Conversion and time-to-conversion predictions of mild cognitive impairment using low-rank affinity pursuit denoising and matrix completion

•Longitudinal MRI, PET and cognitive data are used jointly for pMCI prediction.•MCI subjects exhibit biological heterogeneity, and the data are incomplete and noisy.•Low rank affinity-pursuit denoising is used to denoise incomplete heterogeneous data.•Label and conversion time are predicted jointly...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 45; pp. 68 - 82
Main Authors Thung, Kim-Han, Yap, Pew-Thian, Adeli, Ehsan, Lee, Seong-Whan, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Longitudinal MRI, PET and cognitive data are used jointly for pMCI prediction.•MCI subjects exhibit biological heterogeneity, and the data are incomplete and noisy.•Low rank affinity-pursuit denoising is used to denoise incomplete heterogeneous data.•Label and conversion time are predicted jointly using low rank matrix completion.•Best pMCI classification acc. is 84%, conversion time prediction correlation is 0.67. [Display omitted] In this paper, we aim to predict conversion and time-to-conversion of mild cognitive impairment (MCI) patients using multi-modal neuroimaging data and clinical data, via cross-sectional and longitudinal studies. However, such data are often heterogeneous, high-dimensional, noisy, and incomplete. We thus propose a framework that includes sparse feature selection, low-rank affinity pursuit denoising (LRAD), and low-rank matrix completion (LRMC) in this study. Specifically, we first use sparse linear regressions to remove unrelated features. Then, considering the heterogeneity of the MCI data, which can be assumed as a union of multiple subspaces, we propose to use a low rank subspace method (i.e., LRAD) to denoise the data. Finally, we employ LRMC algorithm with three data fitting terms and one inequality constraint for joint conversion and time-to-conversion predictions. Our framework aims to answer a very important but yet rarely explored question in AD study, i.e., when will the MCI convert to AD? This is different from survival analysis, which provides the probabilities of conversion at different time points that are mainly used for global analysis, while our time-to-conversion prediction is for each individual subject. Evaluations using the ADNI dataset indicate that our method outperforms conventional LRMC and other state-of-the-art methods. Our method achieves a maximal pMCI classification accuracy of 84% and time prediction correlation of 0.665.
AbstractList In this paper, we aim to predict conversion and time-to-conversion of mild cognitive impairment (MCI) patients using multi-modal neuroimaging data and clinical data, via cross-sectional and longitudinal studies. However, such data are often heterogeneous, high-dimensional, noisy, and incomplete. We thus propose a framework that includes sparse feature selection, low-rank affinity pursuit denoising (LRAD), and low-rank matrix completion (LRMC) in this study. Specifically, we first use sparse linear regressions to remove unrelated features. Then, considering the heterogeneity of the MCI data, which can be assumed as a union of multiple subspaces, we propose to use a low rank subspace method (i.e., LRAD) to denoise the data. Finally, we employ LRMC algorithm with three data fitting terms and one inequality constraint for joint conversion and time-to-conversion predictions. Our framework aims to answer a very important but yet rarely explored question in AD study, i.e., when will the MCI convert to AD? This is different from survival analysis, which provides the probabilities of conversion at different time points that are mainly used for global analysis, while our time-to-conversion prediction is for each individual subject. Evaluations using the ADNI dataset indicate that our method outperforms conventional LRMC and other state-of-the-art methods. Our method achieves a maximal pMCI classification accuracy of 84% and time prediction correlation of 0.665.
In this paper, we aim to predict conversion and time-to-conversion of mild cognitive impairment (MCI) patients using multi-modal neuroimaging data and clinical data, via cross-sectional and longitudinal studies. However, such data are often heterogeneous, high-dimensional, noisy, and incomplete. We thus propose a framework that includes sparse feature selection, low-rank affinity pursuit denoising (LRAD), and low-rank matrix completion (LRMC) in this study. Specifically, we first use sparse linear regressions to remove unrelated features. Then, considering the heterogeneity of the MCI data, which can be assumed as a union of multiple subspaces, we propose to use a low rank subspace method (i.e., LRAD) to denoise the data. Finally, we employ LRMC algorithm with three data fitting terms and one inequality constraint for joint conversion and time-to-conversion predictions. Our framework aims to answer a very important but yet rarely explored question in AD study, i.e., when will the MCI convert to AD? This is different from survival analysis, which provides the probabilities of conversion at different time points that are mainly used for global analysis, while our time-to-conversion prediction is for each individual subject. Evaluations using the ADNI dataset indicate that our method outperforms conventional LRMC and other state-of-the-art methods. Our method achieves a maximal pMCI classification accuracy of 84% and time prediction correlation of 0.665.In this paper, we aim to predict conversion and time-to-conversion of mild cognitive impairment (MCI) patients using multi-modal neuroimaging data and clinical data, via cross-sectional and longitudinal studies. However, such data are often heterogeneous, high-dimensional, noisy, and incomplete. We thus propose a framework that includes sparse feature selection, low-rank affinity pursuit denoising (LRAD), and low-rank matrix completion (LRMC) in this study. Specifically, we first use sparse linear regressions to remove unrelated features. Then, considering the heterogeneity of the MCI data, which can be assumed as a union of multiple subspaces, we propose to use a low rank subspace method (i.e., LRAD) to denoise the data. Finally, we employ LRMC algorithm with three data fitting terms and one inequality constraint for joint conversion and time-to-conversion predictions. Our framework aims to answer a very important but yet rarely explored question in AD study, i.e., when will the MCI convert to AD? This is different from survival analysis, which provides the probabilities of conversion at different time points that are mainly used for global analysis, while our time-to-conversion prediction is for each individual subject. Evaluations using the ADNI dataset indicate that our method outperforms conventional LRMC and other state-of-the-art methods. Our method achieves a maximal pMCI classification accuracy of 84% and time prediction correlation of 0.665.
•Longitudinal MRI, PET and cognitive data are used jointly for pMCI prediction.•MCI subjects exhibit biological heterogeneity, and the data are incomplete and noisy.•Low rank affinity-pursuit denoising is used to denoise incomplete heterogeneous data.•Label and conversion time are predicted jointly using low rank matrix completion.•Best pMCI classification acc. is 84%, conversion time prediction correlation is 0.67. [Display omitted] In this paper, we aim to predict conversion and time-to-conversion of mild cognitive impairment (MCI) patients using multi-modal neuroimaging data and clinical data, via cross-sectional and longitudinal studies. However, such data are often heterogeneous, high-dimensional, noisy, and incomplete. We thus propose a framework that includes sparse feature selection, low-rank affinity pursuit denoising (LRAD), and low-rank matrix completion (LRMC) in this study. Specifically, we first use sparse linear regressions to remove unrelated features. Then, considering the heterogeneity of the MCI data, which can be assumed as a union of multiple subspaces, we propose to use a low rank subspace method (i.e., LRAD) to denoise the data. Finally, we employ LRMC algorithm with three data fitting terms and one inequality constraint for joint conversion and time-to-conversion predictions. Our framework aims to answer a very important but yet rarely explored question in AD study, i.e., when will the MCI convert to AD? This is different from survival analysis, which provides the probabilities of conversion at different time points that are mainly used for global analysis, while our time-to-conversion prediction is for each individual subject. Evaluations using the ADNI dataset indicate that our method outperforms conventional LRMC and other state-of-the-art methods. Our method achieves a maximal pMCI classification accuracy of 84% and time prediction correlation of 0.665.
Author Thung, Kim-Han
Shen, Dinggang
Yap, Pew-Thian
Adeli, Ehsan
Lee, Seong-Whan
AuthorAffiliation a Department of Radiology and BRIC, University of North Carolina, Chapel Hill 27599, USA
b Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
AuthorAffiliation_xml – name: a Department of Radiology and BRIC, University of North Carolina, Chapel Hill 27599, USA
– name: b Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
Author_xml – sequence: 1
  givenname: Kim-Han
  orcidid: 0000-0003-1379-2185
  surname: Thung
  fullname: Thung, Kim-Han
  email: khthung@email.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill 27599, USA
– sequence: 2
  givenname: Pew-Thian
  surname: Yap
  fullname: Yap, Pew-Thian
  organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill 27599, USA
– sequence: 3
  givenname: Ehsan
  surname: Adeli
  fullname: Adeli, Ehsan
  organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill 27599, USA
– sequence: 4
  givenname: Seong-Whan
  surname: Lee
  fullname: Lee, Seong-Whan
  organization: Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
– sequence: 5
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill 27599, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29414437$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuFDEQHKEg8oAvQEKWuHCZxY9Zz_gAUrQKDykSFzhbXrtn6WXGHmzPQn6Br443mwTIIQfLLbuquuyu0-rIBw9V9ZLRBaNMvt0uRnBoFpyybkHZglL-pDphQrK6a7g4uq_Z8rg6TWlLKW2bhj6rjrlqWNOI9qT6swp-BzFh8MR4RzKOUOdQ27_HUyxtbC5lIqEnIw6O2LDxmHEHBMfJYBzBZzIn9BsyhF91NP4HMX2PBXRFpjmmGTNx4APeYPadRpMj_i5K4zTAXv159bQ3Q4IXt_tZ9e3DxdfVp_ryy8fPq_PL2jZdm2vVKlPWUvUOlp3jtGO969eCGS5k363FmgKXsu2cg7YzAG5p1koK1vLWAShxVr0_6E7zuvygLdajGfQUcTTxSgeD-v8bj9_1Juy07BRnrSgCb24FYvg5Q8p6xGRhGIyHMCfNlFKyYw1vCvT1A-g2zNGX52lOpWgbKTktqFf_Orq3cjemAlAHgI0hpQi9tpjN_tOKQRw0o3ofCb3VN5HQ-0hoynSJROGKB9w7-cdZ7w4sKJPYIUSdLIK3BRjBZu0CPsq_BtGH1Xs
CitedBy_id crossref_primary_10_1016_j_cmpb_2020_105348
crossref_primary_10_1016_j_patcog_2023_110015
crossref_primary_10_1016_j_jbi_2021_103863
crossref_primary_10_1016_j_compmedimag_2022_102057
crossref_primary_10_1016_j_media_2020_101848
crossref_primary_10_1109_JBHI_2023_3262948
crossref_primary_10_1186_s12911_019_0858_0
crossref_primary_10_1016_j_media_2019_101600
crossref_primary_10_3389_fphys_2023_1188678
crossref_primary_10_1016_j_nicl_2020_102199
crossref_primary_10_1016_j_neuroimage_2020_117167
crossref_primary_10_3389_fgene_2018_00347
crossref_primary_10_1109_JBHI_2020_3006719
crossref_primary_10_1007_s11042_023_16928_z
crossref_primary_10_1016_j_media_2024_103103
crossref_primary_10_1155_2021_3080640
crossref_primary_10_1109_ACCESS_2024_3412850
crossref_primary_10_1093_cercor_bhac137
crossref_primary_10_1109_TMI_2019_2913158
crossref_primary_10_1155_2022_8662238
crossref_primary_10_3233_JAD_210308
crossref_primary_10_1016_j_neurobiolaging_2019_08_033
crossref_primary_10_1007_s11042_024_19425_z
crossref_primary_10_1016_j_neunet_2019_11_013
crossref_primary_10_1016_j_nicl_2023_103533
crossref_primary_10_1109_JBHI_2020_3042447
crossref_primary_10_3174_ajnr_A8059
crossref_primary_10_3389_fnins_2022_902528
crossref_primary_10_1016_j_nicl_2019_101929
crossref_primary_10_1002_trc2_12035
crossref_primary_10_1080_17512433_2023_2142561
crossref_primary_10_1109_JBHI_2021_3100918
crossref_primary_10_3390_diagnostics11081473
crossref_primary_10_1109_TMI_2019_2895894
crossref_primary_10_1016_j_media_2022_102643
crossref_primary_10_1016_j_neuroimage_2021_118143
crossref_primary_10_3390_app10041223
crossref_primary_10_1155_2022_2863893
crossref_primary_10_1016_j_artmed_2021_102097
crossref_primary_10_1016_j_media_2019_101630
crossref_primary_10_3390_e24070951
crossref_primary_10_1002_hbm_24428
Cites_doi 10.1212/WNL.0b013e3181c0665f
10.1016/j.neuroimage.2013.08.015
10.1016/j.neuroimage.2006.08.007
10.1016/j.neuroimage.2011.09.069
10.1159/000452486
10.1109/42.906424
10.1109/TMI.2002.803111
10.1109/TKDE.2010.99
10.3389/fnagi.2016.00076
10.1371/journal.pone.0096458
10.1007/s00429-015-1140-6
10.1007/978-3-642-23626-6_78
10.1109/42.668698
10.1016/j.neurobiolaging.2003.12.007
10.1016/j.neuroimage.2014.10.002
10.1016/j.media.2015.06.002
10.3233/JAD-150570
10.1186/s13195-014-0082-1
10.1111/neup.12205
10.1137/080738970
10.1016/j.neuroimage.2008.10.031
10.1016/j.jalz.2013.05.1769
10.3233/JAD-2010-1220
10.1016/j.neuroimage.2012.03.059
10.1093/bioinformatics/17.6.520
10.1007/s10107-009-0306-5
10.1111/j.2517-6161.1996.tb02080.x
10.3389/fnagi.2015.00048
10.3233/JAD-151010
10.1007/s10208-009-9045-5
10.1371/journal.pone.0138866
10.1145/1970392.1970395
10.1109/TPAMI.2013.57
10.1001/archneur.63.5.674
10.1109/JBHI.2015.2429556
10.1109/MSP.2010.939739
10.1016/j.neurobiolaging.2010.05.023
10.1109/TBME.2015.2404809
10.1016/j.neuroimage.2014.01.033
10.1007/s11682-015-9356-x
10.3389/fnhum.2017.00033
10.1155/2014/439417
10.1016/S0140-6736(06)68542-5
10.1109/TPAMI.2012.88
10.1001/archneur.63.5.665
10.1109/TMI.2004.834616
10.1016/j.media.2006.06.007
10.1155/2016/7431012
10.1109/TPAMI.2012.132
10.1016/j.jalz.2013.05.419
10.1016/S1053-8119(18)31550-7
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Apr 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Apr 2018
CorporateAuthor for the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: for the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
DOI 10.1016/j.media.2018.01.002
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 82
ExternalDocumentID PMC6892173
29414437
10_1016_j_media_2018_01_002
S1361841518300100
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
NPM
7QO
8FD
EFKBS
FR3
K9.
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c487t-979a97959fde58d2081fdfb31a236f8b3b0e26678dde78aeed5ab9631727dee93
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Thu Aug 21 14:04:13 EDT 2025
Fri Jul 11 15:57:24 EDT 2025
Sat Jul 26 03:23:34 EDT 2025
Thu Apr 03 07:10:23 EDT 2025
Thu Apr 24 23:05:13 EDT 2025
Tue Jul 01 02:49:26 EDT 2025
Fri Feb 23 02:28:17 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Low-rank representation
Data imputation
Multi-task learning
Classification
Matrix completion
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-979a97959fde58d2081fdfb31a236f8b3b0e26678dde78aeed5ab9631727dee93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1379-2185
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6892173
PMID 29414437
PQID 2063746620
PQPubID 2045428
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6892173
proquest_miscellaneous_1999681424
proquest_journals_2063746620
pubmed_primary_29414437
crossref_citationtrail_10_1016_j_media_2018_01_002
crossref_primary_10_1016_j_media_2018_01_002
elsevier_sciencedirect_doi_10_1016_j_media_2018_01_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Gauthier, Reisberg, Zaudig, Petersen, Ritchie, Broich, Belleville, Brodaty, Bennett, Chertkow (bib0017) 2006; 367
Shi, Yang, Yong, Zheng (bib0052) 2014; 2014
Association (bib0003) 2017; 13
Vidal (bib0065) 2010; 28
Guyon, Elisseeff (bib0019) 2003; 3
Li, Tran, Thung, Ji, Shen, Li (bib0025) 2014
Thung, Wee, Yap, Shen (bib0060) 2016; 221
Yogatama, Mann (bib0075) 2014; 33
Zhu, Suk, Thung, Zhu, Wu, Shen (bib0083) 2016
Nettiksimmons, DeCarli, Landau, Beckett (bib0042) 2013; 4
Thornton, Hutter, Hoos, Leyton-Brown (bib0056) 2013
Xue, Shen, Davatzikos (bib0072) 2004; 23
Sanroma, Wu, Gao, Thung, Guo, Shen (bib0048) 2015; 24
Ingalhalikar, Parker, Bloy, Roberts, Verma (bib0021) 2012
Sled, Zijdenbos, Evans (bib0053) 1998; 17
Liu, Chen, Ye (bib0032) 2009
Oulhaj, Wilcock, Smith, de Jager (bib0043) 2009; 73
Rasmussen (bib0046) 2004
Liu, Ye (bib0034) 2009
Zhou, Yang, Yu (bib0082) 2013; 35
Lin, Chen, Cao, Zhou, Zhang, Tang, Wang (bib0027) 2015; abs/1509.01719
Candès, Recht (bib0009) 2009; 9
Dukart, Sambataro, Bertolino (bib0014) 2016; 49
Cairns, Perrin, Franklin, Carter, Vincent, Xie, Bateman, Benzinger, Friedrichsen, Brooks (bib0007) 2015; 35
Thung, Yap, Shen (bib0062) 2017
Elhamifar, Vidal (bib0016) 2013; 35
Petersen, Parisi, Dickson, Johnson, Knopman, Boeve, Jicha, Ivnik, Smith, Tangalos (bib0044) 2006; 63
Adeli-Mosabbeb, Thung, An, Shi, Shen (bib0001) 2015
.
Wei, Li, Fogelson, Li (bib0067) 2016; 8
Thung, Wee, Yap, Shen (bib0058) 2013
Chen, Zhang, Thung, Liu, Lu, Wu, Wang, Shen (bib0010) 2017
Lin, Chen, Cao, Zhou, Zhang, Wang (bib0028) 2015
Liu, Yan (bib0031) 2011
Liu, Chen, Yao, Guo (bib0035) 2017; 11
Zhu, Thung, Adeli, Zhang, Shen (bib0085) 2017
Rasmussen, Williams (bib0047) 2006; 1
Yu, Liu, Thung, Shen (bib0076) 2014; 9
Davatzikos, Bhatt, Shaw, Batmanghelich, Trojanowski (bib0013) 2011; 32
She, Gan, Ma, Luo, Potter, Zhang (bib0050) 2016; 2016
Zhang, Brady, Smith (bib0080) 2001; 20
Cai, Candès, Shen (bib0006) 2010; 20
Xu, Wu, Li, Chen, Long, Zhang, Guo, Yao (bib0071) 2016; 51
Zhang, Shen, Initiative (bib0079) 2012; 59
Kabani (bib0023) 1998; 7
Shen, Davatzikos (bib0051) 2002; 21
Liu, Lin, Yan, Sun, Yu, Ma (bib0029) 2013; 35
Wang, Nie, Yap, Shi, Guo, Shen (bib0066) 2011
Xiang, Yuan, Fan, Wang, Thompson, Ye, Initiative (bib0070) 2014; 102
Weiner, Veitch, Aisen, Beckett, Cairns, Green, Harvey, Jack, Jagust, Liu (bib0068) 2013; 9
Cheng, Liu, Zhang, Munsell, Shen (bib0012) 2015; 62
Markesbery (bib0037) 2010; 19
Thung, Adeli, Yap, Shen (bib0057) 2016
Goldberg, Recht, Xu, Nowak, Zhu (bib0018) 2010; 23
Michaud, Su, Siahpush, Murman (bib0038) 2017; 7
Korolev, Symonds, Bozoki, Initiative (bib0024) 2016; 11
Ma, Goldfarb, Chen (bib0036) 2011; 128
Snoek, Larochelle, Adams (bib0054) 2012
Cheng, Liu, Suk, Shen, Zhang, Initiative (bib0011) 2015; 9
Zhu, Zhang, Jin, Zhang, Xu (bib0086) 2011; 23
Miller Jr (bib0039) 2011; 66
Zhu, Suk, Zhu, Thung, Wu, Shen (bib0084) 2015
Brochu, Cora, De Freitas (bib0005) 2010
Huang, Gao, Jin, Thung, Shen (bib0020) 2015
Thung, Wee, Yap, Shen (bib0059) 2014; 91
Liu, J., Ji, S., Ye, J., 2009b. SLEP: Sparse Learning with Efficient Projections. Arizona State University.
Rahimi, Kovacs (bib0045) 2014; 6
Candès, Li, Ma, Wright (bib0008) 2011; 58
Liu, Lin, Yu (bib0030) 2010
Stoub, Bulgakova, Wilson, Bennett, Leurgans, Wuu, Turner (bib0055) 2004; 25
Zhan, Zhou, Wang, Jin, Jahanshad, Prasad, Nir, Leonardo, Ye, Thompson (bib0078) 2015; 7
Troyanskaya, Cantor, Sherlock, Brown, Hastie, Tibshirani, Botstein, Altman (bib0064) 2001; 17
Yuan, Wang, Thompson, Narayan, Ye, Initiative (bib0077) 2012; 61
Bergstra, Bardenet, Bengio, Kégl (bib0004) 2011
Zhou, Thung, Zhu, Shen (bib0081) 2017
Tibshirani (bib0063) 1996
Jicha, Parisi, Dickson, Johnson, Cha, Ivnik, Tangalos, Boeve, Knopman, Braak (bib0022) 2006; 63
Sanroma, Wu, Thung, Guo, Shen (bib0049) 2014
Thung, Yap, Adeli-M, Shen (bib0061) 2015
Xue, Shen, Davatzikos (bib0073) 2006; 10
Li, Tran, Thung, Ji, Shen, Li (bib0026) 2015; 19
Moradi, Pepe, Gaser, Huttunen, Tohka, Initiative (bib0041) 2015; 104
Association (bib0002) 2016; 12
Elhamifar, Vidal (bib0015) 2011
Xue, Shen, Karacali, Stern, Rottenberg, Davatzikos (bib0074) 2006; 33
Wright, Ganesh, Rao, Peng, Ma (bib0069) 2009
Misra, Fan, Davatzikos (bib0040) 2009; 44
Troyanskaya (10.1016/j.media.2018.01.002_bib0064) 2001; 17
Candès (10.1016/j.media.2018.01.002_bib0008) 2011; 58
Lin (10.1016/j.media.2018.01.002_bib0028) 2015
Thung (10.1016/j.media.2018.01.002_bib0059) 2014; 91
Zhang (10.1016/j.media.2018.01.002_bib0079) 2012; 59
Wei (10.1016/j.media.2018.01.002_bib0067) 2016; 8
Sanroma (10.1016/j.media.2018.01.002_bib0049) 2014
Xue (10.1016/j.media.2018.01.002_bib0073) 2006; 10
Rasmussen (10.1016/j.media.2018.01.002_bib0047) 2006; 1
Jicha (10.1016/j.media.2018.01.002_bib0022) 2006; 63
Rahimi (10.1016/j.media.2018.01.002_bib0045) 2014; 6
Xiang (10.1016/j.media.2018.01.002_bib0070) 2014; 102
Adeli-Mosabbeb (10.1016/j.media.2018.01.002_bib0001) 2015
Kabani (10.1016/j.media.2018.01.002_bib0023) 1998; 7
Thung (10.1016/j.media.2018.01.002_bib0058) 2013
Miller Jr (10.1016/j.media.2018.01.002_bib0039) 2011; 66
Ingalhalikar (10.1016/j.media.2018.01.002_bib0021) 2012
Sanroma (10.1016/j.media.2018.01.002_bib0048) 2015; 24
Zhu (10.1016/j.media.2018.01.002_bib0084) 2015
Guyon (10.1016/j.media.2018.01.002_bib0019) 2003; 3
Tibshirani (10.1016/j.media.2018.01.002_bib0063) 1996
Ma (10.1016/j.media.2018.01.002_bib0036) 2011; 128
Zhou (10.1016/j.media.2018.01.002_bib0081) 2017
Michaud (10.1016/j.media.2018.01.002_bib0038) 2017; 7
Liu (10.1016/j.media.2018.01.002_bib0034) 2009
Zhan (10.1016/j.media.2018.01.002_bib0078) 2015; 7
Thung (10.1016/j.media.2018.01.002_bib0061) 2015
Xu (10.1016/j.media.2018.01.002_bib0071) 2016; 51
Cheng (10.1016/j.media.2018.01.002_bib0012) 2015; 62
Thung (10.1016/j.media.2018.01.002_bib0062) 2017
Shen (10.1016/j.media.2018.01.002_bib0051) 2002; 21
Xue (10.1016/j.media.2018.01.002_bib0072) 2004; 23
Li (10.1016/j.media.2018.01.002_bib0025) 2014
Li (10.1016/j.media.2018.01.002_bib0026) 2015; 19
Xue (10.1016/j.media.2018.01.002_bib0074) 2006; 33
Zhu (10.1016/j.media.2018.01.002_bib0083) 2016
Thung (10.1016/j.media.2018.01.002_bib0057) 2016
Yu (10.1016/j.media.2018.01.002_bib0076) 2014; 9
Association (10.1016/j.media.2018.01.002_bib0003) 2017; 13
Zhang (10.1016/j.media.2018.01.002_bib0080) 2001; 20
Dukart (10.1016/j.media.2018.01.002_bib0014) 2016; 49
Zhou (10.1016/j.media.2018.01.002_bib0082) 2013; 35
Candès (10.1016/j.media.2018.01.002_bib0009) 2009; 9
Vidal (10.1016/j.media.2018.01.002_bib0065) 2010; 28
Cairns (10.1016/j.media.2018.01.002_bib0007) 2015; 35
Wright (10.1016/j.media.2018.01.002_bib0069) 2009
She (10.1016/j.media.2018.01.002_bib0050) 2016; 2016
10.1016/j.media.2018.01.002_bib0033
Huang (10.1016/j.media.2018.01.002_bib0020) 2015
Chen (10.1016/j.media.2018.01.002_bib0010) 2017
Cai (10.1016/j.media.2018.01.002_bib0006) 2010; 20
Brochu (10.1016/j.media.2018.01.002_sbref0005) 2010
Nettiksimmons (10.1016/j.media.2018.01.002_bib0042) 2013; 4
Elhamifar (10.1016/j.media.2018.01.002_bib0016) 2013; 35
Cheng (10.1016/j.media.2018.01.002_bib0011) 2015; 9
Rasmussen (10.1016/j.media.2018.01.002_bib0046) 2004
Elhamifar (10.1016/j.media.2018.01.002_bib0015) 2011
Thornton (10.1016/j.media.2018.01.002_bib0056) 2013
Liu (10.1016/j.media.2018.01.002_bib0030) 2010
Zhu (10.1016/j.media.2018.01.002_bib0086) 2011; 23
Bergstra (10.1016/j.media.2018.01.002_bib0004) 2011
Shi (10.1016/j.media.2018.01.002_bib0052) 2014; 2014
Liu (10.1016/j.media.2018.01.002_bib0031) 2011
Moradi (10.1016/j.media.2018.01.002_bib0041) 2015; 104
Sled (10.1016/j.media.2018.01.002_bib0053) 1998; 17
Yuan (10.1016/j.media.2018.01.002_bib0077) 2012; 61
Association (10.1016/j.media.2018.01.002_bib0002) 2016; 12
Liu (10.1016/j.media.2018.01.002_bib0032) 2009
Misra (10.1016/j.media.2018.01.002_bib0040) 2009; 44
Liu (10.1016/j.media.2018.01.002_bib0035) 2017; 11
Stoub (10.1016/j.media.2018.01.002_bib0055) 2004; 25
Zhu (10.1016/j.media.2018.01.002_bib0085) 2017
Liu (10.1016/j.media.2018.01.002_bib0029) 2013; 35
Wang (10.1016/j.media.2018.01.002_bib0066) 2011
Davatzikos (10.1016/j.media.2018.01.002_bib0013) 2011; 32
Petersen (10.1016/j.media.2018.01.002_bib0044) 2006; 63
Korolev (10.1016/j.media.2018.01.002_bib0024) 2016; 11
Goldberg (10.1016/j.media.2018.01.002_bib0018) 2010; 23
Oulhaj (10.1016/j.media.2018.01.002_bib0043) 2009; 73
Thung (10.1016/j.media.2018.01.002_bib0060) 2016; 221
Yogatama (10.1016/j.media.2018.01.002_bib0075) 2014; 33
Markesbery (10.1016/j.media.2018.01.002_bib0037) 2010; 19
Snoek (10.1016/j.media.2018.01.002_bib0054) 2012
Gauthier (10.1016/j.media.2018.01.002_bib0017) 2006; 367
Lin (10.1016/j.media.2018.01.002_sbref0027) 2015; abs/1509.01719
Weiner (10.1016/j.media.2018.01.002_bib0068) 2013; 9
References_xml – volume: 35
  start-page: 390
  year: 2015
  end-page: 400
  ident: bib0007
  article-title: Neuropathologic assessment of participants in two multi-center longitudinal observational studies: the alzheimer disease neuroimaging initiative (ADNI) and the dominantly inherited alzheimer network (DIAN)
  publication-title: Neuropathology
– volume: 128
  start-page: 321
  year: 2011
  end-page: 353
  ident: bib0036
  article-title: Fixed point and bregman iterative methods for matrix rank minimization
  publication-title: Math. Program.
– start-page: 658
  year: 2015
  end-page: 666
  ident: bib0001
  article-title: Robust feature-sample linear discriminant analysis for brain disorders diagnosis
  publication-title: Advances in Neural Information Processing Systems
– start-page: 2951
  year: 2012
  end-page: 2959
  ident: bib0054
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Advances in Neural Information Processing Systems
– volume: 58
  start-page: 11
  year: 2011
  ident: bib0008
  article-title: Robust principal component analysis?
  publication-title: J. ACM
– start-page: 132
  year: 2017
  end-page: 140
  ident: bib0081
  article-title: Feature learning and fusion of multimodality neuroimaging and genetic data for multi-status dementia diagnosis
  publication-title: Proceedings of the International Workshop on Machine Learning in Medical Imaging
– volume: 9
  start-page: e111
  year: 2013
  end-page: e194
  ident: bib0068
  article-title: The alzheimer’s disease neuroimaging initiative: a review of papers published since its inception
  publication-title: Alzheimer’s Dementia
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  ident: bib0053
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 17
  start-page: 520
  year: 2001
  end-page: 525
  ident: bib0064
  article-title: Missing value estimation methods for DNA microarrays
  publication-title: Bioinformatics
– volume: 66
  year: 2011
  ident: bib0039
  publication-title: Survival Analysis
– start-page: 635
  year: 2011
  end-page: 642
  ident: bib0066
  article-title: Robust deformable-surface-based skull-stripping for large-scale studies
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011
– volume: 51
  start-page: 1045
  year: 2016
  end-page: 1056
  ident: bib0071
  article-title: Prediction of progressive mild cognitive impairment by multi-modal neuroimaging biomarkers
  publication-title: J. Alzheimers Dis.
– start-page: 1615
  year: 2011
  end-page: 1622
  ident: bib0031
  article-title: Latent low-rank representation for subspace segmentation and feature extraction
  publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV)
– volume: 7
  year: 2015
  ident: bib0078
  article-title: Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease
  publication-title: Front Aging Neurosci
– volume: 104
  start-page: 398
  year: 2015
  end-page: 412
  ident: bib0041
  article-title: Machine learning framework for early MRI-based alzheimer’s conversion prediction in MCI subjects
  publication-title: Neuroimage
– volume: 11
  start-page: 33
  year: 2017
  ident: bib0035
  article-title: Prediction of mild cognitive impairment conversion using a combination of independent component analysis and the cox model
  publication-title: Front. Hum. Neurosci.
– start-page: 3461
  year: 2015
  end-page: 3465
  ident: bib0028
  article-title: Cross-domain recognition by identifying compact joint subspaces
  publication-title: Proceedings of the IEEE International Conference on Image Processing (ICIP)
– volume: 28
  start-page: 52
  year: 2010
  end-page: 68
  ident: bib0065
  article-title: A tutorial on subspace clustering
  publication-title: IEEE Signal Process. Mag.
– volume: 11
  start-page: e0138866
  year: 2016
  ident: bib0024
  article-title: Predicting progression from mild cognitive impairment to alzheimer’s dementia using clinical, MRI, and plasma biomarkers via probabilistic pattern classification
  publication-title: PLoS ONE
– start-page: 2546
  year: 2011
  end-page: 2554
  ident: bib0004
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Advances in Neural Information Processing Systems
– volume: 62
  start-page: 1805
  year: 2015
  end-page: 1817
  ident: bib0012
  article-title: Domain transfer learning for MCI conversion prediction
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 23
  start-page: 110
  year: 2011
  end-page: 121
  ident: bib0086
  article-title: Missing value estimation for mixed-attribute data sets
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 367
  start-page: 1262
  year: 2006
  end-page: 1270
  ident: bib0017
  article-title: Mild cognitive impairment
  publication-title: Lancet
– volume: 73
  start-page: 1436
  year: 2009
  end-page: 1442
  ident: bib0043
  article-title: Predicting the time of conversion to MCI in the elderly role of verbal expression and learning
  publication-title: Neurology
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib0019
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 21
  start-page: 1421
  year: 2002
  end-page: 1439
  ident: bib0051
  article-title: HAMMER: Hierarchical attribute matching mechanism for elastic registration
  publication-title: IEEE Trans. Med. Imaging
– start-page: 527
  year: 2015
  end-page: 534
  ident: bib0061
  article-title: Joint diagnosis and conversion time prediction of progressive mild cognitive impairment (pmci) using low-rank subspace clustering and matrix completion
  publication-title: Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI
– start-page: 77
  year: 2016
  end-page: 85
  ident: bib0083
  article-title: Joint discriminative and representative feature selection for Alzheimer’s disease diagnosis
  publication-title: Proceedings of the International Workshop on Machine Learning in Medical Imaging
– volume: abs/1509.01719
  year: 2015
  ident: bib0027
  article-title: Unsupervised Cross-Domain Recognition by Identifying Compact Joint Subspaces
  publication-title: CoRR
– volume: 4
  start-page: P222
  year: 2013
  end-page: P223
  ident: bib0042
  article-title: Biological heterogeneity in ADNI amnestic MCI
  publication-title: Alzheimer’s & Dementia J. Alzheimer’s Assoc.
– volume: 32
  start-page: 2322.e19
  year: 2011
  end-page: 2322.e27
  ident: bib0013
  article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
  publication-title: Neurobiol. Aging
– start-page: 255
  year: 2015
  end-page: 262
  ident: bib0084
  article-title: Multi-view classification for identification of Alzheimer’s disease
  publication-title: Proceedings of the International Workshop on Machine Learning in Medical Imaging
– start-page: 267
  year: 1996
  end-page: 288
  ident: bib0063
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– volume: 61
  start-page: 622
  year: 2012
  end-page: 632
  ident: bib0077
  article-title: Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data
  publication-title: Neuroimage
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: bib0080
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
– volume: 33
  start-page: 855
  year: 2006
  end-page: 866
  ident: bib0074
  article-title: Simulating deformations of MR brain images for validation of atlas-based segmentation and registration algorithms
  publication-title: Neuroimage
– volume: 7
  start-page: S717
  year: 1998
  ident: bib0023
  article-title: A 3d atlas of the human brain
  publication-title: Neuroimage
– start-page: 72
  year: 2017
  end-page: 80
  ident: bib0085
  article-title: Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 246
  year: 2015
  end-page: 254
  ident: bib0020
  article-title: Soft-split sparse regression based random forest for predicting future clinical scores of Alzheimer’s disease
  publication-title: Proceedings of the International Workshop on Machine Learning in Medical Imaging
– volume: 44
  start-page: 1415
  year: 2009
  end-page: 1422
  ident: bib0040
  article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI
  publication-title: Neuroimage
– year: 2010
  ident: bib0005
  article-title: A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning
  publication-title: CoRR
– volume: 35
  start-page: 171
  year: 2013
  end-page: 184
  ident: bib0029
  article-title: Robust recovery of subspace structures by low-rank representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 35
  start-page: 597
  year: 2013
  end-page: 610
  ident: bib0082
  article-title: Moving object detection by detecting contiguous outliers in the low-rank representation
  publication-title: Pattern Anal. Mach. Intell. IEEE Trans.
– volume: 221
  start-page: 3979
  year: 2016
  end-page: 3995
  ident: bib0060
  article-title: Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans
  publication-title: Brain Struct. Funct.
– start-page: 240
  year: 2014
  end-page: 247
  ident: bib0025
  article-title: Robust deep learning for improved classification of AD/MCI patients
  publication-title: Proceedings of the International Workshop on Machine Learning in Medical Imaging
– start-page: 847
  year: 2013
  end-page: 855
  ident: bib0056
  article-title: Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
  publication-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 23
  start-page: 1276
  year: 2004
  end-page: 1291
  ident: bib0072
  article-title: Determining correspondence in 3-d MR brain images using attribute vectors as morphological signatures of voxels
  publication-title: IEEE Trans. Med. Imaging
– start-page: 163
  year: 2013
  end-page: 170
  ident: bib0058
  article-title: Identification of Alzheimer’s disease using incomplete multimodal dataset via matrix shrinkage and completion
  publication-title: Proceedings of the International Workshop on Machine Learning in Medical Imaging
– volume: 7
  start-page: 15
  year: 2017
  end-page: 29
  ident: bib0038
  article-title: The risk of incident mild cognitive impairment and progression to dementia considering mild cognitive impairment subtypes
  publication-title: Dement. Geriatr. Cogn. Dis. Extra
– volume: 25
  start-page: 1197
  year: 2004
  end-page: 1203
  ident: bib0055
  article-title: MRI-Derived entorhinal volume is a good predictor of conversion from MCI to AD
  publication-title: Neurobiol. Aging.
– start-page: 88
  year: 2016
  end-page: 96
  ident: bib0057
  article-title: Stability-weighted matrix completion of incomplete multi-modal data for disease diagnosis
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 663
  year: 2010
  end-page: 670
  ident: bib0030
  article-title: Robust subspace segmentation by low-rank representation
  publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10)
– volume: 10
  start-page: 740
  year: 2006
  end-page: 751
  ident: bib0073
  article-title: Statistical representation of high-dimensional deformation fields with application to statistically constrained 3D warping
  publication-title: Med. Image Anal.
– volume: 59
  start-page: 895
  year: 2012
  end-page: 907
  ident: bib0079
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease
  publication-title: Neuroimage
– start-page: 160
  year: 2017
  end-page: 168
  ident: bib0062
  article-title: Multi-stage diagnosis of Alzheimer’s disease with incomplete multimodal data via multi-task deep learning
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– volume: 91
  start-page: 386
  year: 2014
  end-page: 400
  ident: bib0059
  article-title: Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion
  publication-title: Neuroimage
– volume: 23
  start-page: 757
  year: 2010
  end-page: 765
  ident: bib0018
  article-title: Transduction with matrix completion: three birds with one stone
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 33
  start-page: 1077
  year: 2014
  end-page: 1085
  ident: bib0075
  article-title: Efficient Transfer Learning Method for Automatic Hyperparameter Tuning
  publication-title: Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics
– volume: 9
  start-page: 913
  year: 2015
  end-page: 926
  ident: bib0011
  article-title: Multimodal manifold-regularized transfer learning for MCI conversion prediction
  publication-title: Brain Imaging Behav.
– volume: 102
  start-page: 192
  year: 2014
  end-page: 206
  ident: bib0070
  article-title: Bi-level multi-source learning for heterogeneous block-wise missing data
  publication-title: Neuroimage
– volume: 63
  start-page: 665
  year: 2006
  end-page: 672
  ident: bib0044
  article-title: Neuropathologic features of amnestic mild cognitive impairment
  publication-title: Arch. Neurol.
– start-page: 450
  year: 2017
  end-page: 458
  ident: bib0010
  article-title: Multi-label inductive matrix completion for joint MGMT and IDH1 status prediction for Glioma patients
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 6
  start-page: 82
  year: 2014
  ident: bib0045
  article-title: Prevalence of mixed pathologies in the aging brain
  publication-title: Alzheimer’s Res. Therapy
– volume: 9
  start-page: e96458
  year: 2014
  ident: bib0076
  article-title: Multi-task linear programming discriminant analysis for the identification of progressive MCI individuals
  publication-title: PLoS ONE
– volume: 20
  start-page: 1956
  year: 2010
  end-page: 1982
  ident: bib0006
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: SIAM J. Optim.
– start-page: 63
  year: 2004
  end-page: 71
  ident: bib0046
  article-title: Gaussian Processes in Machine Learning
  publication-title: Advanced Lectures on Machine Learning
– start-page: 657
  year: 2009
  end-page: 664
  ident: bib0034
  article-title: Efficient euclidean projections in linear time
  publication-title: Proceedings of the 26th Annual International Conference on Machine Learning
– start-page: 1085
  year: 2011
  end-page: 1089
  ident: bib0015
  article-title: Sparsity in unions of subspaces for classification and clustering of high-dimensional data
  publication-title: Proceedings of the 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton)
– reference: Liu, J., Ji, S., Ye, J., 2009b. SLEP: Sparse Learning with Efficient Projections. Arizona State University.
– reference: .
– start-page: 2080
  year: 2009
  end-page: 2088
  ident: bib0069
  article-title: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization
  publication-title: Advances in Neural Information Processing Systems
– volume: 12
  start-page: 459
  year: 2016
  end-page: 509
  ident: bib0002
  article-title: Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s & Dementia
– volume: 63
  start-page: 674
  year: 2006
  end-page: 681
  ident: bib0022
  article-title: Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia
  publication-title: Arch. Neurol.
– volume: 2014
  year: 2014
  ident: bib0052
  article-title: Low-rank representation for incomplete data
  publication-title: Math. Probl. Eng.
– volume: 35
  start-page: 2765
  year: 2013
  end-page: 2781
  ident: bib0016
  article-title: Sparse subspace clustering: algorithm, theory, and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 19
  start-page: 1610
  year: 2015
  end-page: 1616
  ident: bib0026
  article-title: A robust deep model for improved classification of AD/MCI patients
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 1
  year: 2006
  ident: bib0047
  publication-title: Gaussian Processes for Machine Learning
– volume: 2016
  year: 2016
  ident: bib0050
  article-title: Scale-dependent signal identification in low-dimensional subspace: motor imagery task classification
  publication-title: Neural Plast.
– start-page: 547
  year: 2009
  end-page: 556
  ident: bib0032
  article-title: Large-scale sparse logistic regression
  publication-title: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining
– volume: 13
  start-page: 325
  year: 2017
  end-page: 373
  ident: bib0003
  article-title: Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s & Dementia
– volume: 9
  start-page: 717
  year: 2009
  end-page: 772
  ident: bib0009
  article-title: Exact matrix completion via convex optimization
  publication-title: Found. Comput. Math.
– volume: 19
  start-page: 221
  year: 2010
  end-page: 228
  ident: bib0037
  article-title: Neuropathologic alterations in mild cognitive impairment: a review
  publication-title: J. Alzheimers Dis.
– volume: 24
  start-page: 135
  year: 2015
  end-page: 148
  ident: bib0048
  article-title: A transversal approach for patch-based label fusion via matrix completion
  publication-title: Med. Image Anal.
– start-page: 207
  year: 2014
  end-page: 214
  ident: bib0049
  article-title: Novel multi-atlas segmentation by matrix completion
  publication-title: Proceedings of the International Workshop on Machine Learning in Medical Imaging
– start-page: 468
  year: 2012
  end-page: 475
  ident: bib0021
  article-title: Using multiparametric data with missing features for learning patterns of pathology
  publication-title: Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI
– volume: 49
  start-page: 1143
  year: 2016
  end-page: 1159
  ident: bib0014
  article-title: Accurate prediction of conversion to alzheimer’s disease using imaging, genetic, and neuropsychological biomarkers
  publication-title: J. Alzheimers Dis.
– volume: 8
  start-page: 76
  year: 2016
  ident: bib0067
  article-title: Prediction of conversion from mild cognitive impairment to Alzheimer’s disease using MRI and structural network features
  publication-title: Front. Aging Neurosci.
– volume: 73
  start-page: 1436
  issue: 18
  year: 2009
  ident: 10.1016/j.media.2018.01.002_bib0043
  article-title: Predicting the time of conversion to MCI in the elderly role of verbal expression and learning
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181c0665f
– start-page: 132
  year: 2017
  ident: 10.1016/j.media.2018.01.002_bib0081
  article-title: Feature learning and fusion of multimodality neuroimaging and genetic data for multi-status dementia diagnosis
– volume: 102
  start-page: 192
  year: 2014
  ident: 10.1016/j.media.2018.01.002_bib0070
  article-title: Bi-level multi-source learning for heterogeneous block-wise missing data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.015
– year: 2010
  ident: 10.1016/j.media.2018.01.002_sbref0005
  article-title: A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning
– volume: 33
  start-page: 855
  issue: 3
  year: 2006
  ident: 10.1016/j.media.2018.01.002_bib0074
  article-title: Simulating deformations of MR brain images for validation of atlas-based segmentation and registration algorithms
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.08.007
– volume: 59
  start-page: 895
  issue: 2
  year: 2012
  ident: 10.1016/j.media.2018.01.002_bib0079
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.069
– volume: 7
  start-page: 15
  issue: 1
  year: 2017
  ident: 10.1016/j.media.2018.01.002_bib0038
  article-title: The risk of incident mild cognitive impairment and progression to dementia considering mild cognitive impairment subtypes
  publication-title: Dement. Geriatr. Cogn. Dis. Extra
  doi: 10.1159/000452486
– volume: 12
  start-page: 459
  issue: 4
  year: 2016
  ident: 10.1016/j.media.2018.01.002_bib0002
  article-title: Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s & Dementia
– volume: 20
  start-page: 45
  issue: 1
  year: 2001
  ident: 10.1016/j.media.2018.01.002_bib0080
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906424
– volume: 21
  start-page: 1421
  issue: 11
  year: 2002
  ident: 10.1016/j.media.2018.01.002_bib0051
  article-title: HAMMER: Hierarchical attribute matching mechanism for elastic registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2002.803111
– volume: 23
  start-page: 110
  issue: 1
  year: 2011
  ident: 10.1016/j.media.2018.01.002_bib0086
  article-title: Missing value estimation for mixed-attribute data sets
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2010.99
– start-page: 88
  year: 2016
  ident: 10.1016/j.media.2018.01.002_bib0057
  article-title: Stability-weighted matrix completion of incomplete multi-modal data for disease diagnosis
– start-page: 246
  year: 2015
  ident: 10.1016/j.media.2018.01.002_bib0020
  article-title: Soft-split sparse regression based random forest for predicting future clinical scores of Alzheimer’s disease
– start-page: 63
  year: 2004
  ident: 10.1016/j.media.2018.01.002_bib0046
  article-title: Gaussian Processes in Machine Learning
– volume: 8
  start-page: 76
  year: 2016
  ident: 10.1016/j.media.2018.01.002_bib0067
  article-title: Prediction of conversion from mild cognitive impairment to Alzheimer’s disease using MRI and structural network features
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2016.00076
– volume: 9
  start-page: e96458
  issue: 5
  year: 2014
  ident: 10.1016/j.media.2018.01.002_bib0076
  article-title: Multi-task linear programming discriminant analysis for the identification of progressive MCI individuals
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0096458
– volume: 221
  start-page: 3979
  issue: 8
  year: 2016
  ident: 10.1016/j.media.2018.01.002_bib0060
  article-title: Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-015-1140-6
– start-page: 663
  year: 2010
  ident: 10.1016/j.media.2018.01.002_bib0030
  article-title: Robust subspace segmentation by low-rank representation
– volume: 13
  start-page: 325
  issue: 4
  year: 2017
  ident: 10.1016/j.media.2018.01.002_bib0003
  article-title: Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s & Dementia
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.media.2018.01.002_bib0019
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– start-page: 635
  year: 2011
  ident: 10.1016/j.media.2018.01.002_bib0066
  article-title: Robust deformable-surface-based skull-stripping for large-scale studies
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011
  doi: 10.1007/978-3-642-23626-6_78
– volume: 17
  start-page: 87
  issue: 1
  year: 1998
  ident: 10.1016/j.media.2018.01.002_bib0053
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.668698
– start-page: 163
  year: 2013
  ident: 10.1016/j.media.2018.01.002_bib0058
  article-title: Identification of Alzheimer’s disease using incomplete multimodal dataset via matrix shrinkage and completion
– volume: 25
  start-page: 1197
  issue: 9
  year: 2004
  ident: 10.1016/j.media.2018.01.002_bib0055
  article-title: MRI-Derived entorhinal volume is a good predictor of conversion from MCI to AD
  publication-title: Neurobiol. Aging.
  doi: 10.1016/j.neurobiolaging.2003.12.007
– volume: 104
  start-page: 398
  year: 2015
  ident: 10.1016/j.media.2018.01.002_bib0041
  article-title: Machine learning framework for early MRI-based alzheimer’s conversion prediction in MCI subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 24
  start-page: 135
  issue: 1
  year: 2015
  ident: 10.1016/j.media.2018.01.002_bib0048
  article-title: A transversal approach for patch-based label fusion via matrix completion
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.06.002
– start-page: 160
  year: 2017
  ident: 10.1016/j.media.2018.01.002_bib0062
  article-title: Multi-stage diagnosis of Alzheimer’s disease with incomplete multimodal data via multi-task deep learning
– volume: 49
  start-page: 1143
  issue: 4
  year: 2016
  ident: 10.1016/j.media.2018.01.002_bib0014
  article-title: Accurate prediction of conversion to alzheimer’s disease using imaging, genetic, and neuropsychological biomarkers
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-150570
– start-page: 657
  year: 2009
  ident: 10.1016/j.media.2018.01.002_bib0034
  article-title: Efficient euclidean projections in linear time
– volume: 6
  start-page: 82
  issue: 9
  year: 2014
  ident: 10.1016/j.media.2018.01.002_bib0045
  article-title: Prevalence of mixed pathologies in the aging brain
  publication-title: Alzheimer’s Res. Therapy
  doi: 10.1186/s13195-014-0082-1
– volume: 35
  start-page: 390
  issue: 4
  year: 2015
  ident: 10.1016/j.media.2018.01.002_bib0007
  article-title: Neuropathologic assessment of participants in two multi-center longitudinal observational studies: the alzheimer disease neuroimaging initiative (ADNI) and the dominantly inherited alzheimer network (DIAN)
  publication-title: Neuropathology
  doi: 10.1111/neup.12205
– start-page: 72
  year: 2017
  ident: 10.1016/j.media.2018.01.002_bib0085
  article-title: Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data
– start-page: 2951
  year: 2012
  ident: 10.1016/j.media.2018.01.002_bib0054
  article-title: Practical bayesian optimization of machine learning algorithms
– volume: 20
  start-page: 1956
  issue: 4
  year: 2010
  ident: 10.1016/j.media.2018.01.002_bib0006
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: SIAM J. Optim.
  doi: 10.1137/080738970
– start-page: 2080
  year: 2009
  ident: 10.1016/j.media.2018.01.002_bib0069
  article-title: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization
– volume: 44
  start-page: 1415
  issue: 4
  year: 2009
  ident: 10.1016/j.media.2018.01.002_bib0040
  article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.031
– volume: 9
  start-page: e111
  issue: 5
  year: 2013
  ident: 10.1016/j.media.2018.01.002_bib0068
  article-title: The alzheimer’s disease neuroimaging initiative: a review of papers published since its inception
  publication-title: Alzheimer’s Dementia
  doi: 10.1016/j.jalz.2013.05.1769
– volume: 66
  year: 2011
  ident: 10.1016/j.media.2018.01.002_bib0039
– volume: 19
  start-page: 221
  issue: 1
  year: 2010
  ident: 10.1016/j.media.2018.01.002_bib0037
  article-title: Neuropathologic alterations in mild cognitive impairment: a review
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2010-1220
– volume: 33
  start-page: 1077
  year: 2014
  ident: 10.1016/j.media.2018.01.002_bib0075
  article-title: Efficient Transfer Learning Method for Automatic Hyperparameter Tuning
– start-page: 1085
  year: 2011
  ident: 10.1016/j.media.2018.01.002_bib0015
  article-title: Sparsity in unions of subspaces for classification and clustering of high-dimensional data
– start-page: 207
  year: 2014
  ident: 10.1016/j.media.2018.01.002_bib0049
  article-title: Novel multi-atlas segmentation by matrix completion
– volume: 61
  start-page: 622
  issue: 3
  year: 2012
  ident: 10.1016/j.media.2018.01.002_bib0077
  article-title: Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.059
– volume: 17
  start-page: 520
  issue: 6
  year: 2001
  ident: 10.1016/j.media.2018.01.002_bib0064
  article-title: Missing value estimation methods for DNA microarrays
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.6.520
– start-page: 77
  year: 2016
  ident: 10.1016/j.media.2018.01.002_bib0083
  article-title: Joint discriminative and representative feature selection for Alzheimer’s disease diagnosis
– volume: 128
  start-page: 321
  issue: 1–2
  year: 2011
  ident: 10.1016/j.media.2018.01.002_bib0036
  article-title: Fixed point and bregman iterative methods for matrix rank minimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-009-0306-5
– start-page: 267
  year: 1996
  ident: 10.1016/j.media.2018.01.002_bib0063
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: abs/1509.01719
  year: 2015
  ident: 10.1016/j.media.2018.01.002_sbref0027
  article-title: Unsupervised Cross-Domain Recognition by Identifying Compact Joint Subspaces
  publication-title: CoRR
– volume: 7
  year: 2015
  ident: 10.1016/j.media.2018.01.002_bib0078
  article-title: Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2015.00048
– volume: 51
  start-page: 1045
  issue: 4
  year: 2016
  ident: 10.1016/j.media.2018.01.002_bib0071
  article-title: Prediction of progressive mild cognitive impairment by multi-modal neuroimaging biomarkers
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-151010
– volume: 9
  start-page: 717
  issue: 6
  year: 2009
  ident: 10.1016/j.media.2018.01.002_bib0009
  article-title: Exact matrix completion via convex optimization
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-009-9045-5
– volume: 11
  start-page: e0138866
  issue: 2
  year: 2016
  ident: 10.1016/j.media.2018.01.002_bib0024
  article-title: Predicting progression from mild cognitive impairment to alzheimer’s dementia using clinical, MRI, and plasma biomarkers via probabilistic pattern classification
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0138866
– volume: 58
  start-page: 11
  issue: 3
  year: 2011
  ident: 10.1016/j.media.2018.01.002_bib0008
  article-title: Robust principal component analysis?
  publication-title: J. ACM
  doi: 10.1145/1970392.1970395
– start-page: 450
  year: 2017
  ident: 10.1016/j.media.2018.01.002_bib0010
  article-title: Multi-label inductive matrix completion for joint MGMT and IDH1 status prediction for Glioma patients
– ident: 10.1016/j.media.2018.01.002_bib0033
– volume: 35
  start-page: 2765
  issue: 11
  year: 2013
  ident: 10.1016/j.media.2018.01.002_bib0016
  article-title: Sparse subspace clustering: algorithm, theory, and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.57
– volume: 63
  start-page: 674
  issue: 5
  year: 2006
  ident: 10.1016/j.media.2018.01.002_bib0022
  article-title: Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.63.5.674
– start-page: 240
  year: 2014
  ident: 10.1016/j.media.2018.01.002_bib0025
  article-title: Robust deep learning for improved classification of AD/MCI patients
– volume: 19
  start-page: 1610
  issue: 5
  year: 2015
  ident: 10.1016/j.media.2018.01.002_bib0026
  article-title: A robust deep model for improved classification of AD/MCI patients
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2015.2429556
– volume: 1
  year: 2006
  ident: 10.1016/j.media.2018.01.002_bib0047
– volume: 28
  start-page: 52
  issue: 2
  year: 2010
  ident: 10.1016/j.media.2018.01.002_bib0065
  article-title: A tutorial on subspace clustering
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2010.939739
– volume: 32
  start-page: 2322.e19
  issue: 12
  year: 2011
  ident: 10.1016/j.media.2018.01.002_bib0013
  article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2010.05.023
– start-page: 658
  year: 2015
  ident: 10.1016/j.media.2018.01.002_bib0001
  article-title: Robust feature-sample linear discriminant analysis for brain disorders diagnosis
– volume: 62
  start-page: 1805
  issue: 7
  year: 2015
  ident: 10.1016/j.media.2018.01.002_bib0012
  article-title: Domain transfer learning for MCI conversion prediction
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2404809
– volume: 91
  start-page: 386
  year: 2014
  ident: 10.1016/j.media.2018.01.002_bib0059
  article-title: Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.01.033
– volume: 9
  start-page: 913
  issue: 4
  year: 2015
  ident: 10.1016/j.media.2018.01.002_bib0011
  article-title: Multimodal manifold-regularized transfer learning for MCI conversion prediction
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-015-9356-x
– volume: 11
  start-page: 33
  year: 2017
  ident: 10.1016/j.media.2018.01.002_bib0035
  article-title: Prediction of mild cognitive impairment conversion using a combination of independent component analysis and the cox model
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2017.00033
– volume: 2014
  year: 2014
  ident: 10.1016/j.media.2018.01.002_bib0052
  article-title: Low-rank representation for incomplete data
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2014/439417
– start-page: 2546
  year: 2011
  ident: 10.1016/j.media.2018.01.002_bib0004
  article-title: Algorithms for hyper-parameter optimization
– volume: 367
  start-page: 1262
  issue: 9518
  year: 2006
  ident: 10.1016/j.media.2018.01.002_bib0017
  article-title: Mild cognitive impairment
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)68542-5
– start-page: 847
  year: 2013
  ident: 10.1016/j.media.2018.01.002_bib0056
  article-title: Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
– start-page: 3461
  year: 2015
  ident: 10.1016/j.media.2018.01.002_bib0028
  article-title: Cross-domain recognition by identifying compact joint subspaces
– start-page: 547
  year: 2009
  ident: 10.1016/j.media.2018.01.002_bib0032
  article-title: Large-scale sparse logistic regression
– start-page: 255
  year: 2015
  ident: 10.1016/j.media.2018.01.002_bib0084
  article-title: Multi-view classification for identification of Alzheimer’s disease
– volume: 23
  start-page: 757
  year: 2010
  ident: 10.1016/j.media.2018.01.002_bib0018
  article-title: Transduction with matrix completion: three birds with one stone
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 35
  start-page: 171
  issue: 1
  year: 2013
  ident: 10.1016/j.media.2018.01.002_bib0029
  article-title: Robust recovery of subspace structures by low-rank representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.88
– volume: 63
  start-page: 665
  issue: 5
  year: 2006
  ident: 10.1016/j.media.2018.01.002_bib0044
  article-title: Neuropathologic features of amnestic mild cognitive impairment
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.63.5.665
– start-page: 527
  year: 2015
  ident: 10.1016/j.media.2018.01.002_bib0061
  article-title: Joint diagnosis and conversion time prediction of progressive mild cognitive impairment (pmci) using low-rank subspace clustering and matrix completion
– volume: 23
  start-page: 1276
  issue: 10
  year: 2004
  ident: 10.1016/j.media.2018.01.002_bib0072
  article-title: Determining correspondence in 3-d MR brain images using attribute vectors as morphological signatures of voxels
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.834616
– volume: 10
  start-page: 740
  issue: 5
  year: 2006
  ident: 10.1016/j.media.2018.01.002_bib0073
  article-title: Statistical representation of high-dimensional deformation fields with application to statistically constrained 3D warping
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2006.06.007
– volume: 2016
  year: 2016
  ident: 10.1016/j.media.2018.01.002_bib0050
  article-title: Scale-dependent signal identification in low-dimensional subspace: motor imagery task classification
  publication-title: Neural Plast.
  doi: 10.1155/2016/7431012
– volume: 35
  start-page: 597
  issue: 3
  year: 2013
  ident: 10.1016/j.media.2018.01.002_bib0082
  article-title: Moving object detection by detecting contiguous outliers in the low-rank representation
  publication-title: Pattern Anal. Mach. Intell. IEEE Trans.
  doi: 10.1109/TPAMI.2012.132
– volume: 4
  start-page: P222
  issue: 9
  year: 2013
  ident: 10.1016/j.media.2018.01.002_bib0042
  article-title: Biological heterogeneity in ADNI amnestic MCI
  publication-title: Alzheimer’s & Dementia J. Alzheimer’s Assoc.
  doi: 10.1016/j.jalz.2013.05.419
– volume: 7
  start-page: S717
  year: 1998
  ident: 10.1016/j.media.2018.01.002_bib0023
  article-title: A 3d atlas of the human brain
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(18)31550-7
– start-page: 468
  year: 2012
  ident: 10.1016/j.media.2018.01.002_bib0021
  article-title: Using multiparametric data with missing features for learning patterns of pathology
– start-page: 1615
  year: 2011
  ident: 10.1016/j.media.2018.01.002_bib0031
  article-title: Latent low-rank representation for subspace segmentation and feature extraction
SSID ssj0007440
Score 2.5396564
Snippet •Longitudinal MRI, PET and cognitive data are used jointly for pMCI prediction.•MCI subjects exhibit biological heterogeneity, and the data are incomplete and...
In this paper, we aim to predict conversion and time-to-conversion of mild cognitive impairment (MCI) patients using multi-modal neuroimaging data and clinical...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 68
SubjectTerms Affinity
Alzheimer's disease
Classification
Cognition & reasoning
Cognitive ability
Conversion
Correlation analysis
Data imputation
Impairment
Longitudinal studies
Low-rank representation
Mathematical analysis
Matrix completion
Matrix methods
Medical imaging
Multi-task learning
Multitasking
Neuroimaging
Neurology
Noise reduction
Regression analysis
Subspace methods
Subspaces
Title Conversion and time-to-conversion predictions of mild cognitive impairment using low-rank affinity pursuit denoising and matrix completion
URI https://dx.doi.org/10.1016/j.media.2018.01.002
https://www.ncbi.nlm.nih.gov/pubmed/29414437
https://www.proquest.com/docview/2063746620
https://www.proquest.com/docview/1999681424
https://pubmed.ncbi.nlm.nih.gov/PMC6892173
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJwQFBegVIZiSNmkzhxkuOyoiyP9gJFvVlJbEPQNlntZtVy4Qfwq5lxHu0C6oHTauNJ4l2PPTP2N98AvNA6tehWCF6WheVR4muivBVcB7nQYRGE0lDu8NGxnJ9E70_j0x2YDbkwBKvs1_5uTXerdX9l0v-bk2VVTT4FgoqVoMVKBUU2FLdHUUJa_urnJcyDCPC63KuAk_TAPOQwXi47g_BdqePu7PdW_mGd_vY-_wRRXrFKh3fhTu9OsmnX43uwY-o9uH2FZHAPbh71x-f34deMMOZug4zltWZUWJ63DS8vLy9XJO2UkTWWnVULzUaIEaOcympFG4qMAPNf2aI551T2neXWVij0gy03q_WmahmuZ03lZOhNZ1QJ4II5ALuhpz-Ak8M3n2dz3hdj4CXGNC3PkizPqDC51SZOdYiuhNW2EEEeCmnTQhS-QWOfpLheJmmOpjfOC5zd5CBpYzLxEHbrpjaPgcmCSIasb-LIRvi0LNYZBvjY0dDSqagH4TAIquyZyqlgxkINkLTvyo2copFTfqBw5Dx4Od607Ig6rheXw-iqLX1TaEquv3F_0AXVT_c1tkuRRFKGvgfPx2acqHT6ktem2awV8T3IlBILPXjUqc7Y0TCLMLAViQfJllKNAkQCvt1SV98cGbhMM4wqxZP__T1P4RZ968BI-7DbrjbmGfpZbXHgJtIB3Ji--zA_xs-3rz9-mf4GRoUuRA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NncTHA4LxFRhgJB6J2sSJkzxOFVPH1r6wSXuzktiGoC6p2lRs_wJ_NXeOE1ZAe-A1PqdO73wf9t3vAD4olRp0K7hfloXxo2SiCPKW-yrIuQqLIBSaaofnCzG7iD5fxpd7MO1rYSit0un-Tqdbbe2ejN2_OV5V1fhLwKlZCVqslFNkg3H7PqFTxSPYPzo5nS0GhUwYeF35VeDThB58yKZ52QINSvFKLXynO175h4H62wH9M4_ylmE6fgyPnEfJjrpFP4E9XR_Aw1s4gwdwb-5u0J_CzymlmdszMpbXilFveb9t_PL349WaqK08ssawq2qp2JBlxKisslrTmSKjnPmvbNn88KnzO8uNqZDohq226822ahmqtKayNPRLV9QM4JrZHHZNb38GF8efzqcz3_Vj8EsMa1o_S7I8o97kRuk4VSF6E0aZggd5yIVJC15MNNr7JEWVmaQ5Wt84L3CDk4-ktM74cxjVTa1fAhMF4QyZiY4jE-HbslhlGOPjQkNDF6MehD0TZOnAyqlnxlL2WWnfpeWcJM7JSSCRcx58HCatOqyOu8lFz125I3ISrcndEw97WZBux29wXPAkEiKcePB-GMa9Shcwea2b7UYS5INIqbbQgxed6AwLDbMIY1ueeJDsCNVAQDjguyN19c3igYs0w8CSv_rf73kH92fn8zN5drI4fQ0PaKTLTTqEUbve6jfodrXFW7etfgEEGS9m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conversion+and+time-to-conversion+predictions+of+mild+cognitive+impairment+using+low-rank+affinity+pursuit+denoising+and+matrix+completion&rft.jtitle=Medical+image+analysis&rft.au=Thung%2C+Kim-Han&rft.au=Yap%2C+Pew-Thian&rft.au=Adeli%2C+Ehsan&rft.au=Lee%2C+Seong-Whan&rft.date=2018-04-01&rft.eissn=1361-8423&rft.volume=45&rft.spage=68&rft_id=info:doi/10.1016%2Fj.media.2018.01.002&rft_id=info%3Apmid%2F29414437&rft.externalDocID=29414437
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon