EUCAST rapid antimicrobial susceptibility testing (RAST) in blood cultures: validation in 55 European laboratories

Abstract Objectives When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The EUCAST RAST method, directly from positive blood cultures, was validated in a multi-laboratory study in Europe. Methods RAST...

Full description

Saved in:
Bibliographic Details
Published inJournal of antimicrobial chemotherapy Vol. 75; no. 11; pp. 3230 - 3238
Main Authors Åkerlund, Anna, Jonasson, Emma, Matuschek, Erika, Serrander, Lena, Sundqvist, Martin, Kahlmeter, Gunnar
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Objectives When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The EUCAST RAST method, directly from positive blood cultures, was validated in a multi-laboratory study in Europe. Methods RAST was performed in 40 laboratories in northern Europe (NE) and 15 in southern Europe (SE) from clinical blood cultures positive for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus or Streptococcus pneumoniae. Categorical results at 4, 6 and 8 h of incubation were compared with results for EUCAST standard 16–20 h disc diffusion. The method, preliminary breakpoints and the performance of the laboratories were evaluated. Results The total number of isolates was 833/318 in NE/SE. The number of zone diameters that could be read (88%, 96% and 99%) and interpreted (70%, 81% and 85%) increased with incubation time (4, 6 and 8 h). The categorical agreement was acceptable, with total error rates in NE/SE of 2.4%/4.9% at 4 h, 1.1%/3.5% at 6 h and 1.1%/3.3% at 8 h. False susceptibility at 4, 6 and 8 h of incubation was below 0.3% and 1.1% in NE and SE, respectively, and the corresponding percentages for false resistance were below 1.9% and 2.8%. After fine-tuning breakpoints, more zones could be interpreted (73%, 89% and 93%), with only marginally affected error rates. Conclusions The EUCAST RAST method can be implemented in routine laboratories without major investments. It provides reliable antimicrobial susceptibility testing results for relevant bloodstream infection pathogens after 4–6 h of incubation.
AbstractList Objectives: When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The EUCAST RAST method, directly from positive blood cultures, was validated in a multi-Laboratory study in Europe. Methods: RAST was performed in 40 Laboratories in northern Europe (NE) and 15 in southern Europe (SE) from clinical blood cultures positive for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus or Streptococcus pneumoniae. Categorical results at 4, 6 and 8 h of incubation were compared with results for EUCAST standard 16-20 h disc diffusion. The method, preliminary breakpoints and the performance of the Laboratories were evaluated. Results: The total number of isolates was 833/318 in NE/SE. The number of zone diameters that could be read (88%, 96% and 99%) and interpreted (70%, 81% and 85%) increased with incubation time (4, 6 and 8 h). The categorical agreement was acceptable, with total error rates in NE/SE of 2.4%/4.9% at 4 h, 1.1%/3.5% at 6 h and 1.1%/3.3% at 8 h. False susceptibility at 4, 6 and 8 h of incubation was below 0.3% and 1.1% in NE and SE, respectively, and the corresponding percentages for false resistance were below 1.9% and 2.8%. After fine-tuning breakpoints, more zones could be interpreted (73%, 89% and 93%), with only marginally affected error rates. Conclusions: The EUCAST RAST method can be implemented in routine Laboratories without major investments. It provides reliable antimicrobial susceptibility testing results for relevant bloodstream infection pathogens after 4-6 h of incubation.
OBJECTIVESWhen bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The EUCAST RAST method, directly from positive blood cultures, was validated in a multi-laboratory study in Europe.METHODSRAST was performed in 40 laboratories in northern Europe (NE) and 15 in southern Europe (SE) from clinical blood cultures positive for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus or Streptococcus pneumoniae. Categorical results at 4, 6 and 8 h of incubation were compared with results for EUCAST standard 16-20 h disc diffusion. The method, preliminary breakpoints and the performance of the laboratories were evaluated.RESULTSThe total number of isolates was 833/318 in NE/SE. The number of zone diameters that could be read (88%, 96% and 99%) and interpreted (70%, 81% and 85%) increased with incubation time (4, 6 and 8 h). The categorical agreement was acceptable, with total error rates in NE/SE of 2.4%/4.9% at 4 h, 1.1%/3.5% at 6 h and 1.1%/3.3% at 8 h. False susceptibility at 4, 6 and 8 h of incubation was below 0.3% and 1.1% in NE and SE, respectively, and the corresponding percentages for false resistance were below 1.9% and 2.8%. After fine-tuning breakpoints, more zones could be interpreted (73%, 89% and 93%), with only marginally affected error rates.CONCLUSIONSThe EUCAST RAST method can be implemented in routine laboratories without major investments. It provides reliable antimicrobial susceptibility testing results for relevant bloodstream infection pathogens after 4-6 h of incubation.
When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The EUCAST RAST method, directly from positive blood cultures, was validated in a multi-laboratory study in Europe. RAST was performed in 40 laboratories in northern Europe (NE) and 15 in southern Europe (SE) from clinical blood cultures positive for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus or Streptococcus pneumoniae. Categorical results at 4, 6 and 8 h of incubation were compared with results for EUCAST standard 16-20 h disc diffusion. The method, preliminary breakpoints and the performance of the laboratories were evaluated. The total number of isolates was 833/318 in NE/SE. The number of zone diameters that could be read (88%, 96% and 99%) and interpreted (70%, 81% and 85%) increased with incubation time (4, 6 and 8 h). The categorical agreement was acceptable, with total error rates in NE/SE of 2.4%/4.9% at 4 h, 1.1%/3.5% at 6 h and 1.1%/3.3% at 8 h. False susceptibility at 4, 6 and 8 h of incubation was below 0.3% and 1.1% in NE and SE, respectively, and the corresponding percentages for false resistance were below 1.9% and 2.8%. After fine-tuning breakpoints, more zones could be interpreted (73%, 89% and 93%), with only marginally affected error rates. The EUCAST RAST method can be implemented in routine laboratories without major investments. It provides reliable antimicrobial susceptibility testing results for relevant bloodstream infection pathogens after 4-6 h of incubation.
Abstract Objectives When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The EUCAST RAST method, directly from positive blood cultures, was validated in a multi-laboratory study in Europe. Methods RAST was performed in 40 laboratories in northern Europe (NE) and 15 in southern Europe (SE) from clinical blood cultures positive for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus or Streptococcus pneumoniae. Categorical results at 4, 6 and 8 h of incubation were compared with results for EUCAST standard 16–20 h disc diffusion. The method, preliminary breakpoints and the performance of the laboratories were evaluated. Results The total number of isolates was 833/318 in NE/SE. The number of zone diameters that could be read (88%, 96% and 99%) and interpreted (70%, 81% and 85%) increased with incubation time (4, 6 and 8 h). The categorical agreement was acceptable, with total error rates in NE/SE of 2.4%/4.9% at 4 h, 1.1%/3.5% at 6 h and 1.1%/3.3% at 8 h. False susceptibility at 4, 6 and 8 h of incubation was below 0.3% and 1.1% in NE and SE, respectively, and the corresponding percentages for false resistance were below 1.9% and 2.8%. After fine-tuning breakpoints, more zones could be interpreted (73%, 89% and 93%), with only marginally affected error rates. Conclusions The EUCAST RAST method can be implemented in routine laboratories without major investments. It provides reliable antimicrobial susceptibility testing results for relevant bloodstream infection pathogens after 4–6 h of incubation.
OBJECTIVES: When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The EUCAST RAST method, directly from positive blood cultures, was validated in a multi-laboratory study in Europe. METHODS: RAST was performed in 40 laboratories in northern Europe (NE) and 15 in southern Europe (SE) from clinical blood cultures positive for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus or Streptococcus pneumoniae. Categorical results at 4, 6 and 8 h of incubation were compared with results for EUCAST standard 16-20 h disc diffusion. The method, preliminary breakpoints and the performance of the laboratories were evaluated. RESULTS: The total number of isolates was 833/318 in NE/SE. The number of zone diameters that could be read (88%, 96% and 99%) and interpreted (70%, 81% and 85%) increased with incubation time (4, 6 and 8 h). The categorical agreement was acceptable, with total error rates in NE/SE of 2.4%/4.9% at 4 h, 1.1%/3.5% at 6 h and 1.1%/3.3% at 8 h. False susceptibility at 4, 6 and 8 h of incubation was below 0.3% and 1.1% in NE and SE, respectively, and the corresponding percentages for false resistance were below 1.9% and 2.8%. After fine-tuning breakpoints, more zones could be interpreted (73%, 89% and 93%), with only marginally affected error rates. CONCLUSIONS: The EUCAST RAST method can be implemented in routine laboratories without major investments. It provides reliable antimicrobial susceptibility testing results for relevant bloodstream infection pathogens after 4-6 h of incubation.
Author Matuschek, Erika
Åkerlund, Anna
Serrander, Lena
Jonasson, Emma
Kahlmeter, Gunnar
Sundqvist, Martin
AuthorAffiliation d2 Department of Clinical and Experimental Medicine, Linköping University , Linköping, Sweden
d5 EUCAST Development Laboratory , Växjö, Sweden
d6 Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University , Örebro, Sweden
d1 Division of Clinical Microbiology, County Hospital Ryhov , Jönköping, Sweden
d3 Division of Clinical Microbiology, Linköping University Hospital , Linköping, Sweden
d4 Department of Clinical Microbiology, Central Hospital , Växjö, Sweden
AuthorAffiliation_xml – name: d5 EUCAST Development Laboratory , Växjö, Sweden
– name: d3 Division of Clinical Microbiology, Linköping University Hospital , Linköping, Sweden
– name: d6 Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University , Örebro, Sweden
– name: d4 Department of Clinical Microbiology, Central Hospital , Växjö, Sweden
– name: d1 Division of Clinical Microbiology, County Hospital Ryhov , Jönköping, Sweden
– name: d2 Department of Clinical and Experimental Medicine, Linköping University , Linköping, Sweden
Author_xml – sequence: 1
  givenname: Anna
  surname: Åkerlund
  fullname: Åkerlund, Anna
  email: anna.akerlund@rjl.se
  organization: Division of Clinical Microbiology, County Hospital Ryhov, Jönköping, Sweden
– sequence: 2
  givenname: Emma
  surname: Jonasson
  fullname: Jonasson, Emma
  organization: Department of Clinical Microbiology, Central Hospital, Växjö, Sweden
– sequence: 3
  givenname: Erika
  surname: Matuschek
  fullname: Matuschek, Erika
  organization: EUCAST Development Laboratory, Växjö, Sweden
– sequence: 4
  givenname: Lena
  surname: Serrander
  fullname: Serrander, Lena
  organization: Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
– sequence: 5
  givenname: Martin
  surname: Sundqvist
  fullname: Sundqvist, Martin
  organization: Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
– sequence: 6
  givenname: Gunnar
  surname: Kahlmeter
  fullname: Kahlmeter, Gunnar
  organization: Department of Clinical Microbiology, Central Hospital, Växjö, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32789506$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171968$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-85102$$DView record from Swedish Publication Index
BookMark eNqFks9vFCEUx4mpsdvWk3fDydToWFgGGDyYbNbVmjRpoq1XwgzMSmVh5EdN_3vZ7Nq0Fz0QDu_zvjy-73sEDnzwBoAXGL3DSJCzGzWc6Z9KEUKegBluGWrmSOADMEME0Ya3lByCo5RuEEKMsu4ZOCRz3gmK2AzE1fVy8e0KRjVZDZXPdmOHGHqrHEwlDWbKtrfO5juYTcrWr-Hp19rwGloPexeChkNxuUST3sNb5axW2Qa_rVIKVyWGySgPnepDVDlEa9IJeDoql8zz_X0Mrj-trpbnzcXl5y_LxUUztB3PjRiZFro3AgtEu1bXeQdBDNVDizutOCGYkn5kXFGmcIeEMT3plBn5yHk1gByDtzvd9NtMpZdTtBsV72RQVn603xcyxHU9RXYUo3nFm__jzhaJORasq_yHHV_hjdGD8Tkq96jtccXbH3IdbiWnjBHKqsDpXiCGX6WaKze2Gu6c8iaUJOctaevPMd6ib3ZoXU1K0Yz3z2AktyGQNQRyH4JKv3w42T37d-sVeLUDQpn-qfQHe6W_TA
CitedBy_id crossref_primary_10_1016_j_ijmmb_2021_06_008
crossref_primary_10_61634_2782_3024_2023_12_82_93
crossref_primary_10_1016_j_idnow_2023_104668
crossref_primary_10_1128_jcm_00549_23
crossref_primary_10_1016_j_jgar_2023_07_001
crossref_primary_10_1128_jcm_02533_21
crossref_primary_10_1016_j_clinmicnews_2022_11_005
crossref_primary_10_3389_fmed_2021_635831
crossref_primary_10_1128_spectrum_04366_22
crossref_primary_10_1016_j_jiac_2023_06_016
crossref_primary_10_3389_fmicb_2021_707330
crossref_primary_10_1016_j_cmi_2022_05_021
crossref_primary_10_1097_QCO_0000000000000784
crossref_primary_10_1093_jacamr_dlad017
crossref_primary_10_1093_jac_dkae125
crossref_primary_10_1111_tid_14113
crossref_primary_10_3390_diagnostics13111849
crossref_primary_10_3389_fcimb_2022_807668
crossref_primary_10_1039_D2SD00138A
crossref_primary_10_1093_jac_dkad272
crossref_primary_10_1080_14737159_2021_1924679
crossref_primary_10_1186_s40780_023_00313_x
crossref_primary_10_1080_17843286_2023_2197314
crossref_primary_10_1080_22221751_2022_2113746
crossref_primary_10_3389_fmicb_2024_1357680
crossref_primary_10_3390_antibiotics11101404
crossref_primary_10_1016_j_bjid_2022_102721
crossref_primary_10_1016_j_diagmicrobio_2024_116247
crossref_primary_10_1080_23744235_2023_2261538
crossref_primary_10_1002_mlf2_12019
crossref_primary_10_3390_diagnostics12010208
crossref_primary_10_3390_antibiotics13060533
crossref_primary_10_1093_jac_dkab449
crossref_primary_10_3390_mi13060941
crossref_primary_10_1093_jac_dkac058
crossref_primary_10_1093_jac_dkaa554
crossref_primary_10_1007_s10096_022_04421_8
crossref_primary_10_1093_jac_dkad188
crossref_primary_10_1016_j_cmi_2021_09_011
crossref_primary_10_3390_antibiotics10101146
crossref_primary_10_1016_j_idnow_2022_09_002
crossref_primary_10_1093_cid_ciac952
crossref_primary_10_1093_jac_dkac092
crossref_primary_10_1111_apm_13346
crossref_primary_10_1128_jcm_00098_22
crossref_primary_10_3390_microorganisms10071377
crossref_primary_10_1016_j_diagmicrobio_2024_116335
crossref_primary_10_1093_jac_dkac003
crossref_primary_10_1016_j_medine_2022_05_003
crossref_primary_10_1093_jac_dkad332
crossref_primary_10_1128_Spectrum_00801_21
crossref_primary_10_1016_j_cmi_2021_09_003
crossref_primary_10_1093_jac_dkab273
crossref_primary_10_1093_jac_dkac441
crossref_primary_10_1128_spectrum_00638_24
crossref_primary_10_1016_j_diagmicrobio_2023_115950
crossref_primary_10_3389_fonc_2022_897479
crossref_primary_10_1089_mdr_2022_0012
crossref_primary_10_1128_spectrum_05001_22
crossref_primary_10_1016_j_eimc_2023_12_008
crossref_primary_10_1128_jcm_02559_21
crossref_primary_10_1099_jmm_0_001638
crossref_primary_10_1016_j_eimce_2023_12_002
crossref_primary_10_3390_antibiotics13030246
crossref_primary_10_1007_s00216_022_04449_x
crossref_primary_10_1097_INF_0000000000003155
crossref_primary_10_1128_jcm_00898_22
crossref_primary_10_1016_j_jgar_2023_08_017
crossref_primary_10_1093_jac_dkad406
crossref_primary_10_1007_s10096_023_04611_y
crossref_primary_10_1128_jcm_03007_20
crossref_primary_10_1093_jac_dkae219
crossref_primary_10_1007_s10096_023_04556_2
crossref_primary_10_3390_antibiotics12010034
crossref_primary_10_1007_s00284_024_03768_9
crossref_primary_10_1093_jac_dkab026
crossref_primary_10_2147_IDR_S393932
crossref_primary_10_1016_j_medin_2022_01_004
crossref_primary_10_1016_j_ejmech_2023_115896
crossref_primary_10_1099_jmm_0_001672
crossref_primary_10_3390_antibiotics10121511
crossref_primary_10_1093_jac_dkad041
Cites_doi 10.1177/2472630317727519
10.1093/jac/dkv145
10.1128/JCM.00913-18
10.1016/j.ijantimicag.2016.12.019
10.1128/CMR.00047-06
10.1128/JCM.01678-17
10.1038/s41598-017-02009-3
10.1111/1469-0691.12373
10.1111/1469-0691.12729
10.1371/journal.pone.0160537
10.1007/s10096-020-03846-3
10.1093/jac/dkg312
10.1128/JCM.01856-06
10.1007/s10096-020-03815-w
10.2807/1560-7917.ES2015.20.2.21008
10.1007/s10096-019-03640-w
10.1093/jac/dku094
10.1371/journal.pone.0156299
10.1038/s41579-018-0098-9
10.1128/JCM.20.3.473-477.1984
10.1099/jmm.0.000997
10.5858/arpa.2012-0651-OA
10.1136/jclinpath-2015-203436
10.1128/JCM.02264-16
10.1128/JCM.01999-17
10.1016/j.cmi.2018.05.021
10.1016/j.diagmicrobio.2018.07.016
10.1093/jac/dkz548
10.1086/590062
10.1093/cid/ciw649
10.1128/JCM.42.4.1466-1470.2004
ContentType Journal Article
Contributor Zapaniotis, Nikolaos
Cortes-Cuevas, Jose Luis
Frykfeldt, Karin
Hill, Anna
Fröding, Inga
Haug Hänsgen, Siri
Hagström, Susanna
Rydberg, Johan
Helgason, Kristjan Orri
Skarstedt, Marita
Pitart, Cristina
Tofteland, Ståle
Rådberg, Gunilla
Spiliopoulou, Iris
Granström, Roger
Egea, Pilar
Kolstad, Helge
Fossum Mjøen, Andreas
Lia, Astrid
Marco, Francesco
Rodriguez, Lized
Haukeland, Torunn Sneide
Lo Cascio, Giuliana
Smekal, Anna-Karin
Vennberg, Lisa
Akyar, Isin
Harbak, Berit
Petropoulos, Evangelos Alexandros
Lidén, Ulrika
Brazil, Jean
Hartzen, Susanne Hartvig
Ivarsson, Carina Lindqvist
Kolonitsiou, Fevronia
Boyer, Pierre H
Machuca, Jesus
Kamenska, Nina
Hansen, Dennis Schrøder
Ininbergs, Karolina
Dammström, Magdalena
Kaygisiz, Ayse Nur Sari
Guennigsman, Brian
Heyman, Gabriel
Sergejev, Adam
Gammelsrud, Karianne Wiger
Agergaard, Harlotte Nielsen
Manninen, Raija
Michalsen, Nina
Kellokumpu, Pirkko-Liisa
Salka, Waël
Brekken, Anita Løvås
Gülşen Altınkanat, Gelmez
Dzajic, Esad
Granlund, Kerstin
Jalal, Shah
Pätäri-Sampo, Anu
Corneliusson, Maria
Rasigade, Jean-
Contributor_xml – sequence: 1
  givenname: Esad
  surname: Dzajic
  fullname: Dzajic, Esad
– sequence: 2
  givenname: Dennis Schrøder
  surname: Hansen
  fullname: Hansen, Dennis Schrøder
– sequence: 3
  givenname: Harlotte Nielsen
  surname: Agergaard
  fullname: Agergaard, Harlotte Nielsen
– sequence: 4
  givenname: Anu
  surname: Pätäri-Sampo
  fullname: Pätäri-Sampo, Anu
– sequence: 5
  givenname: Raija
  surname: Manninen
  fullname: Manninen, Raija
– sequence: 6
  givenname: Juha O
  surname: Grönroos
  fullname: Grönroos, Juha O
– sequence: 7
  givenname: Jean-Philippe
  surname: Rasigade
  fullname: Rasigade, Jean-Philippe
– sequence: 8
  givenname: Waël
  surname: Salka
  fullname: Salka, Waël
– sequence: 9
  givenname: Pierre H
  surname: Boyer
  fullname: Boyer, Pierre H
– sequence: 10
  givenname: Evangelia
  surname: Lebessi
  fullname: Lebessi, Evangelia
– sequence: 11
  givenname: Nikolaos
  surname: Zapaniotis
  fullname: Zapaniotis, Nikolaos
– sequence: 12
  givenname: Efi
  surname: Petinaki
  fullname: Petinaki, Efi
– sequence: 13
  givenname: Iris
  surname: Spiliopoulou
  fullname: Spiliopoulou, Iris
– sequence: 14
  givenname: Fevronia
  surname: Kolonitsiou
  fullname: Kolonitsiou, Fevronia
– sequence: 15
  givenname: Kristjan Orri
  surname: Helgason
  fullname: Helgason, Kristjan Orri
– sequence: 16
  givenname: Jean
  surname: Brazil
  fullname: Brazil, Jean
– sequence: 17
  givenname: Eleonora
  surname: Riccobono
  fullname: Riccobono, Eleonora
– sequence: 18
  givenname: Giuliana
  surname: Lo Cascio
  fullname: Lo Cascio, Giuliana
– sequence: 19
  givenname: Laura
  surname: Maccacaro
  fullname: Maccacaro, Laura
– sequence: 20
  givenname: Helge
  surname: Kolstad
  fullname: Kolstad, Helge
– sequence: 21
  givenname: Torunn Sneide
  surname: Haukeland
  fullname: Haukeland, Torunn Sneide
– sequence: 22
  givenname: Pirkko-Liisa
  surname: Kellokumpu
  fullname: Kellokumpu, Pirkko-Liisa
– sequence: 23
  givenname: Andreas
  surname: Fossum Mjøen
  fullname: Fossum Mjøen, Andreas
– sequence: 24
  givenname: Ståle
  surname: Tofteland
  fullname: Tofteland, Ståle
– sequence: 25
  givenname: Berit
  surname: Harbak
  fullname: Harbak, Berit
– sequence: 26
  givenname: Susanne Hartvig
  surname: Hartzen
  fullname: Hartzen, Susanne Hartvig
– sequence: 27
  givenname: Siri
  surname: Haug Hänsgen
  fullname: Haug Hänsgen, Siri
– sequence: 28
  givenname: Karianne Wiger
  surname: Gammelsrud
  fullname: Gammelsrud, Karianne Wiger
– sequence: 29
  givenname: Unni
  surname: Skolbekken
  fullname: Skolbekken, Unni
– sequence: 30
  givenname: Nina
  surname: Michalsen
  fullname: Michalsen, Nina
– sequence: 31
  givenname: Anita Løvås
  surname: Brekken
  fullname: Brekken, Anita Løvås
– sequence: 32
  givenname: Bodil
  surname: Pedersen
  fullname: Pedersen, Bodil
– sequence: 33
  givenname: Brian
  surname: Guennigsman
  fullname: Guennigsman, Brian
– sequence: 34
  givenname: Astrid
  surname: Lia
  fullname: Lia, Astrid
– sequence: 35
  givenname: Ann Kristin
  surname: Berg
  fullname: Berg, Ann Kristin
– sequence: 36
  givenname: Francesco
  surname: Marco
  fullname: Marco, Francesco
– sequence: 37
  givenname: Cristina
  surname: Pitart
  fullname: Pitart, Cristina
– sequence: 38
  givenname: Pilar
  surname: Egea
  fullname: Egea, Pilar
– sequence: 39
  givenname: Jose Luis
  surname: Cortes-Cuevas
  fullname: Cortes-Cuevas, Jose Luis
– sequence: 40
  givenname: Jesus
  surname: Machuca
  fullname: Machuca, Jesus
– sequence: 41
  givenname: Martin
  surname: Wietzke
  fullname: Wietzke, Martin
– sequence: 42
  givenname: Magdalena
  surname: Dammström
  fullname: Dammström, Magdalena
– sequence: 43
  givenname: Roger
  surname: Granström
  fullname: Granström, Roger
– sequence: 44
  givenname: Maria
  surname: Corneliusson
  fullname: Corneliusson, Maria
– sequence: 45
  givenname: Marita
  surname: Skarstedt
  fullname: Skarstedt, Marita
– sequence: 46
  givenname: Karin
  surname: Frykfeldt
  fullname: Frykfeldt, Karin
– sequence: 47
  givenname: Carina Lindqvist
  surname: Ivarsson
  fullname: Ivarsson, Carina Lindqvist
– sequence: 48
  givenname: Adam
  surname: Sergejev
  fullname: Sergejev, Adam
– sequence: 49
  givenname: Susanna
  surname: Hagström
  fullname: Hagström, Susanna
– sequence: 50
  givenname: Ulrika
  surname: Lidén
  fullname: Lidén, Ulrika
– sequence: 51
  givenname: Johan
  surname: Rydberg
  fullname: Rydberg, Johan
– sequence: 52
  givenname: Hanna
  surname: Ramström
  fullname: Ramström, Hanna
– sequence: 53
  givenname: Inga
  surname: Fröding
  fullname: Fröding, Inga
– sequence: 54
  givenname: Evangelos Alexandros
  surname: Petropoulos
  fullname: Petropoulos, Evangelos Alexandros
– sequence: 55
  givenname: Karolina
  surname: Ininbergs
  fullname: Ininbergs, Karolina
– sequence: 56
  givenname: Shah
  surname: Jalal
  fullname: Jalal, Shah
– sequence: 57
  givenname: Anna-Lena Sundqvist
  surname: Persson
  fullname: Persson, Anna-Lena Sundqvist
– sequence: 58
  givenname: Nina
  surname: Kamenska
  fullname: Kamenska, Nina
– sequence: 59
  givenname: Kerstin
  surname: Granlund
  fullname: Granlund, Kerstin
– sequence: 60
  givenname: Anna-Karin
  surname: Smekal
  fullname: Smekal, Anna-Karin
– sequence: 61
  givenname: Anna
  surname: Hill
  fullname: Hill, Anna
– sequence: 62
  givenname: Gunilla
  surname: Rådberg
  fullname: Rådberg, Gunilla
– sequence: 63
  givenname: Gabriel
  surname: Heyman
  fullname: Heyman, Gabriel
– sequence: 64
  givenname: Lized
  surname: Rodriguez
  fullname: Rodriguez, Lized
– sequence: 65
  givenname: Lisa
  surname: Vennberg
  fullname: Vennberg, Lisa
– sequence: 66
  givenname: Gülşen
  surname: Hazırolan
  fullname: Hazırolan, Gülşen
– sequence: 67
  givenname: Isin
  surname: Akyar
  fullname: Akyar, Isin
– sequence: 68
  givenname: Gelmez
  surname: Gülşen Altınkanat
  fullname: Gülşen Altınkanat, Gelmez
– sequence: 69
  givenname: Ayse Nur Sari
  surname: Kaygisiz
  fullname: Kaygisiz, Ayse Nur Sari
Copyright The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. 2020
The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. 2020
– notice: The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
CorporateAuthor RAST Study Group
the RAST Study Group
CorporateAuthor_xml – name: RAST Study Group
– name: the RAST Study Group
DBID TOX
NPM
AAYXX
CITATION
7X8
5PM
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
AABEP
D91
DOI 10.1093/jac/dkaa333
DatabaseName Oxford Journals Open Access Collection
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
SWEPUB Örebro universitet full text
SWEPUB Örebro universitet
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
EISSN 1460-2091
EndPage 3238
ExternalDocumentID oai_DiVA_org_oru_85102
oai_DiVA_org_liu_171968
10_1093_jac_dkaa333
32789506
10.1093/jac/dkaa333
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: FORSS-744451
GroupedDBID ---
-E4
.2P
.GJ
.I3
.XZ
.ZR
0R~
18M
1TH
29J
2WC
3O-
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6.Y
70D
AABZA
AACZT
AAJKP
AAJQQ
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAWDT
AAWTL
ABEUO
ABIXL
ABJNI
ABKDP
ABLJU
ABNHQ
ABNKS
ABPTD
ABQLI
ABQNK
ABQTQ
ABSAR
ABSMQ
ABWST
ABXVV
ABZBJ
ACCCW
ACFRR
ACGFO
ACGFS
ACIWK
ACMRT
ACPQN
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFIYH
AFOFC
AFRAH
AFSHK
AFXAL
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APJGH
APWMN
AQDSO
AQKUS
ASPBG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
BZKNY
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
ECGQY
EE~
EIHJH
EJD
EMOBN
ENERS
F5P
F9B
FECEO
FEDTE
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HH5
HVGLF
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
MBLQV
MHKGH
ML0
N9A
NGC
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBS
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RHF
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCURE
TEORI
TJX
TMA
TOX
TR2
UCJ
VH1
W8F
WOQ
X7H
Y6R
YAYTL
YKOAZ
YXANX
ZGI
ZKX
ZXP
~91
~A~
NPM
AAYXX
CITATION
7X8
5PM
ABXSW
ADTPV
AEHUL
AOWAS
D8T
DG8
ZZAVC
AABEP
D91
ID FETCH-LOGICAL-c487t-9f6d9dbe9190584d950c93e5dc418da733153bf67a56a1809eeb38aef7f772093
IEDL.DBID TOX
ISSN 0305-7453
1460-2091
IngestDate Tue Oct 01 22:53:05 EDT 2024
Tue Oct 01 22:48:14 EDT 2024
Tue Sep 17 20:41:32 EDT 2024
Thu Oct 24 23:37:09 EDT 2024
Thu Sep 12 20:00:32 EDT 2024
Wed Oct 16 00:44:00 EDT 2024
Wed Aug 28 03:16:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-9f6d9dbe9190584d950c93e5dc418da733153bf67a56a1809eeb38aef7f772093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Other members of the RAST Study Group are listed in the Acknowledgements section.
OpenAccessLink https://dx.doi.org/10.1093/jac/dkaa333
PMID 32789506
PQID 2434058116
PQPubID 23479
PageCount 9
ParticipantIDs swepub_primary_oai_DiVA_org_oru_85102
swepub_primary_oai_DiVA_org_liu_171968
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7566356
proquest_miscellaneous_2434058116
crossref_primary_10_1093_jac_dkaa333
pubmed_primary_32789506
oup_primary_10_1093_jac_dkaa333
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of antimicrobial chemotherapy
PublicationTitleAlternate J Antimicrob Chemother
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Inglis (2020101604552311100_dkaa333-B1) 2019; 68
(2020101604552311100_dkaa333-B18) 2018
(2020101604552311100_dkaa333-B4) 2019
Doern (2020101604552311100_dkaa333-B2) 2018; 56
Mulroney (2020101604552311100_dkaa333-B22) 2017; 7
Oviano (2020101604552311100_dkaa333-B24) 2014; 20
(2020101604552311100_dkaa333-B46) 2019
Verroken (2020101604552311100_dkaa333-B39) 2016; 11
Brown (2020101604552311100_dkaa333-B11) 2015; 20
Turnidge (2020101604552311100_dkaa333-B34) 2007; 20
Fitzgerald (2020101604552311100_dkaa333-B30) 2016; 69
(2020101604552311100_dkaa333-B13) 2019
Ahman (2020101604552311100_dkaa333-B10) 2020
Perez (2020101604552311100_dkaa333-B41) 2013; 137
Messacar (2020101604552311100_dkaa333-B43) 2017; 55
Jasuja (2020101604552311100_dkaa333-B45) 2020; 39
Zadka (2020101604552311100_dkaa333-B40) 2019; 38
Soo (2020101604552311100_dkaa333-B44) 2020; 39
(2020101604552311100_dkaa333-B20) 2018
Carvalhaes (2020101604552311100_dkaa333-B23) 2014; 69
2020101604552311100_dkaa333-B6
Kahlmeter (2020101604552311100_dkaa333-B33) 2003; 52
van Belkum (2020101604552311100_dkaa333-B8) 2019; 17
(2020101604552311100_dkaa333-B19) 2019
(2020101604552311100_dkaa333-B17) 2019
Timbrook (2020101604552311100_dkaa333-B42) 2017; 64
Matuschek (2020101604552311100_dkaa333-B15) 2014; 20
(2020101604552311100_dkaa333-B7) 2018
Idelevich (2020101604552311100_dkaa333-B25) 2018; 56
Funke (2020101604552311100_dkaa333-B29) 2004; 42
Li (2020101604552311100_dkaa333-B21) 2017; 22
(2020101604552311100_dkaa333-B14) 2018
Perillaud (2020101604552311100_dkaa333-B27) 2019; 93
(2020101604552311100_dkaa333-B37) 2020
van den Bijllaardt (2020101604552311100_dkaa333-B32) 2017; 49
(2020101604552311100_dkaa333-B16) 2017
Coyle (2020101604552311100_dkaa333-B26) 1984; 20
Verroken (2020101604552311100_dkaa333-B38) 2016; 11
Chandrasekaran (2020101604552311100_dkaa333-B31) 2018; 56
Paterson (2020101604552311100_dkaa333-B3) 2008; 47 Suppl 1
(2020101604552311100_dkaa333-B36) 2016
(2020101604552311100_dkaa333-B5) 2019
Ahman (2020101604552311100_dkaa333-B9) 2019; 25
Kahlmeter (2020101604552311100_dkaa333-B35) 2015; 70
Jonasson (2020101604552311100_dkaa333-B12) 2020; 75
Wellinghausen (2020101604552311100_dkaa333-B28) 2007; 45
References_xml – volume: 22
  start-page: 585
  year: 2017
  ident: 2020101604552311100_dkaa333-B21
  article-title: Emerging microtechnologies and automated systems for rapid bacterial identification and antibiotic susceptibility testing
  publication-title: SLAS Technol
  doi: 10.1177/2472630317727519
  contributor:
    fullname: Li
– volume: 70
  start-page: 2427
  year: 2015
  ident: 2020101604552311100_dkaa333-B35
  article-title: The 2014 Garrod lecture: EUCAST—are we heading towards international agreement?
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkv145
  contributor:
    fullname: Kahlmeter
– year: 2019
  ident: 2020101604552311100_dkaa333-B4
– year: 2018
  ident: 2020101604552311100_dkaa333-B7
– volume: 56
  start-page: e00913
  year: 2018
  ident: 2020101604552311100_dkaa333-B25
  article-title: Rapid direct susceptibility testing from positive blood cultures by the matrix-assisted laser desorption ionization-time of flight mass spectrometry-based direct-on-target microdroplet growth assay
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.00913-18
  contributor:
    fullname: Idelevich
– volume: 49
  start-page: 631
  year: 2017
  ident: 2020101604552311100_dkaa333-B32
  article-title: Shortening the incubation time for antimicrobial susceptibility testing by disk diffusion for Enterobacteriaceae: how short can it be and are the results accurate?
  publication-title: Int J Antimicrob Agents
  doi: 10.1016/j.ijantimicag.2016.12.019
  contributor:
    fullname: van den Bijllaardt
– volume: 20
  start-page: 391
  year: 2007
  ident: 2020101604552311100_dkaa333-B34
  article-title: Setting and revising antibacterial susceptibility breakpoints
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.00047-06
  contributor:
    fullname: Turnidge
– volume: 56
  start-page: e01678
  year: 2018
  ident: 2020101604552311100_dkaa333-B31
  article-title: Direct-from-blood-culture disk diffusion to determine antimicrobial susceptibility of Gram-negative bacteria: preliminary report from the Clinical and Laboratory Standards Institute Methods Development and Standardization Working Group
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01678-17
  contributor:
    fullname: Chandrasekaran
– volume: 7
  start-page: 1903
  year: 2017
  ident: 2020101604552311100_dkaa333-B22
  article-title: Rapid susceptibility profiling of carbapenem-resistant Klebsiella pneumoniae
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-02009-3
  contributor:
    fullname: Mulroney
– year: 2018
  ident: 2020101604552311100_dkaa333-B18
– volume: 20
  start-page: O255
  year: 2014
  ident: 2020101604552311100_dkaa333-B15
  article-title: Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories
  publication-title: Clin Microbiol Infect
  doi: 10.1111/1469-0691.12373
  contributor:
    fullname: Matuschek
– volume: 20
  start-page: 1146
  year: 2014
  ident: 2020101604552311100_dkaa333-B24
  article-title: Rapid detection of enterobacteriaceae producing extended spectrum β-lactamases directly from positive blood cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry
  publication-title: Clin Microbiol Infect
  doi: 10.1111/1469-0691.12729
  contributor:
    fullname: Oviano
– year: 2018
  ident: 2020101604552311100_dkaa333-B20
– volume: 11
  start-page: e0160537
  year: 2016
  ident: 2020101604552311100_dkaa333-B39
  article-title: Correction: Clinical impact of MALDI-TOF MS identification and rapid susceptibility testing on adequate antimicrobial treatment in sepsis with positive blood cultures
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0160537
  contributor:
    fullname: Verroken
– volume: 39
  start-page: 1305
  year: 2020
  ident: 2020101604552311100_dkaa333-B45
  article-title: Evaluation of EUCAST rapid antimicrobial susceptibility testing (RAST) for positive blood cultures in clinical practice using a total lab automation
  publication-title: Eur J Clin Microbiol Infect Dis
  doi: 10.1007/s10096-020-03846-3
  contributor:
    fullname: Jasuja
– year: 2017
  ident: 2020101604552311100_dkaa333-B16
– volume: 52
  start-page: 145
  year: 2003
  ident: 2020101604552311100_dkaa333-B33
  article-title: European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkg312
  contributor:
    fullname: Kahlmeter
– volume: 45
  start-page: 789
  year: 2007
  ident: 2020101604552311100_dkaa333-B28
  article-title: Evaluation of the Merlin MICRONAUT system for rapid direct susceptibility testing of gram-positive cocci and gram-negative bacilli from positive blood cultures
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01856-06
  contributor:
    fullname: Wellinghausen
– volume: 39
  start-page: 993
  year: 2020
  ident: 2020101604552311100_dkaa333-B44
  article-title: Evaluation of EUCAST rapid antimicrobial susceptibility testing (RAST) directly from blood culture bottles
  publication-title: Eur J Clin Microbiol Infect Dis
  doi: 10.1007/s10096-020-03815-w
  contributor:
    fullname: Soo
– year: 2019
  ident: 2020101604552311100_dkaa333-B46
– year: 2018
  ident: 2020101604552311100_dkaa333-B14
– volume: 20
  start-page: 21008
  year: 2015
  ident: 2020101604552311100_dkaa333-B11
  article-title: Widespread implementation of EUCAST breakpoints for antibacterial susceptibility testing in Europe
  publication-title: Euro Surveill
  doi: 10.2807/1560-7917.ES2015.20.2.21008
  contributor:
    fullname: Brown
– year: 2020
  ident: 2020101604552311100_dkaa333-B37
– volume: 38
  start-page: 2053
  year: 2019
  ident: 2020101604552311100_dkaa333-B40
  article-title: The implementation of rapid microbial identification via MALDI-ToF reduces mortality in gram-negative but not gram-positive bacteremia
  publication-title: Eur J Clin Microbiol Infect Dis
  doi: 10.1007/s10096-019-03640-w
  contributor:
    fullname: Zadka
– year: 2016
  ident: 2020101604552311100_dkaa333-B36
– volume: 69
  start-page: 2132
  year: 2014
  ident: 2020101604552311100_dkaa333-B23
  article-title: Detection of carbapenemase activity directly from blood culture vials using MALDI-TOF MS: a quick answer for the right decision
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dku094
  contributor:
    fullname: Carvalhaes
– volume: 11
  start-page: e0156299
  year: 2016
  ident: 2020101604552311100_dkaa333-B38
  article-title: Clinical impact of MALDI-TOF MS identification and rapid susceptibility testing on adequate antimicrobial treatment in sepsis with positive blood cultures
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0156299
  contributor:
    fullname: Verroken
– year: 2019
  ident: 2020101604552311100_dkaa333-B17
– volume: 17
  start-page: 51
  year: 2019
  ident: 2020101604552311100_dkaa333-B8
  article-title: Developmental roadmap for antimicrobial susceptibility testing systems
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-018-0098-9
  contributor:
    fullname: van Belkum
– volume: 20
  start-page: 473
  year: 1984
  ident: 2020101604552311100_dkaa333-B26
  article-title: Rapid antimicrobial susceptibility testing of isolates from blood cultures by direct inoculation and early reading of disk diffusion tests
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.20.3.473-477.1984
  contributor:
    fullname: Coyle
– volume: 68
  start-page: 973
  year: 2019
  ident: 2020101604552311100_dkaa333-B1
  article-title: Rapid antimicrobial susceptibility tests for sepsis; the road ahead
  publication-title: J Med Microbiol
  doi: 10.1099/jmm.0.000997
  contributor:
    fullname: Inglis
– year: 2019
  ident: 2020101604552311100_dkaa333-B13
– volume: 137
  start-page: 1247
  year: 2013
  ident: 2020101604552311100_dkaa333-B41
  article-title: Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs
  publication-title: Arch Pathol Lab Med
  doi: 10.5858/arpa.2012-0651-OA
  contributor:
    fullname: Perez
– volume: 69
  start-page: 1025
  year: 2016
  ident: 2020101604552311100_dkaa333-B30
  article-title: Rapid identification and antimicrobial susceptibility testing of positive blood cultures using MALDI-TOF MS and a modification of the standardised disc diffusion test: a pilot study
  publication-title: J Clin Pathol
  doi: 10.1136/jclinpath-2015-203436
  contributor:
    fullname: Fitzgerald
– volume: 55
  start-page: 715
  year: 2017
  ident: 2020101604552311100_dkaa333-B43
  article-title: Implementation of rapid molecular infectious disease diagnostics: the role of diagnostic and antimicrobial stewardship
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.02264-16
  contributor:
    fullname: Messacar
– volume: 56
  start-page: e01999
  year: 2018
  ident: 2020101604552311100_dkaa333-B2
  article-title: The slow march toward rapid phenotypic antimicrobial susceptibility testing: are we there yet?
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01999-17
  contributor:
    fullname: Doern
– volume: 25
  start-page: 346
  year: 2019
  ident: 2020101604552311100_dkaa333-B9
  article-title: The quality of antimicrobial discs from nine manufacturers—EUCAST evaluations in 2014 and 2017
  publication-title: Clin Microbiol Infect
  doi: 10.1016/j.cmi.2018.05.021
  contributor:
    fullname: Ahman
– year: 2020
  ident: 2020101604552311100_dkaa333-B10
  article-title: EUCAST evaluation of 21 brands of Mueller-Hinton dehydrated media for disk diffusion testing
  publication-title: Clin Microbiol Infect
  contributor:
    fullname: Ahman
– ident: 2020101604552311100_dkaa333-B6
– volume: 93
  start-page: 14
  year: 2019
  ident: 2020101604552311100_dkaa333-B27
  article-title: Prospective evaluation of rapid antimicrobial susceptibility testing by disk diffusion on Mueller-Hinton rapid-SIR directly on blood cultures
  publication-title: Diagn Microbiol Infect Dis
  doi: 10.1016/j.diagmicrobio.2018.07.016
  contributor:
    fullname: Perillaud
– volume: 75
  start-page: 968
  year: 2020
  ident: 2020101604552311100_dkaa333-B12
  article-title: The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkz548
  contributor:
    fullname: Jonasson
– year: 2019
  ident: 2020101604552311100_dkaa333-B5
– volume: 47 Suppl 1
  start-page: S14
  year: 2008
  ident: 2020101604552311100_dkaa333-B3
  article-title: Impact of antibiotic resistance in gram-negative bacilli on empirical and definitive antibiotic therapy
  publication-title: Clin Infect Dis
  doi: 10.1086/590062
  contributor:
    fullname: Paterson
– volume: 64
  start-page: 15
  year: 2017
  ident: 2020101604552311100_dkaa333-B42
  article-title: The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciw649
  contributor:
    fullname: Timbrook
– year: 2019
  ident: 2020101604552311100_dkaa333-B19
– volume: 42
  start-page: 1466
  year: 2004
  ident: 2020101604552311100_dkaa333-B29
  article-title: Use of the BD PHOENIX Automated Microbiology System for direct identification and susceptibility testing of gram-negative rods from positive blood cultures in a three-phase trial
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.42.4.1466-1470.2004
  contributor:
    fullname: Funke
SSID ssj0006568
Score 2.6337132
Snippet Abstract Objectives When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment...
When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The...
OBJECTIVESWhen bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of...
Objectives: When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of...
OBJECTIVES: When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of...
SourceID swepub
pubmedcentral
proquest
crossref
pubmed
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3230
SubjectTerms Original Research
Title EUCAST rapid antimicrobial susceptibility testing (RAST) in blood cultures: validation in 55 European laboratories
URI https://www.ncbi.nlm.nih.gov/pubmed/32789506
https://search.proquest.com/docview/2434058116
https://pubmed.ncbi.nlm.nih.gov/PMC7566356
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171968
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-85102
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bT9swFLYmHiZepo3BVsaYkaDaJCKaOr7xVnERA7GhrZ36ZjmxA9klRU3z0H_PsZ0Wwib27GNL8Xdsfyc-5zNCu8TFW8RJztrcRMCIeSQzQSNrZK45SRPmdbovv7CzUXI-puMmQbb6xxW-JAc_dXZgfmlNiBP1dIJo4LbDr-PlhstCxZtz3YgnlDRleI_6tg6eVjHbA075d2pkS0DUHzqnL9GLhi3iQYD3FXpmyzX0_LK5D19D3augPD3fx8P7QqpqH3fx1b0m9fw1mp6MjgbfhxhMCoNhNos_hZdggtGruvK5LT5Ndo5nTnejvMYfv0GHT7gosU9ux0Gjw1aHGJyzCE8xuVZK8eKXPm5cauLi73U0Oj0ZHp1FzXMLUQYYzSKZMyNNaiVwBKAlRtJeJomlJktiYbR73JGSNGdcU6ad7JeFQFxom_McKDrM9gZaKSelfYuwFUZIHsd5X5hESJpaYSn4iuxZJhOWd9DuAgt1G1Q1VLgNJwogUw1kHfQBcHraYmeBoYJ14S47dGkndaX6CQEuKuKYddCbgOlyIOLKf2kPWngL7aWB09xut5TFjdfe5tRRNOjZDX7R6nJc_BgocF31u6hVzGFzEx2095ThZFor4Ly9_uZ_P_UdWu27WN_XQW6hldm0tu-BEM3SbQgFPl9s-0VxB8v0DMQ
link.rule.ids 230,315,783,787,888,1607,27936,27937
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EUCAST+rapid+antimicrobial+susceptibility+testing+%28RAST%29+in+blood+cultures%3A+validation+in+55+European+laboratories&rft.jtitle=Journal+of+antimicrobial+chemotherapy&rft.au=%C3%85kerlund%2C+Anna&rft.au=Jonasson%2C+Emma&rft.au=Matuschek%2C+Erika&rft.au=Serrander%2C+Lena&rft.date=2020-11-01&rft.issn=0305-7453&rft.volume=75&rft.issue=11&rft.spage=3230&rft_id=info:doi/10.1093%2Fjac%2Fdkaa333&rft.externalDocID=oai_DiVA_org_liu_171968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7453&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7453&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7453&client=summon