Lacteal junction zippering protects against diet-induced obesity
Chylomicrons are specialized particles that carry dietary fats from the intestine to the bloodstream for absorption into the body. Lacteals are lymphatic vessels that act as the highway for chylomicron transport, but it is unclear how passage occurs. Zhang et al. report that two endothelial cell rec...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 361; no. 6402; pp. 599 - 603 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
10.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chylomicrons are specialized particles that carry dietary fats from the intestine to the bloodstream for absorption into the body. Lacteals are lymphatic vessels that act as the highway for chylomicron transport, but it is unclear how passage occurs. Zhang
et al.
report that two endothelial cell receptors, neuropilin-1 (NRP1) and vascular endothelial growth factor receptor 1 (VEGFR1, also known as FLT1), are required to convert the entry spaces between lacteals from open junctions to closed, zipped structures (see the Perspective by McDonald). Mice that were fed a high-fat diet were subsequently rendered resistant to weight gain if NRP1 and FLT1 were inactivated.
Science
, this issue p.
599
; see also p.
551
Preventing chylomicron uptake by deletion of endothelial receptors makes mice resistant to obesity.
Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the bloodstream through intestinal lymphatic vessels called lacteals. Here, we show that preventing lacteal chylomicron uptake by inducible endothelial genetic deletion of
Neuropilin1
(
Nrp1
) and
Vascular endothelial growth factor receptor 1
(
Vegfr1
; also known as
Flt1
) renders mice resistant to diet-induced obesity. Absence of NRP1 and FLT1 receptors increased VEGF-A bioavailability and signaling through VEGFR2, inducing lacteal junction zippering and chylomicron malabsorption. Restoring permeable lacteal junctions by VEGFR2 and vascular endothelial (VE)–cadherin signaling inhibition rescued chylomicron transport in the mutant mice. Zippering of lacteal junctions by disassembly of cytoskeletal VE-cadherin anchors prevented chylomicron uptake in wild-type mice. These data suggest that lacteal junctions may be targets for preventing dietary fat uptake. |
---|---|
AbstractList | Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the bloodstream through intestinal lymphatic vessels called lacteals. Here, we show that preventing lacteal chylomicron uptake by inducible endothelial genetic deletion of Neuropilin1 (Nrp1) and Vascular endothelial growth factor receptor 1 (Vegfr1; also known as Flt1) renders mice resistant to diet-induced obesity. Absence of NRP1 and FLT1 receptors increased VEGF-A bioavailability and signaling through VEGFR2, inducing lacteal junction zippering and chylomicron malabsorption. Restoring permeable lacteal junctions by VEGFR2 and vascular endothelial (VE)-cadherin signaling inhibition rescued chylomicron transport in the mutant mice. Zippering of lacteal junctions by disassembly of cytoskeletal VE-cadherin anchors prevented chylomicron uptake in wild-type mice. These data suggest that lacteal junctions may be targets for preventing dietary fat uptake.Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the bloodstream through intestinal lymphatic vessels called lacteals. Here, we show that preventing lacteal chylomicron uptake by inducible endothelial genetic deletion of Neuropilin1 (Nrp1) and Vascular endothelial growth factor receptor 1 (Vegfr1; also known as Flt1) renders mice resistant to diet-induced obesity. Absence of NRP1 and FLT1 receptors increased VEGF-A bioavailability and signaling through VEGFR2, inducing lacteal junction zippering and chylomicron malabsorption. Restoring permeable lacteal junctions by VEGFR2 and vascular endothelial (VE)-cadherin signaling inhibition rescued chylomicron transport in the mutant mice. Zippering of lacteal junctions by disassembly of cytoskeletal VE-cadherin anchors prevented chylomicron uptake in wild-type mice. These data suggest that lacteal junctions may be targets for preventing dietary fat uptake. Zipping up obesityChylomicrons are specialized particles that carry dietary fats from the intestine to the bloodstream for absorption into the body. Lacteals are lymphatic vessels that act as the highway for chylomicron transport, but it is unclear how passage occurs. Zhang et al. report that two endothelial cell receptors, neuropilin-1 (NRP1) and vascular endothelial growth factor receptor 1 (VEGFR1, also known as FLT1), are required to convert the entry spaces between lacteals from open junctions to closed, zipped structures (see the Perspective by McDonald). Mice that were fed a high-fat diet were subsequently rendered resistant to weight gain if NRP1 and FLT1 were inactivated.Science, this issue p. 599; see also p. 551Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the bloodstream through intestinal lymphatic vessels called lacteals. Here, we show that preventing lacteal chylomicron uptake by inducible endothelial genetic deletion of Neuropilin1 (Nrp1) and Vascular endothelial growth factor receptor 1 (Vegfr1; also known as Flt1) renders mice resistant to diet-induced obesity. Absence of NRP1 and FLT1 receptors increased VEGF-A bioavailability and signaling through VEGFR2, inducing lacteal junction zippering and chylomicron malabsorption. Restoring permeable lacteal junctions by VEGFR2 and vascular endothelial (VE)–cadherin signaling inhibition rescued chylomicron transport in the mutant mice. Zippering of lacteal junctions by disassembly of cytoskeletal VE-cadherin anchors prevented chylomicron uptake in wild-type mice. These data suggest that lacteal junctions may be targets for preventing dietary fat uptake. Chylomicrons are specialized particles that carry dietary fats from the intestine to the bloodstream for absorption into the body. Lacteals are lymphatic vessels that act as the highway for chylomicron transport, but it is unclear how passage occurs. Zhang et al. report that two endothelial cell receptors, neuropilin-1 (NRP1) and vascular endothelial growth factor receptor 1 (VEGFR1, also known as FLT1), are required to convert the entry spaces between lacteals from open junctions to closed, zipped structures (see the Perspective by McDonald). Mice that were fed a high-fat diet were subsequently rendered resistant to weight gain if NRP1 and FLT1 were inactivated. Science , this issue p. 599 ; see also p. 551 Preventing chylomicron uptake by deletion of endothelial receptors makes mice resistant to obesity. Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the bloodstream through intestinal lymphatic vessels called lacteals. Here, we show that preventing lacteal chylomicron uptake by inducible endothelial genetic deletion of Neuropilin1 ( Nrp1 ) and Vascular endothelial growth factor receptor 1 ( Vegfr1 ; also known as Flt1 ) renders mice resistant to diet-induced obesity. Absence of NRP1 and FLT1 receptors increased VEGF-A bioavailability and signaling through VEGFR2, inducing lacteal junction zippering and chylomicron malabsorption. Restoring permeable lacteal junctions by VEGFR2 and vascular endothelial (VE)–cadherin signaling inhibition rescued chylomicron transport in the mutant mice. Zippering of lacteal junctions by disassembly of cytoskeletal VE-cadherin anchors prevented chylomicron uptake in wild-type mice. These data suggest that lacteal junctions may be targets for preventing dietary fat uptake. Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the bloodstream through intestinal lymphatic vessels called lacteals. Here, we show that preventing lacteal chylomicron uptake by inducible endothelial genetic deletion of ( ) and ( ; also known as ) renders mice resistant to diet-induced obesity. Absence of NRP1 and FLT1 receptors increased VEGF-A bioavailability and signaling through VEGFR2, inducing lacteal junction zippering and chylomicron malabsorption. Restoring permeable lacteal junctions by VEGFR2 and vascular endothelial (VE)-cadherin signaling inhibition rescued chylomicron transport in the mutant mice. Zippering of lacteal junctions by disassembly of cytoskeletal VE-cadherin anchors prevented chylomicron uptake in wild-type mice. These data suggest that lacteal junctions may be targets for preventing dietary fat uptake. Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the bloodstream through intestinal lymphatic vessels called lacteals. Here, we show that preventing lacteal chylomicron uptake by inducible endothelial genetic deletion of Neuropilin1 ( Nrp1 ) and Vascular endothelial growth factor receptor 1 ( Flt1 ) renders mice resistant to diet-induced obesity. Absence of NRP1 and FLT1 receptors increased VEGF-A bioavailability and signaling through VEGFR2, inducing lacteal junction zippering and chylomicron malabsorption. Restoring permeable lacteal junctions by VEGFR2 and Vascular endothelial (VE)-cadherin signaling inhibition rescued chylomicron transport in the mutant mice. Zippering of lacteal junctions by disassembly of cytoskeletal VE-cadherin anchors prevented chylomicron uptake in wildtype mice. These data suggest lacteal junctions may be targets to prevent dietary fat uptake. |
Author | Singh, Abhishek K. Han, Jinah Genet, Gael Boyé, Kevin Li, Jinyu Ola, Roxana Tso, Patrick Eichmann, Anne Michon, Pauline Dubrac, Alexandre Simons, Michael Shulman, Gerald I. Fong, Guo-Hua Zarkada, Georgia Künzel, Steffen E. Sessa, William C. Fernández-Hernando, Carlos Camporez, Joao Paulo Zhang, Feng |
AuthorAffiliation | 2 Department of Basic, Preventive and Clinical Science, University of Transylvania, 500019 Brasov, Romania 1 Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA 6 Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, 06030-3501, USA 4 Department of Internal Medicine, Yale University School of Medicine 5 Departments of Comparative Medicine and Pathology, Vascular Biology and Therapeutics Program and Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine 9 Department of Pharmacology, Vascular Biology and Therapeutics Program, Yale University School of Medicine 3 INSERM U970, Paris Cardiovascular Research Center, 75015 Paris, France 7 Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Galbraith Road, Cincinnati 45237-0507, USA 8 Department of Cellular and Molecular Physiology, Yale University School of Medicine |
AuthorAffiliation_xml | – name: 5 Departments of Comparative Medicine and Pathology, Vascular Biology and Therapeutics Program and Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine – name: 8 Department of Cellular and Molecular Physiology, Yale University School of Medicine – name: 7 Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Galbraith Road, Cincinnati 45237-0507, USA – name: 1 Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA – name: 2 Department of Basic, Preventive and Clinical Science, University of Transylvania, 500019 Brasov, Romania – name: 4 Department of Internal Medicine, Yale University School of Medicine – name: 6 Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, 06030-3501, USA – name: 9 Department of Pharmacology, Vascular Biology and Therapeutics Program, Yale University School of Medicine – name: 3 INSERM U970, Paris Cardiovascular Research Center, 75015 Paris, France |
Author_xml | – sequence: 1 givenname: Feng orcidid: 0000-0002-6103-1498 surname: Zhang fullname: Zhang, Feng organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA – sequence: 2 givenname: Georgia orcidid: 0000-0001-5036-1451 surname: Zarkada fullname: Zarkada, Georgia organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA – sequence: 3 givenname: Jinah surname: Han fullname: Han, Jinah organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA – sequence: 4 givenname: Jinyu orcidid: 0000-0002-7693-012X surname: Li fullname: Li, Jinyu organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA – sequence: 5 givenname: Alexandre orcidid: 0000-0002-3829-2577 surname: Dubrac fullname: Dubrac, Alexandre organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA – sequence: 6 givenname: Roxana orcidid: 0000-0001-8419-0881 surname: Ola fullname: Ola, Roxana organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA., Department of Basic, Preventive and Clinical Science, University of Transylvania, 500019 Brasov, Romania – sequence: 7 givenname: Gael surname: Genet fullname: Genet, Gael organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA – sequence: 8 givenname: Kevin orcidid: 0000-0002-5749-959X surname: Boyé fullname: Boyé, Kevin organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA – sequence: 9 givenname: Pauline surname: Michon fullname: Michon, Pauline organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA., INSERM U970, Paris Cardiovascular Research Center, 75015 Paris, France – sequence: 10 givenname: Steffen E. orcidid: 0000-0002-6466-168X surname: Künzel fullname: Künzel, Steffen E. organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA – sequence: 11 givenname: Joao Paulo surname: Camporez fullname: Camporez, Joao Paulo organization: Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA – sequence: 12 givenname: Abhishek K. orcidid: 0000-0002-4474-1367 surname: Singh fullname: Singh, Abhishek K. organization: Departments of Comparative Medicine and Pathology, Vascular Biology and Therapeutics Program and Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine, New Haven, CT, USA – sequence: 13 givenname: Guo-Hua surname: Fong fullname: Fong, Guo-Hua organization: Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, 06030-3501, USA – sequence: 14 givenname: Michael orcidid: 0000-0003-0348-7734 surname: Simons fullname: Simons, Michael organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA – sequence: 15 givenname: Patrick surname: Tso fullname: Tso, Patrick organization: Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH 45237-0507, USA – sequence: 16 givenname: Carlos surname: Fernández-Hernando fullname: Fernández-Hernando, Carlos organization: Departments of Comparative Medicine and Pathology, Vascular Biology and Therapeutics Program and Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine, New Haven, CT, USA – sequence: 17 givenname: Gerald I. orcidid: 0000-0003-1529-5668 surname: Shulman fullname: Shulman, Gerald I. organization: Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA., Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA – sequence: 18 givenname: William C. orcidid: 0000-0001-5759-1938 surname: Sessa fullname: Sessa, William C. organization: Department of Pharmacology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA – sequence: 19 givenname: Anne orcidid: 0000-0001-5563-210X surname: Eichmann fullname: Eichmann, Anne organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA., INSERM U970, Paris Cardiovascular Research Center, 75015 Paris, France., Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30093598$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc2LFDEQxYOsuLOrZ2_S4MVL7yZdnXRyEWXxCwa86Dkk6eoxQ0_SJumF9a83w46LLnhKoH7v8areBTkLMSAhLxm9YqwT19l5DA6vjFkUAHtCNowq3qqOwhnZUAqilXTg5-Qi5z2ldabgGTmH-gOu5Ia82xpX0MzNfg2u-BiaX35ZMPmwa5YUC7qSG7MzPuTSjB5L68O4OhybaDH7cvecPJ3MnPHF6b0k3z9--Hbzud1-_fTl5v22db0cSjtyC8JYJ_qhQ8u56dQ0TqyXdJpGpZzqkQ6DAGol7xk4MML2OEoqwRhrGVySt_e-y2oPODoMJZlZL8kfTLrT0Xj97yT4H3oXb7UANgwgq8Gbk0GKP1fMRR98djjPJmBcs-6oHLiqIWhFXz9C93FNoa53pAR0AjhU6tXfiR6i_DluBa7vAZdizgmnB4RRfaxPn-rTp_qqgj9SOF_MsZa6kp__q_sNdgajZA |
CitedBy_id | crossref_primary_10_1016_j_jcmgh_2020_09_007 crossref_primary_10_3389_fcvm_2024_1392816 crossref_primary_10_3389_fphys_2023_1316982 crossref_primary_10_1038_s41569_020_00489_x crossref_primary_10_3389_fphys_2018_01783 crossref_primary_10_1038_s41598_022_15848_6 crossref_primary_10_1146_annurev_physiol_032122_030352 crossref_primary_10_3389_fphys_2020_624903 crossref_primary_10_1007_s12195_024_00840_z crossref_primary_10_1007_s12195_023_00780_0 crossref_primary_10_1016_j_ejpb_2022_10_019 crossref_primary_10_3389_fendo_2022_1007856 crossref_primary_10_1097_MOL_0000000000000626 crossref_primary_10_1093_function_zqae033 crossref_primary_10_4049_jimmunol_2001060 crossref_primary_10_1039_D3LC00486D crossref_primary_10_1111_micc_12730 crossref_primary_10_1007_s00018_022_04303_4 crossref_primary_10_1016_j_cmet_2021_04_019 crossref_primary_10_1038_s41467_020_17886_y crossref_primary_10_3389_fphys_2020_00831 crossref_primary_10_1126_sciadv_abn2611 crossref_primary_10_1016_j_cophys_2019_09_003 crossref_primary_10_1016_j_jpedsurg_2020_02_037 crossref_primary_10_1016_j_jcmgh_2018_12_002 crossref_primary_10_1084_jem_20181895 crossref_primary_10_1038_s42255_021_00442_3 crossref_primary_10_1007_s00018_021_03886_8 crossref_primary_10_1016_j_celrep_2023_112777 crossref_primary_10_1016_j_phymed_2023_155268 crossref_primary_10_2147_JIR_S414891 crossref_primary_10_3389_fphys_2019_01402 crossref_primary_10_1016_j_jpedsurg_2019_02_026 crossref_primary_10_1002_adbi_202200158 crossref_primary_10_1007_s11307_023_01827_4 crossref_primary_10_1084_jem_20211830 crossref_primary_10_1146_annurev_nutr_110320_013657 crossref_primary_10_1016_j_isci_2022_105905 crossref_primary_10_1038_s42255_023_00828_5 crossref_primary_10_1038_s44161_023_00385_w crossref_primary_10_15252_embr_202050767 crossref_primary_10_1016_j_molmed_2021_07_003 crossref_primary_10_3390_ijms22147760 crossref_primary_10_1016_j_vph_2023_107178 crossref_primary_10_1016_j_stem_2022_05_007 crossref_primary_10_1016_j_addr_2020_12_005 crossref_primary_10_1038_s41575_024_00996_z crossref_primary_10_1080_17474086_2019_1627191 crossref_primary_10_26508_lsa_202302168 crossref_primary_10_3390_nu17061034 crossref_primary_10_3390_ijms232214179 crossref_primary_10_3389_fphar_2022_848088 crossref_primary_10_3389_fphys_2022_1021038 crossref_primary_10_1016_j_biomaterials_2021_121183 crossref_primary_10_1016_j_jconrel_2021_12_003 crossref_primary_10_1096_fj_202400160RR crossref_primary_10_3390_genes13020277 crossref_primary_10_1016_j_ijpharm_2021_120247 crossref_primary_10_3390_cells12010172 crossref_primary_10_3390_microorganisms7120691 crossref_primary_10_1152_ajpcell_00137_2022 crossref_primary_10_1161_ATVBAHA_123_320032 crossref_primary_10_1002_mco2_728 crossref_primary_10_1016_j_jcmgh_2018_10_015 crossref_primary_10_3389_fcvm_2024_1412857 crossref_primary_10_1172_JCI171582 crossref_primary_10_18632_aging_203988 crossref_primary_10_1161_CIRCRESAHA_122_321671 crossref_primary_10_1016_j_jbc_2023_104775 crossref_primary_10_1038_nrd_2018_170 crossref_primary_10_1126_science_aay4509 crossref_primary_10_1161_CIRCRESAHA_123_323210 crossref_primary_10_2337_dbi23_0036 crossref_primary_10_1016_j_hnm_2023_200210 crossref_primary_10_1038_s41467_021_23808_3 crossref_primary_10_3390_ijms252212226 crossref_primary_10_3390_ijms23042152 crossref_primary_10_1016_j_molmet_2020_101081 crossref_primary_10_3389_fcell_2024_1455258 crossref_primary_10_1021_acsnano_4c04758 crossref_primary_10_15252_emmm_202114742 crossref_primary_10_1016_j_asoc_2024_112307 crossref_primary_10_1016_j_lfs_2020_117677 crossref_primary_10_1242_dev_202901 crossref_primary_10_1016_j_lfs_2023_122285 crossref_primary_10_3389_fphar_2020_606514 crossref_primary_10_1016_j_kint_2021_06_022 crossref_primary_10_1016_j_celrep_2019_07_072 crossref_primary_10_1016_j_tice_2021_101529 crossref_primary_10_1097_MOL_0000000000000821 crossref_primary_10_15252_embj_201899322 crossref_primary_10_1186_s41232_021_00175_6 crossref_primary_10_1038_s42255_021_00457_w crossref_primary_10_3389_fcvm_2021_738325 crossref_primary_10_3389_fcell_2020_627647 crossref_primary_10_3389_fphys_2020_00003 crossref_primary_10_1091_mbc_E22_08_0367 crossref_primary_10_1146_annurev_bioeng_092222_034906 crossref_primary_10_18499_2225_7357_2020_9_4_31_37 crossref_primary_10_1152_physrev_00006_2020 crossref_primary_10_7554_eLife_53814 crossref_primary_10_23736_S2724_6507_22_03895_7 crossref_primary_10_1038_s41467_022_29701_x crossref_primary_10_3389_fphys_2020_00519 crossref_primary_10_1016_j_heliyon_2024_e34490 crossref_primary_10_1016_j_celrep_2021_110030 crossref_primary_10_1016_j_tem_2023_03_004 crossref_primary_10_1084_jem_20222008 crossref_primary_10_1038_s44161_024_00570_5 crossref_primary_10_1016_j_jlr_2022_100269 crossref_primary_10_3389_fphys_2019_01604 crossref_primary_10_3390_nu13072198 crossref_primary_10_1016_j_cell_2020_06_039 crossref_primary_10_1016_j_ejps_2021_105812 crossref_primary_10_1038_s41467_022_29930_0 crossref_primary_10_1038_s41467_019_09605_z crossref_primary_10_3389_fphar_2023_1097835 crossref_primary_10_1038_s41467_020_20156_6 crossref_primary_10_3389_fmicb_2024_1335036 crossref_primary_10_1007_s10456_021_09784_8 crossref_primary_10_1016_j_cophys_2023_100675 crossref_primary_10_1101_cshperspect_a041179 crossref_primary_10_1016_j_ejphar_2023_175744 crossref_primary_10_1016_j_tem_2024_11_004 crossref_primary_10_1126_science_aau5583 crossref_primary_10_3389_fphys_2020_00404 crossref_primary_10_1101_cshperspect_a041173 crossref_primary_10_1016_j_isci_2019_11_005 crossref_primary_10_3389_fphys_2024_1358625 crossref_primary_10_3389_fcvm_2023_1240288 crossref_primary_10_1073_pnas_2308941120 crossref_primary_10_3389_fphar_2022_879660 crossref_primary_10_1084_jem_20221983 crossref_primary_10_3389_fphys_2019_01579 crossref_primary_10_1101_cshperspect_a041169 crossref_primary_10_1126_scisignal_abo4863 crossref_primary_10_1161_CIRCRESAHA_123_322607 crossref_primary_10_1038_s41586_020_2039_9 crossref_primary_10_1038_s44161_024_00487_z crossref_primary_10_14341_omet12776 crossref_primary_10_3389_fphys_2020_00459 crossref_primary_10_1126_sciimmunol_abg7506 crossref_primary_10_1016_j_jhep_2023_01_014 crossref_primary_10_1016_j_jlr_2023_100387 crossref_primary_10_1038_s41586_025_08724_6 crossref_primary_10_1042_CS20220314 crossref_primary_10_1161_CIRCULATIONAHA_122_061900 crossref_primary_10_3389_fphys_2023_1198052 crossref_primary_10_1113_JP281621 crossref_primary_10_3389_fcell_2022_937982 crossref_primary_10_1016_j_jid_2023_08_014 crossref_primary_10_1101_cshperspect_a041274 crossref_primary_10_3389_fendo_2024_1465816 crossref_primary_10_1038_s41467_024_54874_y crossref_primary_10_1186_s13578_022_00898_0 crossref_primary_10_3390_cells10102584 crossref_primary_10_1124_pharmrev_123_001159 crossref_primary_10_1080_19490976_2024_2387800 crossref_primary_10_2174_1389201023666220506105026 crossref_primary_10_1016_j_bbrc_2023_06_025 crossref_primary_10_1016_j_bbalip_2022_159207 crossref_primary_10_1126_science_aax4063 crossref_primary_10_1172_JCI125318 crossref_primary_10_1007_s00418_020_01851_3 crossref_primary_10_1038_s41568_024_00681_y crossref_primary_10_1038_s41392_023_01723_x crossref_primary_10_3389_fphys_2020_00509 crossref_primary_10_1016_j_molmed_2020_11_006 |
Cites_doi | 10.1016/j.cmet.2016.03.004 10.1038/nrm.2016.87 10.1016/S0022-2275(20)41667-0 10.1016/S1534-5807(03)00169-2 10.1016/j.devcel.2013.03.019 10.1161/CIRCRESAHA.116.302953 10.1111/j.1749-6632.2010.05716.x 10.1172/JCI82045 10.1038/ncomms10824 10.1113/jphysiol.1967.sp008210 10.1084/jem.20171012 10.1016/j.ceb.2012.02.002 10.1002/emmm.201303147 10.1371/journal.pone.0151396 10.1038/ncomms11017 10.1002/dvg.20335 10.1038/ncomms8264 10.1083/jcb.15.2.259 10.1016/j.cell.2016.02.023 10.1038/nature05249 10.1126/sciimmunol.aan4626 10.1101/gad.237677.114 10.1038/nmeth.1806 10.1038/ijo.2011.232 10.1038/nature09002 10.1084/jem.20111343 10.1038/nm.2759 10.1074/jbc.273.12.6599 10.1172/JCI71610 10.1084/jem.20062642 10.1084/jem.20062596 10.1097/00005344-200404000-00016 10.1038/nrgastro.2017.79 10.1007/s00018-016-2325-8 10.1016/j.ajpath.2012.02.019 10.1038/nature11464 10.1172/JCI58050 10.1038/nature08945 10.1093/emboj/16.13.3898 10.15252/emmm.201505731 10.7554/eLife.03720 10.3171/jns.1992.76.4.0571 10.1677/JOE-06-0045 10.1083/jcb.201108120 10.1038/srep06238 10.1016/j.celrep.2015.05.018 10.1161/CIRCULATIONAHA.112.091603 10.1161/CIRCULATIONAHA.108.816454 10.1182/blood-2012-05-424713 10.1161/CIRCRESAHA.112.269399 |
ContentType | Journal Article |
Copyright | Copyright © 2018, American Association for the Advancement of Science. Copyright © 2018, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2018, American Association for the Advancement of Science. – notice: Copyright © 2018, American Association for the Advancement of Science |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.aap9331 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 603 |
ExternalDocumentID | PMC6317738 30093598 10_1126_science_aap9331 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: T32 HL007974 – fundername: NEI NIH HHS grantid: P30 EY026878 – fundername: NHLBI NIH HHS grantid: R01 HL135582 – fundername: NHLBI NIH HHS grantid: P01 HL107205 – fundername: NHLBI NIH HHS grantid: R35 HL139945 – fundername: NIDDK NIH HHS grantid: U2C DK059630 – fundername: NHLBI NIH HHS grantid: R01 HL053793 – fundername: NIDDK NIH HHS grantid: R01 DK120373 – fundername: NEI NIH HHS grantid: R01 EY025979 – fundername: NHLBI NIH HHS grantid: T32 HL007950 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADUKH ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 C51 CITATION CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c487t-d5b36abc6472eb55a29fdf1480ffd99c94e077630b85413c3a6b4ed8083aabb13 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 18:19:31 EDT 2025 Fri Jul 11 02:15:47 EDT 2025 Fri Jul 25 10:29:53 EDT 2025 Mon Jul 21 06:07:25 EDT 2025 Tue Jul 01 01:51:20 EDT 2025 Thu Apr 24 23:12:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6402 |
Language | English |
License | Copyright © 2018, American Association for the Advancement of Science. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c487t-d5b36abc6472eb55a29fdf1480ffd99c94e077630b85413c3a6b4ed8083aabb13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: FZ, GZ, JH, JL, AD, RO, GG, KB, PM, SEK, JPC and AKS performed experiments and analyzed data. AE and FZ designed experiments, analyzed data and wrote the manuscript. GHF, MS, PT, CFH, WCS and GIS provided reagents or expertise. |
ORCID | 0000-0002-3829-2577 0000-0003-1529-5668 0000-0003-0348-7734 0000-0002-5749-959X 0000-0002-7693-012X 0000-0002-4474-1367 0000-0001-5563-210X 0000-0002-6103-1498 0000-0001-5759-1938 0000-0001-5036-1451 0000-0002-6466-168X 0000-0001-8419-0881 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6317738 |
PMID | 30093598 |
PQID | 2086326353 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6317738 proquest_miscellaneous_2087590770 proquest_journals_2086326353 pubmed_primary_30093598 crossref_primary_10_1126_science_aap9331 crossref_citationtrail_10_1126_science_aap9331 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-10 20180810 |
PublicationDateYYYYMMDD | 2018-08-10 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2018 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 Prewett M. (e_1_3_2_19_2) 1999; 59 30093588 - Science. 2018 Aug 10;361(6402):551-552. doi: 10.1126/science.aau5583 |
References_xml | – ident: e_1_3_2_9_2 doi: 10.1016/j.cmet.2016.03.004 – ident: e_1_3_2_11_2 doi: 10.1038/nrm.2016.87 – ident: e_1_3_2_8_2 doi: 10.1016/S0022-2275(20)41667-0 – ident: e_1_3_2_32_2 doi: 10.1016/S1534-5807(03)00169-2 – ident: e_1_3_2_13_2 doi: 10.1016/j.devcel.2013.03.019 – ident: e_1_3_2_47_2 doi: 10.1161/CIRCRESAHA.116.302953 – ident: e_1_3_2_4_2 doi: 10.1111/j.1749-6632.2010.05716.x – ident: e_1_3_2_6_2 doi: 10.1172/JCI82045 – ident: e_1_3_2_23_2 doi: 10.1038/ncomms10824 – ident: e_1_3_2_37_2 doi: 10.1113/jphysiol.1967.sp008210 – ident: e_1_3_2_10_2 doi: 10.1084/jem.20171012 – ident: e_1_3_2_39_2 doi: 10.1016/j.ceb.2012.02.002 – ident: e_1_3_2_45_2 doi: 10.1002/emmm.201303147 – ident: e_1_3_2_26_2 doi: 10.1371/journal.pone.0151396 – ident: e_1_3_2_15_2 doi: 10.1038/ncomms11017 – ident: e_1_3_2_52_2 doi: 10.1002/dvg.20335 – ident: e_1_3_2_50_2 doi: 10.1038/ncomms8264 – ident: e_1_3_2_7_2 doi: 10.1083/jcb.15.2.259 – ident: e_1_3_2_31_2 doi: 10.1016/j.cell.2016.02.023 – ident: e_1_3_2_12_2 doi: 10.1038/nature05249 – ident: e_1_3_2_51_2 doi: 10.1126/sciimmunol.aan4626 – ident: e_1_3_2_21_2 doi: 10.1101/gad.237677.114 – ident: e_1_3_2_36_2 doi: 10.1038/nmeth.1806 – ident: e_1_3_2_30_2 doi: 10.1038/ijo.2011.232 – ident: e_1_3_2_34_2 doi: 10.1038/nature09002 – volume: 59 start-page: 5209 year: 1999 ident: e_1_3_2_19_2 article-title: Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors publication-title: Cancer Res. – ident: e_1_3_2_14_2 doi: 10.1084/jem.20111343 – ident: e_1_3_2_17_2 doi: 10.1038/nm.2759 – ident: e_1_3_2_16_2 doi: 10.1074/jbc.273.12.6599 – ident: e_1_3_2_3_2 doi: 10.1172/JCI71610 – ident: e_1_3_2_27_2 doi: 10.1084/jem.20062642 – ident: e_1_3_2_20_2 doi: 10.1084/jem.20062596 – ident: e_1_3_2_38_2 doi: 10.1097/00005344-200404000-00016 – ident: e_1_3_2_2_2 doi: 10.1038/nrgastro.2017.79 – ident: e_1_3_2_25_2 doi: 10.1007/s00018-016-2325-8 – ident: e_1_3_2_22_2 doi: 10.1016/j.ajpath.2012.02.019 – ident: e_1_3_2_42_2 doi: 10.1038/nature11464 – ident: e_1_3_2_35_2 doi: 10.1172/JCI58050 – ident: e_1_3_2_41_2 doi: 10.1038/nature08945 – ident: e_1_3_2_40_2 doi: 10.1093/emboj/16.13.3898 – ident: e_1_3_2_5_2 doi: 10.15252/emmm.201505731 – ident: e_1_3_2_46_2 doi: 10.7554/eLife.03720 – ident: e_1_3_2_28_2 doi: 10.3171/jns.1992.76.4.0571 – ident: e_1_3_2_29_2 doi: 10.1677/JOE-06-0045 – ident: e_1_3_2_24_2 doi: 10.1083/jcb.201108120 – ident: e_1_3_2_44_2 doi: 10.1038/srep06238 – ident: e_1_3_2_48_2 doi: 10.1016/j.celrep.2015.05.018 – ident: e_1_3_2_33_2 doi: 10.1161/CIRCULATIONAHA.112.091603 – ident: e_1_3_2_43_2 doi: 10.1161/CIRCULATIONAHA.108.816454 – ident: e_1_3_2_49_2 doi: 10.1182/blood-2012-05-424713 – ident: e_1_3_2_18_2 doi: 10.1161/CIRCRESAHA.112.269399 – reference: 30093588 - Science. 2018 Aug 10;361(6402):551-552. doi: 10.1126/science.aau5583 |
SSID | ssj0009593 |
Score | 2.6205883 |
Snippet | Chylomicrons are specialized particles that carry dietary fats from the intestine to the bloodstream for absorption into the body. Lacteals are lymphatic... Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the... Zipping up obesityChylomicrons are specialized particles that carry dietary fats from the intestine to the bloodstream for absorption into the body. Lacteals... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 599 |
SubjectTerms | Animals Antigens, CD - metabolism Bioavailability Blood vessels Body weight gain Cadherins Cadherins - antagonists & inhibitors Cadherins - metabolism Chylomicrons Chylomicrons - adverse effects Chylomicrons - metabolism Clonal deletion Cytoskeleton Diet Diet, High-Fat - adverse effects Dietary Fats - adverse effects Dietary Fats - metabolism Dismantling Endothelial cells Enterocytes - metabolism Fats Gene Deletion Global health Growth factors High fat diet Intestinal Absorption - genetics Intestinal Absorption - physiology Intestine Lipids Lymphatic system Malabsorption Male Mice Mice, Knockout Neuropilin Neuropilin-1 - genetics Obesity Obesity - etiology Obesity - genetics Receptors Rodents Signal Transduction Signaling Transport Vascular endothelial growth factor Vascular Endothelial Growth Factor A - antagonists & inhibitors Vascular Endothelial Growth Factor A - metabolism Vascular Endothelial Growth Factor Receptor-1 - genetics Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors Vascular Endothelial Growth Factor Receptor-2 - metabolism |
Title | Lacteal junction zippering protects against diet-induced obesity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30093598 https://www.proquest.com/docview/2086326353 https://www.proquest.com/docview/2087590770 https://pubmed.ncbi.nlm.nih.gov/PMC6317738 |
Volume | 361 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWrUC9IFo-uqWgIHEoWmWVxHE-bmwLVYUK4tBKvUV2ErcRkI26yaH9DfxoxvHE622pBL1kV0680fo9T2ac8RtC3heex2UuOVi_ULphEfvwzctdP5FS-qGMfdln-X6Ljs_CL-fsfDT6bWUtda2Y5Td_3VfyEFShDXBVu2T_A1nzo9AA3wFfOALCcPwnjE-U1LKSf4CHU4_jTdU0vbbgFPUXllN-AbH_sp0WVdm6EIB36oX_QpcDsD3TYZKDx2ne4ljYmXTEuU4aGHIIsJu1oGCWoGGoLkwjv_rBC25W4Su-Mn16d0hVr1amTypsuu7sVQlfqVy7mJ-KlhaFjvVzRhtXT9WFDDxqW1-qtdiRZlHoBZY5Zbp4Ej6ZI93zrtG3ylSWM86bFHeBWRRofvUcoGoFh-m617d0tr9_PYzAmYpp8ohsBBB0BGOyMT_4dHB0r4gzSkVZm7CGu2-SJ8Ot1h2eO1HM7WRcy7s5fUaeYljizDXHtsiorLfJY12o9HqbbCHMS2cfdco_PCcfkX7OQD_H0M8Z6Ocg_Rybfg7S7wU5O_p8enjsYkEON4e4tnULJmjERa5KDpSCMR6ksoAZnXhSFmmap2Gp1KGoJxIGzlFOeSTCskjAzedcCJ--JON6UZc7xCk8zplMojhgPKSxAL8RPotYQvwaCSYnZDaMWpajWr0qmvIz66PWIMpwxDMc8QnZNx0aLdRy_6V7AwwZzuZlFkBsT5UyE52Qd-Y02Fr1Ao3X5aLrr4lZCn_Rm5BXGjVzrwHuCYnX8DQXKB339TN1ddnruSPtdh_c8zXZXM3BPTJur7ryDfjKrXiLFP4DatbEww |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lacteal+junction+zippering+protects+against+diet-induced+obesity&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Zhang%2C+Feng&rft.au=Zarkada%2C+Georgia&rft.au=Han%2C+Jinah&rft.au=Li%2C+Jinyu&rft.date=2018-08-10&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=361&rft.issue=6402&rft.spage=599&rft.epage=603&rft_id=info:doi/10.1126%2Fscience.aap9331&rft_id=info%3Apmid%2F30093598&rft.externalDocID=PMC6317738 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |