Lacteal junction zippering protects against diet-induced obesity

Chylomicrons are specialized particles that carry dietary fats from the intestine to the bloodstream for absorption into the body. Lacteals are lymphatic vessels that act as the highway for chylomicron transport, but it is unclear how passage occurs. Zhang et al. report that two endothelial cell rec...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 361; no. 6402; pp. 599 - 603
Main Authors Zhang, Feng, Zarkada, Georgia, Han, Jinah, Li, Jinyu, Dubrac, Alexandre, Ola, Roxana, Genet, Gael, Boyé, Kevin, Michon, Pauline, Künzel, Steffen E., Camporez, Joao Paulo, Singh, Abhishek K., Fong, Guo-Hua, Simons, Michael, Tso, Patrick, Fernández-Hernando, Carlos, Shulman, Gerald I., Sessa, William C., Eichmann, Anne
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 10.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chylomicrons are specialized particles that carry dietary fats from the intestine to the bloodstream for absorption into the body. Lacteals are lymphatic vessels that act as the highway for chylomicron transport, but it is unclear how passage occurs. Zhang et al. report that two endothelial cell receptors, neuropilin-1 (NRP1) and vascular endothelial growth factor receptor 1 (VEGFR1, also known as FLT1), are required to convert the entry spaces between lacteals from open junctions to closed, zipped structures (see the Perspective by McDonald). Mice that were fed a high-fat diet were subsequently rendered resistant to weight gain if NRP1 and FLT1 were inactivated. Science , this issue p. 599 ; see also p. 551 Preventing chylomicron uptake by deletion of endothelial receptors makes mice resistant to obesity. Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the bloodstream through intestinal lymphatic vessels called lacteals. Here, we show that preventing lacteal chylomicron uptake by inducible endothelial genetic deletion of Neuropilin1 ( Nrp1 ) and Vascular endothelial growth factor receptor 1 ( Vegfr1 ; also known as Flt1 ) renders mice resistant to diet-induced obesity. Absence of NRP1 and FLT1 receptors increased VEGF-A bioavailability and signaling through VEGFR2, inducing lacteal junction zippering and chylomicron malabsorption. Restoring permeable lacteal junctions by VEGFR2 and vascular endothelial (VE)–cadherin signaling inhibition rescued chylomicron transport in the mutant mice. Zippering of lacteal junctions by disassembly of cytoskeletal VE-cadherin anchors prevented chylomicron uptake in wild-type mice. These data suggest that lacteal junctions may be targets for preventing dietary fat uptake.
AbstractList Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the bloodstream through intestinal lymphatic vessels called lacteals. Here, we show that preventing lacteal chylomicron uptake by inducible endothelial genetic deletion of Neuropilin1 (Nrp1) and Vascular endothelial growth factor receptor 1 (Vegfr1; also known as Flt1) renders mice resistant to diet-induced obesity. Absence of NRP1 and FLT1 receptors increased VEGF-A bioavailability and signaling through VEGFR2, inducing lacteal junction zippering and chylomicron malabsorption. Restoring permeable lacteal junctions by VEGFR2 and vascular endothelial (VE)-cadherin signaling inhibition rescued chylomicron transport in the mutant mice. Zippering of lacteal junctions by disassembly of cytoskeletal VE-cadherin anchors prevented chylomicron uptake in wild-type mice. These data suggest that lacteal junctions may be targets for preventing dietary fat uptake.Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the bloodstream through intestinal lymphatic vessels called lacteals. Here, we show that preventing lacteal chylomicron uptake by inducible endothelial genetic deletion of Neuropilin1 (Nrp1) and Vascular endothelial growth factor receptor 1 (Vegfr1; also known as Flt1) renders mice resistant to diet-induced obesity. Absence of NRP1 and FLT1 receptors increased VEGF-A bioavailability and signaling through VEGFR2, inducing lacteal junction zippering and chylomicron malabsorption. Restoring permeable lacteal junctions by VEGFR2 and vascular endothelial (VE)-cadherin signaling inhibition rescued chylomicron transport in the mutant mice. Zippering of lacteal junctions by disassembly of cytoskeletal VE-cadherin anchors prevented chylomicron uptake in wild-type mice. These data suggest that lacteal junctions may be targets for preventing dietary fat uptake.
Zipping up obesityChylomicrons are specialized particles that carry dietary fats from the intestine to the bloodstream for absorption into the body. Lacteals are lymphatic vessels that act as the highway for chylomicron transport, but it is unclear how passage occurs. Zhang et al. report that two endothelial cell receptors, neuropilin-1 (NRP1) and vascular endothelial growth factor receptor 1 (VEGFR1, also known as FLT1), are required to convert the entry spaces between lacteals from open junctions to closed, zipped structures (see the Perspective by McDonald). Mice that were fed a high-fat diet were subsequently rendered resistant to weight gain if NRP1 and FLT1 were inactivated.Science, this issue p. 599; see also p. 551Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the bloodstream through intestinal lymphatic vessels called lacteals. Here, we show that preventing lacteal chylomicron uptake by inducible endothelial genetic deletion of Neuropilin1 (Nrp1) and Vascular endothelial growth factor receptor 1 (Vegfr1; also known as Flt1) renders mice resistant to diet-induced obesity. Absence of NRP1 and FLT1 receptors increased VEGF-A bioavailability and signaling through VEGFR2, inducing lacteal junction zippering and chylomicron malabsorption. Restoring permeable lacteal junctions by VEGFR2 and vascular endothelial (VE)–cadherin signaling inhibition rescued chylomicron transport in the mutant mice. Zippering of lacteal junctions by disassembly of cytoskeletal VE-cadherin anchors prevented chylomicron uptake in wild-type mice. These data suggest that lacteal junctions may be targets for preventing dietary fat uptake.
Chylomicrons are specialized particles that carry dietary fats from the intestine to the bloodstream for absorption into the body. Lacteals are lymphatic vessels that act as the highway for chylomicron transport, but it is unclear how passage occurs. Zhang et al. report that two endothelial cell receptors, neuropilin-1 (NRP1) and vascular endothelial growth factor receptor 1 (VEGFR1, also known as FLT1), are required to convert the entry spaces between lacteals from open junctions to closed, zipped structures (see the Perspective by McDonald). Mice that were fed a high-fat diet were subsequently rendered resistant to weight gain if NRP1 and FLT1 were inactivated. Science , this issue p. 599 ; see also p. 551 Preventing chylomicron uptake by deletion of endothelial receptors makes mice resistant to obesity. Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the bloodstream through intestinal lymphatic vessels called lacteals. Here, we show that preventing lacteal chylomicron uptake by inducible endothelial genetic deletion of Neuropilin1 ( Nrp1 ) and Vascular endothelial growth factor receptor 1 ( Vegfr1 ; also known as Flt1 ) renders mice resistant to diet-induced obesity. Absence of NRP1 and FLT1 receptors increased VEGF-A bioavailability and signaling through VEGFR2, inducing lacteal junction zippering and chylomicron malabsorption. Restoring permeable lacteal junctions by VEGFR2 and vascular endothelial (VE)–cadherin signaling inhibition rescued chylomicron transport in the mutant mice. Zippering of lacteal junctions by disassembly of cytoskeletal VE-cadherin anchors prevented chylomicron uptake in wild-type mice. These data suggest that lacteal junctions may be targets for preventing dietary fat uptake.
Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the bloodstream through intestinal lymphatic vessels called lacteals. Here, we show that preventing lacteal chylomicron uptake by inducible endothelial genetic deletion of ( ) and ( ; also known as ) renders mice resistant to diet-induced obesity. Absence of NRP1 and FLT1 receptors increased VEGF-A bioavailability and signaling through VEGFR2, inducing lacteal junction zippering and chylomicron malabsorption. Restoring permeable lacteal junctions by VEGFR2 and vascular endothelial (VE)-cadherin signaling inhibition rescued chylomicron transport in the mutant mice. Zippering of lacteal junctions by disassembly of cytoskeletal VE-cadherin anchors prevented chylomicron uptake in wild-type mice. These data suggest that lacteal junctions may be targets for preventing dietary fat uptake.
Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the bloodstream through intestinal lymphatic vessels called lacteals. Here, we show that preventing lacteal chylomicron uptake by inducible endothelial genetic deletion of Neuropilin1 ( Nrp1 ) and Vascular endothelial growth factor receptor 1 ( Flt1 ) renders mice resistant to diet-induced obesity. Absence of NRP1 and FLT1 receptors increased VEGF-A bioavailability and signaling through VEGFR2, inducing lacteal junction zippering and chylomicron malabsorption. Restoring permeable lacteal junctions by VEGFR2 and Vascular endothelial (VE)-cadherin signaling inhibition rescued chylomicron transport in the mutant mice. Zippering of lacteal junctions by disassembly of cytoskeletal VE-cadherin anchors prevented chylomicron uptake in wildtype mice. These data suggest lacteal junctions may be targets to prevent dietary fat uptake.
Author Singh, Abhishek K.
Han, Jinah
Genet, Gael
Boyé, Kevin
Li, Jinyu
Ola, Roxana
Tso, Patrick
Eichmann, Anne
Michon, Pauline
Dubrac, Alexandre
Simons, Michael
Shulman, Gerald I.
Fong, Guo-Hua
Zarkada, Georgia
Künzel, Steffen E.
Sessa, William C.
Fernández-Hernando, Carlos
Camporez, Joao Paulo
Zhang, Feng
AuthorAffiliation 2 Department of Basic, Preventive and Clinical Science, University of Transylvania, 500019 Brasov, Romania
1 Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA
6 Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, 06030-3501, USA
4 Department of Internal Medicine, Yale University School of Medicine
5 Departments of Comparative Medicine and Pathology, Vascular Biology and Therapeutics Program and Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine
9 Department of Pharmacology, Vascular Biology and Therapeutics Program, Yale University School of Medicine
3 INSERM U970, Paris Cardiovascular Research Center, 75015 Paris, France
7 Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Galbraith Road, Cincinnati 45237-0507, USA
8 Department of Cellular and Molecular Physiology, Yale University School of Medicine
AuthorAffiliation_xml – name: 5 Departments of Comparative Medicine and Pathology, Vascular Biology and Therapeutics Program and Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine
– name: 8 Department of Cellular and Molecular Physiology, Yale University School of Medicine
– name: 7 Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Galbraith Road, Cincinnati 45237-0507, USA
– name: 1 Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA
– name: 2 Department of Basic, Preventive and Clinical Science, University of Transylvania, 500019 Brasov, Romania
– name: 4 Department of Internal Medicine, Yale University School of Medicine
– name: 6 Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, 06030-3501, USA
– name: 9 Department of Pharmacology, Vascular Biology and Therapeutics Program, Yale University School of Medicine
– name: 3 INSERM U970, Paris Cardiovascular Research Center, 75015 Paris, France
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0002-6103-1498
  surname: Zhang
  fullname: Zhang, Feng
  organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA
– sequence: 2
  givenname: Georgia
  orcidid: 0000-0001-5036-1451
  surname: Zarkada
  fullname: Zarkada, Georgia
  organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA
– sequence: 3
  givenname: Jinah
  surname: Han
  fullname: Han, Jinah
  organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA
– sequence: 4
  givenname: Jinyu
  orcidid: 0000-0002-7693-012X
  surname: Li
  fullname: Li, Jinyu
  organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA
– sequence: 5
  givenname: Alexandre
  orcidid: 0000-0002-3829-2577
  surname: Dubrac
  fullname: Dubrac, Alexandre
  organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA
– sequence: 6
  givenname: Roxana
  orcidid: 0000-0001-8419-0881
  surname: Ola
  fullname: Ola, Roxana
  organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA., Department of Basic, Preventive and Clinical Science, University of Transylvania, 500019 Brasov, Romania
– sequence: 7
  givenname: Gael
  surname: Genet
  fullname: Genet, Gael
  organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA
– sequence: 8
  givenname: Kevin
  orcidid: 0000-0002-5749-959X
  surname: Boyé
  fullname: Boyé, Kevin
  organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA
– sequence: 9
  givenname: Pauline
  surname: Michon
  fullname: Michon, Pauline
  organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA., INSERM U970, Paris Cardiovascular Research Center, 75015 Paris, France
– sequence: 10
  givenname: Steffen E.
  orcidid: 0000-0002-6466-168X
  surname: Künzel
  fullname: Künzel, Steffen E.
  organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA
– sequence: 11
  givenname: Joao Paulo
  surname: Camporez
  fullname: Camporez, Joao Paulo
  organization: Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
– sequence: 12
  givenname: Abhishek K.
  orcidid: 0000-0002-4474-1367
  surname: Singh
  fullname: Singh, Abhishek K.
  organization: Departments of Comparative Medicine and Pathology, Vascular Biology and Therapeutics Program and Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine, New Haven, CT, USA
– sequence: 13
  givenname: Guo-Hua
  surname: Fong
  fullname: Fong, Guo-Hua
  organization: Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, 06030-3501, USA
– sequence: 14
  givenname: Michael
  orcidid: 0000-0003-0348-7734
  surname: Simons
  fullname: Simons, Michael
  organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA
– sequence: 15
  givenname: Patrick
  surname: Tso
  fullname: Tso, Patrick
  organization: Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH 45237-0507, USA
– sequence: 16
  givenname: Carlos
  surname: Fernández-Hernando
  fullname: Fernández-Hernando, Carlos
  organization: Departments of Comparative Medicine and Pathology, Vascular Biology and Therapeutics Program and Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine, New Haven, CT, USA
– sequence: 17
  givenname: Gerald I.
  orcidid: 0000-0003-1529-5668
  surname: Shulman
  fullname: Shulman, Gerald I.
  organization: Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA., Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
– sequence: 18
  givenname: William C.
  orcidid: 0000-0001-5759-1938
  surname: Sessa
  fullname: Sessa, William C.
  organization: Department of Pharmacology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
– sequence: 19
  givenname: Anne
  orcidid: 0000-0001-5563-210X
  surname: Eichmann
  fullname: Eichmann, Anne
  organization: Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510-3221, USA., INSERM U970, Paris Cardiovascular Research Center, 75015 Paris, France., Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30093598$$D View this record in MEDLINE/PubMed
BookMark eNp1kc2LFDEQxYOsuLOrZ2_S4MVL7yZdnXRyEWXxCwa86Dkk6eoxQ0_SJumF9a83w46LLnhKoH7v8areBTkLMSAhLxm9YqwT19l5DA6vjFkUAHtCNowq3qqOwhnZUAqilXTg5-Qi5z2ldabgGTmH-gOu5Ia82xpX0MzNfg2u-BiaX35ZMPmwa5YUC7qSG7MzPuTSjB5L68O4OhybaDH7cvecPJ3MnPHF6b0k3z9--Hbzud1-_fTl5v22db0cSjtyC8JYJ_qhQ8u56dQ0TqyXdJpGpZzqkQ6DAGol7xk4MML2OEoqwRhrGVySt_e-y2oPODoMJZlZL8kfTLrT0Xj97yT4H3oXb7UANgwgq8Gbk0GKP1fMRR98djjPJmBcs-6oHLiqIWhFXz9C93FNoa53pAR0AjhU6tXfiR6i_DluBa7vAZdizgmnB4RRfaxPn-rTp_qqgj9SOF_MsZa6kp__q_sNdgajZA
CitedBy_id crossref_primary_10_1016_j_jcmgh_2020_09_007
crossref_primary_10_3389_fcvm_2024_1392816
crossref_primary_10_3389_fphys_2023_1316982
crossref_primary_10_1038_s41569_020_00489_x
crossref_primary_10_3389_fphys_2018_01783
crossref_primary_10_1038_s41598_022_15848_6
crossref_primary_10_1146_annurev_physiol_032122_030352
crossref_primary_10_3389_fphys_2020_624903
crossref_primary_10_1007_s12195_024_00840_z
crossref_primary_10_1007_s12195_023_00780_0
crossref_primary_10_1016_j_ejpb_2022_10_019
crossref_primary_10_3389_fendo_2022_1007856
crossref_primary_10_1097_MOL_0000000000000626
crossref_primary_10_1093_function_zqae033
crossref_primary_10_4049_jimmunol_2001060
crossref_primary_10_1039_D3LC00486D
crossref_primary_10_1111_micc_12730
crossref_primary_10_1007_s00018_022_04303_4
crossref_primary_10_1016_j_cmet_2021_04_019
crossref_primary_10_1038_s41467_020_17886_y
crossref_primary_10_3389_fphys_2020_00831
crossref_primary_10_1126_sciadv_abn2611
crossref_primary_10_1016_j_cophys_2019_09_003
crossref_primary_10_1016_j_jpedsurg_2020_02_037
crossref_primary_10_1016_j_jcmgh_2018_12_002
crossref_primary_10_1084_jem_20181895
crossref_primary_10_1038_s42255_021_00442_3
crossref_primary_10_1007_s00018_021_03886_8
crossref_primary_10_1016_j_celrep_2023_112777
crossref_primary_10_1016_j_phymed_2023_155268
crossref_primary_10_2147_JIR_S414891
crossref_primary_10_3389_fphys_2019_01402
crossref_primary_10_1016_j_jpedsurg_2019_02_026
crossref_primary_10_1002_adbi_202200158
crossref_primary_10_1007_s11307_023_01827_4
crossref_primary_10_1084_jem_20211830
crossref_primary_10_1146_annurev_nutr_110320_013657
crossref_primary_10_1016_j_isci_2022_105905
crossref_primary_10_1038_s42255_023_00828_5
crossref_primary_10_1038_s44161_023_00385_w
crossref_primary_10_15252_embr_202050767
crossref_primary_10_1016_j_molmed_2021_07_003
crossref_primary_10_3390_ijms22147760
crossref_primary_10_1016_j_vph_2023_107178
crossref_primary_10_1016_j_stem_2022_05_007
crossref_primary_10_1016_j_addr_2020_12_005
crossref_primary_10_1038_s41575_024_00996_z
crossref_primary_10_1080_17474086_2019_1627191
crossref_primary_10_26508_lsa_202302168
crossref_primary_10_3390_nu17061034
crossref_primary_10_3390_ijms232214179
crossref_primary_10_3389_fphar_2022_848088
crossref_primary_10_3389_fphys_2022_1021038
crossref_primary_10_1016_j_biomaterials_2021_121183
crossref_primary_10_1016_j_jconrel_2021_12_003
crossref_primary_10_1096_fj_202400160RR
crossref_primary_10_3390_genes13020277
crossref_primary_10_1016_j_ijpharm_2021_120247
crossref_primary_10_3390_cells12010172
crossref_primary_10_3390_microorganisms7120691
crossref_primary_10_1152_ajpcell_00137_2022
crossref_primary_10_1161_ATVBAHA_123_320032
crossref_primary_10_1002_mco2_728
crossref_primary_10_1016_j_jcmgh_2018_10_015
crossref_primary_10_3389_fcvm_2024_1412857
crossref_primary_10_1172_JCI171582
crossref_primary_10_18632_aging_203988
crossref_primary_10_1161_CIRCRESAHA_122_321671
crossref_primary_10_1016_j_jbc_2023_104775
crossref_primary_10_1038_nrd_2018_170
crossref_primary_10_1126_science_aay4509
crossref_primary_10_1161_CIRCRESAHA_123_323210
crossref_primary_10_2337_dbi23_0036
crossref_primary_10_1016_j_hnm_2023_200210
crossref_primary_10_1038_s41467_021_23808_3
crossref_primary_10_3390_ijms252212226
crossref_primary_10_3390_ijms23042152
crossref_primary_10_1016_j_molmet_2020_101081
crossref_primary_10_3389_fcell_2024_1455258
crossref_primary_10_1021_acsnano_4c04758
crossref_primary_10_15252_emmm_202114742
crossref_primary_10_1016_j_asoc_2024_112307
crossref_primary_10_1016_j_lfs_2020_117677
crossref_primary_10_1242_dev_202901
crossref_primary_10_1016_j_lfs_2023_122285
crossref_primary_10_3389_fphar_2020_606514
crossref_primary_10_1016_j_kint_2021_06_022
crossref_primary_10_1016_j_celrep_2019_07_072
crossref_primary_10_1016_j_tice_2021_101529
crossref_primary_10_1097_MOL_0000000000000821
crossref_primary_10_15252_embj_201899322
crossref_primary_10_1186_s41232_021_00175_6
crossref_primary_10_1038_s42255_021_00457_w
crossref_primary_10_3389_fcvm_2021_738325
crossref_primary_10_3389_fcell_2020_627647
crossref_primary_10_3389_fphys_2020_00003
crossref_primary_10_1091_mbc_E22_08_0367
crossref_primary_10_1146_annurev_bioeng_092222_034906
crossref_primary_10_18499_2225_7357_2020_9_4_31_37
crossref_primary_10_1152_physrev_00006_2020
crossref_primary_10_7554_eLife_53814
crossref_primary_10_23736_S2724_6507_22_03895_7
crossref_primary_10_1038_s41467_022_29701_x
crossref_primary_10_3389_fphys_2020_00519
crossref_primary_10_1016_j_heliyon_2024_e34490
crossref_primary_10_1016_j_celrep_2021_110030
crossref_primary_10_1016_j_tem_2023_03_004
crossref_primary_10_1084_jem_20222008
crossref_primary_10_1038_s44161_024_00570_5
crossref_primary_10_1016_j_jlr_2022_100269
crossref_primary_10_3389_fphys_2019_01604
crossref_primary_10_3390_nu13072198
crossref_primary_10_1016_j_cell_2020_06_039
crossref_primary_10_1016_j_ejps_2021_105812
crossref_primary_10_1038_s41467_022_29930_0
crossref_primary_10_1038_s41467_019_09605_z
crossref_primary_10_3389_fphar_2023_1097835
crossref_primary_10_1038_s41467_020_20156_6
crossref_primary_10_3389_fmicb_2024_1335036
crossref_primary_10_1007_s10456_021_09784_8
crossref_primary_10_1016_j_cophys_2023_100675
crossref_primary_10_1101_cshperspect_a041179
crossref_primary_10_1016_j_ejphar_2023_175744
crossref_primary_10_1016_j_tem_2024_11_004
crossref_primary_10_1126_science_aau5583
crossref_primary_10_3389_fphys_2020_00404
crossref_primary_10_1101_cshperspect_a041173
crossref_primary_10_1016_j_isci_2019_11_005
crossref_primary_10_3389_fphys_2024_1358625
crossref_primary_10_3389_fcvm_2023_1240288
crossref_primary_10_1073_pnas_2308941120
crossref_primary_10_3389_fphar_2022_879660
crossref_primary_10_1084_jem_20221983
crossref_primary_10_3389_fphys_2019_01579
crossref_primary_10_1101_cshperspect_a041169
crossref_primary_10_1126_scisignal_abo4863
crossref_primary_10_1161_CIRCRESAHA_123_322607
crossref_primary_10_1038_s41586_020_2039_9
crossref_primary_10_1038_s44161_024_00487_z
crossref_primary_10_14341_omet12776
crossref_primary_10_3389_fphys_2020_00459
crossref_primary_10_1126_sciimmunol_abg7506
crossref_primary_10_1016_j_jhep_2023_01_014
crossref_primary_10_1016_j_jlr_2023_100387
crossref_primary_10_1038_s41586_025_08724_6
crossref_primary_10_1042_CS20220314
crossref_primary_10_1161_CIRCULATIONAHA_122_061900
crossref_primary_10_3389_fphys_2023_1198052
crossref_primary_10_1113_JP281621
crossref_primary_10_3389_fcell_2022_937982
crossref_primary_10_1016_j_jid_2023_08_014
crossref_primary_10_1101_cshperspect_a041274
crossref_primary_10_3389_fendo_2024_1465816
crossref_primary_10_1038_s41467_024_54874_y
crossref_primary_10_1186_s13578_022_00898_0
crossref_primary_10_3390_cells10102584
crossref_primary_10_1124_pharmrev_123_001159
crossref_primary_10_1080_19490976_2024_2387800
crossref_primary_10_2174_1389201023666220506105026
crossref_primary_10_1016_j_bbrc_2023_06_025
crossref_primary_10_1016_j_bbalip_2022_159207
crossref_primary_10_1126_science_aax4063
crossref_primary_10_1172_JCI125318
crossref_primary_10_1007_s00418_020_01851_3
crossref_primary_10_1038_s41568_024_00681_y
crossref_primary_10_1038_s41392_023_01723_x
crossref_primary_10_3389_fphys_2020_00509
crossref_primary_10_1016_j_molmed_2020_11_006
Cites_doi 10.1016/j.cmet.2016.03.004
10.1038/nrm.2016.87
10.1016/S0022-2275(20)41667-0
10.1016/S1534-5807(03)00169-2
10.1016/j.devcel.2013.03.019
10.1161/CIRCRESAHA.116.302953
10.1111/j.1749-6632.2010.05716.x
10.1172/JCI82045
10.1038/ncomms10824
10.1113/jphysiol.1967.sp008210
10.1084/jem.20171012
10.1016/j.ceb.2012.02.002
10.1002/emmm.201303147
10.1371/journal.pone.0151396
10.1038/ncomms11017
10.1002/dvg.20335
10.1038/ncomms8264
10.1083/jcb.15.2.259
10.1016/j.cell.2016.02.023
10.1038/nature05249
10.1126/sciimmunol.aan4626
10.1101/gad.237677.114
10.1038/nmeth.1806
10.1038/ijo.2011.232
10.1038/nature09002
10.1084/jem.20111343
10.1038/nm.2759
10.1074/jbc.273.12.6599
10.1172/JCI71610
10.1084/jem.20062642
10.1084/jem.20062596
10.1097/00005344-200404000-00016
10.1038/nrgastro.2017.79
10.1007/s00018-016-2325-8
10.1016/j.ajpath.2012.02.019
10.1038/nature11464
10.1172/JCI58050
10.1038/nature08945
10.1093/emboj/16.13.3898
10.15252/emmm.201505731
10.7554/eLife.03720
10.3171/jns.1992.76.4.0571
10.1677/JOE-06-0045
10.1083/jcb.201108120
10.1038/srep06238
10.1016/j.celrep.2015.05.018
10.1161/CIRCULATIONAHA.112.091603
10.1161/CIRCULATIONAHA.108.816454
10.1182/blood-2012-05-424713
10.1161/CIRCRESAHA.112.269399
ContentType Journal Article
Copyright Copyright © 2018, American Association for the Advancement of Science.
Copyright © 2018, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2018, American Association for the Advancement of Science.
– notice: Copyright © 2018, American Association for the Advancement of Science
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.aap9331
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 603
ExternalDocumentID PMC6317738
30093598
10_1126_science_aap9331
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: T32 HL007974
– fundername: NEI NIH HHS
  grantid: P30 EY026878
– fundername: NHLBI NIH HHS
  grantid: R01 HL135582
– fundername: NHLBI NIH HHS
  grantid: P01 HL107205
– fundername: NHLBI NIH HHS
  grantid: R35 HL139945
– fundername: NIDDK NIH HHS
  grantid: U2C DK059630
– fundername: NHLBI NIH HHS
  grantid: R01 HL053793
– fundername: NIDDK NIH HHS
  grantid: R01 DK120373
– fundername: NEI NIH HHS
  grantid: R01 EY025979
– fundername: NHLBI NIH HHS
  grantid: T32 HL007950
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
C51
CITATION
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c487t-d5b36abc6472eb55a29fdf1480ffd99c94e077630b85413c3a6b4ed8083aabb13
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 18:19:31 EDT 2025
Fri Jul 11 02:15:47 EDT 2025
Fri Jul 25 10:29:53 EDT 2025
Mon Jul 21 06:07:25 EDT 2025
Tue Jul 01 01:51:20 EDT 2025
Thu Apr 24 23:12:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6402
Language English
License Copyright © 2018, American Association for the Advancement of Science.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c487t-d5b36abc6472eb55a29fdf1480ffd99c94e077630b85413c3a6b4ed8083aabb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: FZ, GZ, JH, JL, AD, RO, GG, KB, PM, SEK, JPC and AKS performed experiments and analyzed data. AE and FZ designed experiments, analyzed data and wrote the manuscript. GHF, MS, PT, CFH, WCS and GIS provided reagents or expertise.
ORCID 0000-0002-3829-2577
0000-0003-1529-5668
0000-0003-0348-7734
0000-0002-5749-959X
0000-0002-7693-012X
0000-0002-4474-1367
0000-0001-5563-210X
0000-0002-6103-1498
0000-0001-5759-1938
0000-0001-5036-1451
0000-0002-6466-168X
0000-0001-8419-0881
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6317738
PMID 30093598
PQID 2086326353
PQPubID 1256
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6317738
proquest_miscellaneous_2087590770
proquest_journals_2086326353
pubmed_primary_30093598
crossref_primary_10_1126_science_aap9331
crossref_citationtrail_10_1126_science_aap9331
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-10
20180810
PublicationDateYYYYMMDD 2018-08-10
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2018
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
Prewett M. (e_1_3_2_19_2) 1999; 59
30093588 - Science. 2018 Aug 10;361(6402):551-552. doi: 10.1126/science.aau5583
References_xml – ident: e_1_3_2_9_2
  doi: 10.1016/j.cmet.2016.03.004
– ident: e_1_3_2_11_2
  doi: 10.1038/nrm.2016.87
– ident: e_1_3_2_8_2
  doi: 10.1016/S0022-2275(20)41667-0
– ident: e_1_3_2_32_2
  doi: 10.1016/S1534-5807(03)00169-2
– ident: e_1_3_2_13_2
  doi: 10.1016/j.devcel.2013.03.019
– ident: e_1_3_2_47_2
  doi: 10.1161/CIRCRESAHA.116.302953
– ident: e_1_3_2_4_2
  doi: 10.1111/j.1749-6632.2010.05716.x
– ident: e_1_3_2_6_2
  doi: 10.1172/JCI82045
– ident: e_1_3_2_23_2
  doi: 10.1038/ncomms10824
– ident: e_1_3_2_37_2
  doi: 10.1113/jphysiol.1967.sp008210
– ident: e_1_3_2_10_2
  doi: 10.1084/jem.20171012
– ident: e_1_3_2_39_2
  doi: 10.1016/j.ceb.2012.02.002
– ident: e_1_3_2_45_2
  doi: 10.1002/emmm.201303147
– ident: e_1_3_2_26_2
  doi: 10.1371/journal.pone.0151396
– ident: e_1_3_2_15_2
  doi: 10.1038/ncomms11017
– ident: e_1_3_2_52_2
  doi: 10.1002/dvg.20335
– ident: e_1_3_2_50_2
  doi: 10.1038/ncomms8264
– ident: e_1_3_2_7_2
  doi: 10.1083/jcb.15.2.259
– ident: e_1_3_2_31_2
  doi: 10.1016/j.cell.2016.02.023
– ident: e_1_3_2_12_2
  doi: 10.1038/nature05249
– ident: e_1_3_2_51_2
  doi: 10.1126/sciimmunol.aan4626
– ident: e_1_3_2_21_2
  doi: 10.1101/gad.237677.114
– ident: e_1_3_2_36_2
  doi: 10.1038/nmeth.1806
– ident: e_1_3_2_30_2
  doi: 10.1038/ijo.2011.232
– ident: e_1_3_2_34_2
  doi: 10.1038/nature09002
– volume: 59
  start-page: 5209
  year: 1999
  ident: e_1_3_2_19_2
  article-title: Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors
  publication-title: Cancer Res.
– ident: e_1_3_2_14_2
  doi: 10.1084/jem.20111343
– ident: e_1_3_2_17_2
  doi: 10.1038/nm.2759
– ident: e_1_3_2_16_2
  doi: 10.1074/jbc.273.12.6599
– ident: e_1_3_2_3_2
  doi: 10.1172/JCI71610
– ident: e_1_3_2_27_2
  doi: 10.1084/jem.20062642
– ident: e_1_3_2_20_2
  doi: 10.1084/jem.20062596
– ident: e_1_3_2_38_2
  doi: 10.1097/00005344-200404000-00016
– ident: e_1_3_2_2_2
  doi: 10.1038/nrgastro.2017.79
– ident: e_1_3_2_25_2
  doi: 10.1007/s00018-016-2325-8
– ident: e_1_3_2_22_2
  doi: 10.1016/j.ajpath.2012.02.019
– ident: e_1_3_2_42_2
  doi: 10.1038/nature11464
– ident: e_1_3_2_35_2
  doi: 10.1172/JCI58050
– ident: e_1_3_2_41_2
  doi: 10.1038/nature08945
– ident: e_1_3_2_40_2
  doi: 10.1093/emboj/16.13.3898
– ident: e_1_3_2_5_2
  doi: 10.15252/emmm.201505731
– ident: e_1_3_2_46_2
  doi: 10.7554/eLife.03720
– ident: e_1_3_2_28_2
  doi: 10.3171/jns.1992.76.4.0571
– ident: e_1_3_2_29_2
  doi: 10.1677/JOE-06-0045
– ident: e_1_3_2_24_2
  doi: 10.1083/jcb.201108120
– ident: e_1_3_2_44_2
  doi: 10.1038/srep06238
– ident: e_1_3_2_48_2
  doi: 10.1016/j.celrep.2015.05.018
– ident: e_1_3_2_33_2
  doi: 10.1161/CIRCULATIONAHA.112.091603
– ident: e_1_3_2_43_2
  doi: 10.1161/CIRCULATIONAHA.108.816454
– ident: e_1_3_2_49_2
  doi: 10.1182/blood-2012-05-424713
– ident: e_1_3_2_18_2
  doi: 10.1161/CIRCRESAHA.112.269399
– reference: 30093588 - Science. 2018 Aug 10;361(6402):551-552. doi: 10.1126/science.aau5583
SSID ssj0009593
Score 2.6205883
Snippet Chylomicrons are specialized particles that carry dietary fats from the intestine to the bloodstream for absorption into the body. Lacteals are lymphatic...
Excess dietary lipid uptake causes obesity, a major global health problem. Enterocyte-absorbed lipids are packaged into chylomicrons, which enter the...
Zipping up obesityChylomicrons are specialized particles that carry dietary fats from the intestine to the bloodstream for absorption into the body. Lacteals...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 599
SubjectTerms Animals
Antigens, CD - metabolism
Bioavailability
Blood vessels
Body weight gain
Cadherins
Cadherins - antagonists & inhibitors
Cadherins - metabolism
Chylomicrons
Chylomicrons - adverse effects
Chylomicrons - metabolism
Clonal deletion
Cytoskeleton
Diet
Diet, High-Fat - adverse effects
Dietary Fats - adverse effects
Dietary Fats - metabolism
Dismantling
Endothelial cells
Enterocytes - metabolism
Fats
Gene Deletion
Global health
Growth factors
High fat diet
Intestinal Absorption - genetics
Intestinal Absorption - physiology
Intestine
Lipids
Lymphatic system
Malabsorption
Male
Mice
Mice, Knockout
Neuropilin
Neuropilin-1 - genetics
Obesity
Obesity - etiology
Obesity - genetics
Receptors
Rodents
Signal Transduction
Signaling
Transport
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - antagonists & inhibitors
Vascular Endothelial Growth Factor A - metabolism
Vascular Endothelial Growth Factor Receptor-1 - genetics
Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors
Vascular Endothelial Growth Factor Receptor-2 - metabolism
Title Lacteal junction zippering protects against diet-induced obesity
URI https://www.ncbi.nlm.nih.gov/pubmed/30093598
https://www.proquest.com/docview/2086326353
https://www.proquest.com/docview/2087590770
https://pubmed.ncbi.nlm.nih.gov/PMC6317738
Volume 361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWrUC9IFo-uqWgIHEoWmWVxHE-bmwLVYUK4tBKvUV2ErcRkI26yaH9DfxoxvHE622pBL1kV0680fo9T2ac8RtC3heex2UuOVi_ULphEfvwzctdP5FS-qGMfdln-X6Ljs_CL-fsfDT6bWUtda2Y5Td_3VfyEFShDXBVu2T_A1nzo9AA3wFfOALCcPwnjE-U1LKSf4CHU4_jTdU0vbbgFPUXllN-AbH_sp0WVdm6EIB36oX_QpcDsD3TYZKDx2ne4ljYmXTEuU4aGHIIsJu1oGCWoGGoLkwjv_rBC25W4Su-Mn16d0hVr1amTypsuu7sVQlfqVy7mJ-KlhaFjvVzRhtXT9WFDDxqW1-qtdiRZlHoBZY5Zbp4Ej6ZI93zrtG3ylSWM86bFHeBWRRofvUcoGoFh-m617d0tr9_PYzAmYpp8ohsBBB0BGOyMT_4dHB0r4gzSkVZm7CGu2-SJ8Ot1h2eO1HM7WRcy7s5fUaeYljizDXHtsiorLfJY12o9HqbbCHMS2cfdco_PCcfkX7OQD_H0M8Z6Ocg_Rybfg7S7wU5O_p8enjsYkEON4e4tnULJmjERa5KDpSCMR6ksoAZnXhSFmmap2Gp1KGoJxIGzlFOeSTCskjAzedcCJ--JON6UZc7xCk8zplMojhgPKSxAL8RPotYQvwaCSYnZDaMWpajWr0qmvIz66PWIMpwxDMc8QnZNx0aLdRy_6V7AwwZzuZlFkBsT5UyE52Qd-Y02Fr1Ao3X5aLrr4lZCn_Rm5BXGjVzrwHuCYnX8DQXKB339TN1ddnruSPtdh_c8zXZXM3BPTJur7ryDfjKrXiLFP4DatbEww
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lacteal+junction+zippering+protects+against+diet-induced+obesity&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Zhang%2C+Feng&rft.au=Zarkada%2C+Georgia&rft.au=Han%2C+Jinah&rft.au=Li%2C+Jinyu&rft.date=2018-08-10&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=361&rft.issue=6402&rft.spage=599&rft.epage=603&rft_id=info:doi/10.1126%2Fscience.aap9331&rft_id=info%3Apmid%2F30093598&rft.externalDocID=PMC6317738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon