Tetrazine molecules as an efficient electronic diversion channel in 2D organic-inorganic perovskites

Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetra...

Full description

Saved in:
Bibliographic Details
Published inMaterials horizons Vol. 8; no. 5; pp. 1547 - 156
Main Authors Lédée, Ferdinand, Audebert, Pierre, Trippé-Allard, Gaëlle, Galmiche, Laurent, Garrot, Damien, Marrot, Jérôme, Lauret, Jean-Sébastien, Deleporte, Emmanuelle, Katan, Claudine, Even, Jacky, Quarti, Claudio
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.05.2021
the Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. Namely, the use of a heterocyclic ring containing a nitrogen proportion imparts a unique electronic structure to the organic component, with the lowest energy optical absorption in the blue region. The present compound, a tetrazine, presents several resonances between the organic and inorganic components, both in terms of single particle electronic levels and exciton states, providing the ideal playground to discuss charge and energy transfer mechanisms at the organic/inorganic interface. Photophysical studies along with hybrid time-dependent DFT simulations demonstrate partial energy transfer and rationalise the suppressed emission from the perovskite frame in terms of different energy-transfer diversion channels, potentially involving both singlet and triplet states of the organic spacer. Periodic DFT simulations also support the feasibility of electron transfer from the conduction band of the inorganic component to the LUMO of the spacer as a potential quenching mechanism, suggesting the coexistence and competition of charge and energy transfer mechanisms in these heterostructures. Our work proves the feasibility of inserting photoactive small rings in a 2D perovskite structure, meanwhile providing a robust frame to rationalize the electronic interactions between the semiconducting inorganic layer and organic chromophores, with the prospects of optimizing the organic moiety according to the envisaged application. Taking advantage of an innovative design concept, we present the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component.
AbstractList Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. Namely, the use of a heterocyclic ring containing a nitrogen proportion imparts a unique electronic structure to the organic component, with the lowest energy optical absorption in the blue region. The present compound, a tetrazine, presents several resonances between the organic and inorganic components, both in terms of single particle electronic levels and exciton states, providing the ideal playground to discuss charge and energy transfer mechanisms at the organic/inorganic interface. Photophysical studies along with hybrid time-dependent DFT simulations demonstrate partial energy transfer and rationalise the suppressed emission from the perovskite frame in terms of different energy-transfer diversion channels, potentially involving both singlet and triplet states of the organic spacer. Periodic DFT simulations also support the feasibility of electron transfer from the conduction band of the inorganic component to the LUMO of the spacer as a potential quenching mechanism, suggesting the coexistence and competition of charge and energy transfer mechanisms in these heterostructures. Our work proves the feasibility of inserting photoactive small rings in a 2D perovskite structure, meanwhile providing a robust frame to rationalize the electronic interactions between the semiconducting inorganic layer and organic chromophores, with the prospects of optimizing the organic moiety according to the envisaged application. Taking advantage of an innovative design concept, we present the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component.
Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic–inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. Namely, the use of a heterocyclic ring containing a nitrogen proportion imparts a unique electronic structure to the organic component, with the lowest energy optical absorption in the blue region. The present compound, a tetrazine, presents several resonances between the organic and inorganic components, both in terms of single particle electronic levels and exciton states, providing the ideal playground to discuss charge and energy transfer mechanisms at the organic/inorganic interface. Photophysical studies along with hybrid time-dependent DFT simulations demonstrate partial energy transfer and rationalise the suppressed emission from the perovskite frame in terms of different energy-transfer diversion channels, potentially involving both singlet and triplet states of the organic spacer. Periodic DFT simulations also support the feasibility of electron transfer from the conduction band of the inorganic component to the LUMO of the spacer as a potential quenching mechanism, suggesting the coexistence and competition of charge and energy transfer mechanisms in these heterostructures. Our work proves the feasibility of inserting photoactive small rings in a 2D perovskite structure, meanwhile providing a robust frame to rationalize the electronic interactions between the semiconducting inorganic layer and organic chromophores, with the prospects of optimizing the organic moiety according to the envisaged application.
Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. Namely, the use of a heterocyclic ring containing a nitrogen proportion imparts a unique electronic structure to the organic component, with the lowest energy optical absorption in the blue region. The present compound, a tetrazine, presents several resonances between the organic and inorganic components, both in terms of single particle electronic levels and exciton states, providing the ideal playground to discuss charge and energy transfer mechanisms at the organic/inorganic interface. Photophysical studies along with hybrid time-dependent DFT simulations demonstrate partial energy transfer and rationalise the suppressed emission from the perovskite frame in terms of different energy-transfer diversion channels, potentially involving both singlet and triplet states of the organic spacer. Periodic DFT simulations also support the feasibility of electron transfer from the conduction band of the inorganic component to the LUMO of the spacer as a potential quenching mechanism, suggesting the coexistence and competition of charge and energy transfer mechanisms in these heterostructures. Our work proves the feasibility of inserting photoactive small rings in a 2D perovskite structure, meanwhile providing a robust frame to rationalize the electronic interactions between the semiconducting inorganic layer and organic chromophores, with the prospects of optimizing the organic moiety according to the envisaged application.Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. Namely, the use of a heterocyclic ring containing a nitrogen proportion imparts a unique electronic structure to the organic component, with the lowest energy optical absorption in the blue region. The present compound, a tetrazine, presents several resonances between the organic and inorganic components, both in terms of single particle electronic levels and exciton states, providing the ideal playground to discuss charge and energy transfer mechanisms at the organic/inorganic interface. Photophysical studies along with hybrid time-dependent DFT simulations demonstrate partial energy transfer and rationalise the suppressed emission from the perovskite frame in terms of different energy-transfer diversion channels, potentially involving both singlet and triplet states of the organic spacer. Periodic DFT simulations also support the feasibility of electron transfer from the conduction band of the inorganic component to the LUMO of the spacer as a potential quenching mechanism, suggesting the coexistence and competition of charge and energy transfer mechanisms in these heterostructures. Our work proves the feasibility of inserting photoactive small rings in a 2D perovskite structure, meanwhile providing a robust frame to rationalize the electronic interactions between the semiconducting inorganic layer and organic chromophores, with the prospects of optimizing the organic moiety according to the envisaged application.
Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as organic component. Namely, the use of a heterocyclic ring containing a nitrogen proportion imparts a unique electronic structure to the organic component, with lowest energy optical absorption in the blue. The present compound, a tetrazine, presents several resonances between the organic and inorganic components, both in terms of single particle electronic levels and exciton states, providing the ideal playground to discuss charge and energy transfer mechanisms at the organic/inorganic interface. Photophysical studies along with hybrid Time-Dependent DFT simulations demonstrate partial energy transfer and rationalise the suppressed emission from the perovskite frame in terms of different energy-transfer diversion channels, potentially involving both singlet and triplet states of the organic spacer. Periodic DFT simulations also support the feasibility of electron transfers from the conduction band of the inorganic component to the LUMO of the spacer as potential quenching mechanism, suggesting the coexistence and competition of charge and energy transfer mechanisms in these heterostructure. Our work proves the feasibility of inserting photoactive small rings in a 2D perovskite structure, meanwhile providing a robust frame to rationalize the electronic interactions between the semiconducting inorganic layer and organic chromophores, with the prospects of optimizing the organic moiety according to the envisaged application.
Author Lédée, Ferdinand
Galmiche, Laurent
Garrot, Damien
Deleporte, Emmanuelle
Even, Jacky
Quarti, Claudio
Marrot, Jérôme
Lauret, Jean-Sébastien
Audebert, Pierre
Trippé-Allard, Gaëlle
Katan, Claudine
AuthorAffiliation LuMIn (Laboratoire Lumière, Matière et Interfaces)
ILV (Institut Lavoisier de Versailles) - UMR 8180
CentraleSupelec
Univ Rennes, ENSCR, INSA Rennes
Université Paris-Saclay
INSA Rennes
GEMaC (Groupe d'étude de la Matière Condensée) - UMR 8635
ENS Paris-Saclay
Univ Rennes
Institut FOTON (Fonctions Optiques pour les Technologies de l'Information) - UMR 6082
CNRS
Laboratory for Chemistry of Novel Materials
ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
UVSQ
University of Mons
PPSM (Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires) - UMR 8531
AuthorAffiliation_xml – name: PPSM (Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires) - UMR 8531
– name: LuMIn (Laboratoire Lumière, Matière et Interfaces)
– name: CentraleSupelec
– name: ILV (Institut Lavoisier de Versailles) - UMR 8180
– name: INSA Rennes
– name: CNRS
– name: ENS Paris-Saclay
– name: Université Paris-Saclay
– name: Univ Rennes
– name: UVSQ
– name: Institut FOTON (Fonctions Optiques pour les Technologies de l'Information) - UMR 6082
– name: Laboratory for Chemistry of Novel Materials
– name: ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
– name: University of Mons
– name: Univ Rennes, ENSCR, INSA Rennes
– name: GEMaC (Groupe d'étude de la Matière Condensée) - UMR 8635
Author_xml – sequence: 1
  givenname: Ferdinand
  surname: Lédée
  fullname: Lédée, Ferdinand
– sequence: 2
  givenname: Pierre
  surname: Audebert
  fullname: Audebert, Pierre
– sequence: 3
  givenname: Gaëlle
  surname: Trippé-Allard
  fullname: Trippé-Allard, Gaëlle
– sequence: 4
  givenname: Laurent
  surname: Galmiche
  fullname: Galmiche, Laurent
– sequence: 5
  givenname: Damien
  surname: Garrot
  fullname: Garrot, Damien
– sequence: 6
  givenname: Jérôme
  surname: Marrot
  fullname: Marrot, Jérôme
– sequence: 7
  givenname: Jean-Sébastien
  surname: Lauret
  fullname: Lauret, Jean-Sébastien
– sequence: 8
  givenname: Emmanuelle
  surname: Deleporte
  fullname: Deleporte, Emmanuelle
– sequence: 9
  givenname: Claudine
  surname: Katan
  fullname: Katan, Claudine
– sequence: 10
  givenname: Jacky
  surname: Even
  fullname: Even, Jacky
– sequence: 11
  givenname: Claudio
  surname: Quarti
  fullname: Quarti, Claudio
BackLink https://hal.science/hal-03164870$$DView record in HAL
BookMark eNptkd9rFDEQx4NUbK198V0I-FKFrZPNz30sre0VrvhSn0MuO-ul7iVnsnegf725Xm2hCAMzZD7zI_N9Sw5iikjIewZnDHj3pYfVElgHYnhFjlqQrFFcyoOnWOhDclLKPQAwLiQYeEMOuTBCCcWPSH-HU3Z_QkS6SiP6zYiFumqR4jAEHzBOFGtiyikGT_uwxVxCitQvXYw40hBpe0lT_uFqvgnxMaJrzGlbfoYJyzvyenBjwZNHf0y-X329u5g182_XNxfn88YLo6emN0Y5toBeSWa4bpXTHBYaOt47MeieCWYGAZppyUWn6_7a8QGd63jrF9jxY_Jp33fpRrvOYeXyb5tcsLPzud29AWeqjoItq-zpnl3n9GuDZbKrUDyOo4uYNsW2CoThLTeyoh9foPdpk2P9iW1lK5Tmku0awp7yOZWScbA-TG6qp6oHDqNlYHeC2Uu4nT0IdlVLPr8o-bf0f-EPezgX_8Q9q8__AhyYnfc
CitedBy_id crossref_primary_10_1021_jacs_3c02143
crossref_primary_10_1002_smll_202207426
crossref_primary_10_1021_acs_inorgchem_3c04536
crossref_primary_10_1021_acs_jpclett_2c03882
crossref_primary_10_1039_D3TC00507K
crossref_primary_10_1016_j_mtelec_2024_100100
crossref_primary_10_1021_acsmaterialslett_3c00509
crossref_primary_10_1021_acsami_4c22487
crossref_primary_10_1021_acs_jpcc_3c04647
crossref_primary_10_1039_D3QM00184A
crossref_primary_10_1021_acs_chemmater_2c03718
crossref_primary_10_1021_acs_jpcc_1c08095
crossref_primary_10_1016_j_nimb_2024_165291
crossref_primary_10_1002_ange_202314092
crossref_primary_10_1002_anie_202402634
crossref_primary_10_1016_j_jpowsour_2023_233364
crossref_primary_10_1039_D3MH01883K
crossref_primary_10_1039_D3NJ05306G
crossref_primary_10_1002_ange_202402634
crossref_primary_10_1021_acsnano_4c08208
crossref_primary_10_1002_anie_202314092
crossref_primary_10_3390_cryst11111424
crossref_primary_10_1002_adom_202101145
crossref_primary_10_1002_adom_202202801
crossref_primary_10_1039_D3OB00595J
crossref_primary_10_1039_D3TC02553E
crossref_primary_10_1021_acs_orglett_3c00955
crossref_primary_10_1021_jacsau_1c00429
Cites_doi 10.1021/jacs.6b10390
10.1016/j.actamat.2009.03.037
10.1002/anie.201406466
10.1021/jacs.8b03659
10.1038/s41467-018-07440-2
10.1039/C8SC03563F
10.1063/1.5131801
10.1039/C5RA07253K
10.1021/ic991048k
10.1021/acs.jpclett.8b01309
10.1016/j.jphotochemrev.2020.100372
10.1063/1.478522
10.1021/acs.joc.9b02454
10.1103/PhysRevMaterials.2.105406
10.1039/D0TC01053G
10.1038/s41557-019-0354-2
10.1021/acs.chemmater.6b00809
10.1088/2515-7639/aba6f6
10.1016/j.jlumin.2014.01.050
10.1016/S0009-2614(98)01028-8
10.1021/cr900357e
10.1016/j.matt.2019.04.002
10.1006/jssc.1999.8281
10.1038/nphoton.2016.185
10.1021/acsami.5b05279
10.1038/s41467-020-15869-7
10.1021/jz502086e
10.1039/C6CP01955B
10.1038/nature18306
10.1021/acsnano.6b02683
10.1103/PhysRevB.57.12428
10.1021/acs.jpclett.8b02653
10.1021/acs.nanolett.7b01475
10.1002/chem.200401252
10.1039/C7CE00240H
10.1103/PhysRevB.45.6961
10.1021/jacs.5b03796
10.1039/b007070j
10.1021/acs.chemrev.8b00417
10.1021/cm990561t
10.1103/PhysRevLett.100.257401
10.1364/OL.37.005061
10.3389/fchem.2019.00946
10.1016/S0009-2614(00)01082-4
10.1016/0301-0104(95)00179-R
10.1021/jz401532q
10.1039/C8CC09955C
10.1021/acs.chemmater.9b01289
10.1016/S0009-2614(99)00205-5
10.1021/jp993983z
10.1103/PhysRevB.67.155405
10.1021/acs.nanolett.9b03427
10.1002/cphc.201402428
10.1038/s41467-018-04659-x
10.1016/S0009-2614(99)00526-6
10.1103/PhysRevLett.121.146401
10.1021/jp304531h
10.1021/acs.jpcc.0c05521
10.1002/anie.202005012
10.1039/C9MH00366E
10.1063/1.2369533
10.1103/PhysRevB.82.081101
10.1063/1.2971206
10.1364/OE.18.005912
10.1080/00268979909482997
10.1103/PhysRevB.42.11099
10.1039/C9TC01036J
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
1XC
VOOES
DOI 10.1039/d0mh01904f
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2051-6355
EndPage 156
ExternalDocumentID oai_HAL_hal_03164870v1
10_1039_D0MH01904F
d0mh01904f
GroupedDBID 0R
4.4
AAEMU
AAGNR
AAIWI
AAJAE
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
H13
HZ
H~N
J3I
O-G
O9-
RCNCU
RIG
RPMJG
RRC
RSCEA
0R~
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABPDG
ABXOH
AEFDR
AENGV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AHGCF
AKBGW
AKMSF
APEMP
CITATION
GGIMP
HZ~
RAOCF
RVUXY
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
1XC
VOOES
ID FETCH-LOGICAL-c487t-d886a1b0d65183726a730b7093da4f7d1418f40717534974637a3feaa932cbe93
ISSN 2051-6347
2051-6355
IngestDate Tue Sep 02 06:29:44 EDT 2025
Fri Jul 11 15:31:40 EDT 2025
Mon Jun 30 02:06:59 EDT 2025
Tue Jul 01 01:36:14 EDT 2025
Thu Apr 24 23:04:19 EDT 2025
Sun Apr 24 14:59:25 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords energy transfer
DFT
halide perovskites
tetrazine
band alignement
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c487t-d886a1b0d65183726a730b7093da4f7d1418f40717534974637a3feaa932cbe93
Notes perovskite; detailed optical properties of the newly synthesized compounds; details on oxidative electron transfer; details on the computational parameters for periodic DFT and molecular TD-DFT calculations; detailed analysis of the atomic projected Density of States from DFT and related isosurfaces of frontier electronic levels. For ESI and crystallographic data in CIF or other electronic format see DOI
2038924
2
4
10.1039/d0mh01904f
Electronic supplementary information (ESI) available: Details on the synthesis and XRD characterization (cif file deposited at the CCDC with reference
photoluminescence for pristine PEA
PbCl
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9949-0529
0000-0001-9943-7808
0000-0002-5488-1216
0000-0002-2017-5823
0000-0003-1309-4977
0000-0002-4607-3390
0000-0002-4865-8536
0000-0002-0765-0984
0000-0002-5351-4908
OpenAccessLink https://hal.science/hal-03164870
PMID 34846463
PQID 2524673511
PQPubID 2047518
PageCount 14
ParticipantIDs proquest_journals_2524673511
proquest_miscellaneous_2604832385
hal_primary_oai_HAL_hal_03164870v1
crossref_primary_10_1039_D0MH01904F
crossref_citationtrail_10_1039_D0MH01904F
rsc_primary_d0mh01904f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Materials horizons
PublicationYear 2021
Publisher Royal Society of Chemistry
the Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: the Royal Society of Chemistry
References Yang (D0MH01904F-(cit60)/*[position()=1]) 2018; 9
Gao (D0MH01904F-(cit30)/*[position()=1]) 2019; 11
Kamminga (D0MH01904F-(cit51)/*[position()=1]) 2016; 28
Lédée (D0MH01904F-(cit16)/*[position()=1]) 2017; 19
Adamo (D0MH01904F-(cit57)/*[position()=1]) 2000; 330
Cao (D0MH01904F-(cit1)/*[position()=1]) 2015; 137
Jemli (D0MH01904F-(cit47)/*[position()=1]) 2015; 7
Zhang (D0MH01904F-(cit15)/*[position()=1]) 2009; 57
Even (D0MH01904F-(cit18)/*[position()=1]) 2014; 15
Quinton (D0MH01904F-(cit53)/*[position()=1]) 2015; 5
Ema (D0MH01904F-(cit24)/*[position()=1]) 2008; 100
Tsai (D0MH01904F-(cit3)/*[position()=1]) 2016; 536
Rubio (D0MH01904F-(cit59)/*[position()=1]) 1999; 96
Ishihara (D0MH01904F-(cit19)/*[position()=1]) 1990; 42
Even (D0MH01904F-(cit25)/*[position()=1]) 2013; 4
Liu (D0MH01904F-(cit7)/*[position()=1]) 2018; 9
Lanty (D0MH01904F-(cit23)/*[position()=1]) 2014; 5
Kawano (D0MH01904F-(cit34)/*[position()=1]) 2012; 116
Quarti (D0MH01904F-(cit65)/*[position()=1]) 2020; 3
Marchal (D0MH01904F-(cit43)/*[position()=1]) 2019; 31
Lanty (D0MH01904F-(cit13)/*[position()=1]) 2008; 93
Waluk (D0MH01904F-(cit54)/*[position()=1]) 1995; 200
Miomandre (D0MH01904F-(cit48)/*[position()=1]) 2020; 44
Dunlap-Shohl (D0MH01904F-(cit32)/*[position()=1]) 2019; 6
Brehier (D0MH01904F-(cit10)/*[position()=1]) 2006; 89
Nooijen (D0MH01904F-(cit58)/*[position()=1]) 2000; 104
Liu (D0MH01904F-(cit31)/*[position()=1]) 2018; 121
Morimoto (D0MH01904F-(cit39)/*[position()=1]) 2010; 215
Gompel (D0MH01904F-(cit42)/*[position()=1]) 2019; 55
Chondroudis (D0MH01904F-(cit45)/*[position()=1]) 1999; 11
Adamo (D0MH01904F-(cit64)/*[position()=1]) 1999; 110
Leveillee (D0MH01904F-(cit27)/*[position()=1]) 2019; 19
Umebayashi (D0MH01904F-(cit66)/*[position()=1]) 2003; 67
Liang (D0MH01904F-(cit5)/*[position()=1]) 2016; 10
Papavassiliou (D0MH01904F-(cit36)/*[position()=1]) 2014; 149
Smith (D0MH01904F-(cit2)/*[position()=1]) 2014; 53
Proppe (D0MH01904F-(cit40)/*[position()=1]) 2020; 124
Hong (D0MH01904F-(cit22)/*[position()=1]) 1992; 45
Chong (D0MH01904F-(cit4)/*[position()=1]) 2016; 18
Mitzi (D0MH01904F-(cit14)/*[position()=1]) 2001
Mitzi (D0MH01904F-(cit37)/*[position()=1]) 1999; 38
Fujita (D0MH01904F-(cit11)/*[position()=1]) 1998; 57
Braun (D0MH01904F-(cit35)/*[position()=1]) 1999; 307
Braun (D0MH01904F-(cit41)/*[position()=1]) 1999; 303
Passarelli (D0MH01904F-(cit29)/*[position()=1]) 2018; 140
Katan (D0MH01904F-(cit28)/*[position()=1]) 2019; 119
Quarti (D0MH01904F-(cit26)/*[position()=1]) 2018; 9
Clavier (D0MH01904F-(cit49)/*[position()=1]) 2010; 110
Audebert (D0MH01904F-(cit50)/*[position()=1]) 2005; 11
Lee (D0MH01904F-(cit61)/*[position()=1]) 2010; 82
Liu (D0MH01904F-(cit8)/*[position()=1]) 2019; 1
Wang (D0MH01904F-(cit6)/*[position()=1]) 2016; 10
Giorgi (D0MH01904F-(cit62)/*[position()=1]) 2018; 9
Era (D0MH01904F-(cit44)/*[position()=1]) 1998; 296
Han (D0MH01904F-(cit12)/*[position()=1]) 2012; 37
Leveillee (D0MH01904F-(cit17)/*[position()=1]) 2018; 2
Blancon (D0MH01904F-(cit20)/*[position()=1]) 2018; 9
Mitzi (D0MH01904F-(cit52)/*[position()=1]) 1999; 145
Umeyama (D0MH01904F-(cit68)/*[position()=1]) 2020; 59
Peng (D0MH01904F-(cit9)/*[position()=1]) 2017; 17
Gélvez-Rueda (D0MH01904F-(cit46)/*[position()=1]) 2020; 11
Cortecchia (D0MH01904F-(cit55)/*[position()=1]) 2019; 7
Van Gompel (D0MH01904F-(cit38)/*[position()=1]) 2020; 8
Cortecchia (D0MH01904F-(cit63)/*[position()=1]) 2017; 139
Deng (D0MH01904F-(cit33)/*[position()=1]) 2020; 152
García-Benito (D0MH01904F-(cit67)/*[position()=1]) 2020; 7
Gauthron (D0MH01904F-(cit21)/*[position()=1]) 2010; 18
Le (D0MH01904F-(cit56)/*[position()=1]) 2019; 84
References_xml – volume: 139
  start-page: 39
  year: 2017
  ident: D0MH01904F-(cit63)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10390
– volume: 57
  start-page: 3301
  year: 2009
  ident: D0MH01904F-(cit15)/*[position()=1]
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.03.037
– volume: 53
  start-page: 11232
  year: 2014
  ident: D0MH01904F-(cit2)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201406466
– volume: 140
  start-page: 7313
  year: 2018
  ident: D0MH01904F-(cit29)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b03659
– volume: 9
  start-page: 5302
  year: 2018
  ident: D0MH01904F-(cit7)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07440-2
– volume: 9
  start-page: 8975
  year: 2018
  ident: D0MH01904F-(cit60)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC03563F
– volume: 152
  start-page: 044711
  year: 2020
  ident: D0MH01904F-(cit33)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5131801
– volume: 5
  start-page: 49728
  year: 2015
  ident: D0MH01904F-(cit53)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA07253K
– volume: 38
  start-page: 6246
  year: 1999
  ident: D0MH01904F-(cit37)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic991048k
– volume: 9
  start-page: 3416
  year: 2018
  ident: D0MH01904F-(cit26)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b01309
– volume: 44
  start-page: 100372
  year: 2020
  ident: D0MH01904F-(cit48)/*[position()=1]
  publication-title: J. Photochem. Photobiol., C
  doi: 10.1016/j.jphotochemrev.2020.100372
– volume: 110
  start-page: 6158
  year: 1999
  ident: D0MH01904F-(cit64)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478522
– volume: 84
  start-page: 16139
  year: 2019
  ident: D0MH01904F-(cit56)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.9b02454
– volume: 2
  start-page: 105406
  year: 2018
  ident: D0MH01904F-(cit17)/*[position()=1]
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.2.105406
– volume: 8
  start-page: 7181
  year: 2020
  ident: D0MH01904F-(cit38)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC01053G
– volume: 11
  start-page: 1151
  year: 2019
  ident: D0MH01904F-(cit30)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0354-2
– volume: 28
  start-page: 4554
  year: 2016
  ident: D0MH01904F-(cit51)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00809
– volume: 3
  start-page: 042001
  year: 2020
  ident: D0MH01904F-(cit65)/*[position()=1]
  publication-title: JPhys Mater.
  doi: 10.1088/2515-7639/aba6f6
– volume: 149
  start-page: 287
  year: 2014
  ident: D0MH01904F-(cit36)/*[position()=1]
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2014.01.050
– volume: 296
  start-page: 417
  year: 1998
  ident: D0MH01904F-(cit44)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(98)01028-8
– volume: 110
  start-page: 3299
  year: 2010
  ident: D0MH01904F-(cit49)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr900357e
– volume: 1
  start-page: 465
  year: 2019
  ident: D0MH01904F-(cit8)/*[position()=1]
  publication-title: Matter
  doi: 10.1016/j.matt.2019.04.002
– volume: 145
  start-page: 694
  year: 1999
  ident: D0MH01904F-(cit52)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1006/jssc.1999.8281
– volume: 10
  start-page: 699
  year: 2016
  ident: D0MH01904F-(cit6)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.185
– volume: 7
  start-page: 21763
  year: 2015
  ident: D0MH01904F-(cit47)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05279
– volume: 11
  start-page: 1901
  year: 2020
  ident: D0MH01904F-(cit46)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15869-7
– volume: 5
  start-page: 3958
  year: 2014
  ident: D0MH01904F-(cit23)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz502086e
– volume: 18
  start-page: 14701
  year: 2016
  ident: D0MH01904F-(cit4)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP01955B
– volume: 536
  start-page: 312
  year: 2016
  ident: D0MH01904F-(cit3)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature18306
– volume: 10
  start-page: 6897
  year: 2016
  ident: D0MH01904F-(cit5)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02683
– volume: 57
  start-page: 12428
  year: 1998
  ident: D0MH01904F-(cit11)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.57.12428
– volume: 9
  start-page: 5891
  year: 2018
  ident: D0MH01904F-(cit62)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b02653
– volume: 17
  start-page: 4759
  year: 2017
  ident: D0MH01904F-(cit9)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01475
– volume: 11
  start-page: 5667
  year: 2005
  ident: D0MH01904F-(cit50)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.200401252
– volume: 19
  start-page: 2598
  year: 2017
  ident: D0MH01904F-(cit16)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C7CE00240H
– volume: 45
  start-page: 6961
  year: 1992
  ident: D0MH01904F-(cit22)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.45.6961
– volume: 137
  start-page: 7843
  year: 2015
  ident: D0MH01904F-(cit1)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03796
– start-page: 1
  year: 2001
  ident: D0MH01904F-(cit14)/*[position()=1]
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/b007070j
– volume: 119
  start-page: 3140
  year: 2019
  ident: D0MH01904F-(cit28)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00417
– volume: 11
  start-page: 3028
  year: 1999
  ident: D0MH01904F-(cit45)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm990561t
– volume: 100
  start-page: 257401
  year: 2008
  ident: D0MH01904F-(cit24)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.257401
– volume: 37
  start-page: 5061
  year: 2012
  ident: D0MH01904F-(cit12)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.005061
– volume: 7
  start-page: 946
  year: 2020
  ident: D0MH01904F-(cit67)/*[position()=1]
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00946
– volume: 330
  start-page: 152
  year: 2000
  ident: D0MH01904F-(cit57)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)01082-4
– volume: 215
  start-page: 012044
  year: 2010
  ident: D0MH01904F-(cit39)/*[position()=1]
  publication-title: J. Phys.: Conf. Ser.
– volume: 200
  start-page: 201
  year: 1995
  ident: D0MH01904F-(cit54)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(95)00179-R
– volume: 4
  start-page: 2999
  year: 2013
  ident: D0MH01904F-(cit25)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz401532q
– volume: 55
  start-page: 2481
  year: 2019
  ident: D0MH01904F-(cit42)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC09955C
– volume: 31
  start-page: 6880
  year: 2019
  ident: D0MH01904F-(cit43)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b01289
– volume: 303
  start-page: 157
  year: 1999
  ident: D0MH01904F-(cit41)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)00205-5
– volume: 104
  start-page: 4553
  year: 2000
  ident: D0MH01904F-(cit58)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp993983z
– volume: 67
  start-page: 155405
  year: 2003
  ident: D0MH01904F-(cit66)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.67.155405
– volume: 19
  start-page: 8732
  year: 2019
  ident: D0MH01904F-(cit27)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03427
– volume: 15
  start-page: 3733
  year: 2014
  ident: D0MH01904F-(cit18)/*[position()=1]
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201402428
– volume: 9
  start-page: 2254
  year: 2018
  ident: D0MH01904F-(cit20)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04659-x
– volume: 307
  start-page: 373
  year: 1999
  ident: D0MH01904F-(cit35)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)00526-6
– volume: 121
  start-page: 146401
  year: 2018
  ident: D0MH01904F-(cit31)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.146401
– volume: 116
  start-page: 22992
  year: 2012
  ident: D0MH01904F-(cit34)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp304531h
– volume: 124
  start-page: 24379
  year: 2020
  ident: D0MH01904F-(cit40)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c05521
– volume: 59
  start-page: 19087
  year: 2020
  ident: D0MH01904F-(cit68)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005012
– volume: 6
  start-page: 1707
  year: 2019
  ident: D0MH01904F-(cit32)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH00366E
– volume: 89
  start-page: 171110
  year: 2006
  ident: D0MH01904F-(cit10)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2369533
– volume: 82
  start-page: 081101
  year: 2010
  ident: D0MH01904F-(cit61)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.82.081101
– volume: 93
  start-page: 081101
  year: 2008
  ident: D0MH01904F-(cit13)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2971206
– volume: 18
  start-page: 5912
  year: 2010
  ident: D0MH01904F-(cit21)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.18.005912
– volume: 96
  start-page: 603
  year: 1999
  ident: D0MH01904F-(cit59)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268979909482997
– volume: 42
  start-page: 11099
  year: 1990
  ident: D0MH01904F-(cit19)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.42.11099
– volume: 7
  start-page: 4956
  year: 2019
  ident: D0MH01904F-(cit55)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC01036J
SSID ssj0001345080
Score 2.3687432
Snippet Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the...
SourceID hal
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1547
SubjectTerms Charge transfer
Chemical Sciences
Chromophores
Condensed Matter
Conduction bands
Crystallography
Electron transfer
Electronic structure
Energy transfer
Excitons
Feasibility
Heterostructures
Material chemistry
Optical properties
or physical chemistry
Perovskite structure
Perovskites
Photoluminescence
Physics
Playgrounds
Synthesis
Theoretical and
Time dependence
Title Tetrazine molecules as an efficient electronic diversion channel in 2D organic-inorganic perovskites
URI https://www.proquest.com/docview/2524673511
https://www.proquest.com/docview/2604832385
https://hal.science/hal-03164870
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF4l6QUOiFeFS0HL44IiF9u73tjHQNoG1CIOqdSbtS8rkVKnSpweeuI_8D_4UfwSZr322kAOBSlyosna8WY-z8zOzgOht0GstZZa-mmsAp_GKvTTRCo_plxFgRIhk1WU7xc2vaCfL-PLXu9HJ2ppW4ojebszr-R_uAo04KvJkv0HzrqLAgE-A3_hCByG4914rMt1VR56eGW73OqN6RsDj6yuKkOYff5OnxtlYzCA3ybdt9Cm3MYwmtSdnWQT90AWRU0xRY1XNxvj4N10rdhzXtrpDeer9eK28fiZuB678a7smw0d1oDBwjYKsdjaKi3qVKGvoJXb8NsZSLBre6o_BnzasPtTXpE-LJdu4ClfGiepbjK7m-id2n0RhW2woJVyEUgFnxFbdvNId2m2fm8jppMOGuOOyAUbcNRR3yYzfKdqCIiprDoJzqcmfZ6etAqw2fT_Qy-6aMVqn56kWXtuH-1FsCyJBmhvfDz7dNZ69QgFi9c49ty8mpq4JH3fXuA3K6g_NzG4nQVOf910n6msnNlD9KBenuCxxdoj1NPFY3S_U7TyCcod6rBDHebwKrBDHW5Rhx3qcI06vChwNME1xn5---7whjt4e4ouTo5nH6d-3a3Dl7DoLX2VJIyHIlAsBjUxihgH5SFGQUoUp_lIhTRM8sp9EBMKq1hGRpzkmnNYQUihU7KPBsWq0M8QlgLEBFc0VYTRPASDiQkqmA60pDIRzEPvmn8vk3Upe9NRZZn9zSoPvXFjr20Bl52jXgMT3ABTc306PssMDbQegwkGN6GHDhseZbUU2GRRHIGtYbbjPfTKfQ0y2my88UKvtjCGmcYNYBzHHtoH3rrfUcHVvLqB_OBOt_kc3WufoUM0KNdb_QKM4lK8rJH4C4eotLQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tetrazine+molecules+as+an+efficient+electronic+diversion+channel+in+2D+organic%E2%80%93inorganic+perovskites&rft.jtitle=Materials+horizons&rft.au=L%C3%A9d%C3%A9e%2C+Ferdinand&rft.au=Audebert%2C+Pierre&rft.au=Tripp%C3%A9-Allard%2C+Ga%C3%ABlle&rft.au=Galmiche%2C+Laurent&rft.date=2021-05-01&rft.issn=2051-6347&rft.eissn=2051-6355&rft.volume=8&rft.issue=5&rft.spage=1547&rft.epage=1560&rft_id=info:doi/10.1039%2FD0MH01904F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0MH01904F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon