Tetrazine molecules as an efficient electronic diversion channel in 2D organic-inorganic perovskites
Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetra...
Saved in:
Published in | Materials horizons Vol. 8; no. 5; pp. 1547 - 156 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.05.2021
the Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. Namely, the use of a heterocyclic ring containing a nitrogen proportion imparts a unique electronic structure to the organic component, with the lowest energy optical absorption in the blue region. The present compound, a tetrazine, presents several resonances between the organic and inorganic components, both in terms of single particle electronic levels and exciton states, providing the ideal playground to discuss charge and energy transfer mechanisms at the organic/inorganic interface. Photophysical studies along with hybrid time-dependent DFT simulations demonstrate partial energy transfer and rationalise the suppressed emission from the perovskite frame in terms of different energy-transfer diversion channels, potentially involving both singlet and triplet states of the organic spacer. Periodic DFT simulations also support the feasibility of electron transfer from the conduction band of the inorganic component to the LUMO of the spacer as a potential quenching mechanism, suggesting the coexistence and competition of charge and energy transfer mechanisms in these heterostructures. Our work proves the feasibility of inserting photoactive small rings in a 2D perovskite structure, meanwhile providing a robust frame to rationalize the electronic interactions between the semiconducting inorganic layer and organic chromophores, with the prospects of optimizing the organic moiety according to the envisaged application.
Taking advantage of an innovative design concept, we present the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. |
---|---|
AbstractList | Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. Namely, the use of a heterocyclic ring containing a nitrogen proportion imparts a unique electronic structure to the organic component, with the lowest energy optical absorption in the blue region. The present compound, a tetrazine, presents several resonances between the organic and inorganic components, both in terms of single particle electronic levels and exciton states, providing the ideal playground to discuss charge and energy transfer mechanisms at the organic/inorganic interface. Photophysical studies along with hybrid time-dependent DFT simulations demonstrate partial energy transfer and rationalise the suppressed emission from the perovskite frame in terms of different energy-transfer diversion channels, potentially involving both singlet and triplet states of the organic spacer. Periodic DFT simulations also support the feasibility of electron transfer from the conduction band of the inorganic component to the LUMO of the spacer as a potential quenching mechanism, suggesting the coexistence and competition of charge and energy transfer mechanisms in these heterostructures. Our work proves the feasibility of inserting photoactive small rings in a 2D perovskite structure, meanwhile providing a robust frame to rationalize the electronic interactions between the semiconducting inorganic layer and organic chromophores, with the prospects of optimizing the organic moiety according to the envisaged application.
Taking advantage of an innovative design concept, we present the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic–inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. Namely, the use of a heterocyclic ring containing a nitrogen proportion imparts a unique electronic structure to the organic component, with the lowest energy optical absorption in the blue region. The present compound, a tetrazine, presents several resonances between the organic and inorganic components, both in terms of single particle electronic levels and exciton states, providing the ideal playground to discuss charge and energy transfer mechanisms at the organic/inorganic interface. Photophysical studies along with hybrid time-dependent DFT simulations demonstrate partial energy transfer and rationalise the suppressed emission from the perovskite frame in terms of different energy-transfer diversion channels, potentially involving both singlet and triplet states of the organic spacer. Periodic DFT simulations also support the feasibility of electron transfer from the conduction band of the inorganic component to the LUMO of the spacer as a potential quenching mechanism, suggesting the coexistence and competition of charge and energy transfer mechanisms in these heterostructures. Our work proves the feasibility of inserting photoactive small rings in a 2D perovskite structure, meanwhile providing a robust frame to rationalize the electronic interactions between the semiconducting inorganic layer and organic chromophores, with the prospects of optimizing the organic moiety according to the envisaged application. Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. Namely, the use of a heterocyclic ring containing a nitrogen proportion imparts a unique electronic structure to the organic component, with the lowest energy optical absorption in the blue region. The present compound, a tetrazine, presents several resonances between the organic and inorganic components, both in terms of single particle electronic levels and exciton states, providing the ideal playground to discuss charge and energy transfer mechanisms at the organic/inorganic interface. Photophysical studies along with hybrid time-dependent DFT simulations demonstrate partial energy transfer and rationalise the suppressed emission from the perovskite frame in terms of different energy-transfer diversion channels, potentially involving both singlet and triplet states of the organic spacer. Periodic DFT simulations also support the feasibility of electron transfer from the conduction band of the inorganic component to the LUMO of the spacer as a potential quenching mechanism, suggesting the coexistence and competition of charge and energy transfer mechanisms in these heterostructures. Our work proves the feasibility of inserting photoactive small rings in a 2D perovskite structure, meanwhile providing a robust frame to rationalize the electronic interactions between the semiconducting inorganic layer and organic chromophores, with the prospects of optimizing the organic moiety according to the envisaged application.Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. Namely, the use of a heterocyclic ring containing a nitrogen proportion imparts a unique electronic structure to the organic component, with the lowest energy optical absorption in the blue region. The present compound, a tetrazine, presents several resonances between the organic and inorganic components, both in terms of single particle electronic levels and exciton states, providing the ideal playground to discuss charge and energy transfer mechanisms at the organic/inorganic interface. Photophysical studies along with hybrid time-dependent DFT simulations demonstrate partial energy transfer and rationalise the suppressed emission from the perovskite frame in terms of different energy-transfer diversion channels, potentially involving both singlet and triplet states of the organic spacer. Periodic DFT simulations also support the feasibility of electron transfer from the conduction band of the inorganic component to the LUMO of the spacer as a potential quenching mechanism, suggesting the coexistence and competition of charge and energy transfer mechanisms in these heterostructures. Our work proves the feasibility of inserting photoactive small rings in a 2D perovskite structure, meanwhile providing a robust frame to rationalize the electronic interactions between the semiconducting inorganic layer and organic chromophores, with the prospects of optimizing the organic moiety according to the envisaged application. Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as organic component. Namely, the use of a heterocyclic ring containing a nitrogen proportion imparts a unique electronic structure to the organic component, with lowest energy optical absorption in the blue. The present compound, a tetrazine, presents several resonances between the organic and inorganic components, both in terms of single particle electronic levels and exciton states, providing the ideal playground to discuss charge and energy transfer mechanisms at the organic/inorganic interface. Photophysical studies along with hybrid Time-Dependent DFT simulations demonstrate partial energy transfer and rationalise the suppressed emission from the perovskite frame in terms of different energy-transfer diversion channels, potentially involving both singlet and triplet states of the organic spacer. Periodic DFT simulations also support the feasibility of electron transfers from the conduction band of the inorganic component to the LUMO of the spacer as potential quenching mechanism, suggesting the coexistence and competition of charge and energy transfer mechanisms in these heterostructure. Our work proves the feasibility of inserting photoactive small rings in a 2D perovskite structure, meanwhile providing a robust frame to rationalize the electronic interactions between the semiconducting inorganic layer and organic chromophores, with the prospects of optimizing the organic moiety according to the envisaged application. |
Author | Lédée, Ferdinand Galmiche, Laurent Garrot, Damien Deleporte, Emmanuelle Even, Jacky Quarti, Claudio Marrot, Jérôme Lauret, Jean-Sébastien Audebert, Pierre Trippé-Allard, Gaëlle Katan, Claudine |
AuthorAffiliation | LuMIn (Laboratoire Lumière, Matière et Interfaces) ILV (Institut Lavoisier de Versailles) - UMR 8180 CentraleSupelec Univ Rennes, ENSCR, INSA Rennes Université Paris-Saclay INSA Rennes GEMaC (Groupe d'étude de la Matière Condensée) - UMR 8635 ENS Paris-Saclay Univ Rennes Institut FOTON (Fonctions Optiques pour les Technologies de l'Information) - UMR 6082 CNRS Laboratory for Chemistry of Novel Materials ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 UVSQ University of Mons PPSM (Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires) - UMR 8531 |
AuthorAffiliation_xml | – name: PPSM (Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires) - UMR 8531 – name: LuMIn (Laboratoire Lumière, Matière et Interfaces) – name: CentraleSupelec – name: ILV (Institut Lavoisier de Versailles) - UMR 8180 – name: INSA Rennes – name: CNRS – name: ENS Paris-Saclay – name: Université Paris-Saclay – name: Univ Rennes – name: UVSQ – name: Institut FOTON (Fonctions Optiques pour les Technologies de l'Information) - UMR 6082 – name: Laboratory for Chemistry of Novel Materials – name: ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 – name: University of Mons – name: Univ Rennes, ENSCR, INSA Rennes – name: GEMaC (Groupe d'étude de la Matière Condensée) - UMR 8635 |
Author_xml | – sequence: 1 givenname: Ferdinand surname: Lédée fullname: Lédée, Ferdinand – sequence: 2 givenname: Pierre surname: Audebert fullname: Audebert, Pierre – sequence: 3 givenname: Gaëlle surname: Trippé-Allard fullname: Trippé-Allard, Gaëlle – sequence: 4 givenname: Laurent surname: Galmiche fullname: Galmiche, Laurent – sequence: 5 givenname: Damien surname: Garrot fullname: Garrot, Damien – sequence: 6 givenname: Jérôme surname: Marrot fullname: Marrot, Jérôme – sequence: 7 givenname: Jean-Sébastien surname: Lauret fullname: Lauret, Jean-Sébastien – sequence: 8 givenname: Emmanuelle surname: Deleporte fullname: Deleporte, Emmanuelle – sequence: 9 givenname: Claudine surname: Katan fullname: Katan, Claudine – sequence: 10 givenname: Jacky surname: Even fullname: Even, Jacky – sequence: 11 givenname: Claudio surname: Quarti fullname: Quarti, Claudio |
BackLink | https://hal.science/hal-03164870$$DView record in HAL |
BookMark | eNptkd9rFDEQx4NUbK198V0I-FKFrZPNz30sre0VrvhSn0MuO-ul7iVnsnegf725Xm2hCAMzZD7zI_N9Sw5iikjIewZnDHj3pYfVElgHYnhFjlqQrFFcyoOnWOhDclLKPQAwLiQYeEMOuTBCCcWPSH-HU3Z_QkS6SiP6zYiFumqR4jAEHzBOFGtiyikGT_uwxVxCitQvXYw40hBpe0lT_uFqvgnxMaJrzGlbfoYJyzvyenBjwZNHf0y-X329u5g182_XNxfn88YLo6emN0Y5toBeSWa4bpXTHBYaOt47MeieCWYGAZppyUWn6_7a8QGd63jrF9jxY_Jp33fpRrvOYeXyb5tcsLPzud29AWeqjoItq-zpnl3n9GuDZbKrUDyOo4uYNsW2CoThLTeyoh9foPdpk2P9iW1lK5Tmku0awp7yOZWScbA-TG6qp6oHDqNlYHeC2Uu4nT0IdlVLPr8o-bf0f-EPezgX_8Q9q8__AhyYnfc |
CitedBy_id | crossref_primary_10_1021_jacs_3c02143 crossref_primary_10_1002_smll_202207426 crossref_primary_10_1021_acs_inorgchem_3c04536 crossref_primary_10_1021_acs_jpclett_2c03882 crossref_primary_10_1039_D3TC00507K crossref_primary_10_1016_j_mtelec_2024_100100 crossref_primary_10_1021_acsmaterialslett_3c00509 crossref_primary_10_1021_acsami_4c22487 crossref_primary_10_1021_acs_jpcc_3c04647 crossref_primary_10_1039_D3QM00184A crossref_primary_10_1021_acs_chemmater_2c03718 crossref_primary_10_1021_acs_jpcc_1c08095 crossref_primary_10_1016_j_nimb_2024_165291 crossref_primary_10_1002_ange_202314092 crossref_primary_10_1002_anie_202402634 crossref_primary_10_1016_j_jpowsour_2023_233364 crossref_primary_10_1039_D3MH01883K crossref_primary_10_1039_D3NJ05306G crossref_primary_10_1002_ange_202402634 crossref_primary_10_1021_acsnano_4c08208 crossref_primary_10_1002_anie_202314092 crossref_primary_10_3390_cryst11111424 crossref_primary_10_1002_adom_202101145 crossref_primary_10_1002_adom_202202801 crossref_primary_10_1039_D3OB00595J crossref_primary_10_1039_D3TC02553E crossref_primary_10_1021_acs_orglett_3c00955 crossref_primary_10_1021_jacsau_1c00429 |
Cites_doi | 10.1021/jacs.6b10390 10.1016/j.actamat.2009.03.037 10.1002/anie.201406466 10.1021/jacs.8b03659 10.1038/s41467-018-07440-2 10.1039/C8SC03563F 10.1063/1.5131801 10.1039/C5RA07253K 10.1021/ic991048k 10.1021/acs.jpclett.8b01309 10.1016/j.jphotochemrev.2020.100372 10.1063/1.478522 10.1021/acs.joc.9b02454 10.1103/PhysRevMaterials.2.105406 10.1039/D0TC01053G 10.1038/s41557-019-0354-2 10.1021/acs.chemmater.6b00809 10.1088/2515-7639/aba6f6 10.1016/j.jlumin.2014.01.050 10.1016/S0009-2614(98)01028-8 10.1021/cr900357e 10.1016/j.matt.2019.04.002 10.1006/jssc.1999.8281 10.1038/nphoton.2016.185 10.1021/acsami.5b05279 10.1038/s41467-020-15869-7 10.1021/jz502086e 10.1039/C6CP01955B 10.1038/nature18306 10.1021/acsnano.6b02683 10.1103/PhysRevB.57.12428 10.1021/acs.jpclett.8b02653 10.1021/acs.nanolett.7b01475 10.1002/chem.200401252 10.1039/C7CE00240H 10.1103/PhysRevB.45.6961 10.1021/jacs.5b03796 10.1039/b007070j 10.1021/acs.chemrev.8b00417 10.1021/cm990561t 10.1103/PhysRevLett.100.257401 10.1364/OL.37.005061 10.3389/fchem.2019.00946 10.1016/S0009-2614(00)01082-4 10.1016/0301-0104(95)00179-R 10.1021/jz401532q 10.1039/C8CC09955C 10.1021/acs.chemmater.9b01289 10.1016/S0009-2614(99)00205-5 10.1021/jp993983z 10.1103/PhysRevB.67.155405 10.1021/acs.nanolett.9b03427 10.1002/cphc.201402428 10.1038/s41467-018-04659-x 10.1016/S0009-2614(99)00526-6 10.1103/PhysRevLett.121.146401 10.1021/jp304531h 10.1021/acs.jpcc.0c05521 10.1002/anie.202005012 10.1039/C9MH00366E 10.1063/1.2369533 10.1103/PhysRevB.82.081101 10.1063/1.2971206 10.1364/OE.18.005912 10.1080/00268979909482997 10.1103/PhysRevB.42.11099 10.1039/C9TC01036J |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 1XC VOOES |
DOI | 10.1039/d0mh01904f |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2051-6355 |
EndPage | 156 |
ExternalDocumentID | oai_HAL_hal_03164870v1 10_1039_D0MH01904F d0mh01904f |
GroupedDBID | 0R 4.4 AAEMU AAGNR AAIWI AAJAE AANOJ ABASK ABDVN ABGFH ABRYZ ACIWK ACLDK ADMRA ADSRN AENEX AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- H13 HZ H~N J3I O-G O9- RCNCU RIG RPMJG RRC RSCEA 0R~ AARTK AAWGC AAXHV AAYXX ABEMK ABPDG ABXOH AEFDR AENGV AETIL AFLYV AFOGI AFRZK AGEGJ AHGCF AKBGW AKMSF APEMP CITATION GGIMP HZ~ RAOCF RVUXY 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c487t-d886a1b0d65183726a730b7093da4f7d1418f40717534974637a3feaa932cbe93 |
ISSN | 2051-6347 2051-6355 |
IngestDate | Tue Sep 02 06:29:44 EDT 2025 Fri Jul 11 15:31:40 EDT 2025 Mon Jun 30 02:06:59 EDT 2025 Tue Jul 01 01:36:14 EDT 2025 Thu Apr 24 23:04:19 EDT 2025 Sun Apr 24 14:59:25 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | energy transfer DFT halide perovskites tetrazine band alignement |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c487t-d886a1b0d65183726a730b7093da4f7d1418f40717534974637a3feaa932cbe93 |
Notes | perovskite; detailed optical properties of the newly synthesized compounds; details on oxidative electron transfer; details on the computational parameters for periodic DFT and molecular TD-DFT calculations; detailed analysis of the atomic projected Density of States from DFT and related isosurfaces of frontier electronic levels. For ESI and crystallographic data in CIF or other electronic format see DOI 2038924 2 4 10.1039/d0mh01904f Electronic supplementary information (ESI) available: Details on the synthesis and XRD characterization (cif file deposited at the CCDC with reference photoluminescence for pristine PEA PbCl ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9949-0529 0000-0001-9943-7808 0000-0002-5488-1216 0000-0002-2017-5823 0000-0003-1309-4977 0000-0002-4607-3390 0000-0002-4865-8536 0000-0002-0765-0984 0000-0002-5351-4908 |
OpenAccessLink | https://hal.science/hal-03164870 |
PMID | 34846463 |
PQID | 2524673511 |
PQPubID | 2047518 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2524673511 proquest_miscellaneous_2604832385 hal_primary_oai_HAL_hal_03164870v1 crossref_primary_10_1039_D0MH01904F crossref_citationtrail_10_1039_D0MH01904F rsc_primary_d0mh01904f |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Materials horizons |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry the Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: the Royal Society of Chemistry |
References | Yang (D0MH01904F-(cit60)/*[position()=1]) 2018; 9 Gao (D0MH01904F-(cit30)/*[position()=1]) 2019; 11 Kamminga (D0MH01904F-(cit51)/*[position()=1]) 2016; 28 Lédée (D0MH01904F-(cit16)/*[position()=1]) 2017; 19 Adamo (D0MH01904F-(cit57)/*[position()=1]) 2000; 330 Cao (D0MH01904F-(cit1)/*[position()=1]) 2015; 137 Jemli (D0MH01904F-(cit47)/*[position()=1]) 2015; 7 Zhang (D0MH01904F-(cit15)/*[position()=1]) 2009; 57 Even (D0MH01904F-(cit18)/*[position()=1]) 2014; 15 Quinton (D0MH01904F-(cit53)/*[position()=1]) 2015; 5 Ema (D0MH01904F-(cit24)/*[position()=1]) 2008; 100 Tsai (D0MH01904F-(cit3)/*[position()=1]) 2016; 536 Rubio (D0MH01904F-(cit59)/*[position()=1]) 1999; 96 Ishihara (D0MH01904F-(cit19)/*[position()=1]) 1990; 42 Even (D0MH01904F-(cit25)/*[position()=1]) 2013; 4 Liu (D0MH01904F-(cit7)/*[position()=1]) 2018; 9 Lanty (D0MH01904F-(cit23)/*[position()=1]) 2014; 5 Kawano (D0MH01904F-(cit34)/*[position()=1]) 2012; 116 Quarti (D0MH01904F-(cit65)/*[position()=1]) 2020; 3 Marchal (D0MH01904F-(cit43)/*[position()=1]) 2019; 31 Lanty (D0MH01904F-(cit13)/*[position()=1]) 2008; 93 Waluk (D0MH01904F-(cit54)/*[position()=1]) 1995; 200 Miomandre (D0MH01904F-(cit48)/*[position()=1]) 2020; 44 Dunlap-Shohl (D0MH01904F-(cit32)/*[position()=1]) 2019; 6 Brehier (D0MH01904F-(cit10)/*[position()=1]) 2006; 89 Nooijen (D0MH01904F-(cit58)/*[position()=1]) 2000; 104 Liu (D0MH01904F-(cit31)/*[position()=1]) 2018; 121 Morimoto (D0MH01904F-(cit39)/*[position()=1]) 2010; 215 Gompel (D0MH01904F-(cit42)/*[position()=1]) 2019; 55 Chondroudis (D0MH01904F-(cit45)/*[position()=1]) 1999; 11 Adamo (D0MH01904F-(cit64)/*[position()=1]) 1999; 110 Leveillee (D0MH01904F-(cit27)/*[position()=1]) 2019; 19 Umebayashi (D0MH01904F-(cit66)/*[position()=1]) 2003; 67 Liang (D0MH01904F-(cit5)/*[position()=1]) 2016; 10 Papavassiliou (D0MH01904F-(cit36)/*[position()=1]) 2014; 149 Smith (D0MH01904F-(cit2)/*[position()=1]) 2014; 53 Proppe (D0MH01904F-(cit40)/*[position()=1]) 2020; 124 Hong (D0MH01904F-(cit22)/*[position()=1]) 1992; 45 Chong (D0MH01904F-(cit4)/*[position()=1]) 2016; 18 Mitzi (D0MH01904F-(cit14)/*[position()=1]) 2001 Mitzi (D0MH01904F-(cit37)/*[position()=1]) 1999; 38 Fujita (D0MH01904F-(cit11)/*[position()=1]) 1998; 57 Braun (D0MH01904F-(cit35)/*[position()=1]) 1999; 307 Braun (D0MH01904F-(cit41)/*[position()=1]) 1999; 303 Passarelli (D0MH01904F-(cit29)/*[position()=1]) 2018; 140 Katan (D0MH01904F-(cit28)/*[position()=1]) 2019; 119 Quarti (D0MH01904F-(cit26)/*[position()=1]) 2018; 9 Clavier (D0MH01904F-(cit49)/*[position()=1]) 2010; 110 Audebert (D0MH01904F-(cit50)/*[position()=1]) 2005; 11 Lee (D0MH01904F-(cit61)/*[position()=1]) 2010; 82 Liu (D0MH01904F-(cit8)/*[position()=1]) 2019; 1 Wang (D0MH01904F-(cit6)/*[position()=1]) 2016; 10 Giorgi (D0MH01904F-(cit62)/*[position()=1]) 2018; 9 Era (D0MH01904F-(cit44)/*[position()=1]) 1998; 296 Han (D0MH01904F-(cit12)/*[position()=1]) 2012; 37 Leveillee (D0MH01904F-(cit17)/*[position()=1]) 2018; 2 Blancon (D0MH01904F-(cit20)/*[position()=1]) 2018; 9 Mitzi (D0MH01904F-(cit52)/*[position()=1]) 1999; 145 Umeyama (D0MH01904F-(cit68)/*[position()=1]) 2020; 59 Peng (D0MH01904F-(cit9)/*[position()=1]) 2017; 17 Gélvez-Rueda (D0MH01904F-(cit46)/*[position()=1]) 2020; 11 Cortecchia (D0MH01904F-(cit55)/*[position()=1]) 2019; 7 Van Gompel (D0MH01904F-(cit38)/*[position()=1]) 2020; 8 Cortecchia (D0MH01904F-(cit63)/*[position()=1]) 2017; 139 Deng (D0MH01904F-(cit33)/*[position()=1]) 2020; 152 García-Benito (D0MH01904F-(cit67)/*[position()=1]) 2020; 7 Gauthron (D0MH01904F-(cit21)/*[position()=1]) 2010; 18 Le (D0MH01904F-(cit56)/*[position()=1]) 2019; 84 |
References_xml | – volume: 139 start-page: 39 year: 2017 ident: D0MH01904F-(cit63)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10390 – volume: 57 start-page: 3301 year: 2009 ident: D0MH01904F-(cit15)/*[position()=1] publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.03.037 – volume: 53 start-page: 11232 year: 2014 ident: D0MH01904F-(cit2)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201406466 – volume: 140 start-page: 7313 year: 2018 ident: D0MH01904F-(cit29)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b03659 – volume: 9 start-page: 5302 year: 2018 ident: D0MH01904F-(cit7)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-07440-2 – volume: 9 start-page: 8975 year: 2018 ident: D0MH01904F-(cit60)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC03563F – volume: 152 start-page: 044711 year: 2020 ident: D0MH01904F-(cit33)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.5131801 – volume: 5 start-page: 49728 year: 2015 ident: D0MH01904F-(cit53)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA07253K – volume: 38 start-page: 6246 year: 1999 ident: D0MH01904F-(cit37)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic991048k – volume: 9 start-page: 3416 year: 2018 ident: D0MH01904F-(cit26)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b01309 – volume: 44 start-page: 100372 year: 2020 ident: D0MH01904F-(cit48)/*[position()=1] publication-title: J. Photochem. Photobiol., C doi: 10.1016/j.jphotochemrev.2020.100372 – volume: 110 start-page: 6158 year: 1999 ident: D0MH01904F-(cit64)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.478522 – volume: 84 start-page: 16139 year: 2019 ident: D0MH01904F-(cit56)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/acs.joc.9b02454 – volume: 2 start-page: 105406 year: 2018 ident: D0MH01904F-(cit17)/*[position()=1] publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.2.105406 – volume: 8 start-page: 7181 year: 2020 ident: D0MH01904F-(cit38)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/D0TC01053G – volume: 11 start-page: 1151 year: 2019 ident: D0MH01904F-(cit30)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-019-0354-2 – volume: 28 start-page: 4554 year: 2016 ident: D0MH01904F-(cit51)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00809 – volume: 3 start-page: 042001 year: 2020 ident: D0MH01904F-(cit65)/*[position()=1] publication-title: JPhys Mater. doi: 10.1088/2515-7639/aba6f6 – volume: 149 start-page: 287 year: 2014 ident: D0MH01904F-(cit36)/*[position()=1] publication-title: J. Lumin. doi: 10.1016/j.jlumin.2014.01.050 – volume: 296 start-page: 417 year: 1998 ident: D0MH01904F-(cit44)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(98)01028-8 – volume: 110 start-page: 3299 year: 2010 ident: D0MH01904F-(cit49)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr900357e – volume: 1 start-page: 465 year: 2019 ident: D0MH01904F-(cit8)/*[position()=1] publication-title: Matter doi: 10.1016/j.matt.2019.04.002 – volume: 145 start-page: 694 year: 1999 ident: D0MH01904F-(cit52)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1006/jssc.1999.8281 – volume: 10 start-page: 699 year: 2016 ident: D0MH01904F-(cit6)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.185 – volume: 7 start-page: 21763 year: 2015 ident: D0MH01904F-(cit47)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05279 – volume: 11 start-page: 1901 year: 2020 ident: D0MH01904F-(cit46)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-15869-7 – volume: 5 start-page: 3958 year: 2014 ident: D0MH01904F-(cit23)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502086e – volume: 18 start-page: 14701 year: 2016 ident: D0MH01904F-(cit4)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP01955B – volume: 536 start-page: 312 year: 2016 ident: D0MH01904F-(cit3)/*[position()=1] publication-title: Nature doi: 10.1038/nature18306 – volume: 10 start-page: 6897 year: 2016 ident: D0MH01904F-(cit5)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b02683 – volume: 57 start-page: 12428 year: 1998 ident: D0MH01904F-(cit11)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.57.12428 – volume: 9 start-page: 5891 year: 2018 ident: D0MH01904F-(cit62)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b02653 – volume: 17 start-page: 4759 year: 2017 ident: D0MH01904F-(cit9)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01475 – volume: 11 start-page: 5667 year: 2005 ident: D0MH01904F-(cit50)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200401252 – volume: 19 start-page: 2598 year: 2017 ident: D0MH01904F-(cit16)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C7CE00240H – volume: 45 start-page: 6961 year: 1992 ident: D0MH01904F-(cit22)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.45.6961 – volume: 137 start-page: 7843 year: 2015 ident: D0MH01904F-(cit1)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03796 – start-page: 1 year: 2001 ident: D0MH01904F-(cit14)/*[position()=1] publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/b007070j – volume: 119 start-page: 3140 year: 2019 ident: D0MH01904F-(cit28)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00417 – volume: 11 start-page: 3028 year: 1999 ident: D0MH01904F-(cit45)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm990561t – volume: 100 start-page: 257401 year: 2008 ident: D0MH01904F-(cit24)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.257401 – volume: 37 start-page: 5061 year: 2012 ident: D0MH01904F-(cit12)/*[position()=1] publication-title: Opt. Lett. doi: 10.1364/OL.37.005061 – volume: 7 start-page: 946 year: 2020 ident: D0MH01904F-(cit67)/*[position()=1] publication-title: Front. Chem. doi: 10.3389/fchem.2019.00946 – volume: 330 start-page: 152 year: 2000 ident: D0MH01904F-(cit57)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(00)01082-4 – volume: 215 start-page: 012044 year: 2010 ident: D0MH01904F-(cit39)/*[position()=1] publication-title: J. Phys.: Conf. Ser. – volume: 200 start-page: 201 year: 1995 ident: D0MH01904F-(cit54)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/0301-0104(95)00179-R – volume: 4 start-page: 2999 year: 2013 ident: D0MH01904F-(cit25)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz401532q – volume: 55 start-page: 2481 year: 2019 ident: D0MH01904F-(cit42)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC09955C – volume: 31 start-page: 6880 year: 2019 ident: D0MH01904F-(cit43)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01289 – volume: 303 start-page: 157 year: 1999 ident: D0MH01904F-(cit41)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)00205-5 – volume: 104 start-page: 4553 year: 2000 ident: D0MH01904F-(cit58)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp993983z – volume: 67 start-page: 155405 year: 2003 ident: D0MH01904F-(cit66)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.67.155405 – volume: 19 start-page: 8732 year: 2019 ident: D0MH01904F-(cit27)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03427 – volume: 15 start-page: 3733 year: 2014 ident: D0MH01904F-(cit18)/*[position()=1] publication-title: ChemPhysChem doi: 10.1002/cphc.201402428 – volume: 9 start-page: 2254 year: 2018 ident: D0MH01904F-(cit20)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-04659-x – volume: 307 start-page: 373 year: 1999 ident: D0MH01904F-(cit35)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)00526-6 – volume: 121 start-page: 146401 year: 2018 ident: D0MH01904F-(cit31)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.146401 – volume: 116 start-page: 22992 year: 2012 ident: D0MH01904F-(cit34)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp304531h – volume: 124 start-page: 24379 year: 2020 ident: D0MH01904F-(cit40)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c05521 – volume: 59 start-page: 19087 year: 2020 ident: D0MH01904F-(cit68)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005012 – volume: 6 start-page: 1707 year: 2019 ident: D0MH01904F-(cit32)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C9MH00366E – volume: 89 start-page: 171110 year: 2006 ident: D0MH01904F-(cit10)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2369533 – volume: 82 start-page: 081101 year: 2010 ident: D0MH01904F-(cit61)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.82.081101 – volume: 93 start-page: 081101 year: 2008 ident: D0MH01904F-(cit13)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2971206 – volume: 18 start-page: 5912 year: 2010 ident: D0MH01904F-(cit21)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.18.005912 – volume: 96 start-page: 603 year: 1999 ident: D0MH01904F-(cit59)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268979909482997 – volume: 42 start-page: 11099 year: 1990 ident: D0MH01904F-(cit19)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.42.11099 – volume: 7 start-page: 4956 year: 2019 ident: D0MH01904F-(cit55)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C9TC01036J |
SSID | ssj0001345080 |
Score | 2.3687432 |
Snippet | Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the... |
SourceID | hal proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1547 |
SubjectTerms | Charge transfer Chemical Sciences Chromophores Condensed Matter Conduction bands Crystallography Electron transfer Electronic structure Energy transfer Excitons Feasibility Heterostructures Material chemistry Optical properties or physical chemistry Perovskite structure Perovskites Photoluminescence Physics Playgrounds Synthesis Theoretical and Time dependence |
Title | Tetrazine molecules as an efficient electronic diversion channel in 2D organic-inorganic perovskites |
URI | https://www.proquest.com/docview/2524673511 https://www.proquest.com/docview/2604832385 https://hal.science/hal-03164870 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF4l6QUOiFeFS0HL44IiF9u73tjHQNoG1CIOqdSbtS8rkVKnSpweeuI_8D_4UfwSZr322kAOBSlyosna8WY-z8zOzgOht0GstZZa-mmsAp_GKvTTRCo_plxFgRIhk1WU7xc2vaCfL-PLXu9HJ2ppW4ojebszr-R_uAo04KvJkv0HzrqLAgE-A3_hCByG4914rMt1VR56eGW73OqN6RsDj6yuKkOYff5OnxtlYzCA3ybdt9Cm3MYwmtSdnWQT90AWRU0xRY1XNxvj4N10rdhzXtrpDeer9eK28fiZuB678a7smw0d1oDBwjYKsdjaKi3qVKGvoJXb8NsZSLBre6o_BnzasPtTXpE-LJdu4ClfGiepbjK7m-id2n0RhW2woJVyEUgFnxFbdvNId2m2fm8jppMOGuOOyAUbcNRR3yYzfKdqCIiprDoJzqcmfZ6etAqw2fT_Qy-6aMVqn56kWXtuH-1FsCyJBmhvfDz7dNZ69QgFi9c49ty8mpq4JH3fXuA3K6g_NzG4nQVOf910n6msnNlD9KBenuCxxdoj1NPFY3S_U7TyCcod6rBDHebwKrBDHW5Rhx3qcI06vChwNME1xn5---7whjt4e4ouTo5nH6d-3a3Dl7DoLX2VJIyHIlAsBjUxihgH5SFGQUoUp_lIhTRM8sp9EBMKq1hGRpzkmnNYQUihU7KPBsWq0M8QlgLEBFc0VYTRPASDiQkqmA60pDIRzEPvmn8vk3Upe9NRZZn9zSoPvXFjr20Bl52jXgMT3ABTc306PssMDbQegwkGN6GHDhseZbUU2GRRHIGtYbbjPfTKfQ0y2my88UKvtjCGmcYNYBzHHtoH3rrfUcHVvLqB_OBOt_kc3WufoUM0KNdb_QKM4lK8rJH4C4eotLQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tetrazine+molecules+as+an+efficient+electronic+diversion+channel+in+2D+organic%E2%80%93inorganic+perovskites&rft.jtitle=Materials+horizons&rft.au=L%C3%A9d%C3%A9e%2C+Ferdinand&rft.au=Audebert%2C+Pierre&rft.au=Tripp%C3%A9-Allard%2C+Ga%C3%ABlle&rft.au=Galmiche%2C+Laurent&rft.date=2021-05-01&rft.issn=2051-6347&rft.eissn=2051-6355&rft.volume=8&rft.issue=5&rft.spage=1547&rft.epage=1560&rft_id=info:doi/10.1039%2FD0MH01904F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0MH01904F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon |