EUCAST rapid antimicrobial susceptibility testing (RAST) in blood cultures: validation in 55 European laboratories
Abstract Objectives When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The EUCAST RAST method, directly from positive blood cultures, was validated in a multi-laboratory study in Europe. Methods RAST...
Saved in:
Published in | Journal of antimicrobial chemotherapy Vol. 75; no. 11; pp. 3230 - 3238 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Objectives
When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The EUCAST RAST method, directly from positive blood cultures, was validated in a multi-laboratory study in Europe.
Methods
RAST was performed in 40 laboratories in northern Europe (NE) and 15 in southern Europe (SE) from clinical blood cultures positive for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus or Streptococcus pneumoniae. Categorical results at 4, 6 and 8 h of incubation were compared with results for EUCAST standard 16–20 h disc diffusion. The method, preliminary breakpoints and the performance of the laboratories were evaluated.
Results
The total number of isolates was 833/318 in NE/SE. The number of zone diameters that could be read (88%, 96% and 99%) and interpreted (70%, 81% and 85%) increased with incubation time (4, 6 and 8 h). The categorical agreement was acceptable, with total error rates in NE/SE of 2.4%/4.9% at 4 h, 1.1%/3.5% at 6 h and 1.1%/3.3% at 8 h. False susceptibility at 4, 6 and 8 h of incubation was below 0.3% and 1.1% in NE and SE, respectively, and the corresponding percentages for false resistance were below 1.9% and 2.8%. After fine-tuning breakpoints, more zones could be interpreted (73%, 89% and 93%), with only marginally affected error rates.
Conclusions
The EUCAST RAST method can be implemented in routine laboratories without major investments. It provides reliable antimicrobial susceptibility testing results for relevant bloodstream infection pathogens after 4–6 h of incubation. |
---|---|
AbstractList | Objectives: When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The EUCAST RAST method, directly from positive blood cultures, was validated in a multi-Laboratory study in Europe. Methods: RAST was performed in 40 Laboratories in northern Europe (NE) and 15 in southern Europe (SE) from clinical blood cultures positive for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus or Streptococcus pneumoniae. Categorical results at 4, 6 and 8 h of incubation were compared with results for EUCAST standard 16-20 h disc diffusion. The method, preliminary breakpoints and the performance of the Laboratories were evaluated. Results: The total number of isolates was 833/318 in NE/SE. The number of zone diameters that could be read (88%, 96% and 99%) and interpreted (70%, 81% and 85%) increased with incubation time (4, 6 and 8 h). The categorical agreement was acceptable, with total error rates in NE/SE of 2.4%/4.9% at 4 h, 1.1%/3.5% at 6 h and 1.1%/3.3% at 8 h. False susceptibility at 4, 6 and 8 h of incubation was below 0.3% and 1.1% in NE and SE, respectively, and the corresponding percentages for false resistance were below 1.9% and 2.8%. After fine-tuning breakpoints, more zones could be interpreted (73%, 89% and 93%), with only marginally affected error rates. Conclusions: The EUCAST RAST method can be implemented in routine Laboratories without major investments. It provides reliable antimicrobial susceptibility testing results for relevant bloodstream infection pathogens after 4-6 h of incubation. OBJECTIVESWhen bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The EUCAST RAST method, directly from positive blood cultures, was validated in a multi-laboratory study in Europe.METHODSRAST was performed in 40 laboratories in northern Europe (NE) and 15 in southern Europe (SE) from clinical blood cultures positive for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus or Streptococcus pneumoniae. Categorical results at 4, 6 and 8 h of incubation were compared with results for EUCAST standard 16-20 h disc diffusion. The method, preliminary breakpoints and the performance of the laboratories were evaluated.RESULTSThe total number of isolates was 833/318 in NE/SE. The number of zone diameters that could be read (88%, 96% and 99%) and interpreted (70%, 81% and 85%) increased with incubation time (4, 6 and 8 h). The categorical agreement was acceptable, with total error rates in NE/SE of 2.4%/4.9% at 4 h, 1.1%/3.5% at 6 h and 1.1%/3.3% at 8 h. False susceptibility at 4, 6 and 8 h of incubation was below 0.3% and 1.1% in NE and SE, respectively, and the corresponding percentages for false resistance were below 1.9% and 2.8%. After fine-tuning breakpoints, more zones could be interpreted (73%, 89% and 93%), with only marginally affected error rates.CONCLUSIONSThe EUCAST RAST method can be implemented in routine laboratories without major investments. It provides reliable antimicrobial susceptibility testing results for relevant bloodstream infection pathogens after 4-6 h of incubation. When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The EUCAST RAST method, directly from positive blood cultures, was validated in a multi-laboratory study in Europe. RAST was performed in 40 laboratories in northern Europe (NE) and 15 in southern Europe (SE) from clinical blood cultures positive for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus or Streptococcus pneumoniae. Categorical results at 4, 6 and 8 h of incubation were compared with results for EUCAST standard 16-20 h disc diffusion. The method, preliminary breakpoints and the performance of the laboratories were evaluated. The total number of isolates was 833/318 in NE/SE. The number of zone diameters that could be read (88%, 96% and 99%) and interpreted (70%, 81% and 85%) increased with incubation time (4, 6 and 8 h). The categorical agreement was acceptable, with total error rates in NE/SE of 2.4%/4.9% at 4 h, 1.1%/3.5% at 6 h and 1.1%/3.3% at 8 h. False susceptibility at 4, 6 and 8 h of incubation was below 0.3% and 1.1% in NE and SE, respectively, and the corresponding percentages for false resistance were below 1.9% and 2.8%. After fine-tuning breakpoints, more zones could be interpreted (73%, 89% and 93%), with only marginally affected error rates. The EUCAST RAST method can be implemented in routine laboratories without major investments. It provides reliable antimicrobial susceptibility testing results for relevant bloodstream infection pathogens after 4-6 h of incubation. Abstract Objectives When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The EUCAST RAST method, directly from positive blood cultures, was validated in a multi-laboratory study in Europe. Methods RAST was performed in 40 laboratories in northern Europe (NE) and 15 in southern Europe (SE) from clinical blood cultures positive for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus or Streptococcus pneumoniae. Categorical results at 4, 6 and 8 h of incubation were compared with results for EUCAST standard 16–20 h disc diffusion. The method, preliminary breakpoints and the performance of the laboratories were evaluated. Results The total number of isolates was 833/318 in NE/SE. The number of zone diameters that could be read (88%, 96% and 99%) and interpreted (70%, 81% and 85%) increased with incubation time (4, 6 and 8 h). The categorical agreement was acceptable, with total error rates in NE/SE of 2.4%/4.9% at 4 h, 1.1%/3.5% at 6 h and 1.1%/3.3% at 8 h. False susceptibility at 4, 6 and 8 h of incubation was below 0.3% and 1.1% in NE and SE, respectively, and the corresponding percentages for false resistance were below 1.9% and 2.8%. After fine-tuning breakpoints, more zones could be interpreted (73%, 89% and 93%), with only marginally affected error rates. Conclusions The EUCAST RAST method can be implemented in routine laboratories without major investments. It provides reliable antimicrobial susceptibility testing results for relevant bloodstream infection pathogens after 4–6 h of incubation. OBJECTIVES: When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The EUCAST RAST method, directly from positive blood cultures, was validated in a multi-laboratory study in Europe. METHODS: RAST was performed in 40 laboratories in northern Europe (NE) and 15 in southern Europe (SE) from clinical blood cultures positive for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus or Streptococcus pneumoniae. Categorical results at 4, 6 and 8 h of incubation were compared with results for EUCAST standard 16-20 h disc diffusion. The method, preliminary breakpoints and the performance of the laboratories were evaluated. RESULTS: The total number of isolates was 833/318 in NE/SE. The number of zone diameters that could be read (88%, 96% and 99%) and interpreted (70%, 81% and 85%) increased with incubation time (4, 6 and 8 h). The categorical agreement was acceptable, with total error rates in NE/SE of 2.4%/4.9% at 4 h, 1.1%/3.5% at 6 h and 1.1%/3.3% at 8 h. False susceptibility at 4, 6 and 8 h of incubation was below 0.3% and 1.1% in NE and SE, respectively, and the corresponding percentages for false resistance were below 1.9% and 2.8%. After fine-tuning breakpoints, more zones could be interpreted (73%, 89% and 93%), with only marginally affected error rates. CONCLUSIONS: The EUCAST RAST method can be implemented in routine laboratories without major investments. It provides reliable antimicrobial susceptibility testing results for relevant bloodstream infection pathogens after 4-6 h of incubation. |
Author | Matuschek, Erika Åkerlund, Anna Serrander, Lena Jonasson, Emma Kahlmeter, Gunnar Sundqvist, Martin |
AuthorAffiliation | d2 Department of Clinical and Experimental Medicine, Linköping University , Linköping, Sweden d5 EUCAST Development Laboratory , Växjö, Sweden d6 Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University , Örebro, Sweden d1 Division of Clinical Microbiology, County Hospital Ryhov , Jönköping, Sweden d3 Division of Clinical Microbiology, Linköping University Hospital , Linköping, Sweden d4 Department of Clinical Microbiology, Central Hospital , Växjö, Sweden |
AuthorAffiliation_xml | – name: d5 EUCAST Development Laboratory , Växjö, Sweden – name: d3 Division of Clinical Microbiology, Linköping University Hospital , Linköping, Sweden – name: d6 Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University , Örebro, Sweden – name: d4 Department of Clinical Microbiology, Central Hospital , Växjö, Sweden – name: d1 Division of Clinical Microbiology, County Hospital Ryhov , Jönköping, Sweden – name: d2 Department of Clinical and Experimental Medicine, Linköping University , Linköping, Sweden |
Author_xml | – sequence: 1 givenname: Anna surname: Åkerlund fullname: Åkerlund, Anna email: anna.akerlund@rjl.se organization: Division of Clinical Microbiology, County Hospital Ryhov, Jönköping, Sweden – sequence: 2 givenname: Emma surname: Jonasson fullname: Jonasson, Emma organization: Department of Clinical Microbiology, Central Hospital, Växjö, Sweden – sequence: 3 givenname: Erika surname: Matuschek fullname: Matuschek, Erika organization: EUCAST Development Laboratory, Växjö, Sweden – sequence: 4 givenname: Lena surname: Serrander fullname: Serrander, Lena organization: Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden – sequence: 5 givenname: Martin surname: Sundqvist fullname: Sundqvist, Martin organization: Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden – sequence: 6 givenname: Gunnar surname: Kahlmeter fullname: Kahlmeter, Gunnar organization: Department of Clinical Microbiology, Central Hospital, Växjö, Sweden |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32789506$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171968$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-85102$$DView record from Swedish Publication Index |
BookMark | eNqFks9vFCEUx4mpsdvWk3fDydToWFgGGDyYbNbVmjRpoq1XwgzMSmVh5EdN_3vZ7Nq0Fz0QDu_zvjy-73sEDnzwBoAXGL3DSJCzGzWc6Z9KEUKegBluGWrmSOADMEME0Ya3lByCo5RuEEKMsu4ZOCRz3gmK2AzE1fVy8e0KRjVZDZXPdmOHGHqrHEwlDWbKtrfO5juYTcrWr-Hp19rwGloPexeChkNxuUST3sNb5axW2Qa_rVIKVyWGySgPnepDVDlEa9IJeDoql8zz_X0Mrj-trpbnzcXl5y_LxUUztB3PjRiZFro3AgtEu1bXeQdBDNVDizutOCGYkn5kXFGmcIeEMT3plBn5yHk1gByDtzvd9NtMpZdTtBsV72RQVn603xcyxHU9RXYUo3nFm__jzhaJORasq_yHHV_hjdGD8Tkq96jtccXbH3IdbiWnjBHKqsDpXiCGX6WaKze2Gu6c8iaUJOctaevPMd6ib3ZoXU1K0Yz3z2AktyGQNQRyH4JKv3w42T37d-sVeLUDQpn-qfQHe6W_TA |
CitedBy_id | crossref_primary_10_1016_j_ijmmb_2021_06_008 crossref_primary_10_61634_2782_3024_2023_12_82_93 crossref_primary_10_1016_j_idnow_2023_104668 crossref_primary_10_1128_jcm_00549_23 crossref_primary_10_1016_j_jgar_2023_07_001 crossref_primary_10_1128_jcm_02533_21 crossref_primary_10_1016_j_clinmicnews_2022_11_005 crossref_primary_10_3389_fmed_2021_635831 crossref_primary_10_1128_spectrum_04366_22 crossref_primary_10_1016_j_jiac_2023_06_016 crossref_primary_10_3389_fmicb_2021_707330 crossref_primary_10_1016_j_cmi_2022_05_021 crossref_primary_10_1097_QCO_0000000000000784 crossref_primary_10_1093_jacamr_dlad017 crossref_primary_10_1093_jac_dkae125 crossref_primary_10_1111_tid_14113 crossref_primary_10_3390_diagnostics13111849 crossref_primary_10_3389_fcimb_2022_807668 crossref_primary_10_1039_D2SD00138A crossref_primary_10_1093_jac_dkad272 crossref_primary_10_1080_14737159_2021_1924679 crossref_primary_10_1186_s40780_023_00313_x crossref_primary_10_1080_17843286_2023_2197314 crossref_primary_10_1080_22221751_2022_2113746 crossref_primary_10_3389_fmicb_2024_1357680 crossref_primary_10_3390_antibiotics11101404 crossref_primary_10_1016_j_bjid_2022_102721 crossref_primary_10_1016_j_diagmicrobio_2024_116247 crossref_primary_10_1080_23744235_2023_2261538 crossref_primary_10_1002_mlf2_12019 crossref_primary_10_3390_diagnostics12010208 crossref_primary_10_3390_antibiotics13060533 crossref_primary_10_1093_jac_dkab449 crossref_primary_10_3390_mi13060941 crossref_primary_10_1093_jac_dkac058 crossref_primary_10_1093_jac_dkaa554 crossref_primary_10_1007_s10096_022_04421_8 crossref_primary_10_1093_jac_dkad188 crossref_primary_10_1016_j_cmi_2021_09_011 crossref_primary_10_3390_antibiotics10101146 crossref_primary_10_1016_j_idnow_2022_09_002 crossref_primary_10_1093_cid_ciac952 crossref_primary_10_1093_jac_dkac092 crossref_primary_10_1111_apm_13346 crossref_primary_10_1128_jcm_00098_22 crossref_primary_10_3390_microorganisms10071377 crossref_primary_10_1016_j_diagmicrobio_2024_116335 crossref_primary_10_1093_jac_dkac003 crossref_primary_10_1016_j_medine_2022_05_003 crossref_primary_10_1093_jac_dkad332 crossref_primary_10_1128_Spectrum_00801_21 crossref_primary_10_1016_j_cmi_2021_09_003 crossref_primary_10_1093_jac_dkab273 crossref_primary_10_1093_jac_dkac441 crossref_primary_10_1128_spectrum_00638_24 crossref_primary_10_1016_j_diagmicrobio_2023_115950 crossref_primary_10_3389_fonc_2022_897479 crossref_primary_10_1089_mdr_2022_0012 crossref_primary_10_1128_spectrum_05001_22 crossref_primary_10_1016_j_eimc_2023_12_008 crossref_primary_10_1128_jcm_02559_21 crossref_primary_10_1099_jmm_0_001638 crossref_primary_10_1016_j_eimce_2023_12_002 crossref_primary_10_3390_antibiotics13030246 crossref_primary_10_1007_s00216_022_04449_x crossref_primary_10_1097_INF_0000000000003155 crossref_primary_10_1128_jcm_00898_22 crossref_primary_10_1016_j_jgar_2023_08_017 crossref_primary_10_1093_jac_dkad406 crossref_primary_10_1007_s10096_023_04611_y crossref_primary_10_1128_jcm_03007_20 crossref_primary_10_1093_jac_dkae219 crossref_primary_10_1007_s10096_023_04556_2 crossref_primary_10_3390_antibiotics12010034 crossref_primary_10_1007_s00284_024_03768_9 crossref_primary_10_1093_jac_dkab026 crossref_primary_10_2147_IDR_S393932 crossref_primary_10_1016_j_medin_2022_01_004 crossref_primary_10_1016_j_ejmech_2023_115896 crossref_primary_10_1099_jmm_0_001672 crossref_primary_10_3390_antibiotics10121511 crossref_primary_10_1093_jac_dkad041 |
Cites_doi | 10.1177/2472630317727519 10.1093/jac/dkv145 10.1128/JCM.00913-18 10.1016/j.ijantimicag.2016.12.019 10.1128/CMR.00047-06 10.1128/JCM.01678-17 10.1038/s41598-017-02009-3 10.1111/1469-0691.12373 10.1111/1469-0691.12729 10.1371/journal.pone.0160537 10.1007/s10096-020-03846-3 10.1093/jac/dkg312 10.1128/JCM.01856-06 10.1007/s10096-020-03815-w 10.2807/1560-7917.ES2015.20.2.21008 10.1007/s10096-019-03640-w 10.1093/jac/dku094 10.1371/journal.pone.0156299 10.1038/s41579-018-0098-9 10.1128/JCM.20.3.473-477.1984 10.1099/jmm.0.000997 10.5858/arpa.2012-0651-OA 10.1136/jclinpath-2015-203436 10.1128/JCM.02264-16 10.1128/JCM.01999-17 10.1016/j.cmi.2018.05.021 10.1016/j.diagmicrobio.2018.07.016 10.1093/jac/dkz548 10.1086/590062 10.1093/cid/ciw649 10.1128/JCM.42.4.1466-1470.2004 |
ContentType | Journal Article |
Contributor | Zapaniotis, Nikolaos Cortes-Cuevas, Jose Luis Frykfeldt, Karin Hill, Anna Fröding, Inga Haug Hänsgen, Siri Hagström, Susanna Rydberg, Johan Helgason, Kristjan Orri Skarstedt, Marita Pitart, Cristina Tofteland, Ståle Rådberg, Gunilla Spiliopoulou, Iris Granström, Roger Egea, Pilar Kolstad, Helge Fossum Mjøen, Andreas Lia, Astrid Marco, Francesco Rodriguez, Lized Haukeland, Torunn Sneide Lo Cascio, Giuliana Smekal, Anna-Karin Vennberg, Lisa Akyar, Isin Harbak, Berit Petropoulos, Evangelos Alexandros Lidén, Ulrika Brazil, Jean Hartzen, Susanne Hartvig Ivarsson, Carina Lindqvist Kolonitsiou, Fevronia Boyer, Pierre H Machuca, Jesus Kamenska, Nina Hansen, Dennis Schrøder Ininbergs, Karolina Dammström, Magdalena Kaygisiz, Ayse Nur Sari Guennigsman, Brian Heyman, Gabriel Sergejev, Adam Gammelsrud, Karianne Wiger Agergaard, Harlotte Nielsen Manninen, Raija Michalsen, Nina Kellokumpu, Pirkko-Liisa Salka, Waël Brekken, Anita Løvås Gülşen Altınkanat, Gelmez Dzajic, Esad Granlund, Kerstin Jalal, Shah Pätäri-Sampo, Anu Corneliusson, Maria Rasigade, Jean- |
Contributor_xml | – sequence: 1 givenname: Esad surname: Dzajic fullname: Dzajic, Esad – sequence: 2 givenname: Dennis Schrøder surname: Hansen fullname: Hansen, Dennis Schrøder – sequence: 3 givenname: Harlotte Nielsen surname: Agergaard fullname: Agergaard, Harlotte Nielsen – sequence: 4 givenname: Anu surname: Pätäri-Sampo fullname: Pätäri-Sampo, Anu – sequence: 5 givenname: Raija surname: Manninen fullname: Manninen, Raija – sequence: 6 givenname: Juha O surname: Grönroos fullname: Grönroos, Juha O – sequence: 7 givenname: Jean-Philippe surname: Rasigade fullname: Rasigade, Jean-Philippe – sequence: 8 givenname: Waël surname: Salka fullname: Salka, Waël – sequence: 9 givenname: Pierre H surname: Boyer fullname: Boyer, Pierre H – sequence: 10 givenname: Evangelia surname: Lebessi fullname: Lebessi, Evangelia – sequence: 11 givenname: Nikolaos surname: Zapaniotis fullname: Zapaniotis, Nikolaos – sequence: 12 givenname: Efi surname: Petinaki fullname: Petinaki, Efi – sequence: 13 givenname: Iris surname: Spiliopoulou fullname: Spiliopoulou, Iris – sequence: 14 givenname: Fevronia surname: Kolonitsiou fullname: Kolonitsiou, Fevronia – sequence: 15 givenname: Kristjan Orri surname: Helgason fullname: Helgason, Kristjan Orri – sequence: 16 givenname: Jean surname: Brazil fullname: Brazil, Jean – sequence: 17 givenname: Eleonora surname: Riccobono fullname: Riccobono, Eleonora – sequence: 18 givenname: Giuliana surname: Lo Cascio fullname: Lo Cascio, Giuliana – sequence: 19 givenname: Laura surname: Maccacaro fullname: Maccacaro, Laura – sequence: 20 givenname: Helge surname: Kolstad fullname: Kolstad, Helge – sequence: 21 givenname: Torunn Sneide surname: Haukeland fullname: Haukeland, Torunn Sneide – sequence: 22 givenname: Pirkko-Liisa surname: Kellokumpu fullname: Kellokumpu, Pirkko-Liisa – sequence: 23 givenname: Andreas surname: Fossum Mjøen fullname: Fossum Mjøen, Andreas – sequence: 24 givenname: Ståle surname: Tofteland fullname: Tofteland, Ståle – sequence: 25 givenname: Berit surname: Harbak fullname: Harbak, Berit – sequence: 26 givenname: Susanne Hartvig surname: Hartzen fullname: Hartzen, Susanne Hartvig – sequence: 27 givenname: Siri surname: Haug Hänsgen fullname: Haug Hänsgen, Siri – sequence: 28 givenname: Karianne Wiger surname: Gammelsrud fullname: Gammelsrud, Karianne Wiger – sequence: 29 givenname: Unni surname: Skolbekken fullname: Skolbekken, Unni – sequence: 30 givenname: Nina surname: Michalsen fullname: Michalsen, Nina – sequence: 31 givenname: Anita Løvås surname: Brekken fullname: Brekken, Anita Løvås – sequence: 32 givenname: Bodil surname: Pedersen fullname: Pedersen, Bodil – sequence: 33 givenname: Brian surname: Guennigsman fullname: Guennigsman, Brian – sequence: 34 givenname: Astrid surname: Lia fullname: Lia, Astrid – sequence: 35 givenname: Ann Kristin surname: Berg fullname: Berg, Ann Kristin – sequence: 36 givenname: Francesco surname: Marco fullname: Marco, Francesco – sequence: 37 givenname: Cristina surname: Pitart fullname: Pitart, Cristina – sequence: 38 givenname: Pilar surname: Egea fullname: Egea, Pilar – sequence: 39 givenname: Jose Luis surname: Cortes-Cuevas fullname: Cortes-Cuevas, Jose Luis – sequence: 40 givenname: Jesus surname: Machuca fullname: Machuca, Jesus – sequence: 41 givenname: Martin surname: Wietzke fullname: Wietzke, Martin – sequence: 42 givenname: Magdalena surname: Dammström fullname: Dammström, Magdalena – sequence: 43 givenname: Roger surname: Granström fullname: Granström, Roger – sequence: 44 givenname: Maria surname: Corneliusson fullname: Corneliusson, Maria – sequence: 45 givenname: Marita surname: Skarstedt fullname: Skarstedt, Marita – sequence: 46 givenname: Karin surname: Frykfeldt fullname: Frykfeldt, Karin – sequence: 47 givenname: Carina Lindqvist surname: Ivarsson fullname: Ivarsson, Carina Lindqvist – sequence: 48 givenname: Adam surname: Sergejev fullname: Sergejev, Adam – sequence: 49 givenname: Susanna surname: Hagström fullname: Hagström, Susanna – sequence: 50 givenname: Ulrika surname: Lidén fullname: Lidén, Ulrika – sequence: 51 givenname: Johan surname: Rydberg fullname: Rydberg, Johan – sequence: 52 givenname: Hanna surname: Ramström fullname: Ramström, Hanna – sequence: 53 givenname: Inga surname: Fröding fullname: Fröding, Inga – sequence: 54 givenname: Evangelos Alexandros surname: Petropoulos fullname: Petropoulos, Evangelos Alexandros – sequence: 55 givenname: Karolina surname: Ininbergs fullname: Ininbergs, Karolina – sequence: 56 givenname: Shah surname: Jalal fullname: Jalal, Shah – sequence: 57 givenname: Anna-Lena Sundqvist surname: Persson fullname: Persson, Anna-Lena Sundqvist – sequence: 58 givenname: Nina surname: Kamenska fullname: Kamenska, Nina – sequence: 59 givenname: Kerstin surname: Granlund fullname: Granlund, Kerstin – sequence: 60 givenname: Anna-Karin surname: Smekal fullname: Smekal, Anna-Karin – sequence: 61 givenname: Anna surname: Hill fullname: Hill, Anna – sequence: 62 givenname: Gunilla surname: Rådberg fullname: Rådberg, Gunilla – sequence: 63 givenname: Gabriel surname: Heyman fullname: Heyman, Gabriel – sequence: 64 givenname: Lized surname: Rodriguez fullname: Rodriguez, Lized – sequence: 65 givenname: Lisa surname: Vennberg fullname: Vennberg, Lisa – sequence: 66 givenname: Gülşen surname: Hazırolan fullname: Hazırolan, Gülşen – sequence: 67 givenname: Isin surname: Akyar fullname: Akyar, Isin – sequence: 68 givenname: Gelmez surname: Gülşen Altınkanat fullname: Gülşen Altınkanat, Gelmez – sequence: 69 givenname: Ayse Nur Sari surname: Kaygisiz fullname: Kaygisiz, Ayse Nur Sari |
Copyright | The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. 2020 The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. 2020 – notice: The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. |
CorporateAuthor | RAST Study Group the RAST Study Group |
CorporateAuthor_xml | – name: RAST Study Group – name: the RAST Study Group |
DBID | TOX NPM AAYXX CITATION 7X8 5PM ABXSW ADTPV AOWAS D8T DG8 ZZAVC AABEP D91 |
DOI | 10.1093/jac/dkaa333 |
DatabaseName | Oxford Journals Open Access Collection PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text SWEPUB Örebro universitet full text SWEPUB Örebro universitet |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1460-2091 |
EndPage | 3238 |
ExternalDocumentID | oai_DiVA_org_oru_85102 oai_DiVA_org_liu_171968 10_1093_jac_dkaa333 32789506 10.1093/jac/dkaa333 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: FORSS-744451 |
GroupedDBID | --- -E4 .2P .GJ .I3 .XZ .ZR 0R~ 18M 1TH 29J 2WC 3O- 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6.Y 70D AABZA AACZT AAJKP AAJQQ AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAWDT AAWTL ABEUO ABIXL ABJNI ABKDP ABLJU ABNHQ ABNKS ABPTD ABQLI ABQNK ABQTQ ABSAR ABSMQ ABWST ABXVV ABZBJ ACCCW ACFRR ACGFO ACGFS ACIWK ACMRT ACPQN ACPRK ACUFI ACUTJ ACUTO ACYHN ACZBC ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZXQ AEGPL AEJOX AEKPW AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFIYH AFOFC AFRAH AFSHK AFXAL AFXEN AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AGUTN AHMBA AHXPO AI. AIAGR AIJHB AJEEA ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APJGH APWMN AQDSO AQKUS ASPBG ATGXG ATTQO AVNTJ AVWKF AXUDD AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM BZKNY C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS ECGQY EE~ EIHJH EJD EMOBN ENERS F5P F9B FECEO FEDTE FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HH5 HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z M49 MBLQV MHKGH ML0 N9A NGC NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBS OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RHF RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCURE TEORI TJX TMA TOX TR2 UCJ VH1 W8F WOQ X7H Y6R YAYTL YKOAZ YXANX ZGI ZKX ZXP ~91 ~A~ NPM AAYXX CITATION 7X8 5PM ABXSW ADTPV AEHUL AOWAS D8T DG8 ZZAVC AABEP D91 |
ID | FETCH-LOGICAL-c487t-9f6d9dbe9190584d950c93e5dc418da733153bf67a56a1809eeb38aef7f772093 |
IEDL.DBID | TOX |
ISSN | 0305-7453 1460-2091 |
IngestDate | Tue Oct 01 22:53:05 EDT 2024 Tue Oct 01 22:48:14 EDT 2024 Tue Sep 17 20:41:32 EDT 2024 Thu Oct 24 23:37:09 EDT 2024 Thu Sep 12 20:00:32 EDT 2024 Wed Oct 16 00:44:00 EDT 2024 Wed Aug 28 03:16:22 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c487t-9f6d9dbe9190584d950c93e5dc418da733153bf67a56a1809eeb38aef7f772093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Other members of the RAST Study Group are listed in the Acknowledgements section. |
OpenAccessLink | https://dx.doi.org/10.1093/jac/dkaa333 |
PMID | 32789506 |
PQID | 2434058116 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | swepub_primary_oai_DiVA_org_oru_85102 swepub_primary_oai_DiVA_org_liu_171968 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7566356 proquest_miscellaneous_2434058116 crossref_primary_10_1093_jac_dkaa333 pubmed_primary_32789506 oup_primary_10_1093_jac_dkaa333 |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of antimicrobial chemotherapy |
PublicationTitleAlternate | J Antimicrob Chemother |
PublicationYear | 2020 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Inglis (2020101604552311100_dkaa333-B1) 2019; 68 (2020101604552311100_dkaa333-B18) 2018 (2020101604552311100_dkaa333-B4) 2019 Doern (2020101604552311100_dkaa333-B2) 2018; 56 Mulroney (2020101604552311100_dkaa333-B22) 2017; 7 Oviano (2020101604552311100_dkaa333-B24) 2014; 20 (2020101604552311100_dkaa333-B46) 2019 Verroken (2020101604552311100_dkaa333-B39) 2016; 11 Brown (2020101604552311100_dkaa333-B11) 2015; 20 Turnidge (2020101604552311100_dkaa333-B34) 2007; 20 Fitzgerald (2020101604552311100_dkaa333-B30) 2016; 69 (2020101604552311100_dkaa333-B13) 2019 Ahman (2020101604552311100_dkaa333-B10) 2020 Perez (2020101604552311100_dkaa333-B41) 2013; 137 Messacar (2020101604552311100_dkaa333-B43) 2017; 55 Jasuja (2020101604552311100_dkaa333-B45) 2020; 39 Zadka (2020101604552311100_dkaa333-B40) 2019; 38 Soo (2020101604552311100_dkaa333-B44) 2020; 39 (2020101604552311100_dkaa333-B20) 2018 Carvalhaes (2020101604552311100_dkaa333-B23) 2014; 69 2020101604552311100_dkaa333-B6 Kahlmeter (2020101604552311100_dkaa333-B33) 2003; 52 van Belkum (2020101604552311100_dkaa333-B8) 2019; 17 (2020101604552311100_dkaa333-B19) 2019 (2020101604552311100_dkaa333-B17) 2019 Timbrook (2020101604552311100_dkaa333-B42) 2017; 64 Matuschek (2020101604552311100_dkaa333-B15) 2014; 20 (2020101604552311100_dkaa333-B7) 2018 Idelevich (2020101604552311100_dkaa333-B25) 2018; 56 Funke (2020101604552311100_dkaa333-B29) 2004; 42 Li (2020101604552311100_dkaa333-B21) 2017; 22 (2020101604552311100_dkaa333-B14) 2018 Perillaud (2020101604552311100_dkaa333-B27) 2019; 93 (2020101604552311100_dkaa333-B37) 2020 van den Bijllaardt (2020101604552311100_dkaa333-B32) 2017; 49 (2020101604552311100_dkaa333-B16) 2017 Coyle (2020101604552311100_dkaa333-B26) 1984; 20 Verroken (2020101604552311100_dkaa333-B38) 2016; 11 Chandrasekaran (2020101604552311100_dkaa333-B31) 2018; 56 Paterson (2020101604552311100_dkaa333-B3) 2008; 47 Suppl 1 (2020101604552311100_dkaa333-B36) 2016 (2020101604552311100_dkaa333-B5) 2019 Ahman (2020101604552311100_dkaa333-B9) 2019; 25 Kahlmeter (2020101604552311100_dkaa333-B35) 2015; 70 Jonasson (2020101604552311100_dkaa333-B12) 2020; 75 Wellinghausen (2020101604552311100_dkaa333-B28) 2007; 45 |
References_xml | – volume: 22 start-page: 585 year: 2017 ident: 2020101604552311100_dkaa333-B21 article-title: Emerging microtechnologies and automated systems for rapid bacterial identification and antibiotic susceptibility testing publication-title: SLAS Technol doi: 10.1177/2472630317727519 contributor: fullname: Li – volume: 70 start-page: 2427 year: 2015 ident: 2020101604552311100_dkaa333-B35 article-title: The 2014 Garrod lecture: EUCAST—are we heading towards international agreement? publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkv145 contributor: fullname: Kahlmeter – year: 2019 ident: 2020101604552311100_dkaa333-B4 – year: 2018 ident: 2020101604552311100_dkaa333-B7 – volume: 56 start-page: e00913 year: 2018 ident: 2020101604552311100_dkaa333-B25 article-title: Rapid direct susceptibility testing from positive blood cultures by the matrix-assisted laser desorption ionization-time of flight mass spectrometry-based direct-on-target microdroplet growth assay publication-title: J Clin Microbiol doi: 10.1128/JCM.00913-18 contributor: fullname: Idelevich – volume: 49 start-page: 631 year: 2017 ident: 2020101604552311100_dkaa333-B32 article-title: Shortening the incubation time for antimicrobial susceptibility testing by disk diffusion for Enterobacteriaceae: how short can it be and are the results accurate? publication-title: Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2016.12.019 contributor: fullname: van den Bijllaardt – volume: 20 start-page: 391 year: 2007 ident: 2020101604552311100_dkaa333-B34 article-title: Setting and revising antibacterial susceptibility breakpoints publication-title: Clin Microbiol Rev doi: 10.1128/CMR.00047-06 contributor: fullname: Turnidge – volume: 56 start-page: e01678 year: 2018 ident: 2020101604552311100_dkaa333-B31 article-title: Direct-from-blood-culture disk diffusion to determine antimicrobial susceptibility of Gram-negative bacteria: preliminary report from the Clinical and Laboratory Standards Institute Methods Development and Standardization Working Group publication-title: J Clin Microbiol doi: 10.1128/JCM.01678-17 contributor: fullname: Chandrasekaran – volume: 7 start-page: 1903 year: 2017 ident: 2020101604552311100_dkaa333-B22 article-title: Rapid susceptibility profiling of carbapenem-resistant Klebsiella pneumoniae publication-title: Sci Rep doi: 10.1038/s41598-017-02009-3 contributor: fullname: Mulroney – year: 2018 ident: 2020101604552311100_dkaa333-B18 – volume: 20 start-page: O255 year: 2014 ident: 2020101604552311100_dkaa333-B15 article-title: Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories publication-title: Clin Microbiol Infect doi: 10.1111/1469-0691.12373 contributor: fullname: Matuschek – volume: 20 start-page: 1146 year: 2014 ident: 2020101604552311100_dkaa333-B24 article-title: Rapid detection of enterobacteriaceae producing extended spectrum β-lactamases directly from positive blood cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry publication-title: Clin Microbiol Infect doi: 10.1111/1469-0691.12729 contributor: fullname: Oviano – year: 2018 ident: 2020101604552311100_dkaa333-B20 – volume: 11 start-page: e0160537 year: 2016 ident: 2020101604552311100_dkaa333-B39 article-title: Correction: Clinical impact of MALDI-TOF MS identification and rapid susceptibility testing on adequate antimicrobial treatment in sepsis with positive blood cultures publication-title: PLoS One doi: 10.1371/journal.pone.0160537 contributor: fullname: Verroken – volume: 39 start-page: 1305 year: 2020 ident: 2020101604552311100_dkaa333-B45 article-title: Evaluation of EUCAST rapid antimicrobial susceptibility testing (RAST) for positive blood cultures in clinical practice using a total lab automation publication-title: Eur J Clin Microbiol Infect Dis doi: 10.1007/s10096-020-03846-3 contributor: fullname: Jasuja – year: 2017 ident: 2020101604552311100_dkaa333-B16 – volume: 52 start-page: 145 year: 2003 ident: 2020101604552311100_dkaa333-B33 article-title: European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkg312 contributor: fullname: Kahlmeter – volume: 45 start-page: 789 year: 2007 ident: 2020101604552311100_dkaa333-B28 article-title: Evaluation of the Merlin MICRONAUT system for rapid direct susceptibility testing of gram-positive cocci and gram-negative bacilli from positive blood cultures publication-title: J Clin Microbiol doi: 10.1128/JCM.01856-06 contributor: fullname: Wellinghausen – volume: 39 start-page: 993 year: 2020 ident: 2020101604552311100_dkaa333-B44 article-title: Evaluation of EUCAST rapid antimicrobial susceptibility testing (RAST) directly from blood culture bottles publication-title: Eur J Clin Microbiol Infect Dis doi: 10.1007/s10096-020-03815-w contributor: fullname: Soo – year: 2019 ident: 2020101604552311100_dkaa333-B46 – year: 2018 ident: 2020101604552311100_dkaa333-B14 – volume: 20 start-page: 21008 year: 2015 ident: 2020101604552311100_dkaa333-B11 article-title: Widespread implementation of EUCAST breakpoints for antibacterial susceptibility testing in Europe publication-title: Euro Surveill doi: 10.2807/1560-7917.ES2015.20.2.21008 contributor: fullname: Brown – year: 2020 ident: 2020101604552311100_dkaa333-B37 – volume: 38 start-page: 2053 year: 2019 ident: 2020101604552311100_dkaa333-B40 article-title: The implementation of rapid microbial identification via MALDI-ToF reduces mortality in gram-negative but not gram-positive bacteremia publication-title: Eur J Clin Microbiol Infect Dis doi: 10.1007/s10096-019-03640-w contributor: fullname: Zadka – year: 2016 ident: 2020101604552311100_dkaa333-B36 – volume: 69 start-page: 2132 year: 2014 ident: 2020101604552311100_dkaa333-B23 article-title: Detection of carbapenemase activity directly from blood culture vials using MALDI-TOF MS: a quick answer for the right decision publication-title: J Antimicrob Chemother doi: 10.1093/jac/dku094 contributor: fullname: Carvalhaes – volume: 11 start-page: e0156299 year: 2016 ident: 2020101604552311100_dkaa333-B38 article-title: Clinical impact of MALDI-TOF MS identification and rapid susceptibility testing on adequate antimicrobial treatment in sepsis with positive blood cultures publication-title: PLoS One doi: 10.1371/journal.pone.0156299 contributor: fullname: Verroken – year: 2019 ident: 2020101604552311100_dkaa333-B17 – volume: 17 start-page: 51 year: 2019 ident: 2020101604552311100_dkaa333-B8 article-title: Developmental roadmap for antimicrobial susceptibility testing systems publication-title: Nat Rev Microbiol doi: 10.1038/s41579-018-0098-9 contributor: fullname: van Belkum – volume: 20 start-page: 473 year: 1984 ident: 2020101604552311100_dkaa333-B26 article-title: Rapid antimicrobial susceptibility testing of isolates from blood cultures by direct inoculation and early reading of disk diffusion tests publication-title: J Clin Microbiol doi: 10.1128/JCM.20.3.473-477.1984 contributor: fullname: Coyle – volume: 68 start-page: 973 year: 2019 ident: 2020101604552311100_dkaa333-B1 article-title: Rapid antimicrobial susceptibility tests for sepsis; the road ahead publication-title: J Med Microbiol doi: 10.1099/jmm.0.000997 contributor: fullname: Inglis – year: 2019 ident: 2020101604552311100_dkaa333-B13 – volume: 137 start-page: 1247 year: 2013 ident: 2020101604552311100_dkaa333-B41 article-title: Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs publication-title: Arch Pathol Lab Med doi: 10.5858/arpa.2012-0651-OA contributor: fullname: Perez – volume: 69 start-page: 1025 year: 2016 ident: 2020101604552311100_dkaa333-B30 article-title: Rapid identification and antimicrobial susceptibility testing of positive blood cultures using MALDI-TOF MS and a modification of the standardised disc diffusion test: a pilot study publication-title: J Clin Pathol doi: 10.1136/jclinpath-2015-203436 contributor: fullname: Fitzgerald – volume: 55 start-page: 715 year: 2017 ident: 2020101604552311100_dkaa333-B43 article-title: Implementation of rapid molecular infectious disease diagnostics: the role of diagnostic and antimicrobial stewardship publication-title: J Clin Microbiol doi: 10.1128/JCM.02264-16 contributor: fullname: Messacar – volume: 56 start-page: e01999 year: 2018 ident: 2020101604552311100_dkaa333-B2 article-title: The slow march toward rapid phenotypic antimicrobial susceptibility testing: are we there yet? publication-title: J Clin Microbiol doi: 10.1128/JCM.01999-17 contributor: fullname: Doern – volume: 25 start-page: 346 year: 2019 ident: 2020101604552311100_dkaa333-B9 article-title: The quality of antimicrobial discs from nine manufacturers—EUCAST evaluations in 2014 and 2017 publication-title: Clin Microbiol Infect doi: 10.1016/j.cmi.2018.05.021 contributor: fullname: Ahman – year: 2020 ident: 2020101604552311100_dkaa333-B10 article-title: EUCAST evaluation of 21 brands of Mueller-Hinton dehydrated media for disk diffusion testing publication-title: Clin Microbiol Infect contributor: fullname: Ahman – ident: 2020101604552311100_dkaa333-B6 – volume: 93 start-page: 14 year: 2019 ident: 2020101604552311100_dkaa333-B27 article-title: Prospective evaluation of rapid antimicrobial susceptibility testing by disk diffusion on Mueller-Hinton rapid-SIR directly on blood cultures publication-title: Diagn Microbiol Infect Dis doi: 10.1016/j.diagmicrobio.2018.07.016 contributor: fullname: Perillaud – volume: 75 start-page: 968 year: 2020 ident: 2020101604552311100_dkaa333-B12 article-title: The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkz548 contributor: fullname: Jonasson – year: 2019 ident: 2020101604552311100_dkaa333-B5 – volume: 47 Suppl 1 start-page: S14 year: 2008 ident: 2020101604552311100_dkaa333-B3 article-title: Impact of antibiotic resistance in gram-negative bacilli on empirical and definitive antibiotic therapy publication-title: Clin Infect Dis doi: 10.1086/590062 contributor: fullname: Paterson – volume: 64 start-page: 15 year: 2017 ident: 2020101604552311100_dkaa333-B42 article-title: The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis publication-title: Clin Infect Dis doi: 10.1093/cid/ciw649 contributor: fullname: Timbrook – year: 2019 ident: 2020101604552311100_dkaa333-B19 – volume: 42 start-page: 1466 year: 2004 ident: 2020101604552311100_dkaa333-B29 article-title: Use of the BD PHOENIX Automated Microbiology System for direct identification and susceptibility testing of gram-negative rods from positive blood cultures in a three-phase trial publication-title: J Clin Microbiol doi: 10.1128/JCM.42.4.1466-1470.2004 contributor: fullname: Funke |
SSID | ssj0006568 |
Score | 2.6337132 |
Snippet | Abstract
Objectives
When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment... When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The... OBJECTIVESWhen bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of... Objectives: When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of... OBJECTIVES: When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of... |
SourceID | swepub pubmedcentral proquest crossref pubmed oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3230 |
SubjectTerms | Original Research |
Title | EUCAST rapid antimicrobial susceptibility testing (RAST) in blood cultures: validation in 55 European laboratories |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32789506 https://search.proquest.com/docview/2434058116 https://pubmed.ncbi.nlm.nih.gov/PMC7566356 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171968 https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-85102 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bT9swFLYmHiZepo3BVsaYkaDaJCKaOr7xVnERA7GhrZ36ZjmxA9klRU3z0H_PsZ0Wwib27GNL8Xdsfyc-5zNCu8TFW8RJztrcRMCIeSQzQSNrZK45SRPmdbovv7CzUXI-puMmQbb6xxW-JAc_dXZgfmlNiBP1dIJo4LbDr-PlhstCxZtz3YgnlDRleI_6tg6eVjHbA075d2pkS0DUHzqnL9GLhi3iQYD3FXpmyzX0_LK5D19D3augPD3fx8P7QqpqH3fx1b0m9fw1mp6MjgbfhxhMCoNhNos_hZdggtGruvK5LT5Ndo5nTnejvMYfv0GHT7gosU9ux0Gjw1aHGJyzCE8xuVZK8eKXPm5cauLi73U0Oj0ZHp1FzXMLUQYYzSKZMyNNaiVwBKAlRtJeJomlJktiYbR73JGSNGdcU6ad7JeFQFxom_McKDrM9gZaKSelfYuwFUZIHsd5X5hESJpaYSn4iuxZJhOWd9DuAgt1G1Q1VLgNJwogUw1kHfQBcHraYmeBoYJ14S47dGkndaX6CQEuKuKYddCbgOlyIOLKf2kPWngL7aWB09xut5TFjdfe5tRRNOjZDX7R6nJc_BgocF31u6hVzGFzEx2095ThZFor4Ly9_uZ_P_UdWu27WN_XQW6hldm0tu-BEM3SbQgFPl9s-0VxB8v0DMQ |
link.rule.ids | 230,315,783,787,888,1607,27936,27937 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EUCAST+rapid+antimicrobial+susceptibility+testing+%28RAST%29+in+blood+cultures%3A+validation+in+55+European+laboratories&rft.jtitle=Journal+of+antimicrobial+chemotherapy&rft.au=%C3%85kerlund%2C+Anna&rft.au=Jonasson%2C+Emma&rft.au=Matuschek%2C+Erika&rft.au=Serrander%2C+Lena&rft.date=2020-11-01&rft.issn=0305-7453&rft.volume=75&rft.issue=11&rft.spage=3230&rft_id=info:doi/10.1093%2Fjac%2Fdkaa333&rft.externalDocID=oai_DiVA_org_liu_171968 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7453&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7453&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7453&client=summon |