Mutations in Eukaryotic Release Factors 1 and 3 Act as General Nonsense Suppressors in Drosophila
In a screen for suppressors of the Drosophila winglessPE4 nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains f...
Saved in:
Published in | Genetics (Austin) Vol. 165; no. 2; pp. 601 - 612 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Genetics Soc America
01.10.2003
Genetics Society of America |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In a screen for suppressors of the Drosophila winglessPE4 nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens. |
---|---|
AbstractList | In a screen for suppressors of the Drosophila winglessPE4 nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens. In a screen for suppressors of the Drosophila wingless(PE4) nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens.In a screen for suppressors of the Drosophila wingless(PE4) nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens. In a screen for suppressors of the Drosophila wingless(PE4) nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens. In a screen for suppressors of the Drosophila winglessPE4 nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens. [PUBLICATION ABSTRACT] In a screen for suppressors of the Drosophila wingless super(PE4) nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens. |
Author | Addy, Tracie M Chao, Anna T Dierick, Herman A Bejsovec, Amy |
AuthorAffiliation | Department of Biology, Duke University, Durham, North Carolina 27708-1000, USA |
AuthorAffiliation_xml | – name: Department of Biology, Duke University, Durham, North Carolina 27708-1000, USA |
Author_xml | – sequence: 1 fullname: Chao, Anna T – sequence: 2 fullname: Dierick, Herman A – sequence: 3 fullname: Addy, Tracie M – sequence: 4 fullname: Bejsovec, Amy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/14573473$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9v1DAQxS1URLcLX4ADsjhwy9ZjO05yQapKW5AKSPw5W44z2XXJ2ls7YcW3r9vdUugBJEs--DfP783METnwwSMhL4EtgDXieIkeR2fTMahywReKwRMyg0aKgisBB2TGGKhCVQIOyVFKV4wx1ZT1M3IIsqyErMSMmI_TaEYXfKLO07Pph4m_QhalX3BAk5CeGzuGmChQ4zsq6IkdqUn0Iv8dzUA_5UrMh36dNpuIKd2yWeldDClsVm4wz8nT3gwJX-zvOfl-fvbt9H1x-fniw-nJZWFlXY1F01esrXnXMVMZ6EzTt6K0XCiUbSUUq4S1nSyNVX1rsVU18rpmQtVlyaAvWzEnb3e6m6ldY2fRj9mg3kS3zpl0ME7__eLdSi_DTw1S8ZpBFnizF4jhesI06rVLFofBeAxT0hXwRomS_ReEhksuc3vn5PUj8CpM0ecuaA4SOFNSZejVn75_G76fUQb4DrC5pyli_4AwfbsI-n4RdF4EzbW6C1M_KrJuN-ic3Q3_Lt3HW7nlausi6rQ2w5Dtgd5utw_gDY_GyTY |
CODEN | GENTAE |
CitedBy_id | crossref_primary_10_1101_gr_119974_110 crossref_primary_10_1534_genetics_104_039735 crossref_primary_10_1186_1471_213X_10_28 crossref_primary_10_1242_dev_02796 crossref_primary_10_1371_journal_pone_0173980 crossref_primary_10_7554_eLife_01179 crossref_primary_10_1093_nar_gkv421 crossref_primary_10_1371_journal_pone_0060450 crossref_primary_10_7554_eLife_54082 crossref_primary_10_1093_nar_gkab1189 crossref_primary_10_1093_nar_gkz346 crossref_primary_10_1534_genetics_116_187849 crossref_primary_10_1016_j_euprot_2014_02_007 crossref_primary_10_1080_19336934_2016_1220464 crossref_primary_10_1101_cshperspect_a032706 crossref_primary_10_1534_genetics_104_032532 crossref_primary_10_1073_pnas_1012918108 crossref_primary_10_1016_j_femsle_2005_07_042 crossref_primary_10_1534_genetics_105_045245 crossref_primary_10_1007_s00018_016_2160_y crossref_primary_10_1007_s00294_014_0465_7 crossref_primary_10_1111_febs_14099 |
Cites_doi | 10.1093/genetics/130.3.585 10.1016/S0092-8674(00)81925-X 10.1093/emboj/16.13.4126 10.1093/embo-reports/kve176 10.1242/dev.124.19.3727 10.1038/26982 10.1083/jcb.146.6.1303 10.1093/nar/30.9.2011 10.1093/genetics/153.4.1789 10.1093/embo-reports/kvd033 10.1073/pnas.92.12.5431 10.1007/BF00351776 10.1099/00221287-147-2-255 10.1093/nar/18.8.2079 10.1101/gad.943701 10.1111/j.1365-2958.1993.tb01159.x 10.1002/j.1460-2075.1988.tb03107.x 10.1101/gad.3.9.1288 10.1242/dev.125.23.4729 10.1017/S135583829999043X 10.1002/biof.5520110122 10.1016/S0092-8674(01)00508-6 10.1093/genetics/161.1.171 10.1093/nar/29.19.3982 10.1002/(SICI)1097-0169(1998)39:4<286::AID-CM4>3.0.CO;2-1 10.1101/gad.12.11.1665 10.1093/genetics/155.2.733 10.1093/genetics/139.1.309 10.1074/jbc.M202912200 10.1093/genetics/141.3.1101 10.1007/s002940050098 10.1242/dev.117.4.1223 10.1002/(SICI)1520-6408(1998)23:4<347::AID-DVG9>3.0.CO;2-C 10.1073/pnas.142690099 10.1002/j.1460-2075.1992.tb05510.x 10.1016/S0092-8674(00)80667-4 10.1126/science.287.5461.2185 10.1016/S0092-8674(00)80866-1 10.1128/MCB.15.12.6593 10.2144/98245st02 10.1016/S0969-2126(01)00703-1 |
ContentType | Journal Article |
Copyright | Copyright Genetics Society of America Oct 2003 |
Copyright_xml | – notice: Copyright Genetics Society of America Oct 2003 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 4T- 4U- 7QP 7SS 7TK 7TM 8FD FR3 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.1093/genetics/165.2.601 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Docstoc University Readers Calcium & Calcified Tissue Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts University Readers Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Docstoc ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Entomology Abstracts Entomology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1943-2631 |
EndPage | 612 |
ExternalDocumentID | PMC1462801 732563691 14573473 10_1093_genetics_165_2_601 www165_2_601 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM-59068 – fundername: NIGMS NIH HHS grantid: R01 GM059068 |
GroupedDBID | - 186 29H 2WC 34G 39C 4 53G 55 5GY 5RE 5VS 85S 9M8 AAPBV AAUTI ABFLS ABPPZ ABPTK ABSGY ABUFD ACGOD ACNCT ACPRK ACPVT ADACO ADBBV AENEX AFDAS AFFDN AFFNX AFMIJ AFRAH AGCAB AHMBA AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP C1A CJ0 CS3 D0L DIK DU5 DZ E3Z EBS EJD EMB F5P FH7 FRP GJ GX1 H13 HYE H~9 INIJC KM KQ8 L7B MV1 MVM MYA O0- OHT OK1 OWPYF QN7 R0Z RHF RHI RPM RXW SJN SV3 TAE TAF TGS TN5 TWZ U5U UHB UKR UNMZH UPT UQL VQA WH7 WOQ X X7M XHC YYQ YZZ Z ZGI ZXP ZY4 --- --Z -DZ -~X .-4 .55 .GJ 0R~ 18M 5WD AABZA AACZT AAPXW AARHZ AAUAY AAVAP AAYXX ABDFA ABDNZ ABEJV ABGNP ABMNT ABNHQ ABPTD ABVGC ABXVV ABXZS ACFRR ACIHN ACIPB ACUTJ ADGKP ADIPN ADQBN ADVEK ADXHL AEAQA AFFZL AFGWE AGORE AHMMS AJEEA AJNCP ALIPV ALXQX AOIJS APEBS ATGXG BCRHZ BEYMZ BTFSW CITATION EMOBN F8P F9R FD6 FLUFQ FOEOM JXSIZ KBUDW KOP KSI KSN NOMLY OBOKY OCZFY OJZSN OPAEJ ROX TR2 W8F WHG XSW YHG YKV YSK ZCA ~KM 2KS 36B 3V. 7X2 7X7 88A 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAYOK ABJNI ABTAH ABUWG ACYGS AEUYN AFKRA AGMDO ATCPS AZQEC BBNVY BENPR BES BHPHI BKNYI BPHCQ BVXVI CCPQU CGR CUY CVF DWQXO EBD ECM EIF FYUFA GNUQQ GUQSH HCIFZ HMCUK K9- LK8 M0K M0L M0R M1P M2O M2P M7P NHB NPM OMK PQQKQ PROAC PSQYO Q2X QF4 QM4 QM9 QO4 TH9 UKHRP VXZ XOL YIF YIN YYP 4T- 4U- 7QP 7SS 7TK 7TM 8FD FR3 K9. M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c487t-9f70b82dd0a7a1da9fb35c236e4b736073ccd45ac6fbceb68e28803685501f5b3 |
ISSN | 0016-6731 1943-2631 |
IngestDate | Thu Aug 21 13:24:30 EDT 2025 Fri Jul 11 01:06:41 EDT 2025 Fri Jul 11 11:44:21 EDT 2025 Mon Jun 30 10:23:51 EDT 2025 Wed Feb 19 01:51:57 EST 2025 Tue Jul 01 00:32:51 EDT 2025 Thu Apr 24 23:07:55 EDT 2025 Tue Nov 10 19:19:20 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c487t-9f70b82dd0a7a1da9fb35c236e4b736073ccd45ac6fbceb68e28803685501f5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://academic.oup.com/genetics/article-pdf/165/2/601/37273382/genetics0601.pdf |
PMID | 14573473 |
PQID | 214120646 |
PQPubID | 47453 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1462801 proquest_miscellaneous_71296350 proquest_miscellaneous_19242447 proquest_journals_214120646 pubmed_primary_14573473 crossref_primary_10_1093_genetics_165_2_601 crossref_citationtrail_10_1093_genetics_165_2_601 highwire_smallpub1_www165_2_601 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20031001 2003-10-01 2003-Oct |
PublicationDateYYYYMMDD | 2003-10-01 |
PublicationDate_xml | – month: 10 year: 2003 text: 20031001 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | Genetics (Austin) |
PublicationTitleAlternate | Genetics |
PublicationYear | 2003 |
Publisher | Genetics Soc America Genetics Society of America |
Publisher_xml | – name: Genetics Soc America – name: Genetics Society of America |
References | Ostrowski (2022010522152200100_R28) 2002; 161 MacBeath (2022010522152200100_R23) 1998; 24 McCartney (2022010522152200100_R25) 1999; 146 Phillips-Jones (2022010522152200100_R29) 1995; 15 Tikhomirova (2022010522152200100_R35) 1996; 30 Xu (2022010522152200100_R41) 1993; 117 Seit-Nebi (2022010522152200100_R31) 2001; 29 Harrell (2022010522152200100_R16) 2002; 30 Kisselev (2022010522152200100_R20) 2000; 25 Wilusz (2022010522152200100_R40) 2001; 15 Czaplinski (2022010522152200100_R10) 1998; 12 Dierick (2022010522152200100_R11) 1998; 125 Bock (2022010522152200100_R7) 2000; 11 Cavallo (2022010522152200100_R9) 1998; 395 McCaughan (2022010522152200100_R26) 1995; 92 Freistoffer (2022010522152200100_R13) 1997; 16 van de Wetering (2022010522152200100_R37) 1997; 88 Adams (2022010522152200100_R2) 2000; 287 Washburn (2022010522152200100_R38) 1992; 130 Brown (2022010522152200100_R8) 1990; 18 Bellen (2022010522152200100_R5) 1989; 3 Kisselev (2022010522152200100_R19) 2002; 10 Tujebajeva (2022010522152200100_R36) 2000; 1 Namy (2022010522152200100_R27) 2001; 2 Samson (2022010522152200100_R30) 1995; 141 Ito (2022010522152200100_R18) 2002; 99 Fu (2022010522152200100_R15) 2002; 277 Basu (2022010522152200100_R3) 1998; 39 Lukinova (2022010522152200100_R22) 1999; 153 Zerfass (2022010522152200100_R43) 1992; 11 Bejsovec (2022010522152200100_R4) 1995; 139 Wieschaus (2022010522152200100_R39) 1986 Doerig (2022010522152200100_R12) 1988; 7 Frolova (2022010522152200100_R14) 1999; 5 Knight (2022010522152200100_R21) 2000; 101 Zavialov (2022010522152200100_R42) 2001; 107 Song (2022010522152200100_R32) 2000; 100 Stansfield (2022010522152200100_R33) 1994; 25 Bertram (2022010522152200100_R6) 2001; 147 Maixner (2022010522152200100_R24) 1998; 23 Hays (2022010522152200100_R17) 1997; 124 Abdelilah-Seyfried (2022010522152200100_R1) 2000; 155 Ter-Avanesyan (2022010522152200100_R34) 1993; 7 8524224 - Mol Cell Biol. 1995 Dec;15(12):6593-600 9118222 - Cell. 1997 Mar 21;88(6):789-99 9367428 - Development. 1997 Oct;124(19):3727-36 9883586 - Dev Genet. 1998;23(4):347-61 10705967 - Biofactors. 2000;11(1-2):77-8 8404527 - Development. 1993 Apr;117(4):1223-37 7777525 - Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5431-5 8662208 - Curr Genet. 1996 Jun;30(1):44-9 10581285 - Genetics. 1999 Dec;153(4):1789-97 9591128 - Biotechniques. 1998 May;24(5):789-94 9556329 - Cell Motil Cytoskeleton. 1998;39(4):286-302 7705631 - Genetics. 1995 Jan;139(1):309-20 2186375 - Nucleic Acids Res. 1990 Apr 25;18(8):2079-86 8082183 - Curr Genet. 1994 May;25(5):385-95 2558050 - Genes Dev. 1989 Sep;3(9):1288-300 3142765 - EMBO J. 1988 Aug;7(8):2579-84 11084369 - Trends Biochem Sci. 2000 Nov;25(11):561-6 1396598 - EMBO J. 1992 Nov;11(11):4167-73 9806921 - Development. 1998 Dec;125(23):4729-38 9783586 - Nature. 1998 Oct 8;395(6702):604-8 10731132 - Science. 2000 Mar 24;287(5461):2185-95 9233821 - EMBO J. 1997 Jul 1;16(13):4126-33 11972340 - Nucleic Acids Res. 2002 May 1;30(9):2011-7 11158343 - Microbiology. 2001 Feb;147(Pt 2):255-69 11265756 - EMBO Rep. 2000 Aug;1(2):158-63 10445876 - RNA. 1999 Aug;5(8):1014-20 11973339 - J Biol Chem. 2002 Jul 19;277(29):25983-91 11574680 - Nucleic Acids Res. 2001 Oct 1;29(19):3982-7 12679755 - Am Heart J. 2003 Apr;145(4):602-13 1551579 - Genetics. 1992 Mar;130(3):585-95 12019232 - Genetics. 2002 May;161(1):171-82 11595190 - Cell. 2001 Oct 5;107(1):115-24 9620853 - Genes Dev. 1998 Jun 1;12(11):1665-77 10491393 - J Cell Biol. 1999 Sep 20;146(6):1303-18 8469113 - Mol Microbiol. 1993 Mar;7(5):683-92 8582616 - Genetics. 1995 Nov;141(3):1101-11 11520858 - EMBO Rep. 2001 Sep;2(9):787-93 10892641 - Cell. 2000 Jun 9;101(6):569-72 |
References_xml | – volume: 130 start-page: 585 year: 1992 ident: 2022010522152200100_R38 article-title: Nonsense suppression of the major rhodopsin gene of Drosophila publication-title: Genetics doi: 10.1093/genetics/130.3.585 – volume: 88 start-page: 789 year: 1997 ident: 2022010522152200100_R37 article-title: Armadillo co-activates transcription driven by the product of the Drosophila segment polarity gene dTCF publication-title: Cell doi: 10.1016/S0092-8674(00)81925-X – volume: 16 start-page: 4126 year: 1997 ident: 2022010522152200100_R13 article-title: Release factor RF3 in E. coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner publication-title: EMBO J. doi: 10.1093/emboj/16.13.4126 – volume: 2 start-page: 787 year: 2001 ident: 2022010522152200100_R27 article-title: Impact of the six nucleotides downstream of the stop codon on translation termination publication-title: EMBO Rep. doi: 10.1093/embo-reports/kve176 – volume: 124 start-page: 3727 year: 1997 ident: 2022010522152200100_R17 article-title: Wingless signaling generates epidermal pattern through two distinct mechanisms publication-title: Development doi: 10.1242/dev.124.19.3727 – volume: 395 start-page: 604 year: 1998 ident: 2022010522152200100_R9 article-title: Drosophila TCF and Groucho interact to repress Wingless signaling activity publication-title: Nature doi: 10.1038/26982 – volume: 146 start-page: 1303 year: 1999 ident: 2022010522152200100_R25 article-title: Drosophila APC2 is a cytoskeletally-associated protein that regulates Wingless signaling in the embryonic epidermis publication-title: J. Cell Biol. doi: 10.1083/jcb.146.6.1303 – volume: 30 start-page: 2011 year: 2002 ident: 2022010522152200100_R16 article-title: Predominance of six different hexanucleotide recoding signals 3′ of read-through stop codons publication-title: Nucleic Acids Res. doi: 10.1093/nar/30.9.2011 – volume: 153 start-page: 1789 year: 1999 ident: 2022010522152200100_R22 article-title: Genetic characterization of cytological region 77A-D harboring the presenilin gene of Drosophila melanogaster publication-title: Genetics doi: 10.1093/genetics/153.4.1789 – volume: 1 start-page: 158 year: 2000 ident: 2022010522152200100_R36 article-title: Decoding apparatus for eukaryotic selenocysteine insertion publication-title: EMBO Rep. doi: 10.1093/embo-reports/kvd033 – volume: 92 start-page: 5431 year: 1995 ident: 2022010522152200100_R26 article-title: Translational termination efficiency in mammals is influenced by the base following the stop codon publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.12.5431 – volume: 25 start-page: 385 year: 1994 ident: 2022010522152200100_R33 article-title: Polypeptide chain termination in Saccharomyces cerevisiae publication-title: Curr. Genet. doi: 10.1007/BF00351776 – volume: 147 start-page: 255 year: 2001 ident: 2022010522152200100_R6 article-title: Endless possibilities: translation termination and stop codon recognition publication-title: Microbiology doi: 10.1099/00221287-147-2-255 – volume: 18 start-page: 2079 year: 1990 ident: 2022010522152200100_R8 article-title: The signal for the termination of protein synthesis in procaryotes publication-title: Nucleic Acids Res. doi: 10.1093/nar/18.8.2079 – volume: 15 start-page: 2781 year: 2001 ident: 2022010522152200100_R40 article-title: Curbing the nonsense: the activation and regulation of mRNA surveillance publication-title: Genes Dev. doi: 10.1101/gad.943701 – volume: 7 start-page: 683 year: 1993 ident: 2022010522152200100_R34 article-title: Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1993.tb01159.x – start-page: 199 volume-title: Drosophila: A Practical Approach year: 1986 ident: 2022010522152200100_R39 article-title: Looking at embryos – volume: 7 start-page: 2579 year: 1988 ident: 2022010522152200100_R12 article-title: Identification of an amber nonsense mutation in the rosy516 gene by germline transformation of an amber suppressor tRNA gene publication-title: EMBO J. doi: 10.1002/j.1460-2075.1988.tb03107.x – volume: 3 start-page: 1288 year: 1989 ident: 2022010522152200100_R5 article-title: P-element-mediated enhancer detection: a versatile method to study development in publication-title: Drosophila. Genes Dev. doi: 10.1101/gad.3.9.1288 – volume: 125 start-page: 4729 year: 1998 ident: 2022010522152200100_R11 article-title: Functional analysis of Wingless reveals a link between intercellular ligand transport and dorsal-cell-specific signaling publication-title: Development doi: 10.1242/dev.125.23.4729 – volume: 5 start-page: 1014 year: 1999 ident: 2022010522152200100_R14 article-title: Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis publication-title: RNA doi: 10.1017/S135583829999043X – volume: 11 start-page: 77 year: 2000 ident: 2022010522152200100_R7 article-title: Biosynthesis of selenoproteins—an overview publication-title: Biofactors doi: 10.1002/biof.5520110122 – volume: 107 start-page: 115 year: 2001 ident: 2022010522152200100_R42 article-title: A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3 publication-title: Cell doi: 10.1016/S0092-8674(01)00508-6 – volume: 161 start-page: 171 year: 2002 ident: 2022010522152200100_R28 article-title: Genetic control of cuticle formation during embryonic development of Drosophila melanogaster publication-title: Genetics doi: 10.1093/genetics/161.1.171 – volume: 29 start-page: 3982 year: 2001 ident: 2022010522152200100_R31 article-title: Class-1 translation termination factors: invariant GGQ minidomain is essential for release activity and ribosome binding but not for stop codon recognition publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.19.3982 – volume: 39 start-page: 286 year: 1998 ident: 2022010522152200100_R3 article-title: Depletion of a Drosophila homolog of yeast sup35p disrupts spindle assembly, chromosome segregation and cytokinesis during male meiosis publication-title: Cell Motil. Cytoskeleton doi: 10.1002/(SICI)1097-0169(1998)39:4<286::AID-CM4>3.0.CO;2-1 – volume: 12 start-page: 1665 year: 1998 ident: 2022010522152200100_R10 article-title: The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs publication-title: Genes Dev. doi: 10.1101/gad.12.11.1665 – volume: 155 start-page: 733 year: 2000 ident: 2022010522152200100_R1 article-title: A gain-of-function screen for genes that affect the development of the Drosophila adult external sensory organ publication-title: Genetics doi: 10.1093/genetics/155.2.733 – volume: 139 start-page: 309 year: 1995 ident: 2022010522152200100_R4 article-title: Signaling activities of the Drosophila wingless gene are separately mutable and appear to be transduced at the cell surface publication-title: Genetics doi: 10.1093/genetics/139.1.309 – volume: 277 start-page: 25983 year: 2002 ident: 2022010522152200100_R15 article-title: A selenoprotein in the plant kingdom. Mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii glutathione peroxidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M202912200 – volume: 25 start-page: 561 year: 2000 ident: 2022010522152200100_R20 article-title: Translational termination comes of age publication-title: TIBS – volume: 141 start-page: 1101 year: 1995 ident: 2022010522152200100_R30 article-title: Two distinct temperature-sensitive alleles at the elav locus of Drosophila are suppressed nonsense mutations of the same tryptophan codon publication-title: Genetics doi: 10.1093/genetics/141.3.1101 – volume: 30 start-page: 44 year: 1996 ident: 2022010522152200100_R35 article-title: Sensitivity of sup35 and sup45 suppressor mutants in Saccharomyces cerevisiae to the anti-microtubule drug benomyl publication-title: Curr. Genet. doi: 10.1007/s002940050098 – volume: 117 start-page: 1223 year: 1993 ident: 2022010522152200100_R41 article-title: Analysis of genetic mosaics in developing and adult Drosophila tissue publication-title: Development doi: 10.1242/dev.117.4.1223 – volume: 23 start-page: 347 year: 1998 ident: 2022010522152200100_R24 article-title: A screen for mutations that prevent lethality caused by expression of activated Sevenless and Ras1 in the Drosophila embryo publication-title: Dev. Genet. doi: 10.1002/(SICI)1520-6408(1998)23:4<347::AID-DVG9>3.0.CO;2-C – volume: 99 start-page: 8494 year: 2002 ident: 2022010522152200100_R18 article-title: Omnipotent decoding potential resides in eukaryotic translation termination factor eRF1 of variant-code organisms and is modulated by the interactions of amino acid sequences within domain 1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.142690099 – volume: 11 start-page: 4167 year: 1992 ident: 2022010522152200100_R43 article-title: The leaky UGA termination codon of tobacco rattle virus RNA is suppressed by tobacco chloroplast and cytoplasmic tRNAs(Trp) with CmCA anticodon publication-title: EMBO J. doi: 10.1002/j.1460-2075.1992.tb05510.x – volume: 100 start-page: 311 year: 2000 ident: 2022010522152200100_R32 article-title: The crystal structure of human eukaryotic release factor eRF1: mechanism of stop codon recognition and peptidyl-tRNA hydrolysis publication-title: Cell doi: 10.1016/S0092-8674(00)80667-4 – volume: 287 start-page: 2185 year: 2000 ident: 2022010522152200100_R2 article-title: The genome sequence of Drosophila melanogaster publication-title: Science doi: 10.1126/science.287.5461.2185 – volume: 101 start-page: 569 year: 2000 ident: 2022010522152200100_R21 article-title: The early evolution of the genetic code publication-title: Cell doi: 10.1016/S0092-8674(00)80866-1 – volume: 15 start-page: 6593 year: 1995 ident: 2022010522152200100_R29 article-title: Context effects of misreading and suppression at UAG codons in human cells publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.15.12.6593 – volume: 24 start-page: 789 year: 1998 ident: 2022010522152200100_R23 article-title: UGA read-through artifacts–when popular gene expression systems need a pATCH publication-title: Biotechniques doi: 10.2144/98245st02 – volume: 10 start-page: 8 year: 2002 ident: 2022010522152200100_R19 article-title: Polypeptide release factors in prokaryotes and eukaryotes: same function, different structure publication-title: Structure doi: 10.1016/S0969-2126(01)00703-1 – reference: 7705631 - Genetics. 1995 Jan;139(1):309-20 – reference: 9591128 - Biotechniques. 1998 May;24(5):789-94 – reference: 8404527 - Development. 1993 Apr;117(4):1223-37 – reference: 9883586 - Dev Genet. 1998;23(4):347-61 – reference: 11158343 - Microbiology. 2001 Feb;147(Pt 2):255-69 – reference: 3142765 - EMBO J. 1988 Aug;7(8):2579-84 – reference: 2558050 - Genes Dev. 1989 Sep;3(9):1288-300 – reference: 10731132 - Science. 2000 Mar 24;287(5461):2185-95 – reference: 9806921 - Development. 1998 Dec;125(23):4729-38 – reference: 9783586 - Nature. 1998 Oct 8;395(6702):604-8 – reference: 8662208 - Curr Genet. 1996 Jun;30(1):44-9 – reference: 1396598 - EMBO J. 1992 Nov;11(11):4167-73 – reference: 9118222 - Cell. 1997 Mar 21;88(6):789-99 – reference: 11265756 - EMBO Rep. 2000 Aug;1(2):158-63 – reference: 1551579 - Genetics. 1992 Mar;130(3):585-95 – reference: 11595190 - Cell. 2001 Oct 5;107(1):115-24 – reference: 9556329 - Cell Motil Cytoskeleton. 1998;39(4):286-302 – reference: 11084369 - Trends Biochem Sci. 2000 Nov;25(11):561-6 – reference: 7777525 - Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5431-5 – reference: 11574680 - Nucleic Acids Res. 2001 Oct 1;29(19):3982-7 – reference: 10892641 - Cell. 2000 Jun 9;101(6):569-72 – reference: 11973339 - J Biol Chem. 2002 Jul 19;277(29):25983-91 – reference: 12019232 - Genetics. 2002 May;161(1):171-82 – reference: 8524224 - Mol Cell Biol. 1995 Dec;15(12):6593-600 – reference: 8582616 - Genetics. 1995 Nov;141(3):1101-11 – reference: 8469113 - Mol Microbiol. 1993 Mar;7(5):683-92 – reference: 10705967 - Biofactors. 2000;11(1-2):77-8 – reference: 11520858 - EMBO Rep. 2001 Sep;2(9):787-93 – reference: 10445876 - RNA. 1999 Aug;5(8):1014-20 – reference: 9620853 - Genes Dev. 1998 Jun 1;12(11):1665-77 – reference: 10581285 - Genetics. 1999 Dec;153(4):1789-97 – reference: 10491393 - J Cell Biol. 1999 Sep 20;146(6):1303-18 – reference: 9367428 - Development. 1997 Oct;124(19):3727-36 – reference: 2186375 - Nucleic Acids Res. 1990 Apr 25;18(8):2079-86 – reference: 9233821 - EMBO J. 1997 Jul 1;16(13):4126-33 – reference: 11972340 - Nucleic Acids Res. 2002 May 1;30(9):2011-7 – reference: 12679755 - Am Heart J. 2003 Apr;145(4):602-13 – reference: 8082183 - Curr Genet. 1994 May;25(5):385-95 |
SSID | ssj0006958 |
Score | 1.8473251 |
Snippet | In a screen for suppressors of the Drosophila winglessPE4 nonsense allele, we isolated mutations in the two components that form eukaryotic release factor.... In a screen for suppressors of the Drosophila wingless(PE4) nonsense allele, we isolated mutations in the two components that form eukaryotic release factor.... In a screen for suppressors of the Drosophila wingless super(PE4) nonsense allele, we isolated mutations in the two components that form eukaryotic release... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 601 |
SubjectTerms | Alleles Amino Acid Sequence Animals Codon, Nonsense - genetics Codon, Nonsense - metabolism Drosophila Drosophila - genetics Drosophila - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Genetics Molecular Sequence Data Mutation Peptide Termination Factors - genetics Peptide Termination Factors - metabolism Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins - metabolism stop codons wingless gene Wnt1 Protein Yeast |
Title | Mutations in Eukaryotic Release Factors 1 and 3 Act as General Nonsense Suppressors in Drosophila |
URI | http://www.genetics.org/cgi/content/abstract/165/2/601 https://www.ncbi.nlm.nih.gov/pubmed/14573473 https://www.proquest.com/docview/214120646 https://www.proquest.com/docview/19242447 https://www.proquest.com/docview/71296350 https://pubmed.ncbi.nlm.nih.gov/PMC1462801 |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqISReEHfKuPiBtypbnNhO81jYxoS0vbBJfYtsx4VuXTq1KdX4X_w_zomdS8u4SlVUOY7t5Hw-Psc-F0LeJiAmK6VDmOKhDbhORTDUoKUklueG5xNrBToKn5zK43P-cSzGvd73jtXSqtR75tutfiX_Q1UoA7qil-w_ULZpFArgP9AXrkBhuP4VjU9WZWsLfri6VIubeVlZxs_w1GVw5JPpsOqIIB6MTJVXxoeaHpyiJTX8BpjaE9VurAstHSyq5AbTmeqKrvhUFdMZZFLcIal2FDrWAc5fpihUa3d9MMXjoEu3vKF3QrtzOsodd4e1ErhLuyf7zl4s519tlXd95L0t6k2J1rzNwagZ0ae5qY-eulyYSXQ5cPWtY7wpj4NI-rKaM7s0Eh6CUYfPStfZT_zfxcb67LvHXQkp9qK9repAxeurChOMiyTmLpnKZjDurUWyMV1cr9fQZhZlEr0G70SgnWDijA_j1rJIpsILAO41va8WjG2_Htl-My6MWusHsSka1eGqb1N9ti14OyLR2QNy3-sydOSA-ZD0bPGI3HXZTW8eE9XAk04L2sKTenhSD0_KKMCTxhTgSdWSenjSGp60A09sqYXnE3J-dHj2_jjwGT0CA4pxGaSTJNTDKM9DlSiWq3SiY2GiWFquk1jCcmNMzoUycqKN1XJoI1hfMEeCCNlE6Pgp2SnmhX1OqE5zKNZWgnbIQyXSEJb8hCkGCnSsh8M-YfXHzIwPd49ZV2aZM7uIs5oWWUPPPhk0z1y7YC-_rf2mplG2vFKzGZCEZV189MluTbrMs41lFjHOIlAEJDzf3AWejgd1qrDzFXSRotMWT35dIwExHVSFsE-eOSC04_Vg6pNkAyJNBYwnv3mnmH6p4soz9FMP2Ys_vtcuuddO-pdkp1ys7CuQzUv9upoJPwAJo-Sl |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutations+in+Eukaryotic+Release+Factors+1+and+3+Act+as+General+Nonsense+Suppressors+in+Drosophila&rft.jtitle=Genetics+%28Austin%29&rft.au=Chao%2C+Anna+T&rft.au=Dierick%2C+Herman+A&rft.au=Addy%2C+Tracie+M&rft.au=Bejsovec%2C+Amy&rft.date=2003-10-01&rft.pub=Genetics+Soc+America&rft.issn=0016-6731&rft.eissn=1943-2631&rft.volume=165&rft.issue=2&rft.spage=601&rft_id=info:doi/10.1093%2Fgenetics%2F165.2.601&rft_id=info%3Apmid%2F14573473&rft.externalDBID=n%2Fa&rft.externalDocID=www165_2_601 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-6731&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-6731&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-6731&client=summon |