A marine microbiome antifungal targets urgent-threat drug-resistant fungi

Marine bacteria produce a plethora of natural products that often have unusual chemical structures and corresponding reactivity, which sometimes translate into a valuable biological function. Zhang et al. used a metabolomic screen to zero in on microbial strains from the microbiome of a sea squirt t...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 370; no. 6519; pp. 974 - 978
Main Authors Zhang, Fan, Zhao, Miao, Braun, Doug R., Ericksen, Spencer S., Piotrowski, Jeff S., Nelson, Justin, Peng, Jian, Ananiev, Gene E., Chanana, Shaurya, Barns, Kenneth, Fossen, Jen, Sanchez, Hiram, Chevrette, Marc G., Guzei, Ilia A., Zhao, Changgui, Guo, Le, Tang, Weiping, Currie, Cameron R., Rajski, Scott R., Audhya, Anjon, Andes, David R., Bugni, Tim S.
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 20.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Marine bacteria produce a plethora of natural products that often have unusual chemical structures and corresponding reactivity, which sometimes translate into a valuable biological function. Zhang et al. used a metabolomic screen to zero in on microbial strains from the microbiome of a sea squirt that produces a high diversity of chemical structures. They then screened these molecules for inhibition of fungi (see the Perspective by Cowen). A polycyclic molecule dubbed turbinmicin possessed potent antifungal activity against the multidrug-resistant fungal pathogens Candida auris and Aspergillus fumigatus . Preliminary mechanism-of-action and mouse toxicity studies suggest that this molecule works though a fungus-specific pathway and is well tolerated at therapeutic doses. Science , this issue p. 974 ; see also p. 906 A natural product from a marine bacterium shows selective activity against fungal pathogens. New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida auris. Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug–resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as C. auris.
AbstractList Prospecting for antifungal moleculesMarine bacteria produce a plethora of natural products that often have unusual chemical structures and corresponding reactivity, which sometimes translate into a valuable biological function. Zhang et al. used a metabolomic screen to zero in on microbial strains from the microbiome of a sea squirt that produces a high diversity of chemical structures. They then screened these molecules for inhibition of fungi (see the Perspective by Cowen). A polycyclic molecule dubbed turbinmicin possessed potent antifungal activity against the multidrug-resistant fungal pathogens Candida auris and Aspergillus fumigatus. Preliminary mechanism-of-action and mouse toxicity studies suggest that this molecule works though a fungus-specific pathway and is well tolerated at therapeutic doses.Science, this issue p. 974; see also p. 906New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida auris. Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug–resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as C. auris.
New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida auris. Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug-resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as C. auris.New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida auris. Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug-resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as C. auris.
New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug-resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as
Marine bacteria produce a plethora of natural products that often have unusual chemical structures and corresponding reactivity, which sometimes translate into a valuable biological function. Zhang et al. used a metabolomic screen to zero in on microbial strains from the microbiome of a sea squirt that produces a high diversity of chemical structures. They then screened these molecules for inhibition of fungi (see the Perspective by Cowen). A polycyclic molecule dubbed turbinmicin possessed potent antifungal activity against the multidrug-resistant fungal pathogens Candida auris and Aspergillus fumigatus . Preliminary mechanism-of-action and mouse toxicity studies suggest that this molecule works though a fungus-specific pathway and is well tolerated at therapeutic doses. Science , this issue p. 974 ; see also p. 906 A natural product from a marine bacterium shows selective activity against fungal pathogens. New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida auris. Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug–resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as C. auris.
New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida auris . Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug-resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as C. auris .
Author Fossen, Jen
Sanchez, Hiram
Chevrette, Marc G.
Zhao, Changgui
Braun, Doug R.
Tang, Weiping
Audhya, Anjon
Ericksen, Spencer S.
Piotrowski, Jeff S.
Zhang, Fan
Bugni, Tim S.
Andes, David R.
Ananiev, Gene E.
Rajski, Scott R.
Currie, Cameron R.
Guzei, Ilia A.
Nelson, Justin
Chanana, Shaurya
Zhao, Miao
Barns, Kenneth
Guo, Le
Peng, Jian
AuthorAffiliation 3 Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
1 Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
4 Yumanity Therapeutics, Cambridge, MA, USA
6 Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA
10 Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
7 Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
5 Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
9 Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
8 Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
2 Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
AuthorAffiliation_xml – name: 2 Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
– name: 4 Yumanity Therapeutics, Cambridge, MA, USA
– name: 10 Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
– name: 5 Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
– name: 9 Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
– name: 8 Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
– name: 1 Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
– name: 3 Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
– name: 6 Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA
– name: 7 Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
Author_xml – sequence: 1
  givenname: Fan
  orcidid: 0000-0001-9732-1123
  surname: Zhang
  fullname: Zhang, Fan
  organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
– sequence: 2
  givenname: Miao
  orcidid: 0000-0002-7851-6758
  surname: Zhao
  fullname: Zhao, Miao
  organization: Department of Medicine, University of Wisconsin–Madison, Madison, WI, USA
– sequence: 3
  givenname: Doug R.
  surname: Braun
  fullname: Braun, Doug R.
  organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
– sequence: 4
  givenname: Spencer S.
  orcidid: 0000-0003-4907-1160
  surname: Ericksen
  fullname: Ericksen, Spencer S.
  organization: Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
– sequence: 5
  givenname: Jeff S.
  orcidid: 0000-0001-8490-8339
  surname: Piotrowski
  fullname: Piotrowski, Jeff S.
  organization: Yumanity Therapeutics, Cambridge, MA, USA
– sequence: 6
  givenname: Justin
  surname: Nelson
  fullname: Nelson, Justin
  organization: Yumanity Therapeutics, Cambridge, MA, USA
– sequence: 7
  givenname: Jian
  orcidid: 0000-0002-1736-2978
  surname: Peng
  fullname: Peng, Jian
  organization: Department of Computer Science, University of Illinois at Urbana–Champaign, Urbana, IL, USA
– sequence: 8
  givenname: Gene E.
  surname: Ananiev
  fullname: Ananiev, Gene E.
  organization: Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
– sequence: 9
  givenname: Shaurya
  orcidid: 0000-0002-3021-2210
  surname: Chanana
  fullname: Chanana, Shaurya
  organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
– sequence: 10
  givenname: Kenneth
  orcidid: 0000-0002-1856-4280
  surname: Barns
  fullname: Barns, Kenneth
  organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
– sequence: 11
  givenname: Jen
  orcidid: 0000-0002-2413-5618
  surname: Fossen
  fullname: Fossen, Jen
  organization: Department of Medicine, University of Wisconsin–Madison, Madison, WI, USA
– sequence: 12
  givenname: Hiram
  orcidid: 0000-0002-6286-650X
  surname: Sanchez
  fullname: Sanchez, Hiram
  organization: Department of Medicine, University of Wisconsin–Madison, Madison, WI, USA
– sequence: 13
  givenname: Marc G.
  orcidid: 0000-0002-7209-0717
  surname: Chevrette
  fullname: Chevrette, Marc G.
  organization: Department of Genetics, University of Wisconsin–Madison, Madison, WI, USA., Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA., Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin–Madison, Madison, WI, USA
– sequence: 14
  givenname: Ilia A.
  orcidid: 0000-0003-1976-7386
  surname: Guzei
  fullname: Guzei, Ilia A.
  organization: Department of Chemistry, University of Wisconsin–Madison, Madison, WI, USA
– sequence: 15
  givenname: Changgui
  surname: Zhao
  fullname: Zhao, Changgui
  organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
– sequence: 16
  givenname: Le
  surname: Guo
  fullname: Guo, Le
  organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
– sequence: 17
  givenname: Weiping
  orcidid: 0000-0002-0039-3196
  surname: Tang
  fullname: Tang, Weiping
  organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
– sequence: 18
  givenname: Cameron R.
  surname: Currie
  fullname: Currie, Cameron R.
  organization: Department of Genetics, University of Wisconsin–Madison, Madison, WI, USA., Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
– sequence: 19
  givenname: Scott R.
  orcidid: 0000-0002-0238-8411
  surname: Rajski
  fullname: Rajski, Scott R.
  organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
– sequence: 20
  givenname: Anjon
  orcidid: 0000-0002-7828-5152
  surname: Audhya
  fullname: Audhya, Anjon
  organization: Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, USA
– sequence: 21
  givenname: David R.
  orcidid: 0000-0002-7927-9950
  surname: Andes
  fullname: Andes, David R.
  organization: Department of Medicine, University of Wisconsin–Madison, Madison, WI, USA
– sequence: 22
  givenname: Tim S.
  orcidid: 0000-0002-4502-3084
  surname: Bugni
  fullname: Bugni, Tim S.
  organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33214279$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LxDAQxYMouquevUnBi5eu-Wib5CLI4hcIXvQc0nR2N9ImmqSC_71Z3BUVPM1hfu_xZt4U7TrvAKETgmeE0OYiGgvOwEy3XSOJ3EETgmVdSorZLppgzJpSYF4foGmMLxjnnWT76IAxSirK5QTdXxWDDtZBMVgTfGv9AIV2yS5Gt9R9kXRYQorFmIdLZVoF0KnowrgsA0QbU2aLNWuP0N5C9xGON_MQPd9cP83vyofH2_v51UNpKsFT2XGABqShjHS1FtS0wlBBMa8wVDmeNAYTJhYN5qzCUkDbUqGBN7TSACDZIbr88n0d2wE6k2MF3avXYPMhH8prq35vnF2ppX9XnNeNrGk2ON8YBP82QkxqsNFA32sHfoyKVg0jmHJBMnr2B33xY3D5vDVFqxy6Zpk6_ZnoO8r2yxmov4D84RgDLJSxSSfr1wFtrwhW6zbVpk21aTPrLv7ottb_KT4BWJOmHw
CitedBy_id crossref_primary_10_1007_s10482_024_01964_y
crossref_primary_10_1016_j_fbio_2023_103458
crossref_primary_10_1021_acs_jnatprod_1c00297
crossref_primary_10_1016_j_apsb_2022_08_001
crossref_primary_10_1126_science_abf1675
crossref_primary_10_1128_aac_00955_23
crossref_primary_10_3389_fmicb_2024_1443651
crossref_primary_10_1128_Spectrum_01669_21
crossref_primary_10_1007_s11426_022_1512_0
crossref_primary_10_1111_jcmm_18354
crossref_primary_10_1002_adhm_202303755
crossref_primary_10_1021_acs_analchem_2c05145
crossref_primary_10_1039_D1NP00076D
crossref_primary_10_1172_JCI154944
crossref_primary_10_1088_1361_6528_ac385d
crossref_primary_10_1039_D1NP00040C
crossref_primary_10_3390_jof8070669
crossref_primary_10_1021_jacs_4c09916
crossref_primary_10_3390_md23010017
crossref_primary_10_1021_acs_biochem_4c00464
crossref_primary_10_1021_acs_jnatprod_2c01003
crossref_primary_10_3389_fmicb_2022_911322
crossref_primary_10_1002_advs_202207736
crossref_primary_10_1016_j_lwt_2023_114907
crossref_primary_10_1021_acs_jmedchem_1c01845
crossref_primary_10_3390_molecules28104183
crossref_primary_10_1016_j_lwt_2021_112847
crossref_primary_10_1021_jacs_3c09240
crossref_primary_10_1016_j_copbio_2021_02_001
crossref_primary_10_1021_acs_jmedchem_2c00626
crossref_primary_10_1016_j_drup_2022_100887
crossref_primary_10_1007_s10096_022_04497_2
crossref_primary_10_3390_md19060316
crossref_primary_10_1016_j_marenvres_2023_106303
crossref_primary_10_1016_j_mib_2022_102198
crossref_primary_10_3390_biom13111572
crossref_primary_10_1021_acs_nanolett_4c01042
crossref_primary_10_1021_acsomega_3c00301
crossref_primary_10_1128_cmr_00142_23
crossref_primary_10_1093_femsre_fuad059
crossref_primary_10_1099_mgen_0_001167
crossref_primary_10_3390_md22040180
crossref_primary_10_1002_biot_202100250
crossref_primary_10_1016_j_bioflm_2023_100126
crossref_primary_10_1186_s13321_023_00738_4
crossref_primary_10_1016_j_csbj_2021_02_003
crossref_primary_10_1038_s41579_020_00495_3
crossref_primary_10_1038_s41598_023_37851_1
crossref_primary_10_1128_mbio_03045_23
crossref_primary_10_3390_bioengineering9110707
crossref_primary_10_3390_microorganisms9030634
crossref_primary_10_1021_acs_jnatprod_1c00461
crossref_primary_10_3389_fcimb_2021_759408
crossref_primary_10_1111_mec_16411
crossref_primary_10_1016_j_addr_2023_114819
crossref_primary_10_1038_s41586_025_08678_9
crossref_primary_10_1016_j_molmed_2024_04_018
crossref_primary_10_1080_21505594_2021_2019950
crossref_primary_10_1021_acsbiomedchemau_2c00055
crossref_primary_10_1093_femsmc_xtac012
crossref_primary_10_1002_adfm_202111344
crossref_primary_10_1016_j_jbc_2022_102861
crossref_primary_10_1128_aem_00806_22
crossref_primary_10_3390_molecules30010077
crossref_primary_10_1021_jacs_2c06410
crossref_primary_10_1016_j_bbalip_2024_159572
crossref_primary_10_1016_j_arabjc_2024_105687
crossref_primary_10_1016_j_biotechadv_2021_107871
crossref_primary_10_1039_D2NP00046F
crossref_primary_10_1128_aem_01208_22
crossref_primary_10_1021_acscentsci_1c00520
crossref_primary_10_1016_j_mycmed_2021_101232
crossref_primary_10_1146_annurev_micro_041020_094524
crossref_primary_10_3390_microorganisms9122551
crossref_primary_10_1039_D1NP00044F
crossref_primary_10_1016_j_pt_2021_05_004
crossref_primary_10_1016_j_chembiol_2023_06_005
crossref_primary_10_3390_antibiotics10121447
crossref_primary_10_1016_j_bbalip_2021_158990
crossref_primary_10_1371_journal_ppat_1011583
crossref_primary_10_1073_pnas_2100880118
crossref_primary_10_1016_j_pt_2024_10_018
crossref_primary_10_1002_imt2_244
crossref_primary_10_1016_j_trsl_2022_04_002
crossref_primary_10_1172_JCI145123
crossref_primary_10_1007_s11356_023_26883_9
crossref_primary_10_1016_j_addr_2023_114874
crossref_primary_10_3390_jof9080800
crossref_primary_10_1016_j_jare_2024_09_017
crossref_primary_10_1039_D2NP00045H
crossref_primary_10_1128_spectrum_02438_22
crossref_primary_10_1016_j_csbj_2023_08_031
crossref_primary_10_3389_fmars_2024_1523246
crossref_primary_10_1039_D0NP00092B
crossref_primary_10_3390_ijms251910408
crossref_primary_10_3390_ijms22136754
crossref_primary_10_1080_17512433_2021_1949285
crossref_primary_10_1007_s40475_024_00338_8
crossref_primary_10_1007_s12088_021_00957_z
crossref_primary_10_1016_j_chembiol_2024_01_010
crossref_primary_10_3390_cells12111547
crossref_primary_10_1021_acs_joc_3c00369
crossref_primary_10_3389_fmicb_2021_675048
crossref_primary_10_1016_j_addr_2023_114960
crossref_primary_10_1016_j_ejmech_2024_117028
crossref_primary_10_3389_ffunb_2021_683414
crossref_primary_10_3390_ijms232012307
crossref_primary_10_3390_jof7070535
crossref_primary_10_1021_acs_jnatprod_4c00911
crossref_primary_10_1186_s12951_024_02841_6
crossref_primary_10_1093_femsml_uqab009
crossref_primary_10_1002_fsn3_4140
crossref_primary_10_1021_acsnano_3c13164
crossref_primary_10_1021_acs_jnatprod_4c00232
crossref_primary_10_1039_D4NP00023D
crossref_primary_10_3390_antiox13060667
crossref_primary_10_1016_j_biotechadv_2023_108176
crossref_primary_10_1016_j_ejcb_2022_151205
crossref_primary_10_1038_s41564_024_01662_5
crossref_primary_10_3390_jof10060408
Cites_doi 10.1016/j.bbamcr.2013.02.003
10.1007/s00253-015-7248-z
10.1093/bioinformatics/btx732
10.1021/ci800298z
10.1074/jbc.M808732200
10.1107/S2053229614024218
10.1021/acs.jnatprod.9b01285
10.1039/D0NP00029A
10.1021/ac202623g
10.1016/j.chembiol.2017.12.007
10.1128/AAC.01355-13
10.1093/cid/civ791
10.1002/mrc.4384
10.1016/j.tet.2015.12.045
10.1371/journal.pcbi.1006532
10.1038/s41596-018-0099-1
10.1038/nchembio.1389
10.1007/s10822-012-9584-8
10.1021/ci300604z
10.1016/j.devcel.2014.07.016
10.1007/s10822-015-9846-3
10.1016/j.gene.2010.03.016
10.1016/j.cels.2016.12.011
10.1128/AAC.00791-17
10.1038/nchembio.2436
10.1016/j.cub.2009.04.001
10.3201/eid2201.151308
10.1021/acs.jnatprod.8b00323
10.1107/S0021889808042726
10.3390/metabo10070297
10.1093/nar/gkz310
10.1021/np960737v
10.3390/metabo7030034
10.1016/j.chembiol.2012.01.016
10.1128/AAC.02372-18
10.1021/acs.jcim.7b00153
10.1021/acs.orglett.8b01871
10.1038/nmeth.1231
10.1056/NEJMc1900112
10.1126/scitranslmed.3004404
10.1371/journal.ppat.0030092
10.1371/journal.pcbi.1003571
10.1086/651262
10.1128/AAC.01279-12
10.1021/np300034c
10.3390/md12021013
10.1016/j.tetlet.2017.07.008
10.1021/acschembio.7b00688
10.1101/gr.215087.116
10.1002/jcc.20084
10.1107/S2053273314026370
10.1007/978-1-4939-3323-5_3
10.1038/nmicrobiol.2016.92
10.1107/S1600576714022985
10.1126/science.aaf1420
10.1371/journal.pgen.1006374
10.1038/s41467-017-02470-8
10.1002/anie.201405990
10.1007/978-1-4939-2269-7_23
10.1038/s41467-019-08438-0
10.1002/jcc.21334
10.1128/AAC.00705-08
10.1128/AAC.01430-10
ContentType Journal Article
Copyright Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.abd6919
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 978
ExternalDocumentID PMC7756952
33214279
10_1126_science_abd6919
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U19 AI109673
– fundername: NIAID NIH HHS
  grantid: R01 AI073289
– fundername: NCRR NIH HHS
  grantid: S10 RR002781
– fundername: NCRR NIH HHS
  grantid: S10 RR025062
– fundername: NCRR NIH HHS
  grantid: P41 RR002301
– fundername: NIGMS NIH HHS
  grantid: R35 GM134865
– fundername: NIGMS NIH HHS
  grantid: R01 GM104192
– fundername: NIAID NIH HHS
  grantid: U19 AI142720
– fundername: NIGMS NIH HHS
  grantid: P41 GM103399
– fundername: NCRR NIH HHS
  grantid: S10 RR008438
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
GX1
NPM
OK1
UIG
YCJ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c487t-d7ee6e9c231d5a82cb8c2820740e49599cc0138f60734098ebb28ae7624aeee93
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 18:12:57 EDT 2025
Mon Jul 21 10:26:38 EDT 2025
Fri Jul 25 19:01:13 EDT 2025
Thu Apr 03 07:00:58 EDT 2025
Tue Jul 01 01:35:21 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6519
Language English
License Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c487t-d7ee6e9c231d5a82cb8c2820740e49599cc0138f60734098ebb28ae7624aeee93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
Author contributions: Consistent with CRediT taxonomy, the roles of contributing authors are as follows: Conceptualization: T.S.B., D.R.A., C.R.C., and W.T.; methodology: F.Z., M.Z., D.R.B., J.S.P., J.N., J.P., G.E.A., S.C., K.B.,I.A.G., C.Z., and L.G.; software: S.C., J.P., T.S.B., S.S.E., and J.S.P.; validation: I.A.G., F.Z., M.Z., D.R.B., A.A., D.R.A., and M.G.C.; formal analysis: F.Z., M.Z., S.S.E., J.S.P., J.N., G.E.A., J.F., A.A., and M.G.C.; investigation: F.Z., M.Z., S.S.E., C.Z., H.S., L.G., and A.A.; resources: D.R.B., S.S.E., G.E.A., S.C., K.B., H.S., and I.A.G.; data curation: F.Z., M.Z., G.E.A., W.T., C.R.C., S.R.R., A.A., D.R.A., and T.S.B.; writing—original draft: F.Z., S.R.R., M.Z., T.S.B., and D.R.A.; writing—review and editing: F.Z., J.F., H.S., J.S.P., C.R.C., S.R.R., A.A., D.R.A., and T.S.B.; visualization: T.S.B., D.R.A., C.R.C., and A.A.; supervision: T.S.B., D.R.A., C.R.C., and W.T.; project administration: D.R.A., T.S.B., and W.T.; and funding acquisition: D.R.A., C.R.C., T.S.B., and A.A.
ORCID 0000-0002-6286-650X
0000-0002-3021-2210
0000-0001-8490-8339
0000-0002-4502-3084
0000-0002-2413-5618
0000-0002-7209-0717
0000-0002-1736-2978
0000-0003-1976-7386
0000-0001-9732-1123
0000-0002-7851-6758
0000-0002-1856-4280
0000-0002-0039-3196
0000-0003-4907-1160
0000-0002-0238-8411
0000-0002-7828-5152
0000-0002-7927-9950
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7756952
PMID 33214279
PQID 2462474053
PQPubID 1256
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7756952
proquest_miscellaneous_2463102781
proquest_journals_2462474053
pubmed_primary_33214279
crossref_citationtrail_10_1126_science_abd6919
crossref_primary_10_1126_science_abd6919
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-20
20201120
PublicationDateYYYYMMDD 2020-11-20
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2020
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_77_2
e_1_3_2_50_2
e_1_3_2_71_2
Bax A. (e_1_3_2_49_2) 1981; 44
Trott O. (e_1_3_2_73_2) 2010; 31
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
Zhao M. (e_1_3_2_27_2) 2018; 62
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
e_1_3_2_72_2
e_1_3_2_70_2
33214262 - Science. 2020 Nov 20;370(6519):906-907
33311563 - Nat Rev Microbiol. 2021 Feb;19(2):73
33257788 - Nat Rev Drug Discov. 2021 Jan;20(1):17
References_xml – ident: e_1_3_2_45_2
  doi: 10.1016/j.bbamcr.2013.02.003
– ident: e_1_3_2_66_2
  doi: 10.1007/s00253-015-7248-z
– ident: e_1_3_2_38_2
  doi: 10.1093/bioinformatics/btx732
– ident: e_1_3_2_70_2
  doi: 10.1021/ci800298z
– ident: e_1_3_2_46_2
  doi: 10.1074/jbc.M808732200
– ident: e_1_3_2_58_2
  doi: 10.1107/S2053229614024218
– ident: e_1_3_2_10_2
  doi: 10.1021/acs.jnatprod.9b01285
– ident: e_1_3_2_15_2
  doi: 10.1039/D0NP00029A
– volume: 62
  start-page: e02542
  year: 2018
  ident: e_1_3_2_27_2
  article-title: In vivo pharmacokinetics and pharmacodynamics of APX001 against Candida spp. in a neutropenic disseminated candidiasis mouse model
  publication-title: Antimicrob. Agents Chemother.
– ident: e_1_3_2_48_2
– ident: e_1_3_2_12_2
  doi: 10.1021/ac202623g
– ident: e_1_3_2_40_2
  doi: 10.1016/j.chembiol.2017.12.007
– ident: e_1_3_2_31_2
  doi: 10.1128/AAC.01355-13
– ident: e_1_3_2_6_2
  doi: 10.1093/cid/civ791
– ident: e_1_3_2_50_2
  doi: 10.1002/mrc.4384
– ident: e_1_3_2_19_2
  doi: 10.1016/j.tet.2015.12.045
– ident: e_1_3_2_39_2
  doi: 10.1371/journal.pcbi.1006532
– ident: e_1_3_2_26_2
– ident: e_1_3_2_56_2
– ident: e_1_3_2_62_2
  doi: 10.1038/s41596-018-0099-1
– ident: e_1_3_2_42_2
  doi: 10.1038/nchembio.1389
– ident: e_1_3_2_69_2
  doi: 10.1007/s10822-012-9584-8
– ident: e_1_3_2_72_2
  doi: 10.1021/ci300604z
– ident: e_1_3_2_47_2
  doi: 10.1016/j.devcel.2014.07.016
– ident: e_1_3_2_74_2
  doi: 10.1007/s10822-015-9846-3
– ident: e_1_3_2_23_2
  doi: 10.1016/j.gene.2010.03.016
– ident: e_1_3_2_8_2
– ident: e_1_3_2_43_2
  doi: 10.1016/j.cels.2016.12.011
– ident: e_1_3_2_30_2
  doi: 10.1128/AAC.00791-17
– ident: e_1_3_2_25_2
– ident: e_1_3_2_36_2
  doi: 10.1038/nchembio.2436
– ident: e_1_3_2_9_2
  doi: 10.1016/j.cub.2009.04.001
– ident: e_1_3_2_5_2
  doi: 10.3201/eid2201.151308
– ident: e_1_3_2_21_2
  doi: 10.1021/acs.jnatprod.8b00323
– ident: e_1_3_2_55_2
– ident: e_1_3_2_60_2
– ident: e_1_3_2_59_2
  doi: 10.1107/S0021889808042726
– ident: e_1_3_2_16_2
  doi: 10.3390/metabo10070297
– ident: e_1_3_2_65_2
  doi: 10.1093/nar/gkz310
– ident: e_1_3_2_24_2
  doi: 10.1021/np960737v
– ident: e_1_3_2_77_2
– ident: e_1_3_2_11_2
  doi: 10.3390/metabo7030034
– ident: e_1_3_2_22_2
  doi: 10.1016/j.chembiol.2012.01.016
– ident: e_1_3_2_32_2
  doi: 10.1128/AAC.02372-18
– ident: e_1_3_2_75_2
  doi: 10.1021/acs.jcim.7b00153
– ident: e_1_3_2_17_2
  doi: 10.1021/acs.orglett.8b01871
– ident: e_1_3_2_35_2
  doi: 10.1038/nmeth.1231
– ident: e_1_3_2_7_2
  doi: 10.1056/NEJMc1900112
– ident: e_1_3_2_2_2
  doi: 10.1126/scitranslmed.3004404
– ident: e_1_3_2_44_2
  doi: 10.1371/journal.ppat.0030092
– ident: e_1_3_2_71_2
  doi: 10.1371/journal.pcbi.1003571
– ident: e_1_3_2_76_2
– ident: e_1_3_2_3_2
  doi: 10.1086/651262
– ident: e_1_3_2_34_2
  doi: 10.1128/AAC.01279-12
– ident: e_1_3_2_18_2
  doi: 10.1021/np300034c
– ident: e_1_3_2_51_2
  doi: 10.3390/md12021013
– ident: e_1_3_2_53_2
– ident: e_1_3_2_20_2
  doi: 10.1016/j.tetlet.2017.07.008
– ident: e_1_3_2_63_2
  doi: 10.1021/acschembio.7b00688
– ident: e_1_3_2_64_2
  doi: 10.1101/gr.215087.116
– ident: e_1_3_2_68_2
  doi: 10.1002/jcc.20084
– ident: e_1_3_2_57_2
  doi: 10.1107/S2053273314026370
– ident: e_1_3_2_67_2
– ident: e_1_3_2_28_2
  doi: 10.1007/978-1-4939-3323-5_3
– ident: e_1_3_2_4_2
  doi: 10.1038/nmicrobiol.2016.92
– ident: e_1_3_2_54_2
  doi: 10.1107/S1600576714022985
– ident: e_1_3_2_37_2
  doi: 10.1126/science.aaf1420
– ident: e_1_3_2_41_2
  doi: 10.1371/journal.pgen.1006374
– ident: e_1_3_2_13_2
  doi: 10.1038/s41467-017-02470-8
– ident: e_1_3_2_52_2
  doi: 10.1002/anie.201405990
– ident: e_1_3_2_61_2
  doi: 10.1007/978-1-4939-2269-7_23
– volume: 44
  start-page: 542
  year: 1981
  ident: e_1_3_2_49_2
  article-title: Investigation of complex networks of spin-spin coupling by two-dimensional NMR
  publication-title: J. Magn. Reson.
– ident: e_1_3_2_14_2
  doi: 10.1038/s41467-019-08438-0
– volume: 31
  start-page: 455
  year: 2010
  ident: e_1_3_2_73_2
  article-title: AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21334
– ident: e_1_3_2_33_2
  doi: 10.1128/AAC.00705-08
– ident: e_1_3_2_29_2
  doi: 10.1128/AAC.01430-10
– reference: 33214262 - Science. 2020 Nov 20;370(6519):906-907
– reference: 33311563 - Nat Rev Microbiol. 2021 Feb;19(2):73
– reference: 33257788 - Nat Rev Drug Discov. 2021 Jan;20(1):17
SSID ssj0009593
Score 2.6324818
Snippet Marine bacteria produce a plethora of natural products that often have unusual chemical structures and corresponding reactivity, which sometimes translate into...
New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant...
Prospecting for antifungal moleculesMarine bacteria produce a plethora of natural products that often have unusual chemical structures and corresponding...
New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida...
New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 974
SubjectTerms Animals
Antifungal activity
Antifungal agents
Antifungal Agents - chemistry
Antifungal Agents - pharmacology
Antifungal Agents - therapeutic use
Benzopyrans - chemistry
Benzopyrans - pharmacology
Benzopyrans - therapeutic use
Biocompatibility
Candida - drug effects
Candida auris
Candidiasis, Invasive - drug therapy
Cutting resistance
Disease Models, Animal
Drug resistance
Drug Resistance, Multiple, Fungal
Drugs
Exploration
Fungal infections
Fungal Proteins - metabolism
Fungi
Fungicides
Infectious diseases
Isoquinolines - chemistry
Isoquinolines - pharmacology
Isoquinolines - therapeutic use
Marine animals
Marine organisms
Metabolomics
Mice
Microbiomes
Microbiota
Micromonospora - chemistry
Microorganisms
Mode of action
Multidrug resistance
Narcotics
Natural products
Pathogens
Phospholipid Transfer Proteins - metabolism
Safety
Toxicity
Urochordata - microbiology
Title A marine microbiome antifungal targets urgent-threat drug-resistant fungi
URI https://www.ncbi.nlm.nih.gov/pubmed/33214279
https://www.proquest.com/docview/2462474053
https://www.proquest.com/docview/2463102781
https://pubmed.ncbi.nlm.nih.gov/PMC7756952
Volume 370
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZWrUC9IFpegYKMxKEocpTEefmYFlYFCYRoK_UW2Ym3XYnNrnaTA_wX_ivj2Mk6LZWgl2jl-JH1fJ6HPZ5B6B0oFVUsOCOyCiiJ-EyQjNKIcMr9SMRZJnjn5fs1Ob2IPl_Gl5PJb8trqW2EV_76672S-1AVyoCu6pbsf1B26BQK4DfQF55AYXj-E41zd8HV7T13MdfxlBbqMKCZg7C6Uk7knZf3xlU3n-uGNNfddkC1bq8IGNlKcVSBmaDu3FZR-9UOqudwnGMRcfBLzLX3QO9MYJpZOwvDXvR0i0AoW2pvfb60jvPbulfm3e_eoOSriP1mg-hspTpfu2eevU0BNmkQkNC3Wa-JfKwFj-a2vkoUGfrUZsc09S3cJbHhqJq_Mp3Sx4hqprP_3JYCVt5K6XFRJUz3YmFitehAQVWiplDns7kRePvbl5M0jRMWg4TfDcEKATa6mx9_OJ7eGdXZxI6ybmX1o--hh_1QYw3olllz0zvXUnfOH6NHxk7BuQbdPprI-gA90JlLfx6gfUPuDT4ygcvfP0GfcqzxiLd4xFs8YoNHPMIjHuMRd3h8ii6mH89PTolJ1UFKsHgbUqVSJpKVYC1UMc_CUmQlGPOgn_oSTHDGylIdic8SkCiRzzIpRJhxCZI44lJKRp-hnXpZyxcIU1BpA1EKTqM04mnABU8YjamYiZTPKuEgr5--ojRx7FU6lR9FZ8-GSWGmvjBT76CjocFKh3C5u-phT4_CrPNNEUbwlfBHYuqgt8Nr4MLqaI3Xctl2dcBOCtMscNBzTb5hrJ7uDkpHhB0qqAjv4zf1_LqL9G7w9_LeLV-hve1iPEQ7zbqVr0GLbsQbg-U_dirNlQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+marine+microbiome+antifungal+targets+urgent-threat+drug-resistant+fungi&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Zhang%2C+Fan&rft.au=Zhao%2C+Miao&rft.au=Braun%2C+Doug+R.&rft.au=Ericksen%2C+Spencer+S.&rft.date=2020-11-20&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=370&rft.issue=6519&rft.spage=974&rft.epage=978&rft_id=info:doi/10.1126%2Fscience.abd6919&rft_id=info%3Apmid%2F33214279&rft.externalDocID=PMC7756952
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon