A marine microbiome antifungal targets urgent-threat drug-resistant fungi
Marine bacteria produce a plethora of natural products that often have unusual chemical structures and corresponding reactivity, which sometimes translate into a valuable biological function. Zhang et al. used a metabolomic screen to zero in on microbial strains from the microbiome of a sea squirt t...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 370; no. 6519; pp. 974 - 978 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
20.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Marine bacteria produce a plethora of natural products that often have unusual chemical structures and corresponding reactivity, which sometimes translate into a valuable biological function. Zhang
et al.
used a metabolomic screen to zero in on microbial strains from the microbiome of a sea squirt that produces a high diversity of chemical structures. They then screened these molecules for inhibition of fungi (see the Perspective by Cowen). A polycyclic molecule dubbed turbinmicin possessed potent antifungal activity against the multidrug-resistant fungal pathogens
Candida auris
and
Aspergillus fumigatus
. Preliminary mechanism-of-action and mouse toxicity studies suggest that this molecule works though a fungus-specific pathway and is well tolerated at therapeutic doses.
Science
, this issue p.
974
; see also p.
906
A natural product from a marine bacterium shows selective activity against fungal pathogens.
New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant
Candida auris.
Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug–resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as
C. auris. |
---|---|
AbstractList | Prospecting for antifungal moleculesMarine bacteria produce a plethora of natural products that often have unusual chemical structures and corresponding reactivity, which sometimes translate into a valuable biological function. Zhang et al. used a metabolomic screen to zero in on microbial strains from the microbiome of a sea squirt that produces a high diversity of chemical structures. They then screened these molecules for inhibition of fungi (see the Perspective by Cowen). A polycyclic molecule dubbed turbinmicin possessed potent antifungal activity against the multidrug-resistant fungal pathogens Candida auris and Aspergillus fumigatus. Preliminary mechanism-of-action and mouse toxicity studies suggest that this molecule works though a fungus-specific pathway and is well tolerated at therapeutic doses.Science, this issue p. 974; see also p. 906New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida auris. Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug–resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as C. auris. New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida auris. Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug-resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as C. auris.New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida auris. Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug-resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as C. auris. New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug-resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as Marine bacteria produce a plethora of natural products that often have unusual chemical structures and corresponding reactivity, which sometimes translate into a valuable biological function. Zhang et al. used a metabolomic screen to zero in on microbial strains from the microbiome of a sea squirt that produces a high diversity of chemical structures. They then screened these molecules for inhibition of fungi (see the Perspective by Cowen). A polycyclic molecule dubbed turbinmicin possessed potent antifungal activity against the multidrug-resistant fungal pathogens Candida auris and Aspergillus fumigatus . Preliminary mechanism-of-action and mouse toxicity studies suggest that this molecule works though a fungus-specific pathway and is well tolerated at therapeutic doses. Science , this issue p. 974 ; see also p. 906 A natural product from a marine bacterium shows selective activity against fungal pathogens. New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida auris. Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug–resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as C. auris. New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida auris . Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug-resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as C. auris . |
Author | Fossen, Jen Sanchez, Hiram Chevrette, Marc G. Zhao, Changgui Braun, Doug R. Tang, Weiping Audhya, Anjon Ericksen, Spencer S. Piotrowski, Jeff S. Zhang, Fan Bugni, Tim S. Andes, David R. Ananiev, Gene E. Rajski, Scott R. Currie, Cameron R. Guzei, Ilia A. Nelson, Justin Chanana, Shaurya Zhao, Miao Barns, Kenneth Guo, Le Peng, Jian |
AuthorAffiliation | 3 Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, Madison, WI, USA 1 Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA 4 Yumanity Therapeutics, Cambridge, MA, USA 6 Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA 10 Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA 7 Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA 5 Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA 9 Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 8 Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA 2 Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA |
AuthorAffiliation_xml | – name: 2 Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA – name: 4 Yumanity Therapeutics, Cambridge, MA, USA – name: 10 Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA – name: 5 Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA – name: 9 Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA – name: 8 Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA – name: 1 Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA – name: 3 Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, Madison, WI, USA – name: 6 Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA – name: 7 Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA |
Author_xml | – sequence: 1 givenname: Fan orcidid: 0000-0001-9732-1123 surname: Zhang fullname: Zhang, Fan organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA – sequence: 2 givenname: Miao orcidid: 0000-0002-7851-6758 surname: Zhao fullname: Zhao, Miao organization: Department of Medicine, University of Wisconsin–Madison, Madison, WI, USA – sequence: 3 givenname: Doug R. surname: Braun fullname: Braun, Doug R. organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA – sequence: 4 givenname: Spencer S. orcidid: 0000-0003-4907-1160 surname: Ericksen fullname: Ericksen, Spencer S. organization: Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, Madison, WI, USA – sequence: 5 givenname: Jeff S. orcidid: 0000-0001-8490-8339 surname: Piotrowski fullname: Piotrowski, Jeff S. organization: Yumanity Therapeutics, Cambridge, MA, USA – sequence: 6 givenname: Justin surname: Nelson fullname: Nelson, Justin organization: Yumanity Therapeutics, Cambridge, MA, USA – sequence: 7 givenname: Jian orcidid: 0000-0002-1736-2978 surname: Peng fullname: Peng, Jian organization: Department of Computer Science, University of Illinois at Urbana–Champaign, Urbana, IL, USA – sequence: 8 givenname: Gene E. surname: Ananiev fullname: Ananiev, Gene E. organization: Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, Madison, WI, USA – sequence: 9 givenname: Shaurya orcidid: 0000-0002-3021-2210 surname: Chanana fullname: Chanana, Shaurya organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA – sequence: 10 givenname: Kenneth orcidid: 0000-0002-1856-4280 surname: Barns fullname: Barns, Kenneth organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA – sequence: 11 givenname: Jen orcidid: 0000-0002-2413-5618 surname: Fossen fullname: Fossen, Jen organization: Department of Medicine, University of Wisconsin–Madison, Madison, WI, USA – sequence: 12 givenname: Hiram orcidid: 0000-0002-6286-650X surname: Sanchez fullname: Sanchez, Hiram organization: Department of Medicine, University of Wisconsin–Madison, Madison, WI, USA – sequence: 13 givenname: Marc G. orcidid: 0000-0002-7209-0717 surname: Chevrette fullname: Chevrette, Marc G. organization: Department of Genetics, University of Wisconsin–Madison, Madison, WI, USA., Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA., Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin–Madison, Madison, WI, USA – sequence: 14 givenname: Ilia A. orcidid: 0000-0003-1976-7386 surname: Guzei fullname: Guzei, Ilia A. organization: Department of Chemistry, University of Wisconsin–Madison, Madison, WI, USA – sequence: 15 givenname: Changgui surname: Zhao fullname: Zhao, Changgui organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA – sequence: 16 givenname: Le surname: Guo fullname: Guo, Le organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA – sequence: 17 givenname: Weiping orcidid: 0000-0002-0039-3196 surname: Tang fullname: Tang, Weiping organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA – sequence: 18 givenname: Cameron R. surname: Currie fullname: Currie, Cameron R. organization: Department of Genetics, University of Wisconsin–Madison, Madison, WI, USA., Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA – sequence: 19 givenname: Scott R. orcidid: 0000-0002-0238-8411 surname: Rajski fullname: Rajski, Scott R. organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA – sequence: 20 givenname: Anjon orcidid: 0000-0002-7828-5152 surname: Audhya fullname: Audhya, Anjon organization: Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, USA – sequence: 21 givenname: David R. orcidid: 0000-0002-7927-9950 surname: Andes fullname: Andes, David R. organization: Department of Medicine, University of Wisconsin–Madison, Madison, WI, USA – sequence: 22 givenname: Tim S. orcidid: 0000-0002-4502-3084 surname: Bugni fullname: Bugni, Tim S. organization: Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33214279$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1LxDAQxYMouquevUnBi5eu-Wib5CLI4hcIXvQc0nR2N9ImmqSC_71Z3BUVPM1hfu_xZt4U7TrvAKETgmeE0OYiGgvOwEy3XSOJ3EETgmVdSorZLppgzJpSYF4foGmMLxjnnWT76IAxSirK5QTdXxWDDtZBMVgTfGv9AIV2yS5Gt9R9kXRYQorFmIdLZVoF0KnowrgsA0QbU2aLNWuP0N5C9xGON_MQPd9cP83vyofH2_v51UNpKsFT2XGABqShjHS1FtS0wlBBMa8wVDmeNAYTJhYN5qzCUkDbUqGBN7TSACDZIbr88n0d2wE6k2MF3avXYPMhH8prq35vnF2ppX9XnNeNrGk2ON8YBP82QkxqsNFA32sHfoyKVg0jmHJBMnr2B33xY3D5vDVFqxy6Zpk6_ZnoO8r2yxmov4D84RgDLJSxSSfr1wFtrwhW6zbVpk21aTPrLv7ottb_KT4BWJOmHw |
CitedBy_id | crossref_primary_10_1007_s10482_024_01964_y crossref_primary_10_1016_j_fbio_2023_103458 crossref_primary_10_1021_acs_jnatprod_1c00297 crossref_primary_10_1016_j_apsb_2022_08_001 crossref_primary_10_1126_science_abf1675 crossref_primary_10_1128_aac_00955_23 crossref_primary_10_3389_fmicb_2024_1443651 crossref_primary_10_1128_Spectrum_01669_21 crossref_primary_10_1007_s11426_022_1512_0 crossref_primary_10_1111_jcmm_18354 crossref_primary_10_1002_adhm_202303755 crossref_primary_10_1021_acs_analchem_2c05145 crossref_primary_10_1039_D1NP00076D crossref_primary_10_1172_JCI154944 crossref_primary_10_1088_1361_6528_ac385d crossref_primary_10_1039_D1NP00040C crossref_primary_10_3390_jof8070669 crossref_primary_10_1021_jacs_4c09916 crossref_primary_10_3390_md23010017 crossref_primary_10_1021_acs_biochem_4c00464 crossref_primary_10_1021_acs_jnatprod_2c01003 crossref_primary_10_3389_fmicb_2022_911322 crossref_primary_10_1002_advs_202207736 crossref_primary_10_1016_j_lwt_2023_114907 crossref_primary_10_1021_acs_jmedchem_1c01845 crossref_primary_10_3390_molecules28104183 crossref_primary_10_1016_j_lwt_2021_112847 crossref_primary_10_1021_jacs_3c09240 crossref_primary_10_1016_j_copbio_2021_02_001 crossref_primary_10_1021_acs_jmedchem_2c00626 crossref_primary_10_1016_j_drup_2022_100887 crossref_primary_10_1007_s10096_022_04497_2 crossref_primary_10_3390_md19060316 crossref_primary_10_1016_j_marenvres_2023_106303 crossref_primary_10_1016_j_mib_2022_102198 crossref_primary_10_3390_biom13111572 crossref_primary_10_1021_acs_nanolett_4c01042 crossref_primary_10_1021_acsomega_3c00301 crossref_primary_10_1128_cmr_00142_23 crossref_primary_10_1093_femsre_fuad059 crossref_primary_10_1099_mgen_0_001167 crossref_primary_10_3390_md22040180 crossref_primary_10_1002_biot_202100250 crossref_primary_10_1016_j_bioflm_2023_100126 crossref_primary_10_1186_s13321_023_00738_4 crossref_primary_10_1016_j_csbj_2021_02_003 crossref_primary_10_1038_s41579_020_00495_3 crossref_primary_10_1038_s41598_023_37851_1 crossref_primary_10_1128_mbio_03045_23 crossref_primary_10_3390_bioengineering9110707 crossref_primary_10_3390_microorganisms9030634 crossref_primary_10_1021_acs_jnatprod_1c00461 crossref_primary_10_3389_fcimb_2021_759408 crossref_primary_10_1111_mec_16411 crossref_primary_10_1016_j_addr_2023_114819 crossref_primary_10_1038_s41586_025_08678_9 crossref_primary_10_1016_j_molmed_2024_04_018 crossref_primary_10_1080_21505594_2021_2019950 crossref_primary_10_1021_acsbiomedchemau_2c00055 crossref_primary_10_1093_femsmc_xtac012 crossref_primary_10_1002_adfm_202111344 crossref_primary_10_1016_j_jbc_2022_102861 crossref_primary_10_1128_aem_00806_22 crossref_primary_10_3390_molecules30010077 crossref_primary_10_1021_jacs_2c06410 crossref_primary_10_1016_j_bbalip_2024_159572 crossref_primary_10_1016_j_arabjc_2024_105687 crossref_primary_10_1016_j_biotechadv_2021_107871 crossref_primary_10_1039_D2NP00046F crossref_primary_10_1128_aem_01208_22 crossref_primary_10_1021_acscentsci_1c00520 crossref_primary_10_1016_j_mycmed_2021_101232 crossref_primary_10_1146_annurev_micro_041020_094524 crossref_primary_10_3390_microorganisms9122551 crossref_primary_10_1039_D1NP00044F crossref_primary_10_1016_j_pt_2021_05_004 crossref_primary_10_1016_j_chembiol_2023_06_005 crossref_primary_10_3390_antibiotics10121447 crossref_primary_10_1016_j_bbalip_2021_158990 crossref_primary_10_1371_journal_ppat_1011583 crossref_primary_10_1073_pnas_2100880118 crossref_primary_10_1016_j_pt_2024_10_018 crossref_primary_10_1002_imt2_244 crossref_primary_10_1016_j_trsl_2022_04_002 crossref_primary_10_1172_JCI145123 crossref_primary_10_1007_s11356_023_26883_9 crossref_primary_10_1016_j_addr_2023_114874 crossref_primary_10_3390_jof9080800 crossref_primary_10_1016_j_jare_2024_09_017 crossref_primary_10_1039_D2NP00045H crossref_primary_10_1128_spectrum_02438_22 crossref_primary_10_1016_j_csbj_2023_08_031 crossref_primary_10_3389_fmars_2024_1523246 crossref_primary_10_1039_D0NP00092B crossref_primary_10_3390_ijms251910408 crossref_primary_10_3390_ijms22136754 crossref_primary_10_1080_17512433_2021_1949285 crossref_primary_10_1007_s40475_024_00338_8 crossref_primary_10_1007_s12088_021_00957_z crossref_primary_10_1016_j_chembiol_2024_01_010 crossref_primary_10_3390_cells12111547 crossref_primary_10_1021_acs_joc_3c00369 crossref_primary_10_3389_fmicb_2021_675048 crossref_primary_10_1016_j_addr_2023_114960 crossref_primary_10_1016_j_ejmech_2024_117028 crossref_primary_10_3389_ffunb_2021_683414 crossref_primary_10_3390_ijms232012307 crossref_primary_10_3390_jof7070535 crossref_primary_10_1021_acs_jnatprod_4c00911 crossref_primary_10_1186_s12951_024_02841_6 crossref_primary_10_1093_femsml_uqab009 crossref_primary_10_1002_fsn3_4140 crossref_primary_10_1021_acsnano_3c13164 crossref_primary_10_1021_acs_jnatprod_4c00232 crossref_primary_10_1039_D4NP00023D crossref_primary_10_3390_antiox13060667 crossref_primary_10_1016_j_biotechadv_2023_108176 crossref_primary_10_1016_j_ejcb_2022_151205 crossref_primary_10_1038_s41564_024_01662_5 crossref_primary_10_3390_jof10060408 |
Cites_doi | 10.1016/j.bbamcr.2013.02.003 10.1007/s00253-015-7248-z 10.1093/bioinformatics/btx732 10.1021/ci800298z 10.1074/jbc.M808732200 10.1107/S2053229614024218 10.1021/acs.jnatprod.9b01285 10.1039/D0NP00029A 10.1021/ac202623g 10.1016/j.chembiol.2017.12.007 10.1128/AAC.01355-13 10.1093/cid/civ791 10.1002/mrc.4384 10.1016/j.tet.2015.12.045 10.1371/journal.pcbi.1006532 10.1038/s41596-018-0099-1 10.1038/nchembio.1389 10.1007/s10822-012-9584-8 10.1021/ci300604z 10.1016/j.devcel.2014.07.016 10.1007/s10822-015-9846-3 10.1016/j.gene.2010.03.016 10.1016/j.cels.2016.12.011 10.1128/AAC.00791-17 10.1038/nchembio.2436 10.1016/j.cub.2009.04.001 10.3201/eid2201.151308 10.1021/acs.jnatprod.8b00323 10.1107/S0021889808042726 10.3390/metabo10070297 10.1093/nar/gkz310 10.1021/np960737v 10.3390/metabo7030034 10.1016/j.chembiol.2012.01.016 10.1128/AAC.02372-18 10.1021/acs.jcim.7b00153 10.1021/acs.orglett.8b01871 10.1038/nmeth.1231 10.1056/NEJMc1900112 10.1126/scitranslmed.3004404 10.1371/journal.ppat.0030092 10.1371/journal.pcbi.1003571 10.1086/651262 10.1128/AAC.01279-12 10.1021/np300034c 10.3390/md12021013 10.1016/j.tetlet.2017.07.008 10.1021/acschembio.7b00688 10.1101/gr.215087.116 10.1002/jcc.20084 10.1107/S2053273314026370 10.1007/978-1-4939-3323-5_3 10.1038/nmicrobiol.2016.92 10.1107/S1600576714022985 10.1126/science.aaf1420 10.1371/journal.pgen.1006374 10.1038/s41467-017-02470-8 10.1002/anie.201405990 10.1007/978-1-4939-2269-7_23 10.1038/s41467-019-08438-0 10.1002/jcc.21334 10.1128/AAC.00705-08 10.1128/AAC.01430-10 |
ContentType | Journal Article |
Copyright | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.abd6919 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 978 |
ExternalDocumentID | PMC7756952 33214279 10_1126_science_abd6919 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: U19 AI109673 – fundername: NIAID NIH HHS grantid: R01 AI073289 – fundername: NCRR NIH HHS grantid: S10 RR002781 – fundername: NCRR NIH HHS grantid: S10 RR025062 – fundername: NCRR NIH HHS grantid: P41 RR002301 – fundername: NIGMS NIH HHS grantid: R35 GM134865 – fundername: NIGMS NIH HHS grantid: R01 GM104192 – fundername: NIAID NIH HHS grantid: U19 AI142720 – fundername: NIGMS NIH HHS grantid: P41 GM103399 – fundername: NCRR NIH HHS grantid: S10 RR008438 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF GX1 NPM OK1 UIG YCJ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c487t-d7ee6e9c231d5a82cb8c2820740e49599cc0138f60734098ebb28ae7624aeee93 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 18:12:57 EDT 2025 Mon Jul 21 10:26:38 EDT 2025 Fri Jul 25 19:01:13 EDT 2025 Thu Apr 03 07:00:58 EDT 2025 Tue Jul 01 01:35:21 EDT 2025 Thu Apr 24 23:11:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6519 |
Language | English |
License | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c487t-d7ee6e9c231d5a82cb8c2820740e49599cc0138f60734098ebb28ae7624aeee93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. Author contributions: Consistent with CRediT taxonomy, the roles of contributing authors are as follows: Conceptualization: T.S.B., D.R.A., C.R.C., and W.T.; methodology: F.Z., M.Z., D.R.B., J.S.P., J.N., J.P., G.E.A., S.C., K.B.,I.A.G., C.Z., and L.G.; software: S.C., J.P., T.S.B., S.S.E., and J.S.P.; validation: I.A.G., F.Z., M.Z., D.R.B., A.A., D.R.A., and M.G.C.; formal analysis: F.Z., M.Z., S.S.E., J.S.P., J.N., G.E.A., J.F., A.A., and M.G.C.; investigation: F.Z., M.Z., S.S.E., C.Z., H.S., L.G., and A.A.; resources: D.R.B., S.S.E., G.E.A., S.C., K.B., H.S., and I.A.G.; data curation: F.Z., M.Z., G.E.A., W.T., C.R.C., S.R.R., A.A., D.R.A., and T.S.B.; writing—original draft: F.Z., S.R.R., M.Z., T.S.B., and D.R.A.; writing—review and editing: F.Z., J.F., H.S., J.S.P., C.R.C., S.R.R., A.A., D.R.A., and T.S.B.; visualization: T.S.B., D.R.A., C.R.C., and A.A.; supervision: T.S.B., D.R.A., C.R.C., and W.T.; project administration: D.R.A., T.S.B., and W.T.; and funding acquisition: D.R.A., C.R.C., T.S.B., and A.A. |
ORCID | 0000-0002-6286-650X 0000-0002-3021-2210 0000-0001-8490-8339 0000-0002-4502-3084 0000-0002-2413-5618 0000-0002-7209-0717 0000-0002-1736-2978 0000-0003-1976-7386 0000-0001-9732-1123 0000-0002-7851-6758 0000-0002-1856-4280 0000-0002-0039-3196 0000-0003-4907-1160 0000-0002-0238-8411 0000-0002-7828-5152 0000-0002-7927-9950 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7756952 |
PMID | 33214279 |
PQID | 2462474053 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7756952 proquest_miscellaneous_2463102781 proquest_journals_2462474053 pubmed_primary_33214279 crossref_citationtrail_10_1126_science_abd6919 crossref_primary_10_1126_science_abd6919 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-20 20201120 |
PublicationDateYYYYMMDD | 2020-11-20 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2020 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_77_2 e_1_3_2_50_2 e_1_3_2_71_2 Bax A. (e_1_3_2_49_2) 1981; 44 Trott O. (e_1_3_2_73_2) 2010; 31 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 Zhao M. (e_1_3_2_27_2) 2018; 62 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 e_1_3_2_72_2 e_1_3_2_70_2 33214262 - Science. 2020 Nov 20;370(6519):906-907 33311563 - Nat Rev Microbiol. 2021 Feb;19(2):73 33257788 - Nat Rev Drug Discov. 2021 Jan;20(1):17 |
References_xml | – ident: e_1_3_2_45_2 doi: 10.1016/j.bbamcr.2013.02.003 – ident: e_1_3_2_66_2 doi: 10.1007/s00253-015-7248-z – ident: e_1_3_2_38_2 doi: 10.1093/bioinformatics/btx732 – ident: e_1_3_2_70_2 doi: 10.1021/ci800298z – ident: e_1_3_2_46_2 doi: 10.1074/jbc.M808732200 – ident: e_1_3_2_58_2 doi: 10.1107/S2053229614024218 – ident: e_1_3_2_10_2 doi: 10.1021/acs.jnatprod.9b01285 – ident: e_1_3_2_15_2 doi: 10.1039/D0NP00029A – volume: 62 start-page: e02542 year: 2018 ident: e_1_3_2_27_2 article-title: In vivo pharmacokinetics and pharmacodynamics of APX001 against Candida spp. in a neutropenic disseminated candidiasis mouse model publication-title: Antimicrob. Agents Chemother. – ident: e_1_3_2_48_2 – ident: e_1_3_2_12_2 doi: 10.1021/ac202623g – ident: e_1_3_2_40_2 doi: 10.1016/j.chembiol.2017.12.007 – ident: e_1_3_2_31_2 doi: 10.1128/AAC.01355-13 – ident: e_1_3_2_6_2 doi: 10.1093/cid/civ791 – ident: e_1_3_2_50_2 doi: 10.1002/mrc.4384 – ident: e_1_3_2_19_2 doi: 10.1016/j.tet.2015.12.045 – ident: e_1_3_2_39_2 doi: 10.1371/journal.pcbi.1006532 – ident: e_1_3_2_26_2 – ident: e_1_3_2_56_2 – ident: e_1_3_2_62_2 doi: 10.1038/s41596-018-0099-1 – ident: e_1_3_2_42_2 doi: 10.1038/nchembio.1389 – ident: e_1_3_2_69_2 doi: 10.1007/s10822-012-9584-8 – ident: e_1_3_2_72_2 doi: 10.1021/ci300604z – ident: e_1_3_2_47_2 doi: 10.1016/j.devcel.2014.07.016 – ident: e_1_3_2_74_2 doi: 10.1007/s10822-015-9846-3 – ident: e_1_3_2_23_2 doi: 10.1016/j.gene.2010.03.016 – ident: e_1_3_2_8_2 – ident: e_1_3_2_43_2 doi: 10.1016/j.cels.2016.12.011 – ident: e_1_3_2_30_2 doi: 10.1128/AAC.00791-17 – ident: e_1_3_2_25_2 – ident: e_1_3_2_36_2 doi: 10.1038/nchembio.2436 – ident: e_1_3_2_9_2 doi: 10.1016/j.cub.2009.04.001 – ident: e_1_3_2_5_2 doi: 10.3201/eid2201.151308 – ident: e_1_3_2_21_2 doi: 10.1021/acs.jnatprod.8b00323 – ident: e_1_3_2_55_2 – ident: e_1_3_2_60_2 – ident: e_1_3_2_59_2 doi: 10.1107/S0021889808042726 – ident: e_1_3_2_16_2 doi: 10.3390/metabo10070297 – ident: e_1_3_2_65_2 doi: 10.1093/nar/gkz310 – ident: e_1_3_2_24_2 doi: 10.1021/np960737v – ident: e_1_3_2_77_2 – ident: e_1_3_2_11_2 doi: 10.3390/metabo7030034 – ident: e_1_3_2_22_2 doi: 10.1016/j.chembiol.2012.01.016 – ident: e_1_3_2_32_2 doi: 10.1128/AAC.02372-18 – ident: e_1_3_2_75_2 doi: 10.1021/acs.jcim.7b00153 – ident: e_1_3_2_17_2 doi: 10.1021/acs.orglett.8b01871 – ident: e_1_3_2_35_2 doi: 10.1038/nmeth.1231 – ident: e_1_3_2_7_2 doi: 10.1056/NEJMc1900112 – ident: e_1_3_2_2_2 doi: 10.1126/scitranslmed.3004404 – ident: e_1_3_2_44_2 doi: 10.1371/journal.ppat.0030092 – ident: e_1_3_2_71_2 doi: 10.1371/journal.pcbi.1003571 – ident: e_1_3_2_76_2 – ident: e_1_3_2_3_2 doi: 10.1086/651262 – ident: e_1_3_2_34_2 doi: 10.1128/AAC.01279-12 – ident: e_1_3_2_18_2 doi: 10.1021/np300034c – ident: e_1_3_2_51_2 doi: 10.3390/md12021013 – ident: e_1_3_2_53_2 – ident: e_1_3_2_20_2 doi: 10.1016/j.tetlet.2017.07.008 – ident: e_1_3_2_63_2 doi: 10.1021/acschembio.7b00688 – ident: e_1_3_2_64_2 doi: 10.1101/gr.215087.116 – ident: e_1_3_2_68_2 doi: 10.1002/jcc.20084 – ident: e_1_3_2_57_2 doi: 10.1107/S2053273314026370 – ident: e_1_3_2_67_2 – ident: e_1_3_2_28_2 doi: 10.1007/978-1-4939-3323-5_3 – ident: e_1_3_2_4_2 doi: 10.1038/nmicrobiol.2016.92 – ident: e_1_3_2_54_2 doi: 10.1107/S1600576714022985 – ident: e_1_3_2_37_2 doi: 10.1126/science.aaf1420 – ident: e_1_3_2_41_2 doi: 10.1371/journal.pgen.1006374 – ident: e_1_3_2_13_2 doi: 10.1038/s41467-017-02470-8 – ident: e_1_3_2_52_2 doi: 10.1002/anie.201405990 – ident: e_1_3_2_61_2 doi: 10.1007/978-1-4939-2269-7_23 – volume: 44 start-page: 542 year: 1981 ident: e_1_3_2_49_2 article-title: Investigation of complex networks of spin-spin coupling by two-dimensional NMR publication-title: J. Magn. Reson. – ident: e_1_3_2_14_2 doi: 10.1038/s41467-019-08438-0 – volume: 31 start-page: 455 year: 2010 ident: e_1_3_2_73_2 article-title: AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: J. Comput. Chem. doi: 10.1002/jcc.21334 – ident: e_1_3_2_33_2 doi: 10.1128/AAC.00705-08 – ident: e_1_3_2_29_2 doi: 10.1128/AAC.01430-10 – reference: 33214262 - Science. 2020 Nov 20;370(6519):906-907 – reference: 33311563 - Nat Rev Microbiol. 2021 Feb;19(2):73 – reference: 33257788 - Nat Rev Drug Discov. 2021 Jan;20(1):17 |
SSID | ssj0009593 |
Score | 2.6324818 |
Snippet | Marine bacteria produce a plethora of natural products that often have unusual chemical structures and corresponding reactivity, which sometimes translate into... New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant... Prospecting for antifungal moleculesMarine bacteria produce a plethora of natural products that often have unusual chemical structures and corresponding... New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida... New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 974 |
SubjectTerms | Animals Antifungal activity Antifungal agents Antifungal Agents - chemistry Antifungal Agents - pharmacology Antifungal Agents - therapeutic use Benzopyrans - chemistry Benzopyrans - pharmacology Benzopyrans - therapeutic use Biocompatibility Candida - drug effects Candida auris Candidiasis, Invasive - drug therapy Cutting resistance Disease Models, Animal Drug resistance Drug Resistance, Multiple, Fungal Drugs Exploration Fungal infections Fungal Proteins - metabolism Fungi Fungicides Infectious diseases Isoquinolines - chemistry Isoquinolines - pharmacology Isoquinolines - therapeutic use Marine animals Marine organisms Metabolomics Mice Microbiomes Microbiota Micromonospora - chemistry Microorganisms Mode of action Multidrug resistance Narcotics Natural products Pathogens Phospholipid Transfer Proteins - metabolism Safety Toxicity Urochordata - microbiology |
Title | A marine microbiome antifungal targets urgent-threat drug-resistant fungi |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33214279 https://www.proquest.com/docview/2462474053 https://www.proquest.com/docview/2463102781 https://pubmed.ncbi.nlm.nih.gov/PMC7756952 |
Volume | 370 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZWrUC9IFpegYKMxKEocpTEefmYFlYFCYRoK_UW2Ym3XYnNrnaTA_wX_ivj2Mk6LZWgl2jl-JH1fJ6HPZ5B6B0oFVUsOCOyCiiJ-EyQjNKIcMr9SMRZJnjn5fs1Ob2IPl_Gl5PJb8trqW2EV_76672S-1AVyoCu6pbsf1B26BQK4DfQF55AYXj-E41zd8HV7T13MdfxlBbqMKCZg7C6Uk7knZf3xlU3n-uGNNfddkC1bq8IGNlKcVSBmaDu3FZR-9UOqudwnGMRcfBLzLX3QO9MYJpZOwvDXvR0i0AoW2pvfb60jvPbulfm3e_eoOSriP1mg-hspTpfu2eevU0BNmkQkNC3Wa-JfKwFj-a2vkoUGfrUZsc09S3cJbHhqJq_Mp3Sx4hqprP_3JYCVt5K6XFRJUz3YmFitehAQVWiplDns7kRePvbl5M0jRMWg4TfDcEKATa6mx9_OJ7eGdXZxI6ybmX1o--hh_1QYw3olllz0zvXUnfOH6NHxk7BuQbdPprI-gA90JlLfx6gfUPuDT4ygcvfP0GfcqzxiLd4xFs8YoNHPMIjHuMRd3h8ii6mH89PTolJ1UFKsHgbUqVSJpKVYC1UMc_CUmQlGPOgn_oSTHDGylIdic8SkCiRzzIpRJhxCZI44lJKRp-hnXpZyxcIU1BpA1EKTqM04mnABU8YjamYiZTPKuEgr5--ojRx7FU6lR9FZ8-GSWGmvjBT76CjocFKh3C5u-phT4_CrPNNEUbwlfBHYuqgt8Nr4MLqaI3Xctl2dcBOCtMscNBzTb5hrJ7uDkpHhB0qqAjv4zf1_LqL9G7w9_LeLV-hve1iPEQ7zbqVr0GLbsQbg-U_dirNlQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+marine+microbiome+antifungal+targets+urgent-threat+drug-resistant+fungi&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Zhang%2C+Fan&rft.au=Zhao%2C+Miao&rft.au=Braun%2C+Doug+R.&rft.au=Ericksen%2C+Spencer+S.&rft.date=2020-11-20&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=370&rft.issue=6519&rft.spage=974&rft.epage=978&rft_id=info:doi/10.1126%2Fscience.abd6919&rft_id=info%3Apmid%2F33214279&rft.externalDocID=PMC7756952 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |