Parsimonious Extreme Learning Machine Using Recursive Orthogonal Least Squares
Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs, parsimonious structure and excellent generalization of multiinput-multioutput single hidden-layer feedforward networks (SLFNs) are obtained. The prop...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 25; no. 10; pp. 1828 - 1841 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs, parsimonious structure and excellent generalization of multiinput-multioutput single hidden-layer feedforward networks (SLFNs) are obtained. The proposed ELMs are developed by innovative decomposition of the recursive orthogonal least squares procedure into sequential partial orthogonalization (SPO). The salient features of the proposed approaches are as follows: 1) Initial hidden nodes are randomly generated by the ELM methodology and recursively orthogonalized into an upper triangular matrix with dramatic reduction in matrix size; 2) the constructive SPO in the CP-ELM focuses on the partial matrix with the subcolumn of the selected regressor including nonzeros as the first column while the destructive SPO in the DP-ELM operates on the partial matrix including elements determined by the removed regressor; 3) termination criteria for CP- and DP-ELM are simplified by the additional residual error reduction method; and 4) the output weights of the SLFN need not be solved in the model selection procedure and is derived from the final upper triangular equation by backward substitution. Both single- and multi-output real-world regression data sets are used to verify the effectiveness and superiority of the CP- and DP-ELM in terms of parsimonious architecture and generalization accuracy. Innovative applications to nonlinear time-series modeling demonstrate superior identification results. |
---|---|
AbstractList | Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs, parsimonious structure and excellent generalization of multiinput-multioutput single hidden-layer feedforward networks (SLFNs) are obtained. The proposed ELMs are developed by innovative decomposition of the recursive orthogonal least squares procedure into sequential partial orthogonalization (SPO). The salient features of the proposed approaches are as follows: 1) Initial hidden nodes are randomly generated by the ELM methodology and recursively orthogonalized into an upper triangular matrix with dramatic reduction in matrix size; 2) the constructive SPO in the CP-ELM focuses on the partial matrix with the subcolumn of the selected regressor including nonzeros as the first column while the destructive SPO in the DP-ELM operates on the partial matrix including elements determined by the removed regressor; 3) termination criteria for CP- and DP-ELM are simplified by the additional residual error reduction method; and 4) the output weights of the SLFN need not be solved in the model selection procedure and is derived from the final upper triangular equation by backward substitution. Both single- and multi-output real-world regression data sets are used to verify the effectiveness and superiority of the CP- and DP-ELM in terms of parsimonious architecture and generalization accuracy. Innovative applications to nonlinear time-series modeling demonstrate superior identification results. Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs, parsimonious structure and excellent generalization of multiinput-multioutput single hidden-layer feedforward networks (SLFNs) are obtained. The proposed ELMs are developed by innovative decomposition of the recursive orthogonal least squares procedure into sequential partial orthogonalization (SPO). The salient features of the proposed approaches are as follows: 1) Initial hidden nodes are randomly generated by the ELM methodology and recursively orthogonalized into an upper triangular matrix with dramatic reduction in matrix size; 2) the constructive SPO in the CP-ELM focuses on the partial matrix with the subcolumn of the selected regressor including nonzeros as the first column while the destructive SPO in the DP-ELM operates on the partial matrix including elements determined by the removed regressor; 3) termination criteria for CP- and DP-ELM are simplified by the additional residual error reduction method; and 4) the output weights of the SLFN need not be solved in the model selection procedure and is derived from the final upper triangular equation by backward substitution. Both single- and multi-output real-world regression data sets are used to verify the effectiveness and superiority of the CP- and DP-ELM in terms of parsimonious architecture and generalization accuracy. Innovative applications to nonlinear time-series modeling demonstrate superior identification results.Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs, parsimonious structure and excellent generalization of multiinput-multioutput single hidden-layer feedforward networks (SLFNs) are obtained. The proposed ELMs are developed by innovative decomposition of the recursive orthogonal least squares procedure into sequential partial orthogonalization (SPO). The salient features of the proposed approaches are as follows: 1) Initial hidden nodes are randomly generated by the ELM methodology and recursively orthogonalized into an upper triangular matrix with dramatic reduction in matrix size; 2) the constructive SPO in the CP-ELM focuses on the partial matrix with the subcolumn of the selected regressor including nonzeros as the first column while the destructive SPO in the DP-ELM operates on the partial matrix including elements determined by the removed regressor; 3) termination criteria for CP- and DP-ELM are simplified by the additional residual error reduction method; and 4) the output weights of the SLFN need not be solved in the model selection procedure and is derived from the final upper triangular equation by backward substitution. Both single- and multi-output real-world regression data sets are used to verify the effectiveness and superiority of the CP- and DP-ELM in terms of parsimonious architecture and generalization accuracy. Innovative applications to nonlinear time-series modeling demonstrate superior identification results. |
Author | Min Han Ning Wang Meng Joo Er |
Author_xml | – sequence: 1 givenname: Ning surname: Wang fullname: Wang, Ning – sequence: 2 givenname: Meng Joo surname: Er fullname: Er, Meng Joo – sequence: 3 givenname: Min surname: Han fullname: Han, Min |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25291736$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9PGzEQxa0KVGjKF2gltFIvvST4_9pHhGhBCgEVkHqzHO8sGO3aYO9W7bfHIYEDB4p98Fj6vRnNe5_QVogBEPpC8IwQrA-uFov55YxiwmaUaom5-oB2KZF0SplSWy91_XsH7eV8h8uRWEiuP6IdKqgmNZO7aHFhU_Z9DD6OuTr-OyTooZqDTcGHm-rMulsfoLrOq98vcGOh_0B1nobbeBOD7VZsHqrLh9EmyJ_Rdmu7DHubd4KufxxfHZ1M5-c_T48O51PHVT1MrWKtaCzQJbS4xtxJR1ounOCNEi2tSUN1q6ik2jHeOIexalre0KVSggq3ZBP0fd33PsWHEfJgep8ddJ0NUBYxpJaUcEGY_j9apjCueS3egWItCCbFugn69gq9i2MqfqwpLMpVhdrfUOOyh8bcJ9_b9M88-18AtQZcijknaI3zgx18DEOyvjMEm1Xa5ilts0rbbNIuUvpK-tz9TdHXtcgDwItAlggYIewRc3CzZQ |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_3390_en10010039 crossref_primary_10_1007_s42835_020_00561_z crossref_primary_10_1016_j_neucom_2015_08_029 crossref_primary_10_1016_j_neucom_2018_05_018 crossref_primary_10_1109_TSMC_2017_2692529 crossref_primary_10_1016_j_neucom_2018_02_048 crossref_primary_10_1109_TCYB_2015_2423635 crossref_primary_10_1109_TNNLS_2018_2868836 crossref_primary_10_1007_s12652_020_01975_3 crossref_primary_10_1016_j_neucom_2018_02_080 crossref_primary_10_1109_TNNLS_2017_2738918 crossref_primary_10_1016_j_jfranklin_2017_08_038 crossref_primary_10_1088_1757_899X_341_1_012026 crossref_primary_10_1007_s42835_020_00375_z crossref_primary_10_1016_j_neucom_2015_01_039 crossref_primary_10_1016_j_neucom_2018_04_012 crossref_primary_10_1080_00194506_2018_1545605 crossref_primary_10_1007_s11390_017_1746_7 crossref_primary_10_1016_j_neucom_2014_12_046 crossref_primary_10_1109_ACCESS_2020_2978079 crossref_primary_10_1016_j_neucom_2016_01_072 crossref_primary_10_1016_j_neucom_2019_01_070 crossref_primary_10_1016_j_neucom_2015_09_036 crossref_primary_10_1016_j_isatra_2015_05_014 crossref_primary_10_1109_TCYB_2017_2741998 crossref_primary_10_2174_1573413718666220511124559 crossref_primary_10_1016_j_physa_2019_01_113 crossref_primary_10_1016_j_oceaneng_2017_09_062 crossref_primary_10_1109_TCYB_2014_2382679 crossref_primary_10_1109_TNNLS_2016_2607757 crossref_primary_10_1016_j_neucom_2015_04_083 crossref_primary_10_1109_TSMC_2015_2466194 crossref_primary_10_1016_j_neucom_2016_01_005 crossref_primary_10_3233_JIFS_18425 crossref_primary_10_1049_iet_cta_2016_1058 crossref_primary_10_1109_TIE_2020_3031525 crossref_primary_10_1109_TCYB_2015_2451116 crossref_primary_10_1016_j_neucom_2016_01_009 crossref_primary_10_1016_j_neucom_2016_08_011 crossref_primary_10_1007_s11063_017_9700_9 crossref_primary_10_1109_TSMC_2017_2735995 crossref_primary_10_1016_j_conengprac_2020_104458 crossref_primary_10_1016_j_neucom_2015_04_002 crossref_primary_10_1016_j_ijnaoe_2022_100440 crossref_primary_10_4236_cweee_2020_91001 crossref_primary_10_1007_s40815_017_0387_x crossref_primary_10_1109_ACCESS_2018_2882824 crossref_primary_10_1007_s40710_019_00353_2 crossref_primary_10_1109_ACCESS_2018_2881134 crossref_primary_10_1155_2016_7939607 crossref_primary_10_1007_s12530_016_9162_8 crossref_primary_10_1016_j_neucom_2015_09_090 crossref_primary_10_1109_TNNLS_2014_2334366 crossref_primary_10_1016_j_neucom_2016_04_070 crossref_primary_10_1109_TNNLS_2016_2598840 crossref_primary_10_1016_j_neucom_2017_09_090 crossref_primary_10_1016_j_oceaneng_2019_106910 crossref_primary_10_1177_0959651820937085 crossref_primary_10_1109_ACCESS_2017_2766675 crossref_primary_10_1007_s42835_020_00378_w crossref_primary_10_1007_s11071_017_3764_y crossref_primary_10_1109_TSMC_2015_2506618 crossref_primary_10_1016_j_neucom_2015_04_039 crossref_primary_10_1016_j_neucom_2020_02_121 crossref_primary_10_1007_s10846_016_0378_4 crossref_primary_10_1109_TSMC_2016_2557227 crossref_primary_10_1016_j_neucom_2018_09_012 crossref_primary_10_1007_s00500_018_3012_5 crossref_primary_10_1016_j_isatra_2022_09_030 crossref_primary_10_1007_s10462_016_9461_2 crossref_primary_10_1109_ACCESS_2018_2873627 crossref_primary_10_1109_TCYB_2015_2458177 crossref_primary_10_1016_j_neucom_2016_02_058 crossref_primary_10_1016_j_neucom_2016_05_006 crossref_primary_10_1109_ACCESS_2020_2968983 crossref_primary_10_1109_TNNLS_2014_2350957 crossref_primary_10_1016_j_knosys_2017_07_014 crossref_primary_10_1007_s11036_020_01587_3 crossref_primary_10_1080_17415977_2016_1169278 crossref_primary_10_1016_j_neucom_2015_06_022 crossref_primary_10_1016_j_neucom_2015_10_028 crossref_primary_10_1109_ACCESS_2018_2851286 crossref_primary_10_1109_TCYB_2017_2738060 crossref_primary_10_1016_j_neucom_2016_06_079 crossref_primary_10_1109_ACCESS_2019_2936856 crossref_primary_10_1016_j_neucom_2015_10_023 crossref_primary_10_26599_AIR_2022_9150007 crossref_primary_10_1002_rnc_5752 crossref_primary_10_1016_j_neucom_2017_11_056 crossref_primary_10_1109_TCDS_2019_2953620 crossref_primary_10_1016_j_neucom_2023_02_018 crossref_primary_10_1016_j_neucom_2015_05_141 crossref_primary_10_1016_j_neunet_2014_10_001 |
Cites_doi | 10.1016/j.neucom.2010.05.022 10.1007/s13042-011-0019-y 10.1007/s11063-011-9181-1 10.1109/TSMCB.2011.2168604 10.1016/j.neucom.2008.01.005 10.1016/S0947-3580(96)70054-7 10.1109/TCST.2006.876906 10.1109/72.80341 10.1023/A:1009622226531 10.1016/j.neucom.2007.02.009 10.1109/TNN.2009.2024147 10.1109/TNN.2006.880583 10.1016/j.neucom.2009.05.006 10.1109/72.839002 10.1142/S0129065710002486 10.1109/TNN.2008.2004370 10.1109/TNN.2006.875977 10.1016/j.neucom.2008.10.002 10.1098/rspa.1997.0002 10.1109/9.250491 10.1049/ip-cta:19971436 10.1007/s11063-012-9253-x 10.1109/TNN.2009.2036259 10.1109/TSP.2012.2187285 10.1049/iet-cta.2009.0581 10.1016/j.neucom.2013.01.062 10.1109/TNN.2002.1031954 10.1049/ip-f-2.1992.0054 10.1109/78.398734 10.1080/00207178908953472 10.1016/j.neucom.2007.10.008 10.1016/j.neucom.2004.12.011 10.1016/j.neucom.2005.12.126 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2013.2296048 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Technology Research Database PubMed Technology Research Database Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 1841 |
ExternalDocumentID | 3454138261 25291736 10_1109_TNNLS_2013_2296048 6704311 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: China Post-Doctoral Science Foundation grantid: 2012M520629 funderid: 10.13039/501100002858 – fundername: Applied Basic Research Funds from the Ministry of Transport of China grantid: 2012-329-225-060 – fundername: Fundamental Research Funds for the Central Universities of China grantid: 2009QN025; 2011JC002; 3132013025 – fundername: National Natural Science Foundation of China grantid: 51009017; 51379002; 61074096 funderid: 10.13039/501100001809 – fundername: Program for Liaoning Excellent Talents in University grantid: JQ2013055 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c487t-a83f5dae2bef0704c6c1f45c54d85f271d29f82629c34dcc008df4d2b88525cb3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 15:57:36 EDT 2025 Fri Jul 11 08:40:10 EDT 2025 Fri Jul 11 07:13:47 EDT 2025 Sun Jun 29 14:47:39 EDT 2025 Thu Jan 02 22:20:40 EST 2025 Tue Jul 01 00:27:17 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Tue Aug 26 16:49:26 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 10 |
Keywords | Extreme learning machine (ELM) single hidden-layer feedforward network (SLFN) parsimonious model selection sequential partial orthogonalization (SPO) recursive orthogonal least squares (ROLS) |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c487t-a83f5dae2bef0704c6c1f45c54d85f271d29f82629c34dcc008df4d2b88525cb3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 25291736 |
PQID | 1609050508 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1629349475 proquest_miscellaneous_1762145139 pubmed_primary_25291736 ieee_primary_6704311 crossref_citationtrail_10_1109_TNNLS_2013_2296048 proquest_miscellaneous_1609510117 proquest_journals_1609050508 crossref_primary_10_1109_TNNLS_2013_2296048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-01 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2014 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref32 ref10 similä (ref11) 2005 ref2 ref1 ref17 ref16 ref19 ref18 bobrow (ref29) 2010; 4 hong (ref27) 1997; 144 ref24 ref23 ref26 ref25 ref20 ref21 mike (ref36) 1989 ref28 ref8 ref7 ref9 chen (ref22) 1992; 139 ref4 ref3 blake (ref35) 1998 ref6 ref5 |
References_xml | – ident: ref15 doi: 10.1016/j.neucom.2010.05.022 – ident: ref3 doi: 10.1007/s13042-011-0019-y – ident: ref8 doi: 10.1007/s11063-011-9181-1 – ident: ref4 doi: 10.1109/TSMCB.2011.2168604 – ident: ref9 doi: 10.1016/j.neucom.2008.01.005 – ident: ref26 doi: 10.1016/S0947-3580(96)70054-7 – ident: ref32 doi: 10.1109/TCST.2006.876906 – ident: ref20 doi: 10.1109/72.80341 – ident: ref30 doi: 10.1023/A:1009622226531 – ident: ref13 doi: 10.1016/j.neucom.2007.02.009 – ident: ref14 doi: 10.1109/TNN.2009.2024147 – ident: ref5 doi: 10.1109/TNN.2006.880583 – start-page: 97 year: 2005 ident: ref11 article-title: Multiresponse sparse regression with application to multidimensional scaling publication-title: Proc 15th ICA – ident: ref6 doi: 10.1016/j.neucom.2009.05.006 – ident: ref31 doi: 10.1109/72.839002 – ident: ref7 doi: 10.1142/S0129065710002486 – ident: ref33 doi: 10.1109/TNN.2008.2004370 – ident: ref2 doi: 10.1109/TNN.2006.875977 – ident: ref25 doi: 10.1016/j.neucom.2008.10.002 – ident: ref18 doi: 10.1098/rspa.1997.0002 – ident: ref28 doi: 10.1109/9.250491 – volume: 144 start-page: 381 year: 1997 ident: ref27 article-title: givens rotation based fast backward elimination algorithm for rbf neural network pruning publication-title: Control Theory and Applications IEE Proceedings- doi: 10.1049/ip-cta:19971436 – ident: ref17 doi: 10.1007/s11063-012-9253-x – ident: ref10 doi: 10.1109/TNN.2009.2036259 – ident: ref34 doi: 10.1109/TSP.2012.2187285 – volume: 4 start-page: 2693 year: 2010 ident: ref29 article-title: Adaptive model selection for polynomial NARX models publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2009.0581 – ident: ref16 doi: 10.1016/j.neucom.2013.01.062 – ident: ref23 doi: 10.1109/TNN.2002.1031954 – volume: 139 start-page: 378 year: 1992 ident: ref22 article-title: orthogonal least-squares algorithm for training multioutput radial basis function networks publication-title: Radar and Signal Processing IEE Proceedings F doi: 10.1049/ip-f-2.1992.0054 – ident: ref21 doi: 10.1109/78.398734 – ident: ref19 doi: 10.1080/00207178908953472 – year: 1998 ident: ref35 publication-title: UCI repository of machine learning databases – ident: ref12 doi: 10.1016/j.neucom.2007.10.008 – year: 1989 ident: ref36 publication-title: Statistical Datasets – ident: ref24 doi: 10.1016/j.neucom.2004.12.011 – ident: ref1 doi: 10.1016/j.neucom.2005.12.126 |
SSID | ssj0000605649 |
Score | 2.4583392 |
Snippet | Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs,... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1828 |
SubjectTerms | Context Educational institutions Elm Error reduction Extreme learning machine (ELM) Feedforward Learning Least squares method Mathematical model Matrix decomposition Neural networks parsimonious model selection Recursive recursive orthogonal least squares (ROLS) sequential partial orthogonalization (SPO) single hidden-layer feedforward network (SLFN) Training Training data Vectors Weight reduction |
Title | Parsimonious Extreme Learning Machine Using Recursive Orthogonal Least Squares |
URI | https://ieeexplore.ieee.org/document/6704311 https://www.ncbi.nlm.nih.gov/pubmed/25291736 https://www.proquest.com/docview/1609050508 https://www.proquest.com/docview/1609510117 https://www.proquest.com/docview/1629349475 https://www.proquest.com/docview/1762145139 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEA_qky_Valuv1ZJC39o9d_O1m8dSFCn1LH7AvS2bSdZCZc_qHkj_-s5kPwSpR98WdgJJJpP5yG9mGPtoPWppSG0ShKoTVRVV4oKViXG18zKjl7qI8p2Zkyv1ba7na-zzmAsTQojgszClz_iW7xewpFDZocmpFAz6OuvouHW5WmM8JUW73ERrV2RGJELm8yFHJrWHl7PZ9wsCcsmpEFSPhPr0CS3QWYnFmR9VUuyx8ry5GdXO8RY7HSbcoU1-TZetm8KfJ7Uc_3dF2-xFb3_yL92BecnWQrPDtobeDrwX9V02-4EeL_KxIYwsP3poKY7I-2qs1_w0YjADj4gDfk5Be8LB87O79ufimqx7or1v-cXvJWU4vWJXx0eXX0-SvvdCAujCtElVyFr7KggXarwVFBjIaqVBK1_oWuSZF7ZG10RYkMoDoCnha-WFKwotNDj5mm00iybsMe6896oKvjDWqAKkVeArAOkzk4NNYcKyYftL6AuTU3-MmzI6KKktI_dK4l7Zc2_CPo1jbruyHCupd2nrR8p-1ydsf-By2UvufZmZ1FJ3vxRHfRh_o8zRQ0rVBNz0SEN3WZavokFDSlmV6xU0qImoU7K0E_amO2XjHIfD-fbfc3_HNnGFqoMV7rON9m4ZDtA8at37KBd_Aam8CTU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcoALpRTo0haMxA2yjZ-Jjwi1WmA3ILqV9hbFjxQJlIU2K1X8emacBxKCFbdIGUu2x-N5-JsZQl4aD1rapSYJXNaJrPIqscGIRNvaesHwpS6ifAs9u5TvV2q1Q16PuTAhhAg-C1P8jG_5fu02GCo71RmWggFf5w7ofcW6bK0xopKCZa6jvcuZ5gkX2WrIkknN6bIo5hcI5RJTzrEiCXbq44qDuxLLM_9WSrHLyr8Nzqh4zvfIYphyhzf5Ot20dup-_lHN8X_X9IDc7y1Q-qY7MvtkJzQPyd7Q3YH2wn5Aik_g8wInG0TJ0rPbFiOJtK_HekUXEYUZaMQc0M8YtkckPP143X5ZX6F9j7Q3Lb34scEcp0fk8vxs-XaW9N0XEgdOTJtUuaiVrwK3oYZ7QTrtWC2VU9LnquYZ89zU4Jxw44T0zoEx4Wvpuc1zxZWz4jHZbdZNOCTUeu9lFXyujZa5E0Y6XzknPNOZM6mbEDZsf-n60uTYIeNbGV2U1JSReyVyr-y5NyGvxjHfu8IcW6kPcOtHyn7XJ-R44HLZy-5NyXRqsL9fCqNejL9B6vAppWoCbHqkwduMZdtowJSSRmZqCw3oIuyVLMyEPOlO2TjH4XA-_fvcn5O7s-ViXs7fFR-OyD1YrexAhsdkt73ehBMwllr7LMrIL5_IDH4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parsimonious+Extreme+Learning+Machine+Using+Recursive+Orthogonal+Least+Squares&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Ning&rft.au=Er%2C+Meng+Joo&rft.au=Han%2C+Min&rft.date=2014-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=25&rft.issue=10&rft.spage=1828&rft_id=info:doi/10.1109%2FTNNLS.2013.2296048&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3454138261 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |