Parsimonious Extreme Learning Machine Using Recursive Orthogonal Least Squares

Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs, parsimonious structure and excellent generalization of multiinput-multioutput single hidden-layer feedforward networks (SLFNs) are obtained. The prop...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 25; no. 10; pp. 1828 - 1841
Main Authors Wang, Ning, Er, Meng Joo, Han, Min
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs, parsimonious structure and excellent generalization of multiinput-multioutput single hidden-layer feedforward networks (SLFNs) are obtained. The proposed ELMs are developed by innovative decomposition of the recursive orthogonal least squares procedure into sequential partial orthogonalization (SPO). The salient features of the proposed approaches are as follows: 1) Initial hidden nodes are randomly generated by the ELM methodology and recursively orthogonalized into an upper triangular matrix with dramatic reduction in matrix size; 2) the constructive SPO in the CP-ELM focuses on the partial matrix with the subcolumn of the selected regressor including nonzeros as the first column while the destructive SPO in the DP-ELM operates on the partial matrix including elements determined by the removed regressor; 3) termination criteria for CP- and DP-ELM are simplified by the additional residual error reduction method; and 4) the output weights of the SLFN need not be solved in the model selection procedure and is derived from the final upper triangular equation by backward substitution. Both single- and multi-output real-world regression data sets are used to verify the effectiveness and superiority of the CP- and DP-ELM in terms of parsimonious architecture and generalization accuracy. Innovative applications to nonlinear time-series modeling demonstrate superior identification results.
AbstractList Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs, parsimonious structure and excellent generalization of multiinput-multioutput single hidden-layer feedforward networks (SLFNs) are obtained. The proposed ELMs are developed by innovative decomposition of the recursive orthogonal least squares procedure into sequential partial orthogonalization (SPO). The salient features of the proposed approaches are as follows: 1) Initial hidden nodes are randomly generated by the ELM methodology and recursively orthogonalized into an upper triangular matrix with dramatic reduction in matrix size; 2) the constructive SPO in the CP-ELM focuses on the partial matrix with the subcolumn of the selected regressor including nonzeros as the first column while the destructive SPO in the DP-ELM operates on the partial matrix including elements determined by the removed regressor; 3) termination criteria for CP- and DP-ELM are simplified by the additional residual error reduction method; and 4) the output weights of the SLFN need not be solved in the model selection procedure and is derived from the final upper triangular equation by backward substitution. Both single- and multi-output real-world regression data sets are used to verify the effectiveness and superiority of the CP- and DP-ELM in terms of parsimonious architecture and generalization accuracy. Innovative applications to nonlinear time-series modeling demonstrate superior identification results.
Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs, parsimonious structure and excellent generalization of multiinput-multioutput single hidden-layer feedforward networks (SLFNs) are obtained. The proposed ELMs are developed by innovative decomposition of the recursive orthogonal least squares procedure into sequential partial orthogonalization (SPO). The salient features of the proposed approaches are as follows: 1) Initial hidden nodes are randomly generated by the ELM methodology and recursively orthogonalized into an upper triangular matrix with dramatic reduction in matrix size; 2) the constructive SPO in the CP-ELM focuses on the partial matrix with the subcolumn of the selected regressor including nonzeros as the first column while the destructive SPO in the DP-ELM operates on the partial matrix including elements determined by the removed regressor; 3) termination criteria for CP- and DP-ELM are simplified by the additional residual error reduction method; and 4) the output weights of the SLFN need not be solved in the model selection procedure and is derived from the final upper triangular equation by backward substitution. Both single- and multi-output real-world regression data sets are used to verify the effectiveness and superiority of the CP- and DP-ELM in terms of parsimonious architecture and generalization accuracy. Innovative applications to nonlinear time-series modeling demonstrate superior identification results.Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs, parsimonious structure and excellent generalization of multiinput-multioutput single hidden-layer feedforward networks (SLFNs) are obtained. The proposed ELMs are developed by innovative decomposition of the recursive orthogonal least squares procedure into sequential partial orthogonalization (SPO). The salient features of the proposed approaches are as follows: 1) Initial hidden nodes are randomly generated by the ELM methodology and recursively orthogonalized into an upper triangular matrix with dramatic reduction in matrix size; 2) the constructive SPO in the CP-ELM focuses on the partial matrix with the subcolumn of the selected regressor including nonzeros as the first column while the destructive SPO in the DP-ELM operates on the partial matrix including elements determined by the removed regressor; 3) termination criteria for CP- and DP-ELM are simplified by the additional residual error reduction method; and 4) the output weights of the SLFN need not be solved in the model selection procedure and is derived from the final upper triangular equation by backward substitution. Both single- and multi-output real-world regression data sets are used to verify the effectiveness and superiority of the CP- and DP-ELM in terms of parsimonious architecture and generalization accuracy. Innovative applications to nonlinear time-series modeling demonstrate superior identification results.
Author Min Han
Ning Wang
Meng Joo Er
Author_xml – sequence: 1
  givenname: Ning
  surname: Wang
  fullname: Wang, Ning
– sequence: 2
  givenname: Meng Joo
  surname: Er
  fullname: Er, Meng Joo
– sequence: 3
  givenname: Min
  surname: Han
  fullname: Han, Min
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25291736$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9PGzEQxa0KVGjKF2gltFIvvST4_9pHhGhBCgEVkHqzHO8sGO3aYO9W7bfHIYEDB4p98Fj6vRnNe5_QVogBEPpC8IwQrA-uFov55YxiwmaUaom5-oB2KZF0SplSWy91_XsH7eV8h8uRWEiuP6IdKqgmNZO7aHFhU_Z9DD6OuTr-OyTooZqDTcGHm-rMulsfoLrOq98vcGOh_0B1nobbeBOD7VZsHqrLh9EmyJ_Rdmu7DHubd4KufxxfHZ1M5-c_T48O51PHVT1MrWKtaCzQJbS4xtxJR1ounOCNEi2tSUN1q6ik2jHeOIexalre0KVSggq3ZBP0fd33PsWHEfJgep8ddJ0NUBYxpJaUcEGY_j9apjCueS3egWItCCbFugn69gq9i2MqfqwpLMpVhdrfUOOyh8bcJ9_b9M88-18AtQZcijknaI3zgx18DEOyvjMEm1Xa5ilts0rbbNIuUvpK-tz9TdHXtcgDwItAlggYIewRc3CzZQ
CODEN ITNNAL
CitedBy_id crossref_primary_10_3390_en10010039
crossref_primary_10_1007_s42835_020_00561_z
crossref_primary_10_1016_j_neucom_2015_08_029
crossref_primary_10_1016_j_neucom_2018_05_018
crossref_primary_10_1109_TSMC_2017_2692529
crossref_primary_10_1016_j_neucom_2018_02_048
crossref_primary_10_1109_TCYB_2015_2423635
crossref_primary_10_1109_TNNLS_2018_2868836
crossref_primary_10_1007_s12652_020_01975_3
crossref_primary_10_1016_j_neucom_2018_02_080
crossref_primary_10_1109_TNNLS_2017_2738918
crossref_primary_10_1016_j_jfranklin_2017_08_038
crossref_primary_10_1088_1757_899X_341_1_012026
crossref_primary_10_1007_s42835_020_00375_z
crossref_primary_10_1016_j_neucom_2015_01_039
crossref_primary_10_1016_j_neucom_2018_04_012
crossref_primary_10_1080_00194506_2018_1545605
crossref_primary_10_1007_s11390_017_1746_7
crossref_primary_10_1016_j_neucom_2014_12_046
crossref_primary_10_1109_ACCESS_2020_2978079
crossref_primary_10_1016_j_neucom_2016_01_072
crossref_primary_10_1016_j_neucom_2019_01_070
crossref_primary_10_1016_j_neucom_2015_09_036
crossref_primary_10_1016_j_isatra_2015_05_014
crossref_primary_10_1109_TCYB_2017_2741998
crossref_primary_10_2174_1573413718666220511124559
crossref_primary_10_1016_j_physa_2019_01_113
crossref_primary_10_1016_j_oceaneng_2017_09_062
crossref_primary_10_1109_TCYB_2014_2382679
crossref_primary_10_1109_TNNLS_2016_2607757
crossref_primary_10_1016_j_neucom_2015_04_083
crossref_primary_10_1109_TSMC_2015_2466194
crossref_primary_10_1016_j_neucom_2016_01_005
crossref_primary_10_3233_JIFS_18425
crossref_primary_10_1049_iet_cta_2016_1058
crossref_primary_10_1109_TIE_2020_3031525
crossref_primary_10_1109_TCYB_2015_2451116
crossref_primary_10_1016_j_neucom_2016_01_009
crossref_primary_10_1016_j_neucom_2016_08_011
crossref_primary_10_1007_s11063_017_9700_9
crossref_primary_10_1109_TSMC_2017_2735995
crossref_primary_10_1016_j_conengprac_2020_104458
crossref_primary_10_1016_j_neucom_2015_04_002
crossref_primary_10_1016_j_ijnaoe_2022_100440
crossref_primary_10_4236_cweee_2020_91001
crossref_primary_10_1007_s40815_017_0387_x
crossref_primary_10_1109_ACCESS_2018_2882824
crossref_primary_10_1007_s40710_019_00353_2
crossref_primary_10_1109_ACCESS_2018_2881134
crossref_primary_10_1155_2016_7939607
crossref_primary_10_1007_s12530_016_9162_8
crossref_primary_10_1016_j_neucom_2015_09_090
crossref_primary_10_1109_TNNLS_2014_2334366
crossref_primary_10_1016_j_neucom_2016_04_070
crossref_primary_10_1109_TNNLS_2016_2598840
crossref_primary_10_1016_j_neucom_2017_09_090
crossref_primary_10_1016_j_oceaneng_2019_106910
crossref_primary_10_1177_0959651820937085
crossref_primary_10_1109_ACCESS_2017_2766675
crossref_primary_10_1007_s42835_020_00378_w
crossref_primary_10_1007_s11071_017_3764_y
crossref_primary_10_1109_TSMC_2015_2506618
crossref_primary_10_1016_j_neucom_2015_04_039
crossref_primary_10_1016_j_neucom_2020_02_121
crossref_primary_10_1007_s10846_016_0378_4
crossref_primary_10_1109_TSMC_2016_2557227
crossref_primary_10_1016_j_neucom_2018_09_012
crossref_primary_10_1007_s00500_018_3012_5
crossref_primary_10_1016_j_isatra_2022_09_030
crossref_primary_10_1007_s10462_016_9461_2
crossref_primary_10_1109_ACCESS_2018_2873627
crossref_primary_10_1109_TCYB_2015_2458177
crossref_primary_10_1016_j_neucom_2016_02_058
crossref_primary_10_1016_j_neucom_2016_05_006
crossref_primary_10_1109_ACCESS_2020_2968983
crossref_primary_10_1109_TNNLS_2014_2350957
crossref_primary_10_1016_j_knosys_2017_07_014
crossref_primary_10_1007_s11036_020_01587_3
crossref_primary_10_1080_17415977_2016_1169278
crossref_primary_10_1016_j_neucom_2015_06_022
crossref_primary_10_1016_j_neucom_2015_10_028
crossref_primary_10_1109_ACCESS_2018_2851286
crossref_primary_10_1109_TCYB_2017_2738060
crossref_primary_10_1016_j_neucom_2016_06_079
crossref_primary_10_1109_ACCESS_2019_2936856
crossref_primary_10_1016_j_neucom_2015_10_023
crossref_primary_10_26599_AIR_2022_9150007
crossref_primary_10_1002_rnc_5752
crossref_primary_10_1016_j_neucom_2017_11_056
crossref_primary_10_1109_TCDS_2019_2953620
crossref_primary_10_1016_j_neucom_2023_02_018
crossref_primary_10_1016_j_neucom_2015_05_141
crossref_primary_10_1016_j_neunet_2014_10_001
Cites_doi 10.1016/j.neucom.2010.05.022
10.1007/s13042-011-0019-y
10.1007/s11063-011-9181-1
10.1109/TSMCB.2011.2168604
10.1016/j.neucom.2008.01.005
10.1016/S0947-3580(96)70054-7
10.1109/TCST.2006.876906
10.1109/72.80341
10.1023/A:1009622226531
10.1016/j.neucom.2007.02.009
10.1109/TNN.2009.2024147
10.1109/TNN.2006.880583
10.1016/j.neucom.2009.05.006
10.1109/72.839002
10.1142/S0129065710002486
10.1109/TNN.2008.2004370
10.1109/TNN.2006.875977
10.1016/j.neucom.2008.10.002
10.1098/rspa.1997.0002
10.1109/9.250491
10.1049/ip-cta:19971436
10.1007/s11063-012-9253-x
10.1109/TNN.2009.2036259
10.1109/TSP.2012.2187285
10.1049/iet-cta.2009.0581
10.1016/j.neucom.2013.01.062
10.1109/TNN.2002.1031954
10.1049/ip-f-2.1992.0054
10.1109/78.398734
10.1080/00207178908953472
10.1016/j.neucom.2007.10.008
10.1016/j.neucom.2004.12.011
10.1016/j.neucom.2005.12.126
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2013.2296048
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database

PubMed
Technology Research Database
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1841
ExternalDocumentID 3454138261
25291736
10_1109_TNNLS_2013_2296048
6704311
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: China Post-Doctoral Science Foundation
  grantid: 2012M520629
  funderid: 10.13039/501100002858
– fundername: Applied Basic Research Funds from the Ministry of Transport of China
  grantid: 2012-329-225-060
– fundername: Fundamental Research Funds for the Central Universities of China
  grantid: 2009QN025; 2011JC002; 3132013025
– fundername: National Natural Science Foundation of China
  grantid: 51009017; 51379002; 61074096
  funderid: 10.13039/501100001809
– fundername: Program for Liaoning Excellent Talents in University
  grantid: JQ2013055
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c487t-a83f5dae2bef0704c6c1f45c54d85f271d29f82629c34dcc008df4d2b88525cb3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 15:57:36 EDT 2025
Fri Jul 11 08:40:10 EDT 2025
Fri Jul 11 07:13:47 EDT 2025
Sun Jun 29 14:47:39 EDT 2025
Thu Jan 02 22:20:40 EST 2025
Tue Jul 01 00:27:17 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Tue Aug 26 16:49:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Keywords Extreme learning machine (ELM)
single hidden-layer feedforward network (SLFN)
parsimonious model selection
sequential partial orthogonalization (SPO)
recursive orthogonal least squares (ROLS)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-a83f5dae2bef0704c6c1f45c54d85f271d29f82629c34dcc008df4d2b88525cb3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 25291736
PQID 1609050508
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1629349475
proquest_miscellaneous_1762145139
pubmed_primary_25291736
ieee_primary_6704311
crossref_citationtrail_10_1109_TNNLS_2013_2296048
proquest_miscellaneous_1609510117
proquest_journals_1609050508
crossref_primary_10_1109_TNNLS_2013_2296048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref32
ref10
similä (ref11) 2005
ref2
ref1
ref17
ref16
ref19
ref18
bobrow (ref29) 2010; 4
hong (ref27) 1997; 144
ref24
ref23
ref26
ref25
ref20
ref21
mike (ref36) 1989
ref28
ref8
ref7
ref9
chen (ref22) 1992; 139
ref4
ref3
blake (ref35) 1998
ref6
ref5
References_xml – ident: ref15
  doi: 10.1016/j.neucom.2010.05.022
– ident: ref3
  doi: 10.1007/s13042-011-0019-y
– ident: ref8
  doi: 10.1007/s11063-011-9181-1
– ident: ref4
  doi: 10.1109/TSMCB.2011.2168604
– ident: ref9
  doi: 10.1016/j.neucom.2008.01.005
– ident: ref26
  doi: 10.1016/S0947-3580(96)70054-7
– ident: ref32
  doi: 10.1109/TCST.2006.876906
– ident: ref20
  doi: 10.1109/72.80341
– ident: ref30
  doi: 10.1023/A:1009622226531
– ident: ref13
  doi: 10.1016/j.neucom.2007.02.009
– ident: ref14
  doi: 10.1109/TNN.2009.2024147
– ident: ref5
  doi: 10.1109/TNN.2006.880583
– start-page: 97
  year: 2005
  ident: ref11
  article-title: Multiresponse sparse regression with application to multidimensional scaling
  publication-title: Proc 15th ICA
– ident: ref6
  doi: 10.1016/j.neucom.2009.05.006
– ident: ref31
  doi: 10.1109/72.839002
– ident: ref7
  doi: 10.1142/S0129065710002486
– ident: ref33
  doi: 10.1109/TNN.2008.2004370
– ident: ref2
  doi: 10.1109/TNN.2006.875977
– ident: ref25
  doi: 10.1016/j.neucom.2008.10.002
– ident: ref18
  doi: 10.1098/rspa.1997.0002
– ident: ref28
  doi: 10.1109/9.250491
– volume: 144
  start-page: 381
  year: 1997
  ident: ref27
  article-title: givens rotation based fast backward elimination algorithm for rbf neural network pruning
  publication-title: Control Theory and Applications IEE Proceedings-
  doi: 10.1049/ip-cta:19971436
– ident: ref17
  doi: 10.1007/s11063-012-9253-x
– ident: ref10
  doi: 10.1109/TNN.2009.2036259
– ident: ref34
  doi: 10.1109/TSP.2012.2187285
– volume: 4
  start-page: 2693
  year: 2010
  ident: ref29
  article-title: Adaptive model selection for polynomial NARX models
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2009.0581
– ident: ref16
  doi: 10.1016/j.neucom.2013.01.062
– ident: ref23
  doi: 10.1109/TNN.2002.1031954
– volume: 139
  start-page: 378
  year: 1992
  ident: ref22
  article-title: orthogonal least-squares algorithm for training multioutput radial basis function networks
  publication-title: Radar and Signal Processing IEE Proceedings F
  doi: 10.1049/ip-f-2.1992.0054
– ident: ref21
  doi: 10.1109/78.398734
– ident: ref19
  doi: 10.1080/00207178908953472
– year: 1998
  ident: ref35
  publication-title: UCI repository of machine learning databases
– ident: ref12
  doi: 10.1016/j.neucom.2007.10.008
– year: 1989
  ident: ref36
  publication-title: Statistical Datasets
– ident: ref24
  doi: 10.1016/j.neucom.2004.12.011
– ident: ref1
  doi: 10.1016/j.neucom.2005.12.126
SSID ssj0000605649
Score 2.4583392
Snippet Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1828
SubjectTerms Context
Educational institutions
Elm
Error reduction
Extreme learning machine (ELM)
Feedforward
Learning
Least squares method
Mathematical model
Matrix decomposition
Neural networks
parsimonious model selection
Recursive
recursive orthogonal least squares (ROLS)
sequential partial orthogonalization (SPO)
single hidden-layer feedforward network (SLFN)
Training
Training data
Vectors
Weight reduction
Title Parsimonious Extreme Learning Machine Using Recursive Orthogonal Least Squares
URI https://ieeexplore.ieee.org/document/6704311
https://www.ncbi.nlm.nih.gov/pubmed/25291736
https://www.proquest.com/docview/1609050508
https://www.proquest.com/docview/1609510117
https://www.proquest.com/docview/1629349475
https://www.proquest.com/docview/1762145139
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEA_qky_Valuv1ZJC39o9d_O1m8dSFCn1LH7AvS2bSdZCZc_qHkj_-s5kPwSpR98WdgJJJpP5yG9mGPtoPWppSG0ShKoTVRVV4oKViXG18zKjl7qI8p2Zkyv1ba7na-zzmAsTQojgszClz_iW7xewpFDZocmpFAz6OuvouHW5WmM8JUW73ERrV2RGJELm8yFHJrWHl7PZ9wsCcsmpEFSPhPr0CS3QWYnFmR9VUuyx8ry5GdXO8RY7HSbcoU1-TZetm8KfJ7Uc_3dF2-xFb3_yL92BecnWQrPDtobeDrwX9V02-4EeL_KxIYwsP3poKY7I-2qs1_w0YjADj4gDfk5Be8LB87O79ufimqx7or1v-cXvJWU4vWJXx0eXX0-SvvdCAujCtElVyFr7KggXarwVFBjIaqVBK1_oWuSZF7ZG10RYkMoDoCnha-WFKwotNDj5mm00iybsMe6896oKvjDWqAKkVeArAOkzk4NNYcKyYftL6AuTU3-MmzI6KKktI_dK4l7Zc2_CPo1jbruyHCupd2nrR8p-1ydsf-By2UvufZmZ1FJ3vxRHfRh_o8zRQ0rVBNz0SEN3WZavokFDSlmV6xU0qImoU7K0E_amO2XjHIfD-fbfc3_HNnGFqoMV7rON9m4ZDtA8at37KBd_Aam8CTU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcoALpRTo0haMxA2yjZ-Jjwi1WmA3ILqV9hbFjxQJlIU2K1X8emacBxKCFbdIGUu2x-N5-JsZQl4aD1rapSYJXNaJrPIqscGIRNvaesHwpS6ifAs9u5TvV2q1Q16PuTAhhAg-C1P8jG_5fu02GCo71RmWggFf5w7ofcW6bK0xopKCZa6jvcuZ5gkX2WrIkknN6bIo5hcI5RJTzrEiCXbq44qDuxLLM_9WSrHLyr8Nzqh4zvfIYphyhzf5Ot20dup-_lHN8X_X9IDc7y1Q-qY7MvtkJzQPyd7Q3YH2wn5Aik_g8wInG0TJ0rPbFiOJtK_HekUXEYUZaMQc0M8YtkckPP143X5ZX6F9j7Q3Lb34scEcp0fk8vxs-XaW9N0XEgdOTJtUuaiVrwK3oYZ7QTrtWC2VU9LnquYZ89zU4Jxw44T0zoEx4Wvpuc1zxZWz4jHZbdZNOCTUeu9lFXyujZa5E0Y6XzknPNOZM6mbEDZsf-n60uTYIeNbGV2U1JSReyVyr-y5NyGvxjHfu8IcW6kPcOtHyn7XJ-R44HLZy-5NyXRqsL9fCqNejL9B6vAppWoCbHqkwduMZdtowJSSRmZqCw3oIuyVLMyEPOlO2TjH4XA-_fvcn5O7s-ViXs7fFR-OyD1YrexAhsdkt73ehBMwllr7LMrIL5_IDH4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parsimonious+Extreme+Learning+Machine+Using+Recursive+Orthogonal+Least+Squares&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Ning&rft.au=Er%2C+Meng+Joo&rft.au=Han%2C+Min&rft.date=2014-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=25&rft.issue=10&rft.spage=1828&rft_id=info:doi/10.1109%2FTNNLS.2013.2296048&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3454138261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon