Rewritable multi-event analog recording in bacterial and mammalian cells
Recording cellular events could advance our understanding of cellular history and responses to stimuli. The construction of intracellular memory devices, however, is challenging. Tang and Liu used Cas9 nucleases and base editors to record amplitude, duration, and order of stimuli as stable changes i...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 360; no. 6385 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
13.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recording cellular events could advance our understanding of cellular history and responses to stimuli. The construction of intracellular memory devices, however, is challenging. Tang and Liu used Cas9 nucleases and base editors to record amplitude, duration, and order of stimuli as stable changes in both genomic and extrachromosomal DNA content (see the Perspective by Ho and Bennett). The recording of multiple stimuli—including exposure to antibiotics, nutrients, viruses, and light, as well as Wnt signaling—was achieved in living bacterial and human cells. Recorded memories could be erased and re-recorded over multiple cycles.
Science
, this issue p.
eaap8992
; see also p.
150
Base editors and CRISPR nucleases generate “cell data recorders” that enable durable, analog, rewritable recording of multiple stimuli.
We present two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that use base editors and Cas9 nucleases to record cellular events in bacteria and mammalian cells. The devices record signal amplitude or duration as changes in the ratio of mutually exclusive DNA sequences (CAMERA 1) or as single-base modifications (CAMERA 2). We achieved recording of multiple stimuli in bacteria or mammalian cells, including exposure to antibiotics, nutrients, viruses, light, and changes in Wnt signaling. When recording to multicopy plasmids, reliable readout requires as few as 10 to 100 cells. The order of stimuli can be recorded through an overlapping guide RNA design, and memories can be erased and re-recorded over multiple cycles. CAMERA systems serve as “cell data recorders” that write a history of endogenous or exogenous signaling events into permanent DNA sequence modifications in living cells. |
---|---|
AbstractList | We present two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that use base editors and Cas9 nucleases to record cellular events in bacteria and mammalian cells. The devices record signal amplitude or duration as changes in the ratio of mutually exclusive DNA sequences (CAMERA 1), or as single-base modifications (CAMERA 2). We achieved recording of multiple stimuli in bacteria or mammalian cells, including exposure to antibiotics, nutrients, viruses, light, and changes in Wnt signaling. When recording to multi-copy plasmids, reliable readout requires as few as 10-100 cells. The order of stimuli can be recorded through an overlapping guide RNA design and memories can be erased and re-recorded over multiple cycles. CAMERA systems serve as “cell data recorders” that write a history of endogenous or exogenous signaling events into permanent DNA sequence modifications in living cells. We present two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that use base editors and Cas9 nucleases to record cellular events in bacteria and mammalian cells. The devices record signal amplitude or duration as changes in the ratio of mutually exclusive DNA sequences (CAMERA 1) or as single-base modifications (CAMERA 2). We achieved recording of multiple stimuli in bacteria or mammalian cells, including exposure to antibiotics, nutrients, viruses, light, and changes in Wnt signaling. When recording to multicopy plasmids, reliable readout requires as few as 10 to 100 cells. The order of stimuli can be recorded through an overlapping guide RNA design, and memories can be erased and re-recorded over multiple cycles. CAMERA systems serve as "cell data recorders" that write a history of endogenous or exogenous signaling events into permanent DNA sequence modifications in living cells.We present two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that use base editors and Cas9 nucleases to record cellular events in bacteria and mammalian cells. The devices record signal amplitude or duration as changes in the ratio of mutually exclusive DNA sequences (CAMERA 1) or as single-base modifications (CAMERA 2). We achieved recording of multiple stimuli in bacteria or mammalian cells, including exposure to antibiotics, nutrients, viruses, light, and changes in Wnt signaling. When recording to multicopy plasmids, reliable readout requires as few as 10 to 100 cells. The order of stimuli can be recorded through an overlapping guide RNA design, and memories can be erased and re-recorded over multiple cycles. CAMERA systems serve as "cell data recorders" that write a history of endogenous or exogenous signaling events into permanent DNA sequence modifications in living cells. Writing a cell's history in its DNARecording cellular events could advance our understanding of cellular history and responses to stimuli. The construction of intracellular memory devices, however, is challenging. Tang and Liu used Cas9 nucleases and base editors to record amplitude, duration, and order of stimuli as stable changes in both genomic and extrachromosomal DNA content (see the Perspective by Ho and Bennett). The recording of multiple stimuli—including exposure to antibiotics, nutrients, viruses, and light, as well as Wnt signaling—was achieved in living bacterial and human cells. Recorded memories could be erased and re-recorded over multiple cycles.Science, this issue p. eaap8992; see also p. 150INTRODUCTIONThe stable recording of cellular events has the potential to advance our understanding of a cell’s history and how cells respond to stimuli. However, the construction of intracellular memory devices that record a history of cellular events has proven challenging.RATIONALEWe developed two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that record cellular events as durable changes in the DNA of bacteria or mammalian cells. In CAMERA 1, Cas9 nucleases are used to shift the ratio of two recording plasmids, and signals are recorded in the form of plasmid ratios. Writing in CAMERA 2 uses base editors to produce single-base modifications at designated positions of plasmid or genomic DNA. Both Cas9 nucleases and base editors can be programmed to target multiple DNA sequences with different guide RNAs, and both are known to function across many cell types. These features enable CAMERA to serve as a multiplexable, analog, rewritable intracellular recording system.RESULTSWe demonstrate that the ratio of the recording plasmid pair in CAMERA 1 can be stably maintained in bacteria over 144 hours and a dilution ratio of 1017. By using a writing complex of the Cas9 nuclease and a guide RNA to selectively target one of the recording plasmids, we can cause this plasmid ratio to shift in a dose-dependent manner. The presence or absence of a stimulus is recorded in CAMERA 1 by linking to the expression of the writing complex. The analog format of CAMERA 1 enables recording of signal amplitude over a known time scale, or recording of the duration of a signal of known strength. Two resetting methods enable cells harboring CAMERA 1 to function over repeated cycles of recording and erasing.CAMERA 2 uses base editors to record stimuli of interest as permanent single-base modifications in cellular DNA. Predictable and dose-dependent accumulation of base editing was observed over 68 generations in bacteria. CAMERA 2 achieved analog recording of multiple stimuli of interest, including exposure to antibiotics, nutrients, viruses, and light. When recording to a high-copy plasmid, CAMERA 2 provides reliable readout by sequencing only 10 to 100 cells and can record event order using an overlapping guide RNA design.CAMERA 2 also functions in human cells by recording stimuli to safe-harbor genomic loci. We show that CAMERA 2 can be multiplexed, such that two responsive guide RNA expression cassettes can be used to record the presence of two exogenous small molecules in mammalian cells. Finally, we demonstrated CAMERA 2 recording of Wnt signaling, a crucial endogenous mammalian signaling pathway, as a permanent change in genomic DNA in human cells by placing the expression of the writing complex under the control of a Wnt-responsive promoter.CONCLUSIONBase editors and CRISPR nucleases were used to create “cell data recorders” that enable durable, analog recording of stimuli and cell states. CAMERA systems are sensitive, multiplexable, resettable, and compatible with both bacteria and mammalian cells, and thus may be useful for applications such as recording the presence of extracellular and intracellular signals, mapping cell lineage, and constructing cell state maps.We present two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that use base editors and Cas9 nucleases to record cellular events in bacteria and mammalian cells. The devices record signal amplitude or duration as changes in the ratio of mutually exclusive DNA sequences (CAMERA 1) or as single-base modifications (CAMERA 2). We achieved recording of multiple stimuli in bacteria or mammalian cells, including exposure to antibiotics, nutrients, viruses, light, and changes in Wnt signaling. When recording to multicopy plasmids, reliable readout requires as few as 10 to 100 cells. The order of stimuli can be recorded through an overlapping guide RNA design, and memories can be erased and re-recorded over multiple cycles. CAMERA systems serve as “cell data recorders” that write a history of endogenous or exogenous signaling events into permanent DNA sequence modifications in living cells. Recording cellular events could advance our understanding of cellular history and responses to stimuli. The construction of intracellular memory devices, however, is challenging. Tang and Liu used Cas9 nucleases and base editors to record amplitude, duration, and order of stimuli as stable changes in both genomic and extrachromosomal DNA content (see the Perspective by Ho and Bennett). The recording of multiple stimuli—including exposure to antibiotics, nutrients, viruses, and light, as well as Wnt signaling—was achieved in living bacterial and human cells. Recorded memories could be erased and re-recorded over multiple cycles. Science , this issue p. eaap8992 ; see also p. 150 Base editors and CRISPR nucleases generate “cell data recorders” that enable durable, analog, rewritable recording of multiple stimuli. We present two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that use base editors and Cas9 nucleases to record cellular events in bacteria and mammalian cells. The devices record signal amplitude or duration as changes in the ratio of mutually exclusive DNA sequences (CAMERA 1) or as single-base modifications (CAMERA 2). We achieved recording of multiple stimuli in bacteria or mammalian cells, including exposure to antibiotics, nutrients, viruses, light, and changes in Wnt signaling. When recording to multicopy plasmids, reliable readout requires as few as 10 to 100 cells. The order of stimuli can be recorded through an overlapping guide RNA design, and memories can be erased and re-recorded over multiple cycles. CAMERA systems serve as “cell data recorders” that write a history of endogenous or exogenous signaling events into permanent DNA sequence modifications in living cells. We present two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that use base editors and Cas9 nucleases to record cellular events in bacteria and mammalian cells. The devices record signal amplitude or duration as changes in the ratio of mutually exclusive DNA sequences (CAMERA 1) or as single-base modifications (CAMERA 2). We achieved recording of multiple stimuli in bacteria or mammalian cells, including exposure to antibiotics, nutrients, viruses, light, and changes in Wnt signaling. When recording to multicopy plasmids, reliable readout requires as few as 10 to 100 cells. The order of stimuli can be recorded through an overlapping guide RNA design, and memories can be erased and re-recorded over multiple cycles. CAMERA systems serve as "cell data recorders" that write a history of endogenous or exogenous signaling events into permanent DNA sequence modifications in living cells. |
Author | Tang, Weixin Liu, David R. |
AuthorAffiliation | 3 Howard Hughes Medical Institute, Harvard University, 12 Oxford St, Cambridge, MA, 02138 1 Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142 2 Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA, 02138 |
AuthorAffiliation_xml | – name: 2 Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA, 02138 – name: 1 Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142 – name: 3 Howard Hughes Medical Institute, Harvard University, 12 Oxford St, Cambridge, MA, 02138 |
Author_xml | – sequence: 1 givenname: Weixin orcidid: 0000-0002-5739-5416 surname: Tang fullname: Tang, Weixin organization: Merkin Institute for Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, and Department of Chemistry and Chemical Biology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA – sequence: 2 givenname: David R. orcidid: 0000-0002-9943-7557 surname: Liu fullname: Liu, David R. organization: Merkin Institute for Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, and Department of Chemistry and Chemical Biology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29449507$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1LHTEUxUOx1Kft2p0MdONmNB-TSbIRimgtCIWi65Bk7jwjmeSZzFj635uHr2KFkkUW53cP595zgPZiioDQEcGnhND-rDgP0cGpMRupFP2AVgQr3iqK2R5aYcz6VmLB99FBKQ8YV02xT2ifqq5THIsVuv4Fv7OfjQ3QTEuYfQtPEOfGRBPSusngUh58XDc-Nta4GbI3oapDM5lpMsGb2DgIoXxGH0cTCnzZ_Yfo7ury9uK6vfn5_cfFt5vWdVLMrakRBmltT7kiRjjBqZK9IpICH-VohRgVGUSHWeeElcxaDt0InWWYCCoVO0TnL76bxU4wuBo2m6A32U8m_9HJeP2vEv29XqcnzaWqj1eDk51BTo8LlFlPvmxXMBHSUjStV8NMccEq-vUd-pCWXC-zpWjHiRI9qdTx20SvUf4euQJnL4DLqZQM4ytCsN7WqHc16l2NdYK_m3C1o9mn7Uo-_HfuGWUfpQc |
CitedBy_id | crossref_primary_10_1098_rsob_190229 crossref_primary_10_1186_s12915_020_0751_4 crossref_primary_10_1021_jacs_8b05469 crossref_primary_10_1126_science_aat9249 crossref_primary_10_1007_s00253_019_09654_w crossref_primary_10_1038_s41564_024_01706_w crossref_primary_10_1101_cshperspect_a041384 crossref_primary_10_1038_s41589_020_00711_4 crossref_primary_10_1089_hs_2018_0067 crossref_primary_10_1007_s11684_023_1013_y crossref_primary_10_1021_acssynbio_2c00265 crossref_primary_10_1093_nar_gkae174 crossref_primary_10_1021_acssynbio_3c00232 crossref_primary_10_1038_s41589_024_01764_5 crossref_primary_10_1109_ACCESS_2019_2961105 crossref_primary_10_1038_s41587_020_0561_9 crossref_primary_10_1016_j_cels_2022_02_004 crossref_primary_10_1126_science_abm5874 crossref_primary_10_1186_s13036_023_00379_z crossref_primary_10_1021_acs_chemrev_8b00163 crossref_primary_10_1038_s41576_019_0125_3 crossref_primary_10_1016_j_molcel_2021_12_002 crossref_primary_10_1021_acs_analchem_3c01675 crossref_primary_10_1038_s41587_022_01586_7 crossref_primary_10_1089_genbio_2023_0018 crossref_primary_10_1016_j_biomaterials_2021_121124 crossref_primary_10_1254_fpj_22097 crossref_primary_10_1038_s41586_022_05046_9 crossref_primary_10_3389_fsysb_2023_1274184 crossref_primary_10_1021_acssynbio_2c00314 crossref_primary_10_13070_mm_en_9_2800 crossref_primary_10_3390_ijms20236041 crossref_primary_10_1038_s41587_022_01604_8 crossref_primary_10_1002_ange_202205460 crossref_primary_10_1093_nar_gkac166 crossref_primary_10_1016_j_synbio_2018_10_003 crossref_primary_10_3390_genes9120575 crossref_primary_10_1126_sciadv_abo7415 crossref_primary_10_1002_anie_201910343 crossref_primary_10_1021_acssynbio_9b00297 crossref_primary_10_1146_annurev_micro_022620_081059 crossref_primary_10_1038_s41586_024_07706_4 crossref_primary_10_1021_acssynbio_8b00273 crossref_primary_10_1016_j_bios_2022_114205 crossref_primary_10_1016_j_copbio_2022_102855 crossref_primary_10_1021_acssynbio_2c00365 crossref_primary_10_1038_s41467_024_49987_3 crossref_primary_10_3390_biom11030343 crossref_primary_10_1007_s11427_022_2214_2 crossref_primary_10_1016_j_tibtech_2020_12_008 crossref_primary_10_1002_advs_202004685 crossref_primary_10_1128_aem_02363_23 crossref_primary_10_1038_s41576_018_0059_1 crossref_primary_10_1016_j_cbpa_2019_04_015 crossref_primary_10_1038_s41586_022_04922_8 crossref_primary_10_3389_fcell_2022_891569 crossref_primary_10_1002_ange_201910343 crossref_primary_10_1080_03650340_2020_1870677 crossref_primary_10_3389_fnana_2021_757499 crossref_primary_10_1038_s41467_020_15053_x crossref_primary_10_1534_genetics_119_302089 crossref_primary_10_34133_bdr_0007 crossref_primary_10_1016_j_neuron_2023_04_021 crossref_primary_10_1016_j_mib_2020_07_014 crossref_primary_10_1016_j_xpro_2023_102254 crossref_primary_10_1126_science_aat3236 crossref_primary_10_1016_j_cell_2021_01_014 crossref_primary_10_1111_cas_13832 crossref_primary_10_1038_s41581_018_0012_8 crossref_primary_10_1016_j_coisb_2023_100499 crossref_primary_10_3390_life9010014 crossref_primary_10_1016_j_molcel_2020_12_003 crossref_primary_10_3390_cells13010027 crossref_primary_10_1016_j_tifs_2024_104489 crossref_primary_10_1089_crispr_2018_0012 crossref_primary_10_1016_j_mib_2021_10_009 crossref_primary_10_1038_s41587_020_0704_z crossref_primary_10_1021_acssynbio_2c00259 crossref_primary_10_3390_biomedicines11082168 crossref_primary_10_1038_s41589_022_01034_2 crossref_primary_10_1038_s41467_022_30588_x crossref_primary_10_1038_s41467_020_14664_8 crossref_primary_10_1038_s41589_023_01431_1 crossref_primary_10_1016_j_ceb_2020_12_008 crossref_primary_10_3389_fbioe_2024_1346810 crossref_primary_10_1016_j_synbio_2020_08_003 crossref_primary_10_1038_s41596_023_00819_6 crossref_primary_10_1016_j_jtbi_2021_110977 crossref_primary_10_1016_j_chom_2022_12_004 crossref_primary_10_1038_s41467_024_46755_1 crossref_primary_10_2139_ssrn_4108992 crossref_primary_10_1007_s11047_018_9715_9 crossref_primary_10_7554_eLife_71809 crossref_primary_10_1002_sstr_202000046 crossref_primary_10_1016_j_tibtech_2019_03_008 crossref_primary_10_1038_s41576_018_0052_8 crossref_primary_10_1093_nsr_nwaa007 crossref_primary_10_1016_j_cels_2021_05_011 crossref_primary_10_1038_s42003_023_05297_w crossref_primary_10_1021_acssynbio_2c00182 crossref_primary_10_1146_annurev_cancerbio_061421_123301 crossref_primary_10_1093_plphys_kiab336 crossref_primary_10_1038_s41392_024_01750_2 crossref_primary_10_1016_j_molcel_2019_07_011 crossref_primary_10_1038_s41596_024_01003_0 crossref_primary_10_1109_ACCESS_2019_2921400 crossref_primary_10_2174_1574893616666210708150439 crossref_primary_10_1007_s12268_024_2090_4 crossref_primary_10_1038_s41467_023_38876_w crossref_primary_10_1016_j_cels_2021_07_001 crossref_primary_10_3390_bios12020064 crossref_primary_10_1089_crispr_2021_29123_ger crossref_primary_10_1038_d41586_018_02068_0 crossref_primary_10_1038_s41580_019_0131_5 crossref_primary_10_1089_crispr_2021_0036 crossref_primary_10_1038_s41586_018_0569_1 crossref_primary_10_1089_crispr_2018_0026 crossref_primary_10_3390_bios13040428 crossref_primary_10_1021_acssynbio_4c00640 crossref_primary_10_1016_j_coisb_2021_100398 crossref_primary_10_1038_s41563_022_01231_3 crossref_primary_10_3389_fbioe_2022_1029403 crossref_primary_10_1021_acssynbio_3c00302 crossref_primary_10_1038_s41576_024_00788_w crossref_primary_10_1016_j_copbio_2019_12_005 crossref_primary_10_1089_crispr_2018_29021_dal crossref_primary_10_1016_j_biotechadv_2019_04_015 crossref_primary_10_1021_acsnano_9b02562 crossref_primary_10_1021_acssynbio_8b00503 crossref_primary_10_1038_s41589_021_00769_8 crossref_primary_10_1016_j_stem_2021_08_012 crossref_primary_10_1016_j_copbio_2023_103060 crossref_primary_10_1016_j_jid_2024_02_006 crossref_primary_10_1042_BST20200008 crossref_primary_10_1093_nar_gkaa1179 crossref_primary_10_1111_sji_12983 crossref_primary_10_1016_j_bios_2022_114520 crossref_primary_10_3390_ijms25179233 crossref_primary_10_1016_j_cell_2022_04_015 crossref_primary_10_1021_acssynbio_3c00617 crossref_primary_10_1016_j_biosystems_2023_104870 crossref_primary_10_1038_s41596_018_0058_x crossref_primary_10_1016_j_tibtech_2023_03_005 crossref_primary_10_1038_s41589_024_01814_y crossref_primary_10_1038_s41587_019_0299_4 crossref_primary_10_1002_anie_202205460 crossref_primary_10_1016_j_cbpa_2019_05_009 crossref_primary_10_1002_adma_202307499 crossref_primary_10_1016_j_nancom_2021_100391 crossref_primary_10_1038_s41576_018_0053_7 crossref_primary_10_1002_marc_202100084 crossref_primary_10_1016_j_cell_2024_01_042 crossref_primary_10_1042_ETLS20190088 crossref_primary_10_1016_j_chaos_2023_114408 crossref_primary_10_1017_S0033583519000052 crossref_primary_10_1016_j_cbpa_2019_05_020 crossref_primary_10_1016_j_tibtech_2018_12_005 crossref_primary_10_1039_C9CS00438F crossref_primary_10_3389_fbioe_2022_959441 crossref_primary_10_1038_s41596_020_00450_9 crossref_primary_10_1038_s41564_024_01753_3 crossref_primary_10_1186_s12967_024_05957_3 crossref_primary_10_1021_acssynbio_0c00193 crossref_primary_10_1016_j_molcel_2022_06_001 crossref_primary_10_1038_s41467_024_53716_1 crossref_primary_10_1111_1751_7915_13820 crossref_primary_10_1016_j_coisb_2019_02_008 crossref_primary_10_1016_j_tibtech_2021_06_007 crossref_primary_10_1007_s12668_020_00764_8 crossref_primary_10_1126_science_abb3099 crossref_primary_10_1242_dev_169730 crossref_primary_10_3389_fsybi_2025_1548572 crossref_primary_10_1038_s41596_019_0253_4 crossref_primary_10_1111_pbi_14198 |
Cites_doi | 10.1038/nbt.3081 10.1126/science.aag0511 10.1016/j.cub.2013.06.047 10.1126/science.1232758 10.1126/science.1172005 10.1038/nbt.3803 10.1021/bi00173a043 10.1038/nrc3179 10.1126/science.1232033 10.1038/nbt.2673 10.1016/j.jmb.2012.01.001 10.1038/nbt.3816 10.1038/nbt1486 10.1038/nchembio.1453 10.1074/jbc.M100540200 10.1111/j.1574-6976.2011.00272.x 10.1038/nrmicro1394 10.1016/j.cell.2013.06.044 10.1016/j.copbio.2014.04.009 10.1038/nbt.3811 10.1126/science.aaf1175 10.1126/science.275.5307.1784 10.1016/0022-2836(85)90260-8 10.1126/science.aaf7907 10.1038/nature24644 10.1371/journal.pgen.0020008 10.1038/nature17946 10.1016/j.ygeno.2015.11.003 10.1101/gad.5.10.1912 10.1371/journal.pone.0002815 10.1038/nbt.2510 10.1038/nmeth.3515 10.1111/j.1365-2958.1992.tb01561.x 10.1038/nature02089 10.1126/science.aaf8729 10.1038/nbt.3833 10.1038/nmeth.3147 10.15252/msb.20156663 10.1038/nmeth.4327 10.1038/ncomms15790 10.1126/science.1258096 10.1038/nature20777 10.1126/science.1225829 10.1006/dbio.1997.8552 10.1016/j.cell.2012.05.012 10.1126/science.1256272 10.1126/science.aao0958 10.1073/pnas.1202344109 10.1126/science.1231143 10.3389/fmicb.2014.00172 10.1038/ncomms13330 |
ContentType | Journal Article |
Copyright | Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.aap8992 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
ExternalDocumentID | PMC5898985 29449507 10_1126_science_aap8992 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM118062 – fundername: NHGRI NIH HHS grantid: RM1 HG009490 – fundername: Howard Hughes Medical Institute – fundername: NIBIB NIH HHS grantid: R01 EB022376 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADUKH ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 C51 CITATION CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c487t-a095d8bb62591a7c7529869182e5f8fb77f91d74034c7b83bb5e4fe4b30172893 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 17:54:41 EDT 2025 Thu Jul 10 20:32:16 EDT 2025 Fri Jul 25 10:49:51 EDT 2025 Mon Jul 21 06:05:38 EDT 2025 Tue Jul 01 01:51:13 EDT 2025 Thu Apr 24 22:55:12 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6385 |
Language | English |
License | Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c487t-a095d8bb62591a7c7529869182e5f8fb77f91d74034c7b83bb5e4fe4b30172893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5739-5416 0000-0002-9943-7557 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5898985 |
PMID | 29449507 |
PQID | 2024519761 |
PQPubID | 1256 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5898985 proquest_miscellaneous_2003039573 proquest_journals_2024519761 pubmed_primary_29449507 crossref_primary_10_1126_science_aap8992 crossref_citationtrail_10_1126_science_aap8992 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-13 |
PublicationDateYYYYMMDD | 2018-04-13 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2018 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 29717191 - Nat Rev Nephrol. 2018 Aug;14(8):477-478. doi: 10.1038/s41581-018-0012-8. 29650657 - Science. 2018 Apr 13;360(6385):150-151. doi: 10.1126/science.aat3236. 29469110 - Nature. 2018 Feb 22;554(7693):414-415. doi: 10.1038/d41586-018-02068-0. |
References_xml | – ident: e_1_3_2_52_2 doi: 10.1038/nbt.3081 – ident: e_1_3_2_49_2 doi: 10.1126/science.aag0511 – ident: e_1_3_2_5_2 doi: 10.1016/j.cub.2013.06.047 – ident: e_1_3_2_10_2 doi: 10.1126/science.1232758 – ident: e_1_3_2_6_2 doi: 10.1126/science.1172005 – ident: e_1_3_2_27_2 doi: 10.1038/nbt.3803 – ident: e_1_3_2_25_2 doi: 10.1021/bi00173a043 – ident: e_1_3_2_42_2 doi: 10.1038/nrc3179 – ident: e_1_3_2_15_2 doi: 10.1126/science.1232033 – ident: e_1_3_2_22_2 doi: 10.1038/nbt.2673 – ident: e_1_3_2_41_2 doi: 10.1016/j.jmb.2012.01.001 – ident: e_1_3_2_32_2 doi: 10.1038/nbt.3816 – ident: e_1_3_2_2_2 doi: 10.1038/nbt1486 – ident: e_1_3_2_21_2 doi: 10.1038/nchembio.1453 – ident: e_1_3_2_26_2 doi: 10.1074/jbc.M100540200 – ident: e_1_3_2_20_2 doi: 10.1111/j.1574-6976.2011.00272.x – ident: e_1_3_2_39_2 doi: 10.1038/nrmicro1394 – ident: e_1_3_2_18_2 doi: 10.1016/j.cell.2013.06.044 – ident: e_1_3_2_4_2 doi: 10.1016/j.copbio.2014.04.009 – ident: e_1_3_2_35_2 doi: 10.1038/nbt.3811 – ident: e_1_3_2_50_2 doi: 10.1126/science.aaf1175 – ident: e_1_3_2_44_2 doi: 10.1126/science.275.5307.1784 – ident: e_1_3_2_46_2 doi: 10.1016/0022-2836(85)90260-8 – ident: e_1_3_2_47_2 doi: 10.1126/science.aaf7907 – ident: e_1_3_2_28_2 doi: 10.1038/nature24644 – ident: e_1_3_2_19_2 doi: 10.1371/journal.pgen.0020008 – ident: e_1_3_2_16_2 doi: 10.1038/nature17946 – ident: e_1_3_2_3_2 doi: 10.1016/j.ygeno.2015.11.003 – ident: e_1_3_2_38_2 doi: 10.1101/gad.5.10.1912 – ident: e_1_3_2_9_2 doi: 10.1371/journal.pone.0002815 – ident: e_1_3_2_24_2 doi: 10.1038/nbt.2510 – ident: e_1_3_2_40_2 doi: 10.1038/nmeth.3515 – ident: e_1_3_2_53_2 doi: 10.1111/j.1365-2958.1992.tb01561.x – ident: e_1_3_2_36_2 doi: 10.1038/nature02089 – ident: e_1_3_2_29_2 doi: 10.1038/nature24644 – ident: e_1_3_2_17_2 doi: 10.1126/science.aaf8729 – ident: e_1_3_2_34_2 doi: 10.1038/nbt.3833 – ident: e_1_3_2_8_2 doi: 10.1038/nmeth.3147 – ident: e_1_3_2_37_2 doi: 10.15252/msb.20156663 – ident: e_1_3_2_33_2 doi: 10.1038/nmeth.4327 – ident: e_1_3_2_31_2 doi: 10.1038/ncomms15790 – ident: e_1_3_2_13_2 doi: 10.1126/science.1258096 – ident: e_1_3_2_48_2 doi: 10.1038/nature20777 – ident: e_1_3_2_12_2 doi: 10.1126/science.1225829 – ident: e_1_3_2_45_2 doi: 10.1006/dbio.1997.8552 – ident: e_1_3_2_43_2 doi: 10.1016/j.cell.2012.05.012 – ident: e_1_3_2_11_2 doi: 10.1126/science.1256272 – ident: e_1_3_2_51_2 doi: 10.1126/science.aao0958 – ident: e_1_3_2_7_2 doi: 10.1073/pnas.1202344109 – ident: e_1_3_2_14_2 doi: 10.1126/science.1231143 – ident: e_1_3_2_23_2 doi: 10.3389/fmicb.2014.00172 – ident: e_1_3_2_30_2 doi: 10.1038/ncomms13330 – reference: 29717191 - Nat Rev Nephrol. 2018 Aug;14(8):477-478. doi: 10.1038/s41581-018-0012-8. – reference: 29469110 - Nature. 2018 Feb 22;554(7693):414-415. doi: 10.1038/d41586-018-02068-0. – reference: 29650657 - Science. 2018 Apr 13;360(6385):150-151. doi: 10.1126/science.aat3236. |
SSID | ssj0009593 |
Score | 2.6114042 |
Snippet | Recording cellular events could advance our understanding of cellular history and responses to stimuli. The construction of intracellular memory devices,... We present two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that use base editors and Cas9 nucleases to record cellular events in... Writing a cell's history in its DNARecording cellular events could advance our understanding of cellular history and responses to stimuli. The construction of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Analog-Digital Conversion Antibiotics Bacteria Bacterial Proteins Cameras Cassettes Cell lineage Computer Storage Devices CRISPR CRISPR-Associated Protein 9 CRISPR-Cas Systems Data recorders Data storage Deoxyribonucleic acid Dilution DNA DNA, Bacterial - genetics DNA, Bacterial - metabolism Editing Electrophysiological recording Endonucleases Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli - virology Exposure Gene Editing Gene expression Gene mapping Gene sequencing Genomics HEK293 Cells Humans Intracellular Mammalian cells Mammals Memory devices Multiplexing Nuclease Nucleotide sequence Nutrients Plasmids Plasmids - genetics Plasmids - metabolism Recorders Recording Recording instruments Ribonucleic acid RNA RNA, Guide, CRISPR-Cas Systems - metabolism Signal transduction Signaling Stimuli Viruses Wnt protein Writing |
Title | Rewritable multi-event analog recording in bacterial and mammalian cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29449507 https://www.proquest.com/docview/2024519761 https://www.proquest.com/docview/2003039573 https://pubmed.ncbi.nlm.nih.gov/PMC5898985 |
Volume | 360 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegExIviI2vjIGMxMPQlCpx7CZ57GBVhcaQUCv6FtmOrUWi2URbDfjrOceOk44iDV6iyB9x69_ZvjvfB0JvmZREkESGmsQipKTUsA8yGjIeaQnshi65cU7-dDGazunHBVt0iQsb75K1GMpfO_1K_gdVKANcjZfsPyDrPwoF8A74whMQhuedMP6iboxsb5yfGsPAsAnHdMJro5E5sfoX57MibFRmFxlgyZdLq-AwivtVn0NtFztwnv42p4ehN0scW-OB1pbAdespFmZOE_1VVT-qzvCn2nhTemes6HQOcWauT6zLqNsmI5PhkUS2SO0oc3trYpMFOCKCtc52b9u9RJNqyPk1SIGkO6HaW_mLz8Vkfn5ezM4Ws_toj4BkQAZob3z64XRyO9Ky_zkunlPPU6odYJsV-UO-uG0m2-M7Zo_RIycw4LFFfx_dU_UBemBTiP48QPtu4lf42EUQf_cETTvCwD3CwJYwsCcMXNXYEwbUltgTBm4I4ymaT85m76ehS5kRSpA81yGHf11mQhipNuapTBnJs1EOQqRiOtMiTXUelymNEipTkSVCMEW1oiIxugDgXZ-hQX1VqxcI6wy6lSPJIqqppDrPGBVRLnhOeAwnQYCG7ewV0sWTN2lNvhWNXElGhZvuwk13gI59h2sbSuXvTY9aOAq33lYFMVYCMbDPcYDe-GrYDc2E8FpdbUwbOLTM1XMSoOcWPT8WySnNQfwJULqFq29gIq1v19TVZRNxnZkkqxk7vMO4L9HDbsUcocH6-0a9Ar51LV47Sv0N72yd9A |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rewritable+multi-event+analog+recording+in+bacterial+and+mammalian+cells&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Tang%2C+Weixin&rft.au=Liu%2C+David+R&rft.date=2018-04-13&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=360&rft.issue=6385&rft_id=info:doi/10.1126%2Fscience.aap8992&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |