Passivity of Switched Recurrent Neural Networks With Time-Varying Delays

This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the multiple Lyapunov functions method, a state-dependent switching law is designed to present a stochastic passivity condition. Second, a hystere...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 26; no. 2; pp. 357 - 366
Main Authors Lian, Jie, Wang, Jun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the multiple Lyapunov functions method, a state-dependent switching law is designed to present a stochastic passivity condition. Second, a hysteresis switching law involving both the current state and the previous value of the switching signal are presented to avoid chattering resulted from the state-dependent switching. Third, based on the average dwell-time approach, a class of switching signals is determined to guarantee the switched neural network stochastically passive. Finally, three numerical examples are provided to illustrate the characteristics of three proposed switching laws.
AbstractList This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the multiple Lyapunov functions method, a state-dependent switching law is designed to present a stochastic passivity condition. Second, a hysteresis switching law involving both the current state and the previous value of the switching signal are presented to avoid chattering resulted from the state-dependent switching. Third, based on the average dwell-time approach, a class of switching signals is determined to guarantee the switched neural network stochastically passive. Finally, three numerical examples are provided to illustrate the characteristics of three proposed switching laws.This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the multiple Lyapunov functions method, a state-dependent switching law is designed to present a stochastic passivity condition. Second, a hysteresis switching law involving both the current state and the previous value of the switching signal are presented to avoid chattering resulted from the state-dependent switching. Third, based on the average dwell-time approach, a class of switching signals is determined to guarantee the switched neural network stochastically passive. Finally, three numerical examples are provided to illustrate the characteristics of three proposed switching laws.
This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the multiple Lyapunov functions method, a state-dependent switching law is designed to present a stochastic passivity condition. Second, a hysteresis switching law involving both the current state and the previous value of the switching signal are presented to avoid chattering resulted from the state-dependent switching. Third, based on the average dwell-time approach, a class of switching signals is determined to guarantee the switched neural network stochastically passive. Finally, three numerical examples are provided to illustrate the characteristics of three proposed switching laws.
Author Jie Lian
Jun Wang
Author_xml – sequence: 1
  givenname: Jie
  surname: Lian
  fullname: Lian, Jie
– sequence: 2
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25576577$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtLAzEUhYMovv-Aggy4cTM1r5kkS_FVoVTRou5COnNHo9OZmmSU_ntTW124EEPg3sV3Lvees4VWm7YBhPYI7hGC1fFoOBzc9SgmvEeZUIriFbRJSU5TyqRc_enF4wba9f4Fx5fjLOdqHW3QLBN5JsQm6t8Y7-27DbOkrZK7DxuKZyiTWyg656AJyRA6Z-pYwkfrXn3yYMNzMrITSO-Nm9nmKTmD2sz8DlqrTO1hd1m30ejifHTaTwfXl1enJ4O04FKEdEyqqgRlqBEll5iMWVlmeSbjASBxUWbEUKpw_JyBYWMJ0mCoaMW5EAVn2-hoMXbq2rcOfNAT6wuoa9NA23lNBFZEMkn_gea5kork5D9oRpmKhqmIHv5CX9rONfHkSHHBMI4rROpgSXXjCZR66uwk2qW_jY-AXACFa713UOnCBhNs2wRnbK0J1vOY9VfMeh6zXsYcpfSX9Hv6n6L9hcgCwI9AfG2L2Sf5rbBk
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_jfranklin_2016_06_021
crossref_primary_10_1109_TCYB_2020_2992518
crossref_primary_10_1016_j_nahs_2016_12_001
crossref_primary_10_1109_TFUZZ_2019_2930430
crossref_primary_10_1109_TCYB_2016_2533426
crossref_primary_10_1007_s00034_021_01768_9
crossref_primary_10_1109_ACCESS_2021_3074657
crossref_primary_10_1109_TCYB_2017_2691733
crossref_primary_10_1016_j_neucom_2019_11_120
crossref_primary_10_1016_j_neucom_2021_02_064
crossref_primary_10_1016_j_neunet_2024_106530
crossref_primary_10_1016_j_neucom_2020_01_092
crossref_primary_10_1002_asjc_1319
crossref_primary_10_1016_j_isatra_2022_11_009
crossref_primary_10_1016_j_neucom_2015_11_079
crossref_primary_10_1016_j_nahs_2017_08_011
crossref_primary_10_1109_TNSE_2017_2746759
crossref_primary_10_1016_j_neunet_2022_02_013
crossref_primary_10_1109_TNNLS_2018_2829149
crossref_primary_10_1109_TNNLS_2019_2927161
crossref_primary_10_1109_TSMC_2017_2705160
crossref_primary_10_1109_TNNLS_2020_2984629
crossref_primary_10_1109_TSMC_2016_2573584
crossref_primary_10_1177_01423312241235985
crossref_primary_10_1016_j_neunet_2021_03_039
crossref_primary_10_1007_s00500_022_07353_9
crossref_primary_10_1016_j_ins_2017_10_027
crossref_primary_10_1016_j_ins_2022_01_006
crossref_primary_10_1016_j_ins_2018_11_001
crossref_primary_10_1109_TCST_2017_2756029
crossref_primary_10_1109_TNNLS_2019_2920665
crossref_primary_10_1109_TFUZZ_2018_2825306
crossref_primary_10_1109_TII_2019_2936877
crossref_primary_10_1016_j_neucom_2016_12_106
crossref_primary_10_1016_j_neucom_2022_12_040
crossref_primary_10_1080_23307706_2017_1397553
crossref_primary_10_1080_00207721_2023_2244122
crossref_primary_10_1109_TCYB_2017_2688395
crossref_primary_10_1109_TSMC_2022_3230348
crossref_primary_10_1016_j_neucom_2022_07_021
crossref_primary_10_1007_s00034_017_0565_y
crossref_primary_10_1109_TCYB_2020_3042232
crossref_primary_10_1109_TFUZZ_2016_2634162
crossref_primary_10_1109_TSMC_2023_3252596
crossref_primary_10_1016_j_neucom_2020_05_060
crossref_primary_10_1109_TNNLS_2015_2497715
crossref_primary_10_1016_j_neucom_2015_03_036
crossref_primary_10_1109_TCYB_2017_2755864
crossref_primary_10_1016_j_neucom_2019_03_039
crossref_primary_10_1016_j_knosys_2022_109630
crossref_primary_10_1016_j_neucom_2018_06_038
crossref_primary_10_1016_j_chaos_2024_114475
crossref_primary_10_1080_03081079_2015_1106731
crossref_primary_10_1109_TCYB_2022_3166566
crossref_primary_10_1002_asjc_2735
crossref_primary_10_1016_j_amc_2019_04_063
crossref_primary_10_1109_TCSII_2022_3223938
crossref_primary_10_1109_TCYB_2019_2909748
crossref_primary_10_1016_j_nahs_2023_101457
crossref_primary_10_1109_TCYB_2022_3159370
crossref_primary_10_1007_s11063_017_9596_4
crossref_primary_10_1109_ACCESS_2019_2955939
crossref_primary_10_1109_TSMC_2017_2732503
crossref_primary_10_1016_j_neucom_2019_08_030
crossref_primary_10_1016_j_jfranklin_2018_09_030
crossref_primary_10_1109_TSMC_2022_3205654
crossref_primary_10_1016_j_isatra_2017_04_001
crossref_primary_10_1016_j_neunet_2016_07_009
crossref_primary_10_1109_TCYB_2018_2875134
crossref_primary_10_1016_j_neucom_2017_01_032
crossref_primary_10_1016_j_neunet_2016_07_008
crossref_primary_10_1109_TNNLS_2018_2797279
crossref_primary_10_1109_TNNLS_2017_2721448
crossref_primary_10_1109_TSMC_2016_2577578
crossref_primary_10_1016_j_neunet_2019_10_012
crossref_primary_10_1109_ACCESS_2019_2924478
crossref_primary_10_1109_TSMC_2016_2622363
crossref_primary_10_1109_TCYB_2017_2776283
crossref_primary_10_1109_TCYB_2022_3165007
crossref_primary_10_1016_j_neucom_2021_01_046
crossref_primary_10_1109_TCYB_2021_3052160
crossref_primary_10_1016_j_neucom_2018_06_019
crossref_primary_10_1007_s00034_017_0693_4
crossref_primary_10_1016_j_neucom_2015_10_086
crossref_primary_10_1016_j_neucom_2017_11_031
crossref_primary_10_1002_asjc_3006
crossref_primary_10_1016_j_ins_2018_04_051
crossref_primary_10_1016_j_jfranklin_2017_03_016
crossref_primary_10_1177_0959651818781201
crossref_primary_10_1007_s11063_017_9651_1
crossref_primary_10_1016_j_jfranklin_2020_01_023
crossref_primary_10_1109_TCYB_2017_2690676
crossref_primary_10_1016_j_physd_2024_134363
crossref_primary_10_1109_TSMC_2018_2853138
crossref_primary_10_1109_TSMC_2022_3146892
crossref_primary_10_1016_j_chaos_2023_113555
crossref_primary_10_1049_iet_cta_2020_0623
crossref_primary_10_1016_j_neucom_2018_08_005
crossref_primary_10_1016_j_ins_2018_07_069
crossref_primary_10_1002_asjc_2260
crossref_primary_10_1016_j_asoc_2024_112630
crossref_primary_10_1109_TCYB_2019_2908187
crossref_primary_10_1016_j_neucom_2021_04_099
crossref_primary_10_1016_j_neucom_2018_07_040
crossref_primary_10_1007_s00521_017_2974_z
crossref_primary_10_1016_j_nahs_2017_08_005
crossref_primary_10_1109_TFUZZ_2021_3112256
crossref_primary_10_1002_rnc_7802
crossref_primary_10_1080_00207721_2017_1390701
crossref_primary_10_1155_2018_6318986
crossref_primary_10_1109_JSEN_2016_2555761
crossref_primary_10_1109_TNNLS_2019_2940466
crossref_primary_10_3389_fnbot_2018_00051
crossref_primary_10_1016_j_amc_2016_05_004
crossref_primary_10_1016_j_nahs_2019_05_004
crossref_primary_10_1360_SST_2023_0287
crossref_primary_10_1108_GS_11_2021_0177
crossref_primary_10_1002_mma_9999
crossref_primary_10_1109_TNNLS_2018_2876711
Cites_doi 10.1049/iet-cta:20070313
10.1109/9.664150
10.1109/TNN.2010.2056383
10.1109/TAC.1976.1101352
10.1109/TSMCB.2006.876819
10.1088/0951-7715/22/4/011
10.1109/ACC.2001.945546
10.1109/TCSI.2008.2008499
10.1109/TNN.2008.2006337
10.1002/asjc.77
10.1109/TSMCB.2008.2006860
10.1109/TSMCB.2007.902244
10.1016/j.physleta.2005.07.042
10.1109/TNN.2007.911751
10.1109/TCSI.2005.859616
10.1137/S0036144500378302
10.1109/TNN.2009.2037893
10.1109/TSMCB.2006.887426
10.1109/TCSII.2009.2015399
10.1109/TNN.2006.888373
10.1109/TNN.2008.2000206
10.1002/rnc.2956
10.1007/978-1-4612-0039-0
10.1109/TNN.2004.824252
10.1109/21.135694
10.1109/TSMCB.2010.2040274
10.1007/BF00276493
10.1109/TCSII.2005.849023
10.1109/TSMCA.2012.2211587
10.1109/TNN.2011.2162111
10.1002/oca.1005
10.1016/j.automatica.2004.11.035
10.1109/TNN.2009.2015085
10.1109/TNN.2007.910734
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2014.2379920
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
Technology Research Database
Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Law
EISSN 2162-2388
EndPage 366
ExternalDocumentID 3564561821
25576577
10_1109_TNNLS_2014_2379920
7001700
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation of China
  grantid: 61374070; 61273307; 61104114; 61473055
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: DUT14QY14; DUT14QY31
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c487t-b1ffde9a2a7d4801b3dd5658992e80cd51a229029043ea3b8e8a0ef2f4477c43
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 03:13:07 EDT 2025
Fri Jul 11 15:10:07 EDT 2025
Fri Jul 11 12:35:03 EDT 2025
Mon Jun 30 04:03:33 EDT 2025
Thu Apr 03 07:01:48 EDT 2025
Tue Jul 01 00:27:19 EDT 2025
Thu Apr 24 22:58:13 EDT 2025
Tue Aug 26 16:37:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords hysteresis switching law
passivity
switched neural networks
Average dwell time
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-b1ffde9a2a7d4801b3dd5658992e80cd51a229029043ea3b8e8a0ef2f4477c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25576577
PQID 1647300170
PQPubID 85436
PageCount 10
ParticipantIDs proquest_journals_1647300170
crossref_citationtrail_10_1109_TNNLS_2014_2379920
crossref_primary_10_1109_TNNLS_2014_2379920
proquest_miscellaneous_1709183824
pubmed_primary_25576577
proquest_miscellaneous_1652395779
proquest_miscellaneous_1669891614
ieee_primary_7001700
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref30
ref11
ref32
ref2
ref1
ref17
ref16
ref18
hespanha (ref23) 1990
bevelevich (ref31) 1968
wu (ref25) 2010; 21
xu (ref33) 2009; 56
niu (ref36) 2005; 41
ref24
ref26
ref20
ref22
ref21
zuo (ref10) 2010; 21
lou (ref19) 2008; 19
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.1049/iet-cta:20070313
– ident: ref20
  doi: 10.1109/9.664150
– volume: 21
  start-page: 1396
  year: 2010
  ident: ref25
  article-title: Exponential stability analysis for delayed neural networks with switching parameters: Average dwell time approach
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2056383
– ident: ref30
  doi: 10.1109/TAC.1976.1101352
– ident: ref18
  doi: 10.1109/TSMCB.2006.876819
– year: 1968
  ident: ref31
  publication-title: Classical Network Synthesis
– ident: ref13
  doi: 10.1088/0951-7715/22/4/011
– start-page: 2655
  year: 1990
  ident: ref23
  article-title: Stability of switched systems with average dwell-time
  publication-title: Proc 39th IEEE Conf Decision Control
– ident: ref21
  doi: 10.1109/ACC.2001.945546
– ident: ref11
  doi: 10.1109/TCSI.2008.2008499
– ident: ref9
  doi: 10.1109/TNN.2008.2006337
– ident: ref22
  doi: 10.1002/asjc.77
– ident: ref12
  doi: 10.1109/TSMCB.2008.2006860
– ident: ref3
  doi: 10.1109/TSMCB.2007.902244
– ident: ref16
  doi: 10.1016/j.physleta.2005.07.042
– ident: ref7
  doi: 10.1109/TNN.2007.911751
– ident: ref4
  doi: 10.1109/TCSI.2005.859616
– ident: ref35
  doi: 10.1137/S0036144500378302
– volume: 21
  start-page: 339
  year: 2010
  ident: ref10
  article-title: A new method for stability analysis of recurrent neural networks with interval time-varying delay
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2009.2037893
– ident: ref14
  doi: 10.1109/TSMCB.2006.887426
– volume: 56
  start-page: 325
  year: 2009
  ident: ref33
  article-title: Passivity analysis of neural networks with time-varying delays
  publication-title: IEEE Trans Circuits Syst II Exp Briefs
  doi: 10.1109/TCSII.2009.2015399
– ident: ref5
  doi: 10.1109/TNN.2006.888373
– ident: ref8
  doi: 10.1109/TNN.2008.2000206
– ident: ref24
  doi: 10.1002/rnc.2956
– ident: ref34
  doi: 10.1007/978-1-4612-0039-0
– ident: ref2
  doi: 10.1109/TNN.2004.824252
– ident: ref1
  doi: 10.1109/21.135694
– ident: ref26
  doi: 10.1109/TSMCB.2010.2040274
– ident: ref29
  doi: 10.1007/BF00276493
– ident: ref32
  doi: 10.1109/TCSII.2005.849023
– ident: ref17
  doi: 10.1109/TSMCA.2012.2211587
– ident: ref27
  doi: 10.1109/TNN.2011.2162111
– ident: ref28
  doi: 10.1002/oca.1005
– volume: 41
  start-page: 873
  year: 2005
  ident: ref36
  article-title: Robust integral sliding mode control for uncertain stochastic systems with time-varying delay
  publication-title: Automatica
  doi: 10.1016/j.automatica.2004.11.035
– ident: ref15
  doi: 10.1109/TNN.2009.2015085
– volume: 19
  start-page: 549
  year: 2008
  ident: ref19
  article-title: Delay-dependent criteria for global robust periodicity of uncertain switched recurrent neural networks with time-varying delay
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2007.910734
SSID ssj0000605649
Score 2.4985023
Snippet This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 357
SubjectTerms Algorithms
Artificial Intelligence
Average dwell time
Biological neural networks
Computer Simulation
Delay
Delays
Hysteresis
hysteresis switching law
Law
Lyapunov functions
Lyapunov methods
Mathematical Computing
Neural networks
Neural Networks (Computer)
Passivity
Recurrent neural networks
Stochasticity
switched neural networks
Switches
Switching
Symmetric matrices
Time Factors
Vibration
Title Passivity of Switched Recurrent Neural Networks With Time-Varying Delays
URI https://ieeexplore.ieee.org/document/7001700
https://www.ncbi.nlm.nih.gov/pubmed/25576577
https://www.proquest.com/docview/1647300170
https://www.proquest.com/docview/1652395779
https://www.proquest.com/docview/1669891614
https://www.proquest.com/docview/1709183824
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9qn_pi1VY9WyUF33Svu9mPJI-ilkPsIfZa721JsrO0WO6kt0fRv96Z7AdU7FHYh4XMLklmQn6TzPwG4C1BepV7PqjCvI64ylGkpbeRZuYXdLFXga7pdFpMzrMv83y-Be-HXBhEDMFnOObXcJdfLf2aj8qOVWB7IQf9ETluba7WcJ4SEy4vAtqVSSEjmap5nyMTm-PZdPr1jAO5sjG1GCO5AhyhaVXkSt3ZkkKNlfvhZth2TnbhtO9wG23yc7xu3Nj_-YfL8aEjegKPO_wpPrQG8xS2cPEMdvvaDqJb6nsw-UaoOhSWEMtanN1esXYr8Z2P55nQSTCrB_1o2oaRr8SPq-ZScEJJdGFvOHdKfMJr-3u1D7OTz7OPk6iruhCRylQTuaSuKzRWWlUxt4xLq4pQH_llEnXsqzyxzBFPT5aiTZ1GbWOsZZ1lSvksfQ7bi-UCX4LQ6AtTyMpJcn0L1KZOE2ddXmuyDvJrRpD08176jpGcC2Ncl8EziU0Z1Fay2spObSN4N3zzq-Xj2Ci9x3M-SHbTPYLDXr1lt2RXJROrpaF9BEdDMy02vkGxC1yuWYb8dkMmYzbJcE1OAtLZBhlFME2nWpLMi9a8hj72Vvnq_30_gB0aYd4Gjh_CdnOzxteEixr3JiyIv69pBHs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcoALBQrtQgtGghPKNnF-7Bw4oJZqS7cRogvszXKSiVpR7aJuVlV5FV6Fh2PG-ZFAsLdKSDlE8sRx4rH9jT3zDcBLgvQqLnijCuPK4yxHnpaF9TQzv2DuF8rRNZ1kyehT9H4aT9fgRx8Lg4jO-QyHfOvO8st5seStsj3l2F781oXyGK-vyEBbvDk6oN58JeXhu8n-yGtzCHjUAFV7eVBVJaZWWlUyU0oeliVhGLIyJGq_KOPAMuM5XVGINsw1autjJasoUqqIQqr2FtwmmBHLJjis38DxyRBIHLyWQSI9GappF5Tjp3uTLBufsudYNKQSehunnCP4rpJYqd_WQJfU5d_41q1zhxvws_tDjXvL1-GyzofF9z_II__TX3gf7rX4WrxtBsQDWMPZQ9jocleIdirbhNEHshpc4gwxr8Tp1Tlrbyk-8vEDE1YJZi2hirLGTX4hvpzXZ4IDZrzP9pJjw8QBXtjrxSOY3MTnPIb12XyG2yA0FkmayDKXZNonqNMqDHKbx5Um7Se7bQBB182maBnXOfHHhXGWl58apyWGtcS0WjKA1_0z3xq-kZXSm9zFvWTbuwPY6bTJtFPSwjBxXOjKB_CiL6bJhE-I7AznS5aJJR_cqnSVDOccJUMhWiGjCIbqUEuS2Wq0uW9jNwie_L3tz-HOaHIyNuOj7Pgp3KWvjRsn-R1Yry-XuEsYsM6fubEowNyw4v4Cl9hhHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passivity+of+Switched+Recurrent+Neural+Networks+With+Time-Varying+Delays&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Lian%2C+Jie&rft.au=Wang%2C+Jun&rft.date=2015-02-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=26&rft.issue=2&rft.spage=357&rft.epage=366&rft_id=info:doi/10.1109%2FTNNLS.2014.2379920&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon