038/347044a0 10.1016/j.bpj.2010.12.3697 10.1021/acs.chemrev.9b00264 10.1016/S0014-5793(98)00751-0 10.1006/jmcc.2000.1287 10.1016/0022-2836(70)90192-0 10.1111/asj.13226 10.1021/bi000985x 10.1242/jeb.125930 10.1126/science.8316857 10.1038/ncomms13969 10.1016/j.cub.2016.11.033 10.1016/j.ceb.2007.11.006 10.1016/j.bpj.2012.08.066 10.1126/science.8316858 10.1126/science.1175862 10.1038/s41467-017-02357-8 10.1007/164_2016_29 10.1016/j.jmb.2021.167178 10.1016/j.ceb.2006.04.009 10.1038/s41594-018-0128-3 10.1073/pnas.94.1.91 10.1172/JCI116900 10.1038/s41467-017-00176-5 10.1016/j.cub.2005.04.008 10.1038/nsmb.2216 10.1101/cshperspect.a018226 10.1111/tra.12388 10.1038/368065a0 10.1146/annurev.bi.55.070186.005011 10.1002/bip.22853 10.1016/j.cell.2012.05.037 10.1146/annurev-biophys-042910-155359 10.1371/journal.pcbi.1002995 10.1146/annurev.biochem.68.1.687 10.1080/19490992.2015.1054092 10.1016/j.tibs.2018.11.010 10.1016/j.bpj.2020.07.006 10.1016/B978-0-12-386043-9.00005-0 10.1016/S0969-2126(98)00141-5 10.1016/j.str.2020.09.013 10.1186/s12862-017-1056-2 10.7554/eLife.62514 10.1007/s12013-009-9047-6 10.1016/j.abb.2013.09.011 10.1073/pnas.0601595103 10.2210/pdb7ad9/pdb 10.1021/bi991595h 10.1038/s41594-018-0074-0 10.1083/jcb.200105079 10.1021/bi035510v |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | NPM AAYXX CITATION 7QP 7TK 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PIMPY PQEST PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.3390/biology10121221 |
DatabaseName | PubMed CrossRef Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Databases Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Central China Biotechnology and BioEngineering Abstracts ProQuest Central Genetics Abstracts ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2079-7737 |
ExternalDocumentID | oai_doaj_org_article_f21bf77657d54402ad93f4c7114851d2 10_3390_biology10121221 34943138 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIH HHS grantid: T32HL007969 – fundername: NIH HHS grantid: R01HL036153 – fundername: NHLBI NIH HHS grantid: R01 HL036153 |
GroupedDBID | 2XV 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU EBD GROUPED_DOAJ HCIFZ HYE IAO ISR ITC KQ8 LK8 M48 M7P MODMG M~E NPM OK1 PGMZT PIMPY PROAC RIG RPM AAYXX CITATION 7QP 7TK 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PQEST PQQKQ PQUKI PRINS RC3 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c487t-ecb636e95f7e095d835bec5a30646b25c26cb678de7d57d61e23708b8d664dda3 |
IEDL.DBID | RPM |
ISSN | 2079-7737 |
IngestDate | Tue Oct 22 15:09:37 EDT 2024 Tue Sep 17 21:15:31 EDT 2024 Thu Dec 05 22:46:46 EST 2024 Thu Oct 10 16:39:58 EDT 2024 Fri Dec 06 09:04:35 EST 2024 Sat Nov 02 12:19:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | myosin actin tropomyosin force production actin-binding proteins molecular motor |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c487t-ecb636e95f7e095d835bec5a30646b25c26cb678de7d57d61e23708b8d664dda3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5224-4133 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698748/ |
PMID | 34943138 |
PQID | 2612737004 |
PQPubID | 2032427 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f21bf77657d54402ad93f4c7114851d2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8698748 proquest_miscellaneous_2614225511 proquest_journals_2612737004 crossref_primary_10_3390_biology10121221 pubmed_primary_34943138 |
PublicationCentury | 2000 |
PublicationDate | 20211123 |
PublicationDateYYYYMMDD | 2021-11-23 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211123 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Biology (Basel, Switzerland) |
PublicationTitleAlternate | Biology (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Huxley (ref_53) 1969; 164 Gunning (ref_1) 2015; 128 Dominguez (ref_2) 2011; 40 Richard (ref_71) 2003; 107 Lehman (ref_22) 2015; 519 Yang (ref_104) 2015; 290 Oda (ref_19) 2010; 18 Trivedi (ref_76) 2015; 112 ref_95 Milligan (ref_101) 1990; 348 Cope (ref_114) 1996; 4 Hartman (ref_16) 2011; 27 Mierke (ref_40) 2009; 53 Heissler (ref_59) 2016; 17 Lehman (ref_47) 2018; 115 Lehman (ref_23) 2019; 41 Schwebach (ref_36) 2020; 8 Woo (ref_108) 2003; 89 Grintsevich (ref_57) 2017; 8 ref_29 Murphy (ref_92) 1999; 38 Geeves (ref_3) 1999; 68 Mei (ref_43) 2020; 9 Yengo (ref_96) 2004; 43 Pollard (ref_5) 2009; 326 Dominguez (ref_9) 2004; 29 Peng (ref_41) 2011; 287 Moore (ref_21) 1970; 50 Pollard (ref_8) 2016; 8 Coureux (ref_106) 2003; 425 Walsh (ref_109) 2017; 19 Sasaki (ref_99) 2002; 23 Stradal (ref_32) 1998; 431 Varland (ref_55) 2019; 44 Uyeda (ref_61) 1996; 93 Banerjee (ref_86) 2017; 200 Milligan (ref_102) 1996; 93 Ojima (ref_66) 2019; 90 Lehman (ref_48) 2014; 552–553 Sweeney (ref_14) 2018; 10 Hokanson (ref_64) 2006; 17 Risi (ref_44) 2018; 26 Bond (ref_17) 2011; 39 Holmes (ref_26) 1990; 347 Onishi (ref_91) 2006; 103 Kass (ref_73) 1990; 62 Rayment (ref_98) 1993; 261 Struchholz (ref_94) 2009; 284 Gunning (ref_113) 2017; 27 Li (ref_49) 2011; 100 Pylypenko (ref_97) 2020; 120 Richards (ref_116) 2014; 6 Lehman (ref_54) 1994; 368 Heissler (ref_67) 2015; 4 Muretta (ref_79) 2013; 110 Hartman (ref_82) 2017; 8 Fujii (ref_74) 2017; 8 DePina (ref_13) 1999; 47 Xu (ref_88) 2021; 12 Gurel (ref_85) 2017; 6 Rayment (ref_63) 1993; 261 Yang (ref_105) 2012; 19 Masters (ref_60) 2017; 235 Marx (ref_69) 2001; 33 Chou (ref_28) 2019; 116 Kumari (ref_33) 2020; 39 Hampton (ref_37) 2007; 368 Gunning (ref_51) 2008; 88 Toydemir (ref_72) 2006; 38 Dausse (ref_68) 1993; 92 Kabsch (ref_25) 1990; 347 Gyimesi (ref_110) 2008; 47 Dash (ref_111) 2007; 46 Hanson (ref_52) 1963; 6 Hatch (ref_46) 2001; 154 Furch (ref_103) 1999; 38 Mentes (ref_80) 2018; 115 Gooding (ref_50) 2008; 644 Boczkowska (ref_39) 2015; 6 Risi (ref_45) 2021; 433 Ross (ref_18) 2008; 20 Sata (ref_62) 1997; 94 Batters (ref_65) 2019; 593 ref_115 ref_117 Grintsevich (ref_56) 2016; 18 Iwamoto (ref_35) 2018; 25 Doran (ref_83) 2020; 119 Uhlenbrock (ref_93) 2007; 18 Gunning (ref_112) 2015; 128 Merino (ref_27) 2018; 25 Singh (ref_38) 2012; 103 Behrmann (ref_87) 2012; 150 Miralles (ref_4) 2006; 18 Heissler (ref_24) 2016; 534 Houdusse (ref_58) 2016; 41 Geeves (ref_78) 2016; 105 Kamisago (ref_70) 2000; 343 Titus (ref_6) 2018; 10 Saraste (ref_30) 1998; 6 Risi (ref_84) 2021; 29 Unsain (ref_11) 2018; 10 ref_42 Llinas (ref_77) 2015; 33 Avery (ref_34) 2017; 8 Magalhaes (ref_10) 2013; 14 Yin (ref_31) 2020; 8 Joel (ref_90) 2001; 276 Burgess (ref_12) 2005; 15 Sasaki (ref_107) 2000; 275 Oda (ref_20) 2009; 457 Furch (ref_89) 2000; 39 Wulf (ref_75) 2016; 113 Fischer (ref_81) 2005; 102 Spudich (ref_100) 2016; 219 Pollard (ref_7) 1986; 55 Hartman (ref_15) 2012; 125 |
References_xml | – volume: 88 start-page: 1 year: 2008 ident: ref_51 article-title: Tropomyosin-based regulation of the actin cytoskeleton in time and space publication-title: Physiol. Rev. doi: 10.1152/physrev.00001.2007 contributor: fullname: Gunning – volume: 27 start-page: 133 year: 2011 ident: ref_16 article-title: Principles of unconventional myosin function and targeting publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100809-151502 contributor: fullname: Hartman – volume: 39 start-page: e104006 year: 2020 ident: ref_33 article-title: Structural insights into actin filament recognition by commonly used cellular actin markers publication-title: EMBO J. doi: 10.15252/embj.2019104006 contributor: fullname: Kumari – volume: 93 start-page: 4459 year: 1996 ident: ref_61 article-title: The neck region of the myosin motor domain acts as a lever arm to generate movement publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.9.4459 contributor: fullname: Uyeda – volume: 23 start-page: 697 year: 2002 ident: ref_99 article-title: Dictyostelium myosin II as a model to study the actin-myosin interactions during force generation publication-title: J. Muscle Res. Cell Motil. doi: 10.1023/A:1024415409406 contributor: fullname: Sasaki – volume: 4 start-page: 969 year: 1996 ident: ref_114 article-title: Conservation within the myosin motor domain: Implications for structure and function publication-title: Structure doi: 10.1016/S0969-2126(96)00103-7 contributor: fullname: Cope – volume: 18 start-page: 761 year: 2010 ident: ref_19 article-title: Multiple Conformations of F-actin publication-title: Structure doi: 10.1016/j.str.2010.05.009 contributor: fullname: Oda – volume: 41 start-page: 23 year: 2019 ident: ref_23 article-title: A new twist on tropomyosin binding to actin filaments: Perspectives on thin filament function, assembly and biomechanics publication-title: J. Muscle Res. Cell Motil. doi: 10.1007/s10974-019-09501-5 contributor: fullname: Lehman – volume: 8 start-page: 1350 year: 2017 ident: ref_34 article-title: Structural basis for high-affinity actin binding revealed by a β-III-spectrin SCA5 missense mutation publication-title: Nat. Commun. doi: 10.1038/s41467-017-01367-w contributor: fullname: Avery – volume: 593 start-page: 1494 year: 2019 ident: ref_65 article-title: The MYO6 interactome: Selective motor-cargo complexes for diverse cellular processes publication-title: FEBS Lett. doi: 10.1002/1873-3468.13486 contributor: fullname: Batters – volume: 17 start-page: 4856 year: 2006 ident: ref_64 article-title: Myo1c binds phosphoinositides through a putative pleckstrin homology domain publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e06-05-0449 contributor: fullname: Hokanson – volume: 10 start-page: a021931 year: 2018 ident: ref_14 article-title: Motor Proteins publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a021931 contributor: fullname: Sweeney – volume: 644 start-page: 27 year: 2008 ident: ref_50 article-title: Tropomyosin exons as models for alternative splicing publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-0-387-85766-4_3 contributor: fullname: Gooding – volume: 128 start-page: 2965 year: 2015 ident: ref_112 article-title: Tropomyosin—Master regulator of actin filament function in the cytoskeleton publication-title: J. Cell Sci. contributor: fullname: Gunning – volume: 6 start-page: 290 year: 2014 ident: ref_116 article-title: Evolution and classification of myosins, a paneukaryotic whole-genome approach publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evu013 contributor: fullname: Richards – volume: 6 start-page: 46-IN5 year: 1963 ident: ref_52 article-title: The structure of F-actin and of actin filaments isolated from muscle publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(63)80081-9 contributor: fullname: Hanson – volume: 343 start-page: 1688 year: 2000 ident: ref_70 article-title: Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy publication-title: N. Engl. J. Med. doi: 10.1056/NEJM200012073432304 contributor: fullname: Kamisago – volume: 93 start-page: 21 year: 1996 ident: ref_102 article-title: Protein-protein interactions in the rigor actomyosin complex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.1.21 contributor: fullname: Milligan – volume: 275 start-page: 38705 year: 2000 ident: ref_107 article-title: Insertion or Deletion of a Single Residue in the Strut Sequence of Dictyostelium Myosin II Abolishes Strong Binding to Actin * publication-title: J. Biol. Chem. doi: 10.1074/jbc.M001966200 contributor: fullname: Sasaki – volume: 10 start-page: a021972 year: 2018 ident: ref_6 article-title: Myosin-Driven Intracellular Transport publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a021972 contributor: fullname: Titus – volume: 14 start-page: 405 year: 2013 ident: ref_10 article-title: Functions of cofilin in cell locomotion and invasion publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3609 contributor: fullname: Magalhaes – volume: 112 start-page: 14593 year: 2015 ident: ref_76 article-title: Direct measurements of the coordination of lever arm swing and the catalytic cycle in myosin V publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1517566112 contributor: fullname: Trivedi – volume: 348 start-page: 217 year: 1990 ident: ref_101 article-title: Molecular structure of F-actin and location of surface binding sites publication-title: Nature doi: 10.1038/348217a0 contributor: fullname: Milligan – volume: 276 start-page: 2998 year: 2001 ident: ref_90 article-title: Two conserved lysines at the 50/20-kDa junction of myosin are necessary for triggering actin activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M006930200 contributor: fullname: Joel – volume: 18 start-page: 876 year: 2016 ident: ref_56 article-title: F-actin dismantling through a redox-driven synergy between Mical and cofilin publication-title: Nat. Cell Biol. doi: 10.1038/ncb3390 contributor: fullname: Grintsevich – volume: 107 start-page: 2227 year: 2003 ident: ref_71 article-title: Hypertrophic Cardiomyopathy publication-title: Circulation doi: 10.1161/01.CIR.0000066323.15244.54 contributor: fullname: Richard – volume: 29 start-page: 572 year: 2004 ident: ref_9 article-title: Actin-binding proteins— A unifying hypothesis publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2004.09.004 contributor: fullname: Dominguez – volume: 347 start-page: 37 year: 1990 ident: ref_25 article-title: Atomic structure of the actin: DNase I complex publication-title: Nature doi: 10.1038/347037a0 contributor: fullname: Kabsch – volume: 41 start-page: 989 year: 2016 ident: ref_58 article-title: How myosin generates force on actin filaments publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2016.09.006 contributor: fullname: Houdusse – volume: 26 start-page: 1604 year: 2018 ident: ref_44 article-title: N-Terminal Domains of Cardiac Myosin Binding Protein C Cooperatively Activate the Thin Filament publication-title: Structure doi: 10.1016/j.str.2018.08.007 contributor: fullname: Risi – volume: 47 start-page: 93 year: 1999 ident: ref_13 article-title: Vesicle transport: The role of actin filaments and myosin motors publication-title: Microsc. Res. Tech. doi: 10.1002/(SICI)1097-0029(19991015)47:2<93::AID-JEMT2>3.0.CO;2-P contributor: fullname: DePina – volume: 425 start-page: 419 year: 2003 ident: ref_106 article-title: A structural state of the myosin V motor without bound nucleotide publication-title: Nature doi: 10.1038/nature01927 contributor: fullname: Coureux – volume: 113 start-page: E1844 year: 2016 ident: ref_75 article-title: Force-producing ADP state of myosin bound to actin publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1516598113 contributor: fullname: Wulf – ident: ref_95 doi: 10.1371/journal.pone.0084874 – volume: 38 start-page: 561 year: 2006 ident: ref_72 article-title: Mutations in embryonic myosin heavy chain (MYH3) cause Freeman-Sheldon syndrome and Sheldon-Hall syndrome publication-title: Nat. Genet. doi: 10.1038/ng1775 contributor: fullname: Toydemir – volume: 110 start-page: 7211 year: 2013 ident: ref_79 article-title: Direct real-time detection of the actin-activated power stroke within the myosin catalytic domain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1222257110 contributor: fullname: Muretta – volume: 47 start-page: 283 year: 2008 ident: ref_110 article-title: Kinetic characterization of the function of myosin loop 4 in the actin-myosin interaction publication-title: Biochemistry doi: 10.1021/bi701554a contributor: fullname: Gyimesi – volume: 115 start-page: 1292 year: 2018 ident: ref_80 article-title: High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1718316115 contributor: fullname: Mentes – volume: 33 start-page: 401 year: 2015 ident: ref_77 article-title: How Actin Initiates the Motor Activity of Myosin publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.03.025 contributor: fullname: Llinas – volume: 38 start-page: 3785 year: 1999 ident: ref_92 article-title: The sequence of the myosin 50–20 K loop affects Myosin’s affinity for actin throughout the actin-myosin ATPase cycle and its maximum ATPase activity publication-title: Biochemistry doi: 10.1021/bi9826815 contributor: fullname: Murphy – volume: 125 start-page: 1627 year: 2012 ident: ref_15 article-title: The myosin superfamily at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.094300 contributor: fullname: Hartman – volume: 200 start-page: 325 year: 2017 ident: ref_86 article-title: The structure of the actin-smooth muscle myosin motor domain complex in the rigor state publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2017.10.003 contributor: fullname: Banerjee – volume: 290 start-page: 1679 year: 2015 ident: ref_104 article-title: Structural model of weak binding actomyosin in the prepowerstroke state publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.606665 contributor: fullname: Yang – volume: 6 start-page: 8314 year: 2015 ident: ref_39 article-title: How Leiomodin and Tropomodulin use a common fold for different actin assembly functions publication-title: Nat. Commun. doi: 10.1038/ncomms9314 contributor: fullname: Boczkowska – ident: ref_117 doi: 10.1371/journal.pone.0070636 – volume: 8 start-page: 342 year: 2020 ident: ref_31 article-title: Structural Characteristics, Binding Partners and Related Diseases of the Calponin Homology (CH) Domain publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.00342 contributor: fullname: Yin – volume: 457 start-page: 441 year: 2009 ident: ref_20 article-title: The nature of the globular- to fibrous-actin transition publication-title: Nature doi: 10.1038/nature07685 contributor: fullname: Oda – volume: 284 start-page: 3663 year: 2009 ident: ref_94 article-title: Functional Role of the Extended Loop 2 in the Myosin 9b Head for Binding F-actin * publication-title: J. Biol. Chem. doi: 10.1074/jbc.M808338200 contributor: fullname: Struchholz – volume: 519 start-page: 114 year: 2015 ident: ref_22 article-title: Structure of the F-actin-tropomyosin complex publication-title: Nature doi: 10.1038/nature14033 contributor: fullname: Lehman – volume: 128 start-page: 2009 year: 2015 ident: ref_1 article-title: The evolution of compositionally and functionally distinct actin filaments publication-title: J. Cell Sci. doi: 10.1242/jcs.165563 contributor: fullname: Gunning – volume: 46 start-page: 2779 year: 2007 ident: ref_111 article-title: Myosin surface loop 4 modulates inhibition of actomyosin 1b ATPase activity by tropomyosin publication-title: Biochemistry doi: 10.1021/bi602439f contributor: fullname: Dash – volume: 102 start-page: 6873 year: 2005 ident: ref_81 article-title: Structural mechanism of the recovery stroke in the myosin molecular motor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0408784102 contributor: fullname: Fischer – volume: 115 start-page: 1082 year: 2018 ident: ref_47 article-title: Precise Binding of Tropomyosin on Actin Involves Sequence-Dependent Variance in Coiled-Coil Twisting publication-title: Biophys. J. doi: 10.1016/j.bpj.2018.08.017 contributor: fullname: Lehman – volume: 19 start-page: 192 year: 2017 ident: ref_109 article-title: Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples publication-title: Genet. Med. doi: 10.1038/gim.2016.90 contributor: fullname: Walsh – volume: 18 start-page: 1507 year: 2007 ident: ref_93 article-title: The Myosin IXb Motor Activity Targets the Myosin IXb RhoGAP Domain as Cargo to Sites of Actin Polymerization publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e06-08-0771 contributor: fullname: Uhlenbrock – volume: 39 start-page: 1115 year: 2011 ident: ref_17 article-title: Myosin motor proteins are involved in the final stages of the secretory pathways publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0391115 contributor: fullname: Bond – volume: 8 start-page: 21 year: 2020 ident: ref_36 article-title: Osteogenesis imperfecta mutations in plastin 3 lead to impaired calcium regulation of actin bundling publication-title: Bone Res. doi: 10.1038/s41413-020-0095-2 contributor: fullname: Schwebach – volume: 89 start-page: 1179 year: 2003 ident: ref_108 article-title: Mutations of the β myosin heavy chain gene in hypertrophic cardiomyopathy: Critical functional sites determine prognosis publication-title: Heart doi: 10.1136/heart.89.10.1179 contributor: fullname: Woo – volume: 368 start-page: 92 year: 2007 ident: ref_37 article-title: Novel structures for α-actinin: F-actin interactions and their implications for actin-membrane attachment and tension sensing in the cytoskeleton publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.01.071 contributor: fullname: Hampton – volume: 62 start-page: 999 year: 1990 ident: ref_73 article-title: A molecular basis for familial hypertrophic cardiomyopathy: A beta cardiac myosin heavy chain gene missense mutation publication-title: Cell doi: 10.1016/0092-8674(90)90274-I contributor: fullname: Kass – volume: 116 start-page: 4265 year: 2019 ident: ref_28 article-title: Mechanism of actin polymerization revealed by cryo-EM structures of actin filaments with three different bound nucleotides publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1807028115 contributor: fullname: Chou – volume: 12 start-page: 1892 year: 2021 ident: ref_88 article-title: The actomyosin interface contains an evolutionary conserved core and an ancillary interface involved in specificity publication-title: Nat. Commun. doi: 10.1038/s41467-021-22093-4 contributor: fullname: Xu – volume: 6 start-page: e31125 year: 2017 ident: ref_85 article-title: Cryo-EM structures reveal specialization at the myosin VI-actin interface and a mechanism of force sensitivity publication-title: eLife doi: 10.7554/eLife.31125 contributor: fullname: Gurel – volume: 10 start-page: 10 year: 2018 ident: ref_11 article-title: The Actin/Spectrin Membrane-Associated Periodic Skeleton in Neurons publication-title: Front. Synaptic Neurosci. doi: 10.3389/fnsyn.2018.00010 contributor: fullname: Unsain – volume: 164 start-page: 1356 year: 1969 ident: ref_53 article-title: The Mechanism of Muscular Contraction publication-title: Science doi: 10.1126/science.164.3886.1356 contributor: fullname: Huxley – volume: 534 start-page: 724 year: 2016 ident: ref_24 article-title: Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution publication-title: Nature doi: 10.1038/nature18295 contributor: fullname: Heissler – volume: 347 start-page: 44 year: 1990 ident: ref_26 article-title: Atomic model of the actin filament publication-title: Nature doi: 10.1038/347044a0 contributor: fullname: Holmes – volume: 100 start-page: 1005 year: 2011 ident: ref_49 article-title: Tropomyosin position on F-actin revealed by EM reconstruction and computational chemistry publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.12.3697 contributor: fullname: Li – volume: 120 start-page: 5 year: 2020 ident: ref_97 article-title: Force Generation by Myosin Motors: A Structural Perspective publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00264 contributor: fullname: Pylypenko – volume: 431 start-page: 134 year: 1998 ident: ref_32 article-title: CH domains revisited publication-title: FEBS Lett. doi: 10.1016/S0014-5793(98)00751-0 contributor: fullname: Stradal – volume: 33 start-page: 141 year: 2001 ident: ref_69 article-title: Beta-myosin heavy chain gene mutations and hypertrophic cardiomyopathy in Austrian children publication-title: J. Mol. Cell. Cardiol. doi: 10.1006/jmcc.2000.1287 contributor: fullname: Marx – volume: 50 start-page: 279 year: 1970 ident: ref_21 article-title: Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(70)90192-0 contributor: fullname: Moore – volume: 90 start-page: 801 year: 2019 ident: ref_66 article-title: Myosin: Formation and maintenance of thick filaments publication-title: Anim. Sci. J. doi: 10.1111/asj.13226 contributor: fullname: Ojima – volume: 39 start-page: 11602 year: 2000 ident: ref_89 article-title: Stabilization of the Actomyosin Complex by Negative Charges on Myosin publication-title: Biochemistry doi: 10.1021/bi000985x contributor: fullname: Furch – volume: 219 start-page: 161 year: 2016 ident: ref_100 article-title: Effects of hypertrophic and dilated cardiomyopathy mutations on power output by human β-cardiac myosin publication-title: J. Exp. Biol. doi: 10.1242/jeb.125930 contributor: fullname: Spudich – volume: 261 start-page: 10 year: 1993 ident: ref_63 article-title: Three-Dimensional Structure of Myosin Subfragment-1: A Molecular Motor publication-title: Science doi: 10.1126/science.8316857 contributor: fullname: Rayment – volume: 8 start-page: 1 year: 2017 ident: ref_74 article-title: Structure of actomyosin rigour complex at 5.2 Å resolution and insights into the ATPase cycle mechanism publication-title: Nat. Commun. doi: 10.1038/ncomms13969 contributor: fullname: Fujii – volume: 27 start-page: R8 year: 2017 ident: ref_113 article-title: Tropomyosins publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.11.033 contributor: fullname: Gunning – volume: 20 start-page: 41 year: 2008 ident: ref_18 article-title: Cargo transport: Molecular motors navigate a complex cytoskeleton publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2007.11.006 contributor: fullname: Ross – volume: 103 start-page: 1970 year: 2012 ident: ref_38 article-title: The N-Terminal Actin-Binding Tandem Calponin-Homology (CH) Domain of Dystrophin Is in a Closed Conformation in Solution and When Bound to F-actin publication-title: Biophys. J. doi: 10.1016/j.bpj.2012.08.066 contributor: fullname: Singh – volume: 261 start-page: 58 year: 1993 ident: ref_98 article-title: Structure of the actin-myosin complex and its implications for muscle contraction publication-title: Science doi: 10.1126/science.8316858 contributor: fullname: Rayment – volume: 326 start-page: 1208 year: 2009 ident: ref_5 article-title: Actin, a Central Player in Cell Shape and Movement publication-title: Science doi: 10.1126/science.1175862 contributor: fullname: Pollard – volume: 8 start-page: 2183 year: 2017 ident: ref_57 article-title: Catastrophic disassembly of actin filaments via Mical-mediated oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-017-02357-8 contributor: fullname: Grintsevich – volume: 235 start-page: 77 year: 2017 ident: ref_60 article-title: Myosins: Domain Organisation, Motor Properties, Physiological Roles and Cellular Functions publication-title: Handb. Exp. Pharmacol. doi: 10.1007/164_2016_29 contributor: fullname: Masters – volume: 433 start-page: 167178 year: 2021 ident: ref_45 article-title: Interaction of the C2 Ig-like Domain of Cardiac Myosin Binding Protein-C with F-actin publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2021.167178 contributor: fullname: Risi – volume: 18 start-page: 261 year: 2006 ident: ref_4 article-title: Actin in transcription and transcription regulation publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2006.04.009 contributor: fullname: Miralles – volume: 25 start-page: 918 year: 2018 ident: ref_35 article-title: Structural basis of the filamin A actin-binding domain interaction with F-actin publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0128-3 contributor: fullname: Iwamoto – volume: 94 start-page: 91 year: 1997 ident: ref_62 article-title: The motor domain and the regulatory domain of myosin solely dictate enzymatic activity and phosphorylation-dependent regulation, respectively publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.1.91 contributor: fullname: Sata – volume: 92 start-page: 2807 year: 1993 ident: ref_68 article-title: Familial hypertrophic cardiomyopathy. Microsatellite haplotyping and identification of a hot spot for mutations in the beta-myosin heavy chain gene publication-title: J. Clin. Investig. doi: 10.1172/JCI116900 contributor: fullname: Dausse – volume: 8 start-page: 190 year: 2017 ident: ref_82 article-title: Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil publication-title: Nat. Commun. doi: 10.1038/s41467-017-00176-5 contributor: fullname: Hartman – volume: 15 start-page: R310 year: 2005 ident: ref_12 article-title: Cytokinesis: New roles for myosin publication-title: Curr. Biol. CB doi: 10.1016/j.cub.2005.04.008 contributor: fullname: Burgess – volume: 19 start-page: 299 year: 2012 ident: ref_105 article-title: A novel actin binding site of myosin required for effective muscle contraction publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2216 contributor: fullname: Yang – volume: 8 start-page: a018226 year: 2016 ident: ref_8 article-title: Actin and Actin-Binding Proteins publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a018226 contributor: fullname: Pollard – volume: 17 start-page: 839 year: 2016 ident: ref_59 article-title: Kinetic Adaptations of Myosins for Their Diverse Cellular Functions publication-title: Traffic doi: 10.1111/tra.12388 contributor: fullname: Heissler – volume: 368 start-page: 65 year: 1994 ident: ref_54 article-title: Ca(2+)-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction publication-title: Nature doi: 10.1038/368065a0 contributor: fullname: Lehman – volume: 55 start-page: 987 year: 1986 ident: ref_7 article-title: Actin and actin-binding proteins. A critical evaluation of mechanisms and functions publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.55.070186.005011 contributor: fullname: Pollard – volume: 105 start-page: 483 year: 2016 ident: ref_78 article-title: Review: The ATPase mechanism of myosin and actomyosin publication-title: Biopolymers doi: 10.1002/bip.22853 contributor: fullname: Geeves – volume: 150 start-page: 327 year: 2012 ident: ref_87 article-title: Structure of the Rigor Actin-Tropomyosin-Myosin Complex publication-title: Cell doi: 10.1016/j.cell.2012.05.037 contributor: fullname: Behrmann – volume: 40 start-page: 169 year: 2011 ident: ref_2 article-title: Actin Structure and Function publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-042910-155359 contributor: fullname: Dominguez – ident: ref_42 doi: 10.1371/journal.pcbi.1002995 – volume: 68 start-page: 687 year: 1999 ident: ref_3 article-title: Structural mechanism of muscle contraction publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.68.1.687 contributor: fullname: Geeves – volume: 4 start-page: 169 year: 2015 ident: ref_67 article-title: Myosin light chains: Teaching old dogs new tricks publication-title: Bioarchitecture doi: 10.1080/19490992.2015.1054092 contributor: fullname: Heissler – volume: 44 start-page: 502 year: 2019 ident: ref_55 article-title: Actin Post-translational Modifications: The Cinderella of Cytoskeletal Control publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2018.11.010 contributor: fullname: Varland – volume: 119 start-page: 821 year: 2020 ident: ref_83 article-title: Cryo-EM and Molecular Docking Shows Myosin Loop 4 Contacts Actin and Tropomyosin on Thin Filaments publication-title: Biophys. J. doi: 10.1016/j.bpj.2020.07.006 contributor: fullname: Doran – volume: 287 start-page: 191 year: 2011 ident: ref_41 article-title: New Insights into Vinculin Function and Regulation publication-title: Int. Rev. Cell Mol. Biol. doi: 10.1016/B978-0-12-386043-9.00005-0 contributor: fullname: Peng – volume: 6 start-page: 1419 year: 1998 ident: ref_30 article-title: Structural comparisons of calponin homology domains: Implications for actin binding publication-title: Structure doi: 10.1016/S0969-2126(98)00141-5 contributor: fullname: Saraste – volume: 29 start-page: 50 year: 2021 ident: ref_84 article-title: High-Resolution Cryo-EM Structure of the Cardiac Actomyosin Complex publication-title: Structure doi: 10.1016/j.str.2020.09.013 contributor: fullname: Risi – ident: ref_115 doi: 10.1186/s12862-017-1056-2 – volume: 9 start-page: e62514 year: 2020 ident: ref_43 article-title: Molecular mechanism for direct actin force-sensing by α-catenin publication-title: eLife doi: 10.7554/eLife.62514 contributor: fullname: Mei – volume: 53 start-page: 115 year: 2009 ident: ref_40 article-title: The role of vinculin in the regulation of the mechanical properties of cells publication-title: Cell Biochem. Biophys. doi: 10.1007/s12013-009-9047-6 contributor: fullname: Mierke – volume: 552–553 start-page: 68 year: 2014 ident: ref_48 article-title: The structural dynamics of α-tropomyosin on F-actin shape the overlap complex between adjacent tropomyosin molecules publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2013.09.011 contributor: fullname: Lehman – volume: 103 start-page: 6136 year: 2006 ident: ref_91 article-title: Toward understanding actin activation of myosin ATPase: The role of myosin surface loops publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0601595103 contributor: fullname: Onishi – ident: ref_29 doi: 10.2210/pdb7ad9/pdb – volume: 38 start-page: 15078 year: 1999 ident: ref_103 article-title: Functional characterization of the secondary actin binding site of myosin II publication-title: Biochemistry doi: 10.1021/bi991595h contributor: fullname: Furch – volume: 25 start-page: 528 year: 2018 ident: ref_27 article-title: Structural transitions of F-actin upon ATP hydrolysis at near-atomic resolution revealed by cryo-EM publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0074-0 contributor: fullname: Merino – volume: 154 start-page: 611 year: 2001 ident: ref_46 article-title: Myosin light chain kinase binding to a unique site on F-actin revealed by three-dimensional image reconstruction publication-title: J. Cell Biol. doi: 10.1083/jcb.200105079 contributor: fullname: Hatch – volume: 43 start-page: 2605 year: 2004 ident: ref_96 article-title: Functional role of loop 2 in myosin V publication-title: Biochemistry doi: 10.1021/bi035510v contributor: fullname: Yengo |
SSID | ssj0000702636 |
Score | 2.3279204 |
SecondaryResourceType | review_article |
Snippet | Actin is one of the most abundant and versatile proteins in eukaryotic cells. As discussed in many contributions to this Special Issue, its transition from a... Simple SummaryAlthough actin is a highly conserved protein, it is involved in many diverse cellular processes. Actin owes its diversity of function to its... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1221 |
SubjectTerms | Actin actin-binding proteins Adenosine triphosphatase Amino acids Binding sites Cell size Electron microscopy Enzymes Filaments force production Hydrolysis Isoforms Kinases molecular motor Motor activity Myosin Myosin ATPase Polymerization Proteins Review Somatic cells tropomyosin |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LatwwFL2UQCCb0OZVt0lQoItsREZveTkJHUIgWaQdyM7oZRIodpnHYv6-V7ZnmAmFbrrySwvpHuvqHEs-AvjmVTCce0dVDJpK7z0teXKUpcjLqKxTo_zv8OOTvp_Khxf1srXVV14T1tsD94G7qTnztTFamagkih0XS1HLYDKPVyz22XfEt8RUl4MNaos8L5m9fATq-pvB0yjbWTHO2c4w1Ln1_41ivl8puTX0TD7C4cAZybiv6yf4kJoj2O93kVwdwy1CTYavtOS5_ZVIWxPkdWRCx5jNGvJjOatdSARPH1ftHA-TdobXveV0RuYEppPvP-_u6bA1Ag2oMBY0BY_NS6WqTUKSFJFHIRjKZT2hPVeBayxhbEwYNhM1S1yYkfU2ai1jdOIU9pq2SZ-BaBVcwq4btI5SS2a9EH6EoHGMM47uBVyvI1X97h0wKlQOOajVu6AWcJsjuSmWrau7GwhoNQBa_QvQAs7XOFRDf5pX2ejMiGzFX8DV5jH2hDy94ZrULrsyErMTMsgCznrYNjXJJjyCCVuA2QF0p6q7T5q3185t2-rSGmm__I-2fYUDntfEMEa5OIe9xWyZLpDULPxl9_7-ARqR86I priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Databases dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7aDYVeSvqMk7So0EMvIpFkPXwK2ZIlFBJK2kBuxnq4LRQ72cch_74ztnbbDaUnPyTQeB7SzEj-BuCD18FK6RuuYzC89N7zSqaGixRlFbVr9DH9O3xxac6vy883-iYn3Bb5WOV6Thwm6tgHypEfEdSVVQTGfnJ7x6lqFO2u5hIaj2FHCuXcBHamZ5dfrjZZFlRoaWh_kjB9FMb3RxnbiGCthJRiazkaUPv_5Wo-PDH51xI024Vn2Xdkp6Own8Oj1L2AJ2M1yfuXMEWRs5ytZVf9r8T6lqF_x2b8FGe1jn1dzdsmJIa3F_f9Ai-zfo7PI_Q0SegVXM_Ovn0657lEAg8YaSx5Ch4_L1W6tQmdpYj-FApFNxRXGC91kAZ7WBeTjdpGI5JEHjrvojFljI16DZOu79IeMKNDk9CEgzGxNKVwXil_jMKTqqVVvoCPa07VtyMSRo0RBDG1fsDUAqbEyU03grAeXvTz73W2iLqVwrfWGiRLlxjFNrHCgYKlAE2LiOMdruVQZ7ta1H-0oID3m2a0CNrmaLrUr4Y-Jc5S6EkW8GYU24YSAuNRqCkF2C2BbpG63dL9_DGgbjtTOVu6_f-TdQBPJZ16EYJLdQiT5XyV3qLbsvTvsm7-Bl-_7YI priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYqqkpcUF9ACq1ciQMXl7UdP3JAFVRdoUrbA3QlbpFfASSUtGFXYv89M0l220V76CkvK3ZmPPb3Jc43hBx5FYwQ3jEVg2a5954VIjnGUxRFVNapEf47PPmpL6b5j2t1_Tcd0GDAh43UDvNJTdv7L49_Fl8h4E-RcQJlPxnkilCpigv8qfylgGkR13dNBqzfDcsG6EaXMlCMTAGoUppe6mfTPdZmqU7MfxMCfb6Q8p-Zafya7AyQkp71feANeZHqt-RVn2Ry8Y6cQ0-gw0tcetncJ9pUFGAfHbMzGOxqejVvKxcShd3JonmAzbhp4bhXpEbHvSfT8fdf3y7YkDmBBSAgM5aCh0dNhapMAgwVAWaBr5RDuqG9UEFoKGFsTCYqEzVPQpqR9TZqncfo5C7Zqps67ROqVXAJIjtoHXOdc-ul9CPwqZAVTv4ZOV5aqvzdC2SUQCzQqOUzo2bkHC25KobK1t2Jpr0ph0ApK8F9ZYyGZqkcyK2LBVQUDPI2xSPUd7j0Q7nsLSXqoIE_IeAz8nl1GQIFv364OjXzrkwOgxcAzIzs9W5btQQ1eiSXNiNmzaFrTV2_Ut_ddmLcVhfW5PbD_5vhgGwLXBjDORPykGzN2nn6CMhm5j91PfYJsiH13w priority: 102 providerName: Scholars Portal |
Title | The Central Role of the F-Actin Surface in Myosin Force Generation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34943138 https://www.proquest.com/docview/2612737004 https://www.proquest.com/docview/2614225511 https://pubmed.ncbi.nlm.nih.gov/PMC8698748 https://doaj.org/article/f21bf77657d54402ad93f4c7114851d2 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JaxsxFH4kKYVeSvdOmxoVeuhFsbWPj3GICQWHkDaQ26Bt2kAyExz7kH_fJ82MsUNPvcyqQRp9Wt4nPX0C-OaUN5w7S1XwmkrnHJ3yaCmLgU-DKq2apLXDi3N9diV_XKvrPVDDWpjstO_dzVFze3fU3PzJvpX3d348-ImNLxYnpUamLMvxPuxj97tF0XPza5BWpCnJJOMjkNKPezmjpGTFOE97wyRNFsHSmpStzihr9v_L0HzqL7nVAc1fwcveciTHXQpfw15s3sDzbi_Jx7cwQ8BJP1ZLLtvbSNqaoHVH5vQY27SG_Fwva-sjwcvFY_uAp3m7xPtOeDrh8w6u5qe_Ts5ov0EC9cgzVjR6h38ap6o2EU2lgNYUQqJsYhXaceW5xhCmDNEEZYJmkQszKV0ZtJYhWPEeDpq2iR-BaOVtxArstQ5SS1Y6IdwEoeOiTn18Ad-HnKruOx2MCvlDyt_qSf4WMEs5uQmWBKzzg3b5u-phrGrOXG2MxmQpiRzWhilG5E2iZ4oFjO9wwKHqa9VDleTOjEiC_AV83bzG-pAmOWwT23UOI7GNQjuygA8dbJuUDLAXYHYA3Unq7hssgllzuy9yn_77y8_wgid3GMYoF4dwsFqu4xe0Z1ZuBM9mp-cXl6M8HoDHhSxHuUz_BdYI-LY |
link.rule.ids | 230,314,727,780,784,864,885,2102,2221,21388,24318,27924,27925,33744,33745,43805,53791,53793,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVgguiDeBAkbiwMVq7cR2ckJd1NUC3RUqrdRb5FcKEkrKPg7998wk3oWtEKc8bMmTGc94Zux8A_DOKW-kdJar4DUvnHO8ktFyEYOsgiqtOqR_h2dzPT0vPl-oi5RwW6ZjlRub2Bvq0HnKkR8Q1JXJCYz9w9UvTlWjaHc1ldC4DXuEnK5GsDc-nn893WZZcEJLTfuThOmTY3x_kLCNCNZKSCl2lqMetf9frubNE5N_LUGTB3A_-Y7saBD2Q7gV20dwZ6gmef0YxihylrK17LT7GVnXMPTv2IQfoVVr2bf1orE-MrydXXdLvEy6BT4P0NMkoSdwPjk--zjlqUQC9xhprHj0Dj8vVqoxEZ2lgP4UCkVZiiu0k8pLjT1MGaIJygQtokQelq4MWhch2PwpjNqujc-BaeVtRBX2WodCF6J0ee4OUXgyb2iVz-D9hlP11YCEUWMEQUytbzA1gzFxctuNIKz7F93isk4aUTdSuMYYjWSpAqNYGyocyBsK0JQION7-Rg510qtl_WcWZPB224waQdscto3duu9ToJVCTzKDZ4PYtpQQGE8u8jIDsyPQHVJ3W9of33vU7VJXpSnKF_8n6w3cnZ7NTuqTT_MvL-GepBMwQnCZ78NotVjHV-jCrNzrNE9_A5yk8Go |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwEB7BViBeULlKoECQeODF2rUTH3lC3dKoHF1VhUp9i-IjLRJKyh4P_ffMJN6FrRBPOWzJk_l8zNiTbwDeWem0ELZm0jvFcmstK0SoGQ9eFF6aWk7o3-GTmTo-zz9fyIsY_7SIYZXrObGfqH3naI98TFRXOiMy9nETwyJOP5Yfrn8xyiBFJ60xncZd2MFVcSJGsDM9mp2ebXZcsHMLRWeVxO-Toa8_jjxHRHHFheBbS1PP4P8vs_N29ORfy1G5Cw-jHZkeDMA_gjuhfQz3hsySN09givCncec2Pet-hrRrUrT10pId4AzXpt9W86Z2IcXbk5tugZeym-PzQENNaD2F8_Lo--Exi-kSmEOvY8mCs_h5oZCNDmg4ebStECBZk4-hrJBOKKyhjQ_aS-0VDwL1aazxSuXe19kzGLVdG55DqqSrAw5np5TPVc6NzTI7QSBF1tCKn8D7taaq64EVo0JvgpRa3VJqAlPS5KYa0Vn3L7r5ZRVHR9UIbhutFYolc_Roa19gQ06Tsya5x_b21zhUcYwtqj89IoG3m2IcHXTkUbehW_V1cpyx0KpMYG-AbSMJEfNkPDMJ6C1At0TdLml_XPUM3EYVRufmxf_FegP3sYtWXz_NvryEB4KCYThnItuH0XK-Cq_Qmlna17Gb_ga-fvSX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Central+Role+of+the+F-Actin+Surface+in+Myosin+Force+Generation&rft.jtitle=Biology+%28Basel%2C+Switzerland%29&rft.au=Doran%2C+Matthew+H.&rft.au=Lehman%2C+William&rft.date=2021-11-23&rft.issn=2079-7737&rft.eissn=2079-7737&rft.volume=10&rft.issue=12&rft.spage=1221&rft_id=info:doi/10.3390%2Fbiology10121221&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_biology10121221 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-7737&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-7737&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-7737&client=summon |