Passivity of Switched Recurrent Neural Networks With Time-Varying Delays
This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the multiple Lyapunov functions method, a state-dependent switching law is designed to present a stochastic passivity condition. Second, a hystere...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 26; no. 2; pp. 357 - 366 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the multiple Lyapunov functions method, a state-dependent switching law is designed to present a stochastic passivity condition. Second, a hysteresis switching law involving both the current state and the previous value of the switching signal are presented to avoid chattering resulted from the state-dependent switching. Third, based on the average dwell-time approach, a class of switching signals is determined to guarantee the switched neural network stochastically passive. Finally, three numerical examples are provided to illustrate the characteristics of three proposed switching laws. |
---|---|
AbstractList | This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the multiple Lyapunov functions method, a state-dependent switching law is designed to present a stochastic passivity condition. Second, a hysteresis switching law involving both the current state and the previous value of the switching signal are presented to avoid chattering resulted from the state-dependent switching. Third, based on the average dwell-time approach, a class of switching signals is determined to guarantee the switched neural network stochastically passive. Finally, three numerical examples are provided to illustrate the characteristics of three proposed switching laws.This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the multiple Lyapunov functions method, a state-dependent switching law is designed to present a stochastic passivity condition. Second, a hysteresis switching law involving both the current state and the previous value of the switching signal are presented to avoid chattering resulted from the state-dependent switching. Third, based on the average dwell-time approach, a class of switching signals is determined to guarantee the switched neural network stochastically passive. Finally, three numerical examples are provided to illustrate the characteristics of three proposed switching laws. This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the multiple Lyapunov functions method, a state-dependent switching law is designed to present a stochastic passivity condition. Second, a hysteresis switching law involving both the current state and the previous value of the switching signal are presented to avoid chattering resulted from the state-dependent switching. Third, based on the average dwell-time approach, a class of switching signals is determined to guarantee the switched neural network stochastically passive. Finally, three numerical examples are provided to illustrate the characteristics of three proposed switching laws. |
Author | Jie Lian Jun Wang |
Author_xml | – sequence: 1 givenname: Jie surname: Lian fullname: Lian, Jie – sequence: 2 givenname: Jun surname: Wang fullname: Wang, Jun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25576577$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtLAzEUhYMovv-Aggy4cTM1r5kkS_FVoVTRou5COnNHo9OZmmSU_ntTW124EEPg3sV3Lvees4VWm7YBhPYI7hGC1fFoOBzc9SgmvEeZUIriFbRJSU5TyqRc_enF4wba9f4Fx5fjLOdqHW3QLBN5JsQm6t8Y7-27DbOkrZK7DxuKZyiTWyg656AJyRA6Z-pYwkfrXn3yYMNzMrITSO-Nm9nmKTmD2sz8DlqrTO1hd1m30ejifHTaTwfXl1enJ4O04FKEdEyqqgRlqBEll5iMWVlmeSbjASBxUWbEUKpw_JyBYWMJ0mCoaMW5EAVn2-hoMXbq2rcOfNAT6wuoa9NA23lNBFZEMkn_gea5kork5D9oRpmKhqmIHv5CX9rONfHkSHHBMI4rROpgSXXjCZR66uwk2qW_jY-AXACFa713UOnCBhNs2wRnbK0J1vOY9VfMeh6zXsYcpfSX9Hv6n6L9hcgCwI9AfG2L2Sf5rbBk |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1016_j_jfranklin_2016_06_021 crossref_primary_10_1109_TCYB_2020_2992518 crossref_primary_10_1016_j_nahs_2016_12_001 crossref_primary_10_1109_TFUZZ_2019_2930430 crossref_primary_10_1109_TCYB_2016_2533426 crossref_primary_10_1007_s00034_021_01768_9 crossref_primary_10_1109_ACCESS_2021_3074657 crossref_primary_10_1109_TCYB_2017_2691733 crossref_primary_10_1016_j_neucom_2019_11_120 crossref_primary_10_1016_j_neucom_2021_02_064 crossref_primary_10_1016_j_neunet_2024_106530 crossref_primary_10_1016_j_neucom_2020_01_092 crossref_primary_10_1002_asjc_1319 crossref_primary_10_1016_j_isatra_2022_11_009 crossref_primary_10_1016_j_neucom_2015_11_079 crossref_primary_10_1016_j_nahs_2017_08_011 crossref_primary_10_1109_TNSE_2017_2746759 crossref_primary_10_1016_j_neunet_2022_02_013 crossref_primary_10_1109_TNNLS_2018_2829149 crossref_primary_10_1109_TNNLS_2019_2927161 crossref_primary_10_1109_TSMC_2017_2705160 crossref_primary_10_1109_TNNLS_2020_2984629 crossref_primary_10_1109_TSMC_2016_2573584 crossref_primary_10_1177_01423312241235985 crossref_primary_10_1016_j_neunet_2021_03_039 crossref_primary_10_1007_s00500_022_07353_9 crossref_primary_10_1016_j_ins_2017_10_027 crossref_primary_10_1016_j_ins_2022_01_006 crossref_primary_10_1016_j_ins_2018_11_001 crossref_primary_10_1109_TCST_2017_2756029 crossref_primary_10_1109_TNNLS_2019_2920665 crossref_primary_10_1109_TFUZZ_2018_2825306 crossref_primary_10_1109_TII_2019_2936877 crossref_primary_10_1016_j_neucom_2016_12_106 crossref_primary_10_1016_j_neucom_2022_12_040 crossref_primary_10_1080_23307706_2017_1397553 crossref_primary_10_1080_00207721_2023_2244122 crossref_primary_10_1109_TCYB_2017_2688395 crossref_primary_10_1109_TSMC_2022_3230348 crossref_primary_10_1016_j_neucom_2022_07_021 crossref_primary_10_1007_s00034_017_0565_y crossref_primary_10_1109_TCYB_2020_3042232 crossref_primary_10_1109_TFUZZ_2016_2634162 crossref_primary_10_1109_TSMC_2023_3252596 crossref_primary_10_1016_j_neucom_2020_05_060 crossref_primary_10_1109_TNNLS_2015_2497715 crossref_primary_10_1016_j_neucom_2015_03_036 crossref_primary_10_1109_TCYB_2017_2755864 crossref_primary_10_1016_j_neucom_2019_03_039 crossref_primary_10_1016_j_knosys_2022_109630 crossref_primary_10_1016_j_neucom_2018_06_038 crossref_primary_10_1016_j_chaos_2024_114475 crossref_primary_10_1080_03081079_2015_1106731 crossref_primary_10_1109_TCYB_2022_3166566 crossref_primary_10_1002_asjc_2735 crossref_primary_10_1016_j_amc_2019_04_063 crossref_primary_10_1109_TCSII_2022_3223938 crossref_primary_10_1109_TCYB_2019_2909748 crossref_primary_10_1016_j_nahs_2023_101457 crossref_primary_10_1109_TCYB_2022_3159370 crossref_primary_10_1007_s11063_017_9596_4 crossref_primary_10_1109_ACCESS_2019_2955939 crossref_primary_10_1109_TSMC_2017_2732503 crossref_primary_10_1016_j_neucom_2019_08_030 crossref_primary_10_1016_j_jfranklin_2018_09_030 crossref_primary_10_1109_TSMC_2022_3205654 crossref_primary_10_1016_j_isatra_2017_04_001 crossref_primary_10_1016_j_neunet_2016_07_009 crossref_primary_10_1109_TCYB_2018_2875134 crossref_primary_10_1016_j_neucom_2017_01_032 crossref_primary_10_1016_j_neunet_2016_07_008 crossref_primary_10_1109_TNNLS_2018_2797279 crossref_primary_10_1109_TNNLS_2017_2721448 crossref_primary_10_1109_TSMC_2016_2577578 crossref_primary_10_1016_j_neunet_2019_10_012 crossref_primary_10_1109_ACCESS_2019_2924478 crossref_primary_10_1109_TSMC_2016_2622363 crossref_primary_10_1109_TCYB_2017_2776283 crossref_primary_10_1109_TCYB_2022_3165007 crossref_primary_10_1016_j_neucom_2021_01_046 crossref_primary_10_1109_TCYB_2021_3052160 crossref_primary_10_1016_j_neucom_2018_06_019 crossref_primary_10_1007_s00034_017_0693_4 crossref_primary_10_1016_j_neucom_2015_10_086 crossref_primary_10_1016_j_neucom_2017_11_031 crossref_primary_10_1002_asjc_3006 crossref_primary_10_1016_j_ins_2018_04_051 crossref_primary_10_1016_j_jfranklin_2017_03_016 crossref_primary_10_1177_0959651818781201 crossref_primary_10_1007_s11063_017_9651_1 crossref_primary_10_1016_j_jfranklin_2020_01_023 crossref_primary_10_1109_TCYB_2017_2690676 crossref_primary_10_1016_j_physd_2024_134363 crossref_primary_10_1109_TSMC_2018_2853138 crossref_primary_10_1109_TSMC_2022_3146892 crossref_primary_10_1016_j_chaos_2023_113555 crossref_primary_10_1049_iet_cta_2020_0623 crossref_primary_10_1016_j_neucom_2018_08_005 crossref_primary_10_1016_j_ins_2018_07_069 crossref_primary_10_1002_asjc_2260 crossref_primary_10_1016_j_asoc_2024_112630 crossref_primary_10_1109_TCYB_2019_2908187 crossref_primary_10_1016_j_neucom_2021_04_099 crossref_primary_10_1016_j_neucom_2018_07_040 crossref_primary_10_1007_s00521_017_2974_z crossref_primary_10_1016_j_nahs_2017_08_005 crossref_primary_10_1109_TFUZZ_2021_3112256 crossref_primary_10_1002_rnc_7802 crossref_primary_10_1080_00207721_2017_1390701 crossref_primary_10_1155_2018_6318986 crossref_primary_10_1109_JSEN_2016_2555761 crossref_primary_10_1109_TNNLS_2019_2940466 crossref_primary_10_3389_fnbot_2018_00051 crossref_primary_10_1016_j_amc_2016_05_004 crossref_primary_10_1016_j_nahs_2019_05_004 crossref_primary_10_1360_SST_2023_0287 crossref_primary_10_1108_GS_11_2021_0177 crossref_primary_10_1002_mma_9999 crossref_primary_10_1109_TNNLS_2018_2876711 |
Cites_doi | 10.1049/iet-cta:20070313 10.1109/9.664150 10.1109/TNN.2010.2056383 10.1109/TAC.1976.1101352 10.1109/TSMCB.2006.876819 10.1088/0951-7715/22/4/011 10.1109/ACC.2001.945546 10.1109/TCSI.2008.2008499 10.1109/TNN.2008.2006337 10.1002/asjc.77 10.1109/TSMCB.2008.2006860 10.1109/TSMCB.2007.902244 10.1016/j.physleta.2005.07.042 10.1109/TNN.2007.911751 10.1109/TCSI.2005.859616 10.1137/S0036144500378302 10.1109/TNN.2009.2037893 10.1109/TSMCB.2006.887426 10.1109/TCSII.2009.2015399 10.1109/TNN.2006.888373 10.1109/TNN.2008.2000206 10.1002/rnc.2956 10.1007/978-1-4612-0039-0 10.1109/TNN.2004.824252 10.1109/21.135694 10.1109/TSMCB.2010.2040274 10.1007/BF00276493 10.1109/TCSII.2005.849023 10.1109/TSMCA.2012.2211587 10.1109/TNN.2011.2162111 10.1002/oca.1005 10.1016/j.automatica.2004.11.035 10.1109/TNN.2009.2015085 10.1109/TNN.2007.910734 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2015 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2014.2379920 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database Technology Research Database Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Law |
EISSN | 2162-2388 |
EndPage | 366 |
ExternalDocumentID | 3564561821 25576577 10_1109_TNNLS_2014_2379920 7001700 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Foundation of China grantid: 61374070; 61273307; 61104114; 61473055 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: DUT14QY14; DUT14QY31 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c487t-b1ffde9a2a7d4801b3dd5658992e80cd51a229029043ea3b8e8a0ef2f4477c43 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 03:13:07 EDT 2025 Fri Jul 11 15:10:07 EDT 2025 Fri Jul 11 12:35:03 EDT 2025 Mon Jun 30 04:03:33 EDT 2025 Thu Apr 03 07:01:48 EDT 2025 Tue Jul 01 00:27:19 EDT 2025 Thu Apr 24 22:58:13 EDT 2025 Tue Aug 26 16:37:37 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | hysteresis switching law passivity switched neural networks Average dwell time |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c487t-b1ffde9a2a7d4801b3dd5658992e80cd51a229029043ea3b8e8a0ef2f4477c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25576577 |
PQID | 1647300170 |
PQPubID | 85436 |
PageCount | 10 |
ParticipantIDs | proquest_journals_1647300170 crossref_citationtrail_10_1109_TNNLS_2014_2379920 crossref_primary_10_1109_TNNLS_2014_2379920 proquest_miscellaneous_1709183824 pubmed_primary_25576577 proquest_miscellaneous_1652395779 proquest_miscellaneous_1669891614 ieee_primary_7001700 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-01 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref14 ref30 ref11 ref32 ref2 ref1 ref17 ref16 ref18 hespanha (ref23) 1990 bevelevich (ref31) 1968 wu (ref25) 2010; 21 xu (ref33) 2009; 56 niu (ref36) 2005; 41 ref24 ref26 ref20 ref22 ref21 zuo (ref10) 2010; 21 lou (ref19) 2008; 19 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref6 doi: 10.1049/iet-cta:20070313 – ident: ref20 doi: 10.1109/9.664150 – volume: 21 start-page: 1396 year: 2010 ident: ref25 article-title: Exponential stability analysis for delayed neural networks with switching parameters: Average dwell time approach publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2056383 – ident: ref30 doi: 10.1109/TAC.1976.1101352 – ident: ref18 doi: 10.1109/TSMCB.2006.876819 – year: 1968 ident: ref31 publication-title: Classical Network Synthesis – ident: ref13 doi: 10.1088/0951-7715/22/4/011 – start-page: 2655 year: 1990 ident: ref23 article-title: Stability of switched systems with average dwell-time publication-title: Proc 39th IEEE Conf Decision Control – ident: ref21 doi: 10.1109/ACC.2001.945546 – ident: ref11 doi: 10.1109/TCSI.2008.2008499 – ident: ref9 doi: 10.1109/TNN.2008.2006337 – ident: ref22 doi: 10.1002/asjc.77 – ident: ref12 doi: 10.1109/TSMCB.2008.2006860 – ident: ref3 doi: 10.1109/TSMCB.2007.902244 – ident: ref16 doi: 10.1016/j.physleta.2005.07.042 – ident: ref7 doi: 10.1109/TNN.2007.911751 – ident: ref4 doi: 10.1109/TCSI.2005.859616 – ident: ref35 doi: 10.1137/S0036144500378302 – volume: 21 start-page: 339 year: 2010 ident: ref10 article-title: A new method for stability analysis of recurrent neural networks with interval time-varying delay publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2009.2037893 – ident: ref14 doi: 10.1109/TSMCB.2006.887426 – volume: 56 start-page: 325 year: 2009 ident: ref33 article-title: Passivity analysis of neural networks with time-varying delays publication-title: IEEE Trans Circuits Syst II Exp Briefs doi: 10.1109/TCSII.2009.2015399 – ident: ref5 doi: 10.1109/TNN.2006.888373 – ident: ref8 doi: 10.1109/TNN.2008.2000206 – ident: ref24 doi: 10.1002/rnc.2956 – ident: ref34 doi: 10.1007/978-1-4612-0039-0 – ident: ref2 doi: 10.1109/TNN.2004.824252 – ident: ref1 doi: 10.1109/21.135694 – ident: ref26 doi: 10.1109/TSMCB.2010.2040274 – ident: ref29 doi: 10.1007/BF00276493 – ident: ref32 doi: 10.1109/TCSII.2005.849023 – ident: ref17 doi: 10.1109/TSMCA.2012.2211587 – ident: ref27 doi: 10.1109/TNN.2011.2162111 – ident: ref28 doi: 10.1002/oca.1005 – volume: 41 start-page: 873 year: 2005 ident: ref36 article-title: Robust integral sliding mode control for uncertain stochastic systems with time-varying delay publication-title: Automatica doi: 10.1016/j.automatica.2004.11.035 – ident: ref15 doi: 10.1109/TNN.2009.2015085 – volume: 19 start-page: 549 year: 2008 ident: ref19 article-title: Delay-dependent criteria for global robust periodicity of uncertain switched recurrent neural networks with time-varying delay publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2007.910734 |
SSID | ssj0000605649 |
Score | 2.4985023 |
Snippet | This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 357 |
SubjectTerms | Algorithms Artificial Intelligence Average dwell time Biological neural networks Computer Simulation Delay Delays Hysteresis hysteresis switching law Law Lyapunov functions Lyapunov methods Mathematical Computing Neural networks Neural Networks (Computer) Passivity Recurrent neural networks Stochasticity switched neural networks Switches Switching Symmetric matrices Time Factors Vibration |
Title | Passivity of Switched Recurrent Neural Networks With Time-Varying Delays |
URI | https://ieeexplore.ieee.org/document/7001700 https://www.ncbi.nlm.nih.gov/pubmed/25576577 https://www.proquest.com/docview/1647300170 https://www.proquest.com/docview/1652395779 https://www.proquest.com/docview/1669891614 https://www.proquest.com/docview/1709183824 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9qn_pi1VY9WyUF33Svu9mPJI-ilkPsIfZa721JsrO0WO6kt0fRv96Z7AdU7FHYh4XMLklmQn6TzPwG4C1BepV7PqjCvI64ylGkpbeRZuYXdLFXga7pdFpMzrMv83y-Be-HXBhEDMFnOObXcJdfLf2aj8qOVWB7IQf9ETluba7WcJ4SEy4vAtqVSSEjmap5nyMTm-PZdPr1jAO5sjG1GCO5AhyhaVXkSt3ZkkKNlfvhZth2TnbhtO9wG23yc7xu3Nj_-YfL8aEjegKPO_wpPrQG8xS2cPEMdvvaDqJb6nsw-UaoOhSWEMtanN1esXYr8Z2P55nQSTCrB_1o2oaRr8SPq-ZScEJJdGFvOHdKfMJr-3u1D7OTz7OPk6iruhCRylQTuaSuKzRWWlUxt4xLq4pQH_llEnXsqzyxzBFPT5aiTZ1GbWOsZZ1lSvksfQ7bi-UCX4LQ6AtTyMpJcn0L1KZOE2ddXmuyDvJrRpD08176jpGcC2Ncl8EziU0Z1Fay2spObSN4N3zzq-Xj2Ci9x3M-SHbTPYLDXr1lt2RXJROrpaF9BEdDMy02vkGxC1yuWYb8dkMmYzbJcE1OAtLZBhlFME2nWpLMi9a8hj72Vvnq_30_gB0aYd4Gjh_CdnOzxteEixr3JiyIv69pBHs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcoALBQrtQgtGghPKNnF-7Bw4oJZqS7cRogvszXKSiVpR7aJuVlV5FV6Fh2PG-ZFAsLdKSDlE8sRx4rH9jT3zDcBLgvQqLnijCuPK4yxHnpaF9TQzv2DuF8rRNZ1kyehT9H4aT9fgRx8Lg4jO-QyHfOvO8st5seStsj3l2F781oXyGK-vyEBbvDk6oN58JeXhu8n-yGtzCHjUAFV7eVBVJaZWWlUyU0oeliVhGLIyJGq_KOPAMuM5XVGINsw1autjJasoUqqIQqr2FtwmmBHLJjis38DxyRBIHLyWQSI9GappF5Tjp3uTLBufsudYNKQSehunnCP4rpJYqd_WQJfU5d_41q1zhxvws_tDjXvL1-GyzofF9z_II__TX3gf7rX4WrxtBsQDWMPZQ9jocleIdirbhNEHshpc4gwxr8Tp1Tlrbyk-8vEDE1YJZi2hirLGTX4hvpzXZ4IDZrzP9pJjw8QBXtjrxSOY3MTnPIb12XyG2yA0FkmayDKXZNonqNMqDHKbx5Um7Se7bQBB182maBnXOfHHhXGWl58apyWGtcS0WjKA1_0z3xq-kZXSm9zFvWTbuwPY6bTJtFPSwjBxXOjKB_CiL6bJhE-I7AznS5aJJR_cqnSVDOccJUMhWiGjCIbqUEuS2Wq0uW9jNwie_L3tz-HOaHIyNuOj7Pgp3KWvjRsn-R1Yry-XuEsYsM6fubEowNyw4v4Cl9hhHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passivity+of+Switched+Recurrent+Neural+Networks+With+Time-Varying+Delays&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Lian%2C+Jie&rft.au=Wang%2C+Jun&rft.date=2015-02-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=26&rft.issue=2&rft.spage=357&rft.epage=366&rft_id=info:doi/10.1109%2FTNNLS.2014.2379920&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |