Rewritable multi-event analog recording in bacterial and mammalian cells

Recording cellular events could advance our understanding of cellular history and responses to stimuli. The construction of intracellular memory devices, however, is challenging. Tang and Liu used Cas9 nucleases and base editors to record amplitude, duration, and order of stimuli as stable changes i...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 360; no. 6385
Main Authors Tang, Weixin, Liu, David R.
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 13.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recording cellular events could advance our understanding of cellular history and responses to stimuli. The construction of intracellular memory devices, however, is challenging. Tang and Liu used Cas9 nucleases and base editors to record amplitude, duration, and order of stimuli as stable changes in both genomic and extrachromosomal DNA content (see the Perspective by Ho and Bennett). The recording of multiple stimuli—including exposure to antibiotics, nutrients, viruses, and light, as well as Wnt signaling—was achieved in living bacterial and human cells. Recorded memories could be erased and re-recorded over multiple cycles. Science , this issue p. eaap8992 ; see also p. 150 Base editors and CRISPR nucleases generate “cell data recorders” that enable durable, analog, rewritable recording of multiple stimuli. We present two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that use base editors and Cas9 nucleases to record cellular events in bacteria and mammalian cells. The devices record signal amplitude or duration as changes in the ratio of mutually exclusive DNA sequences (CAMERA 1) or as single-base modifications (CAMERA 2). We achieved recording of multiple stimuli in bacteria or mammalian cells, including exposure to antibiotics, nutrients, viruses, light, and changes in Wnt signaling. When recording to multicopy plasmids, reliable readout requires as few as 10 to 100 cells. The order of stimuli can be recorded through an overlapping guide RNA design, and memories can be erased and re-recorded over multiple cycles. CAMERA systems serve as “cell data recorders” that write a history of endogenous or exogenous signaling events into permanent DNA sequence modifications in living cells.
AbstractList We present two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that use base editors and Cas9 nucleases to record cellular events in bacteria and mammalian cells. The devices record signal amplitude or duration as changes in the ratio of mutually exclusive DNA sequences (CAMERA 1), or as single-base modifications (CAMERA 2). We achieved recording of multiple stimuli in bacteria or mammalian cells, including exposure to antibiotics, nutrients, viruses, light, and changes in Wnt signaling. When recording to multi-copy plasmids, reliable readout requires as few as 10-100 cells. The order of stimuli can be recorded through an overlapping guide RNA design and memories can be erased and re-recorded over multiple cycles. CAMERA systems serve as “cell data recorders” that write a history of endogenous or exogenous signaling events into permanent DNA sequence modifications in living cells.
We present two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that use base editors and Cas9 nucleases to record cellular events in bacteria and mammalian cells. The devices record signal amplitude or duration as changes in the ratio of mutually exclusive DNA sequences (CAMERA 1) or as single-base modifications (CAMERA 2). We achieved recording of multiple stimuli in bacteria or mammalian cells, including exposure to antibiotics, nutrients, viruses, light, and changes in Wnt signaling. When recording to multicopy plasmids, reliable readout requires as few as 10 to 100 cells. The order of stimuli can be recorded through an overlapping guide RNA design, and memories can be erased and re-recorded over multiple cycles. CAMERA systems serve as "cell data recorders" that write a history of endogenous or exogenous signaling events into permanent DNA sequence modifications in living cells.We present two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that use base editors and Cas9 nucleases to record cellular events in bacteria and mammalian cells. The devices record signal amplitude or duration as changes in the ratio of mutually exclusive DNA sequences (CAMERA 1) or as single-base modifications (CAMERA 2). We achieved recording of multiple stimuli in bacteria or mammalian cells, including exposure to antibiotics, nutrients, viruses, light, and changes in Wnt signaling. When recording to multicopy plasmids, reliable readout requires as few as 10 to 100 cells. The order of stimuli can be recorded through an overlapping guide RNA design, and memories can be erased and re-recorded over multiple cycles. CAMERA systems serve as "cell data recorders" that write a history of endogenous or exogenous signaling events into permanent DNA sequence modifications in living cells.
Writing a cell's history in its DNARecording cellular events could advance our understanding of cellular history and responses to stimuli. The construction of intracellular memory devices, however, is challenging. Tang and Liu used Cas9 nucleases and base editors to record amplitude, duration, and order of stimuli as stable changes in both genomic and extrachromosomal DNA content (see the Perspective by Ho and Bennett). The recording of multiple stimuli—including exposure to antibiotics, nutrients, viruses, and light, as well as Wnt signaling—was achieved in living bacterial and human cells. Recorded memories could be erased and re-recorded over multiple cycles.Science, this issue p. eaap8992; see also p. 150INTRODUCTIONThe stable recording of cellular events has the potential to advance our understanding of a cell’s history and how cells respond to stimuli. However, the construction of intracellular memory devices that record a history of cellular events has proven challenging.RATIONALEWe developed two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that record cellular events as durable changes in the DNA of bacteria or mammalian cells. In CAMERA 1, Cas9 nucleases are used to shift the ratio of two recording plasmids, and signals are recorded in the form of plasmid ratios. Writing in CAMERA 2 uses base editors to produce single-base modifications at designated positions of plasmid or genomic DNA. Both Cas9 nucleases and base editors can be programmed to target multiple DNA sequences with different guide RNAs, and both are known to function across many cell types. These features enable CAMERA to serve as a multiplexable, analog, rewritable intracellular recording system.RESULTSWe demonstrate that the ratio of the recording plasmid pair in CAMERA 1 can be stably maintained in bacteria over 144 hours and a dilution ratio of 1017. By using a writing complex of the Cas9 nuclease and a guide RNA to selectively target one of the recording plasmids, we can cause this plasmid ratio to shift in a dose-dependent manner. The presence or absence of a stimulus is recorded in CAMERA 1 by linking to the expression of the writing complex. The analog format of CAMERA 1 enables recording of signal amplitude over a known time scale, or recording of the duration of a signal of known strength. Two resetting methods enable cells harboring CAMERA 1 to function over repeated cycles of recording and erasing.CAMERA 2 uses base editors to record stimuli of interest as permanent single-base modifications in cellular DNA. Predictable and dose-dependent accumulation of base editing was observed over 68 generations in bacteria. CAMERA 2 achieved analog recording of multiple stimuli of interest, including exposure to antibiotics, nutrients, viruses, and light. When recording to a high-copy plasmid, CAMERA 2 provides reliable readout by sequencing only 10 to 100 cells and can record event order using an overlapping guide RNA design.CAMERA 2 also functions in human cells by recording stimuli to safe-harbor genomic loci. We show that CAMERA 2 can be multiplexed, such that two responsive guide RNA expression cassettes can be used to record the presence of two exogenous small molecules in mammalian cells. Finally, we demonstrated CAMERA 2 recording of Wnt signaling, a crucial endogenous mammalian signaling pathway, as a permanent change in genomic DNA in human cells by placing the expression of the writing complex under the control of a Wnt-responsive promoter.CONCLUSIONBase editors and CRISPR nucleases were used to create “cell data recorders” that enable durable, analog recording of stimuli and cell states. CAMERA systems are sensitive, multiplexable, resettable, and compatible with both bacteria and mammalian cells, and thus may be useful for applications such as recording the presence of extracellular and intracellular signals, mapping cell lineage, and constructing cell state maps.We present two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that use base editors and Cas9 nucleases to record cellular events in bacteria and mammalian cells. The devices record signal amplitude or duration as changes in the ratio of mutually exclusive DNA sequences (CAMERA 1) or as single-base modifications (CAMERA 2). We achieved recording of multiple stimuli in bacteria or mammalian cells, including exposure to antibiotics, nutrients, viruses, light, and changes in Wnt signaling. When recording to multicopy plasmids, reliable readout requires as few as 10 to 100 cells. The order of stimuli can be recorded through an overlapping guide RNA design, and memories can be erased and re-recorded over multiple cycles. CAMERA systems serve as “cell data recorders” that write a history of endogenous or exogenous signaling events into permanent DNA sequence modifications in living cells.
Recording cellular events could advance our understanding of cellular history and responses to stimuli. The construction of intracellular memory devices, however, is challenging. Tang and Liu used Cas9 nucleases and base editors to record amplitude, duration, and order of stimuli as stable changes in both genomic and extrachromosomal DNA content (see the Perspective by Ho and Bennett). The recording of multiple stimuli—including exposure to antibiotics, nutrients, viruses, and light, as well as Wnt signaling—was achieved in living bacterial and human cells. Recorded memories could be erased and re-recorded over multiple cycles. Science , this issue p. eaap8992 ; see also p. 150 Base editors and CRISPR nucleases generate “cell data recorders” that enable durable, analog, rewritable recording of multiple stimuli. We present two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that use base editors and Cas9 nucleases to record cellular events in bacteria and mammalian cells. The devices record signal amplitude or duration as changes in the ratio of mutually exclusive DNA sequences (CAMERA 1) or as single-base modifications (CAMERA 2). We achieved recording of multiple stimuli in bacteria or mammalian cells, including exposure to antibiotics, nutrients, viruses, light, and changes in Wnt signaling. When recording to multicopy plasmids, reliable readout requires as few as 10 to 100 cells. The order of stimuli can be recorded through an overlapping guide RNA design, and memories can be erased and re-recorded over multiple cycles. CAMERA systems serve as “cell data recorders” that write a history of endogenous or exogenous signaling events into permanent DNA sequence modifications in living cells.
We present two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that use base editors and Cas9 nucleases to record cellular events in bacteria and mammalian cells. The devices record signal amplitude or duration as changes in the ratio of mutually exclusive DNA sequences (CAMERA 1) or as single-base modifications (CAMERA 2). We achieved recording of multiple stimuli in bacteria or mammalian cells, including exposure to antibiotics, nutrients, viruses, light, and changes in Wnt signaling. When recording to multicopy plasmids, reliable readout requires as few as 10 to 100 cells. The order of stimuli can be recorded through an overlapping guide RNA design, and memories can be erased and re-recorded over multiple cycles. CAMERA systems serve as "cell data recorders" that write a history of endogenous or exogenous signaling events into permanent DNA sequence modifications in living cells.
Author Tang, Weixin
Liu, David R.
AuthorAffiliation 3 Howard Hughes Medical Institute, Harvard University, 12 Oxford St, Cambridge, MA, 02138
1 Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142
2 Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA, 02138
AuthorAffiliation_xml – name: 2 Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA, 02138
– name: 1 Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA, 02142
– name: 3 Howard Hughes Medical Institute, Harvard University, 12 Oxford St, Cambridge, MA, 02138
Author_xml – sequence: 1
  givenname: Weixin
  orcidid: 0000-0002-5739-5416
  surname: Tang
  fullname: Tang, Weixin
  organization: Merkin Institute for Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, and Department of Chemistry and Chemical Biology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
– sequence: 2
  givenname: David R.
  orcidid: 0000-0002-9943-7557
  surname: Liu
  fullname: Liu, David R.
  organization: Merkin Institute for Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, and Department of Chemistry and Chemical Biology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29449507$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LHTEUxUOx1Kft2p0MdONmNB-TSbIRimgtCIWi65Bk7jwjmeSZzFj635uHr2KFkkUW53cP595zgPZiioDQEcGnhND-rDgP0cGpMRupFP2AVgQr3iqK2R5aYcz6VmLB99FBKQ8YV02xT2ifqq5THIsVuv4Fv7OfjQ3QTEuYfQtPEOfGRBPSusngUh58XDc-Nta4GbI3oapDM5lpMsGb2DgIoXxGH0cTCnzZ_Yfo7ury9uK6vfn5_cfFt5vWdVLMrakRBmltT7kiRjjBqZK9IpICH-VohRgVGUSHWeeElcxaDt0InWWYCCoVO0TnL76bxU4wuBo2m6A32U8m_9HJeP2vEv29XqcnzaWqj1eDk51BTo8LlFlPvmxXMBHSUjStV8NMccEq-vUd-pCWXC-zpWjHiRI9qdTx20SvUf4euQJnL4DLqZQM4ytCsN7WqHc16l2NdYK_m3C1o9mn7Uo-_HfuGWUfpQc
CitedBy_id crossref_primary_10_1098_rsob_190229
crossref_primary_10_1186_s12915_020_0751_4
crossref_primary_10_1021_jacs_8b05469
crossref_primary_10_1126_science_aat9249
crossref_primary_10_1007_s00253_019_09654_w
crossref_primary_10_1038_s41564_024_01706_w
crossref_primary_10_1101_cshperspect_a041384
crossref_primary_10_1038_s41589_020_00711_4
crossref_primary_10_1089_hs_2018_0067
crossref_primary_10_1007_s11684_023_1013_y
crossref_primary_10_1021_acssynbio_2c00265
crossref_primary_10_1093_nar_gkae174
crossref_primary_10_1021_acssynbio_3c00232
crossref_primary_10_1038_s41589_024_01764_5
crossref_primary_10_1109_ACCESS_2019_2961105
crossref_primary_10_1038_s41587_020_0561_9
crossref_primary_10_1016_j_cels_2022_02_004
crossref_primary_10_1126_science_abm5874
crossref_primary_10_1186_s13036_023_00379_z
crossref_primary_10_1021_acs_chemrev_8b00163
crossref_primary_10_1038_s41576_019_0125_3
crossref_primary_10_1016_j_molcel_2021_12_002
crossref_primary_10_1021_acs_analchem_3c01675
crossref_primary_10_1038_s41587_022_01586_7
crossref_primary_10_1089_genbio_2023_0018
crossref_primary_10_1016_j_biomaterials_2021_121124
crossref_primary_10_1254_fpj_22097
crossref_primary_10_1038_s41586_022_05046_9
crossref_primary_10_3389_fsysb_2023_1274184
crossref_primary_10_1021_acssynbio_2c00314
crossref_primary_10_13070_mm_en_9_2800
crossref_primary_10_3390_ijms20236041
crossref_primary_10_1038_s41587_022_01604_8
crossref_primary_10_1002_ange_202205460
crossref_primary_10_1093_nar_gkac166
crossref_primary_10_1016_j_synbio_2018_10_003
crossref_primary_10_3390_genes9120575
crossref_primary_10_1126_sciadv_abo7415
crossref_primary_10_1002_anie_201910343
crossref_primary_10_1021_acssynbio_9b00297
crossref_primary_10_1146_annurev_micro_022620_081059
crossref_primary_10_1038_s41586_024_07706_4
crossref_primary_10_1021_acssynbio_8b00273
crossref_primary_10_1016_j_bios_2022_114205
crossref_primary_10_1016_j_copbio_2022_102855
crossref_primary_10_1021_acssynbio_2c00365
crossref_primary_10_1038_s41467_024_49987_3
crossref_primary_10_3390_biom11030343
crossref_primary_10_1007_s11427_022_2214_2
crossref_primary_10_1016_j_tibtech_2020_12_008
crossref_primary_10_1002_advs_202004685
crossref_primary_10_1128_aem_02363_23
crossref_primary_10_1038_s41576_018_0059_1
crossref_primary_10_1016_j_cbpa_2019_04_015
crossref_primary_10_1038_s41586_022_04922_8
crossref_primary_10_3389_fcell_2022_891569
crossref_primary_10_1002_ange_201910343
crossref_primary_10_1080_03650340_2020_1870677
crossref_primary_10_3389_fnana_2021_757499
crossref_primary_10_1038_s41467_020_15053_x
crossref_primary_10_1534_genetics_119_302089
crossref_primary_10_34133_bdr_0007
crossref_primary_10_1016_j_neuron_2023_04_021
crossref_primary_10_1016_j_mib_2020_07_014
crossref_primary_10_1016_j_xpro_2023_102254
crossref_primary_10_1126_science_aat3236
crossref_primary_10_1016_j_cell_2021_01_014
crossref_primary_10_1111_cas_13832
crossref_primary_10_1038_s41581_018_0012_8
crossref_primary_10_1016_j_coisb_2023_100499
crossref_primary_10_3390_life9010014
crossref_primary_10_1016_j_molcel_2020_12_003
crossref_primary_10_3390_cells13010027
crossref_primary_10_1016_j_tifs_2024_104489
crossref_primary_10_1089_crispr_2018_0012
crossref_primary_10_1016_j_mib_2021_10_009
crossref_primary_10_1038_s41587_020_0704_z
crossref_primary_10_1021_acssynbio_2c00259
crossref_primary_10_3390_biomedicines11082168
crossref_primary_10_1038_s41589_022_01034_2
crossref_primary_10_1038_s41467_022_30588_x
crossref_primary_10_1038_s41467_020_14664_8
crossref_primary_10_1038_s41589_023_01431_1
crossref_primary_10_1016_j_ceb_2020_12_008
crossref_primary_10_3389_fbioe_2024_1346810
crossref_primary_10_1016_j_synbio_2020_08_003
crossref_primary_10_1038_s41596_023_00819_6
crossref_primary_10_1016_j_jtbi_2021_110977
crossref_primary_10_1016_j_chom_2022_12_004
crossref_primary_10_1038_s41467_024_46755_1
crossref_primary_10_2139_ssrn_4108992
crossref_primary_10_1007_s11047_018_9715_9
crossref_primary_10_7554_eLife_71809
crossref_primary_10_1002_sstr_202000046
crossref_primary_10_1016_j_tibtech_2019_03_008
crossref_primary_10_1038_s41576_018_0052_8
crossref_primary_10_1093_nsr_nwaa007
crossref_primary_10_1016_j_cels_2021_05_011
crossref_primary_10_1038_s42003_023_05297_w
crossref_primary_10_1021_acssynbio_2c00182
crossref_primary_10_1146_annurev_cancerbio_061421_123301
crossref_primary_10_1093_plphys_kiab336
crossref_primary_10_1038_s41392_024_01750_2
crossref_primary_10_1016_j_molcel_2019_07_011
crossref_primary_10_1038_s41596_024_01003_0
crossref_primary_10_1109_ACCESS_2019_2921400
crossref_primary_10_2174_1574893616666210708150439
crossref_primary_10_1007_s12268_024_2090_4
crossref_primary_10_1038_s41467_023_38876_w
crossref_primary_10_1016_j_cels_2021_07_001
crossref_primary_10_3390_bios12020064
crossref_primary_10_1089_crispr_2021_29123_ger
crossref_primary_10_1038_d41586_018_02068_0
crossref_primary_10_1038_s41580_019_0131_5
crossref_primary_10_1089_crispr_2021_0036
crossref_primary_10_1038_s41586_018_0569_1
crossref_primary_10_1089_crispr_2018_0026
crossref_primary_10_3390_bios13040428
crossref_primary_10_1021_acssynbio_4c00640
crossref_primary_10_1016_j_coisb_2021_100398
crossref_primary_10_1038_s41563_022_01231_3
crossref_primary_10_3389_fbioe_2022_1029403
crossref_primary_10_1021_acssynbio_3c00302
crossref_primary_10_1038_s41576_024_00788_w
crossref_primary_10_1016_j_copbio_2019_12_005
crossref_primary_10_1089_crispr_2018_29021_dal
crossref_primary_10_1016_j_biotechadv_2019_04_015
crossref_primary_10_1021_acsnano_9b02562
crossref_primary_10_1021_acssynbio_8b00503
crossref_primary_10_1038_s41589_021_00769_8
crossref_primary_10_1016_j_stem_2021_08_012
crossref_primary_10_1016_j_copbio_2023_103060
crossref_primary_10_1016_j_jid_2024_02_006
crossref_primary_10_1042_BST20200008
crossref_primary_10_1093_nar_gkaa1179
crossref_primary_10_1111_sji_12983
crossref_primary_10_1016_j_bios_2022_114520
crossref_primary_10_3390_ijms25179233
crossref_primary_10_1016_j_cell_2022_04_015
crossref_primary_10_1021_acssynbio_3c00617
crossref_primary_10_1016_j_biosystems_2023_104870
crossref_primary_10_1038_s41596_018_0058_x
crossref_primary_10_1016_j_tibtech_2023_03_005
crossref_primary_10_1038_s41589_024_01814_y
crossref_primary_10_1038_s41587_019_0299_4
crossref_primary_10_1002_anie_202205460
crossref_primary_10_1016_j_cbpa_2019_05_009
crossref_primary_10_1002_adma_202307499
crossref_primary_10_1016_j_nancom_2021_100391
crossref_primary_10_1038_s41576_018_0053_7
crossref_primary_10_1002_marc_202100084
crossref_primary_10_1016_j_cell_2024_01_042
crossref_primary_10_1042_ETLS20190088
crossref_primary_10_1016_j_chaos_2023_114408
crossref_primary_10_1017_S0033583519000052
crossref_primary_10_1016_j_cbpa_2019_05_020
crossref_primary_10_1016_j_tibtech_2018_12_005
crossref_primary_10_1039_C9CS00438F
crossref_primary_10_3389_fbioe_2022_959441
crossref_primary_10_1038_s41596_020_00450_9
crossref_primary_10_1038_s41564_024_01753_3
crossref_primary_10_1186_s12967_024_05957_3
crossref_primary_10_1021_acssynbio_0c00193
crossref_primary_10_1016_j_molcel_2022_06_001
crossref_primary_10_1038_s41467_024_53716_1
crossref_primary_10_1111_1751_7915_13820
crossref_primary_10_1016_j_coisb_2019_02_008
crossref_primary_10_1016_j_tibtech_2021_06_007
crossref_primary_10_1007_s12668_020_00764_8
crossref_primary_10_1126_science_abb3099
crossref_primary_10_1242_dev_169730
crossref_primary_10_3389_fsybi_2025_1548572
crossref_primary_10_1038_s41596_019_0253_4
crossref_primary_10_1111_pbi_14198
Cites_doi 10.1038/nbt.3081
10.1126/science.aag0511
10.1016/j.cub.2013.06.047
10.1126/science.1232758
10.1126/science.1172005
10.1038/nbt.3803
10.1021/bi00173a043
10.1038/nrc3179
10.1126/science.1232033
10.1038/nbt.2673
10.1016/j.jmb.2012.01.001
10.1038/nbt.3816
10.1038/nbt1486
10.1038/nchembio.1453
10.1074/jbc.M100540200
10.1111/j.1574-6976.2011.00272.x
10.1038/nrmicro1394
10.1016/j.cell.2013.06.044
10.1016/j.copbio.2014.04.009
10.1038/nbt.3811
10.1126/science.aaf1175
10.1126/science.275.5307.1784
10.1016/0022-2836(85)90260-8
10.1126/science.aaf7907
10.1038/nature24644
10.1371/journal.pgen.0020008
10.1038/nature17946
10.1016/j.ygeno.2015.11.003
10.1101/gad.5.10.1912
10.1371/journal.pone.0002815
10.1038/nbt.2510
10.1038/nmeth.3515
10.1111/j.1365-2958.1992.tb01561.x
10.1038/nature02089
10.1126/science.aaf8729
10.1038/nbt.3833
10.1038/nmeth.3147
10.15252/msb.20156663
10.1038/nmeth.4327
10.1038/ncomms15790
10.1126/science.1258096
10.1038/nature20777
10.1126/science.1225829
10.1006/dbio.1997.8552
10.1016/j.cell.2012.05.012
10.1126/science.1256272
10.1126/science.aao0958
10.1073/pnas.1202344109
10.1126/science.1231143
10.3389/fmicb.2014.00172
10.1038/ncomms13330
ContentType Journal Article
Copyright Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.aap8992
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
ExternalDocumentID PMC5898985
29449507
10_1126_science_aap8992
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM118062
– fundername: NHGRI NIH HHS
  grantid: RM1 HG009490
– fundername: Howard Hughes Medical Institute
– fundername: NIBIB NIH HHS
  grantid: R01 EB022376
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
C51
CITATION
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c487t-a095d8bb62591a7c7529869182e5f8fb77f91d74034c7b83bb5e4fe4b30172893
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 17:54:41 EDT 2025
Thu Jul 10 20:32:16 EDT 2025
Fri Jul 25 10:49:51 EDT 2025
Mon Jul 21 06:05:38 EDT 2025
Tue Jul 01 01:51:13 EDT 2025
Thu Apr 24 22:55:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6385
Language English
License Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c487t-a095d8bb62591a7c7529869182e5f8fb77f91d74034c7b83bb5e4fe4b30172893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5739-5416
0000-0002-9943-7557
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5898985
PMID 29449507
PQID 2024519761
PQPubID 1256
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5898985
proquest_miscellaneous_2003039573
proquest_journals_2024519761
pubmed_primary_29449507
crossref_primary_10_1126_science_aap8992
crossref_citationtrail_10_1126_science_aap8992
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-13
PublicationDateYYYYMMDD 2018-04-13
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2018
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
29717191 - Nat Rev Nephrol. 2018 Aug;14(8):477-478. doi: 10.1038/s41581-018-0012-8.
29650657 - Science. 2018 Apr 13;360(6385):150-151. doi: 10.1126/science.aat3236.
29469110 - Nature. 2018 Feb 22;554(7693):414-415. doi: 10.1038/d41586-018-02068-0.
References_xml – ident: e_1_3_2_52_2
  doi: 10.1038/nbt.3081
– ident: e_1_3_2_49_2
  doi: 10.1126/science.aag0511
– ident: e_1_3_2_5_2
  doi: 10.1016/j.cub.2013.06.047
– ident: e_1_3_2_10_2
  doi: 10.1126/science.1232758
– ident: e_1_3_2_6_2
  doi: 10.1126/science.1172005
– ident: e_1_3_2_27_2
  doi: 10.1038/nbt.3803
– ident: e_1_3_2_25_2
  doi: 10.1021/bi00173a043
– ident: e_1_3_2_42_2
  doi: 10.1038/nrc3179
– ident: e_1_3_2_15_2
  doi: 10.1126/science.1232033
– ident: e_1_3_2_22_2
  doi: 10.1038/nbt.2673
– ident: e_1_3_2_41_2
  doi: 10.1016/j.jmb.2012.01.001
– ident: e_1_3_2_32_2
  doi: 10.1038/nbt.3816
– ident: e_1_3_2_2_2
  doi: 10.1038/nbt1486
– ident: e_1_3_2_21_2
  doi: 10.1038/nchembio.1453
– ident: e_1_3_2_26_2
  doi: 10.1074/jbc.M100540200
– ident: e_1_3_2_20_2
  doi: 10.1111/j.1574-6976.2011.00272.x
– ident: e_1_3_2_39_2
  doi: 10.1038/nrmicro1394
– ident: e_1_3_2_18_2
  doi: 10.1016/j.cell.2013.06.044
– ident: e_1_3_2_4_2
  doi: 10.1016/j.copbio.2014.04.009
– ident: e_1_3_2_35_2
  doi: 10.1038/nbt.3811
– ident: e_1_3_2_50_2
  doi: 10.1126/science.aaf1175
– ident: e_1_3_2_44_2
  doi: 10.1126/science.275.5307.1784
– ident: e_1_3_2_46_2
  doi: 10.1016/0022-2836(85)90260-8
– ident: e_1_3_2_47_2
  doi: 10.1126/science.aaf7907
– ident: e_1_3_2_28_2
  doi: 10.1038/nature24644
– ident: e_1_3_2_19_2
  doi: 10.1371/journal.pgen.0020008
– ident: e_1_3_2_16_2
  doi: 10.1038/nature17946
– ident: e_1_3_2_3_2
  doi: 10.1016/j.ygeno.2015.11.003
– ident: e_1_3_2_38_2
  doi: 10.1101/gad.5.10.1912
– ident: e_1_3_2_9_2
  doi: 10.1371/journal.pone.0002815
– ident: e_1_3_2_24_2
  doi: 10.1038/nbt.2510
– ident: e_1_3_2_40_2
  doi: 10.1038/nmeth.3515
– ident: e_1_3_2_53_2
  doi: 10.1111/j.1365-2958.1992.tb01561.x
– ident: e_1_3_2_36_2
  doi: 10.1038/nature02089
– ident: e_1_3_2_29_2
  doi: 10.1038/nature24644
– ident: e_1_3_2_17_2
  doi: 10.1126/science.aaf8729
– ident: e_1_3_2_34_2
  doi: 10.1038/nbt.3833
– ident: e_1_3_2_8_2
  doi: 10.1038/nmeth.3147
– ident: e_1_3_2_37_2
  doi: 10.15252/msb.20156663
– ident: e_1_3_2_33_2
  doi: 10.1038/nmeth.4327
– ident: e_1_3_2_31_2
  doi: 10.1038/ncomms15790
– ident: e_1_3_2_13_2
  doi: 10.1126/science.1258096
– ident: e_1_3_2_48_2
  doi: 10.1038/nature20777
– ident: e_1_3_2_12_2
  doi: 10.1126/science.1225829
– ident: e_1_3_2_45_2
  doi: 10.1006/dbio.1997.8552
– ident: e_1_3_2_43_2
  doi: 10.1016/j.cell.2012.05.012
– ident: e_1_3_2_11_2
  doi: 10.1126/science.1256272
– ident: e_1_3_2_51_2
  doi: 10.1126/science.aao0958
– ident: e_1_3_2_7_2
  doi: 10.1073/pnas.1202344109
– ident: e_1_3_2_14_2
  doi: 10.1126/science.1231143
– ident: e_1_3_2_23_2
  doi: 10.3389/fmicb.2014.00172
– ident: e_1_3_2_30_2
  doi: 10.1038/ncomms13330
– reference: 29717191 - Nat Rev Nephrol. 2018 Aug;14(8):477-478. doi: 10.1038/s41581-018-0012-8.
– reference: 29469110 - Nature. 2018 Feb 22;554(7693):414-415. doi: 10.1038/d41586-018-02068-0.
– reference: 29650657 - Science. 2018 Apr 13;360(6385):150-151. doi: 10.1126/science.aat3236.
SSID ssj0009593
Score 2.6114042
Snippet Recording cellular events could advance our understanding of cellular history and responses to stimuli. The construction of intracellular memory devices,...
We present two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that use base editors and Cas9 nucleases to record cellular events in...
Writing a cell's history in its DNARecording cellular events could advance our understanding of cellular history and responses to stimuli. The construction of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Analog-Digital Conversion
Antibiotics
Bacteria
Bacterial Proteins
Cameras
Cassettes
Cell lineage
Computer Storage Devices
CRISPR
CRISPR-Associated Protein 9
CRISPR-Cas Systems
Data recorders
Data storage
Deoxyribonucleic acid
Dilution
DNA
DNA, Bacterial - genetics
DNA, Bacterial - metabolism
Editing
Electrophysiological recording
Endonucleases
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli - virology
Exposure
Gene Editing
Gene expression
Gene mapping
Gene sequencing
Genomics
HEK293 Cells
Humans
Intracellular
Mammalian cells
Mammals
Memory devices
Multiplexing
Nuclease
Nucleotide sequence
Nutrients
Plasmids
Plasmids - genetics
Plasmids - metabolism
Recorders
Recording
Recording instruments
Ribonucleic acid
RNA
RNA, Guide, CRISPR-Cas Systems - metabolism
Signal transduction
Signaling
Stimuli
Viruses
Wnt protein
Writing
Title Rewritable multi-event analog recording in bacterial and mammalian cells
URI https://www.ncbi.nlm.nih.gov/pubmed/29449507
https://www.proquest.com/docview/2024519761
https://www.proquest.com/docview/2003039573
https://pubmed.ncbi.nlm.nih.gov/PMC5898985
Volume 360
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegExIviI2vjIGMxMPQlCpx7CZ57GBVhcaQUCv6FtmOrUWi2URbDfjrOceOk44iDV6iyB9x69_ZvjvfB0JvmZREkESGmsQipKTUsA8yGjIeaQnshi65cU7-dDGazunHBVt0iQsb75K1GMpfO_1K_gdVKANcjZfsPyDrPwoF8A74whMQhuedMP6iboxsb5yfGsPAsAnHdMJro5E5sfoX57MibFRmFxlgyZdLq-AwivtVn0NtFztwnv42p4ehN0scW-OB1pbAdespFmZOE_1VVT-qzvCn2nhTemes6HQOcWauT6zLqNsmI5PhkUS2SO0oc3trYpMFOCKCtc52b9u9RJNqyPk1SIGkO6HaW_mLz8Vkfn5ezM4Ws_toj4BkQAZob3z64XRyO9Ky_zkunlPPU6odYJsV-UO-uG0m2-M7Zo_RIycw4LFFfx_dU_UBemBTiP48QPtu4lf42EUQf_cETTvCwD3CwJYwsCcMXNXYEwbUltgTBm4I4ymaT85m76ehS5kRSpA81yGHf11mQhipNuapTBnJs1EOQqRiOtMiTXUelymNEipTkSVCMEW1oiIxugDgXZ-hQX1VqxcI6wy6lSPJIqqppDrPGBVRLnhOeAwnQYCG7ewV0sWTN2lNvhWNXElGhZvuwk13gI59h2sbSuXvTY9aOAq33lYFMVYCMbDPcYDe-GrYDc2E8FpdbUwbOLTM1XMSoOcWPT8WySnNQfwJULqFq29gIq1v19TVZRNxnZkkqxk7vMO4L9HDbsUcocH6-0a9Ar51LV47Sv0N72yd9A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rewritable+multi-event+analog+recording+in+bacterial+and+mammalian+cells&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Tang%2C+Weixin&rft.au=Liu%2C+David+R&rft.date=2018-04-13&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=360&rft.issue=6385&rft_id=info:doi/10.1126%2Fscience.aap8992&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon