Conversion and time-to-conversion predictions of mild cognitive impairment using low-rank affinity pursuit denoising and matrix completion
•Longitudinal MRI, PET and cognitive data are used jointly for pMCI prediction.•MCI subjects exhibit biological heterogeneity, and the data are incomplete and noisy.•Low rank affinity-pursuit denoising is used to denoise incomplete heterogeneous data.•Label and conversion time are predicted jointly...
Saved in:
Published in | Medical image analysis Vol. 45; pp. 68 - 82 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Longitudinal MRI, PET and cognitive data are used jointly for pMCI prediction.•MCI subjects exhibit biological heterogeneity, and the data are incomplete and noisy.•Low rank affinity-pursuit denoising is used to denoise incomplete heterogeneous data.•Label and conversion time are predicted jointly using low rank matrix completion.•Best pMCI classification acc. is 84%, conversion time prediction correlation is 0.67.
[Display omitted]
In this paper, we aim to predict conversion and time-to-conversion of mild cognitive impairment (MCI) patients using multi-modal neuroimaging data and clinical data, via cross-sectional and longitudinal studies. However, such data are often heterogeneous, high-dimensional, noisy, and incomplete. We thus propose a framework that includes sparse feature selection, low-rank affinity pursuit denoising (LRAD), and low-rank matrix completion (LRMC) in this study. Specifically, we first use sparse linear regressions to remove unrelated features. Then, considering the heterogeneity of the MCI data, which can be assumed as a union of multiple subspaces, we propose to use a low rank subspace method (i.e., LRAD) to denoise the data. Finally, we employ LRMC algorithm with three data fitting terms and one inequality constraint for joint conversion and time-to-conversion predictions. Our framework aims to answer a very important but yet rarely explored question in AD study, i.e., when will the MCI convert to AD? This is different from survival analysis, which provides the probabilities of conversion at different time points that are mainly used for global analysis, while our time-to-conversion prediction is for each individual subject. Evaluations using the ADNI dataset indicate that our method outperforms conventional LRMC and other state-of-the-art methods. Our method achieves a maximal pMCI classification accuracy of 84% and time prediction correlation of 0.665. |
---|---|
AbstractList | In this paper, we aim to predict conversion and time-to-conversion of mild cognitive impairment (MCI) patients using multi-modal neuroimaging data and clinical data, via cross-sectional and longitudinal studies. However, such data are often heterogeneous, high-dimensional, noisy, and incomplete. We thus propose a framework that includes sparse feature selection, low-rank affinity pursuit denoising (LRAD), and low-rank matrix completion (LRMC) in this study. Specifically, we first use sparse linear regressions to remove unrelated features. Then, considering the heterogeneity of the MCI data, which can be assumed as a union of multiple subspaces, we propose to use a low rank subspace method (i.e., LRAD) to denoise the data. Finally, we employ LRMC algorithm with three data fitting terms and one inequality constraint for joint conversion and time-to-conversion predictions. Our framework aims to answer a very important but yet rarely explored question in AD study, i.e., when will the MCI convert to AD? This is different from survival analysis, which provides the probabilities of conversion at different time points that are mainly used for global analysis, while our time-to-conversion prediction is for each individual subject. Evaluations using the ADNI dataset indicate that our method outperforms conventional LRMC and other state-of-the-art methods. Our method achieves a maximal pMCI classification accuracy of 84% and time prediction correlation of 0.665. In this paper, we aim to predict conversion and time-to-conversion of mild cognitive impairment (MCI) patients using multi-modal neuroimaging data and clinical data, via cross-sectional and longitudinal studies. However, such data are often heterogeneous, high-dimensional, noisy, and incomplete. We thus propose a framework that includes sparse feature selection, low-rank affinity pursuit denoising (LRAD), and low-rank matrix completion (LRMC) in this study. Specifically, we first use sparse linear regressions to remove unrelated features. Then, considering the heterogeneity of the MCI data, which can be assumed as a union of multiple subspaces, we propose to use a low rank subspace method (i.e., LRAD) to denoise the data. Finally, we employ LRMC algorithm with three data fitting terms and one inequality constraint for joint conversion and time-to-conversion predictions. Our framework aims to answer a very important but yet rarely explored question in AD study, i.e., when will the MCI convert to AD? This is different from survival analysis, which provides the probabilities of conversion at different time points that are mainly used for global analysis, while our time-to-conversion prediction is for each individual subject. Evaluations using the ADNI dataset indicate that our method outperforms conventional LRMC and other state-of-the-art methods. Our method achieves a maximal pMCI classification accuracy of 84% and time prediction correlation of 0.665.In this paper, we aim to predict conversion and time-to-conversion of mild cognitive impairment (MCI) patients using multi-modal neuroimaging data and clinical data, via cross-sectional and longitudinal studies. However, such data are often heterogeneous, high-dimensional, noisy, and incomplete. We thus propose a framework that includes sparse feature selection, low-rank affinity pursuit denoising (LRAD), and low-rank matrix completion (LRMC) in this study. Specifically, we first use sparse linear regressions to remove unrelated features. Then, considering the heterogeneity of the MCI data, which can be assumed as a union of multiple subspaces, we propose to use a low rank subspace method (i.e., LRAD) to denoise the data. Finally, we employ LRMC algorithm with three data fitting terms and one inequality constraint for joint conversion and time-to-conversion predictions. Our framework aims to answer a very important but yet rarely explored question in AD study, i.e., when will the MCI convert to AD? This is different from survival analysis, which provides the probabilities of conversion at different time points that are mainly used for global analysis, while our time-to-conversion prediction is for each individual subject. Evaluations using the ADNI dataset indicate that our method outperforms conventional LRMC and other state-of-the-art methods. Our method achieves a maximal pMCI classification accuracy of 84% and time prediction correlation of 0.665. •Longitudinal MRI, PET and cognitive data are used jointly for pMCI prediction.•MCI subjects exhibit biological heterogeneity, and the data are incomplete and noisy.•Low rank affinity-pursuit denoising is used to denoise incomplete heterogeneous data.•Label and conversion time are predicted jointly using low rank matrix completion.•Best pMCI classification acc. is 84%, conversion time prediction correlation is 0.67. [Display omitted] In this paper, we aim to predict conversion and time-to-conversion of mild cognitive impairment (MCI) patients using multi-modal neuroimaging data and clinical data, via cross-sectional and longitudinal studies. However, such data are often heterogeneous, high-dimensional, noisy, and incomplete. We thus propose a framework that includes sparse feature selection, low-rank affinity pursuit denoising (LRAD), and low-rank matrix completion (LRMC) in this study. Specifically, we first use sparse linear regressions to remove unrelated features. Then, considering the heterogeneity of the MCI data, which can be assumed as a union of multiple subspaces, we propose to use a low rank subspace method (i.e., LRAD) to denoise the data. Finally, we employ LRMC algorithm with three data fitting terms and one inequality constraint for joint conversion and time-to-conversion predictions. Our framework aims to answer a very important but yet rarely explored question in AD study, i.e., when will the MCI convert to AD? This is different from survival analysis, which provides the probabilities of conversion at different time points that are mainly used for global analysis, while our time-to-conversion prediction is for each individual subject. Evaluations using the ADNI dataset indicate that our method outperforms conventional LRMC and other state-of-the-art methods. Our method achieves a maximal pMCI classification accuracy of 84% and time prediction correlation of 0.665. |
Author | Thung, Kim-Han Shen, Dinggang Yap, Pew-Thian Adeli, Ehsan Lee, Seong-Whan |
AuthorAffiliation | a Department of Radiology and BRIC, University of North Carolina, Chapel Hill 27599, USA b Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea |
AuthorAffiliation_xml | – name: a Department of Radiology and BRIC, University of North Carolina, Chapel Hill 27599, USA – name: b Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea |
Author_xml | – sequence: 1 givenname: Kim-Han orcidid: 0000-0003-1379-2185 surname: Thung fullname: Thung, Kim-Han email: khthung@email.unc.edu organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill 27599, USA – sequence: 2 givenname: Pew-Thian surname: Yap fullname: Yap, Pew-Thian organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill 27599, USA – sequence: 3 givenname: Ehsan surname: Adeli fullname: Adeli, Ehsan organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill 27599, USA – sequence: 4 givenname: Seong-Whan surname: Lee fullname: Lee, Seong-Whan organization: Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea – sequence: 5 givenname: Dinggang surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill 27599, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29414437$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstuFDEQHKEg8oAvQEKWuHCZxY9Zz_gAUrQKDykSFzhbXrtn6WXGHmzPQn6Br443mwTIIQfLLbuquuyu0-rIBw9V9ZLRBaNMvt0uRnBoFpyybkHZglL-pDphQrK6a7g4uq_Z8rg6TWlLKW2bhj6rjrlqWNOI9qT6swp-BzFh8MR4RzKOUOdQ27_HUyxtbC5lIqEnIw6O2LDxmHEHBMfJYBzBZzIn9BsyhF91NP4HMX2PBXRFpjmmGTNx4APeYPadRpMj_i5K4zTAXv159bQ3Q4IXt_tZ9e3DxdfVp_ryy8fPq_PL2jZdm2vVKlPWUvUOlp3jtGO969eCGS5k363FmgKXsu2cg7YzAG5p1koK1vLWAShxVr0_6E7zuvygLdajGfQUcTTxSgeD-v8bj9_1Juy07BRnrSgCb24FYvg5Q8p6xGRhGIyHMCfNlFKyYw1vCvT1A-g2zNGX52lOpWgbKTktqFf_Orq3cjemAlAHgI0hpQi9tpjN_tOKQRw0o3ofCb3VN5HQ-0hoynSJROGKB9w7-cdZ7w4sKJPYIUSdLIK3BRjBZu0CPsq_BtGH1Xs |
CitedBy_id | crossref_primary_10_1016_j_cmpb_2020_105348 crossref_primary_10_1016_j_patcog_2023_110015 crossref_primary_10_1016_j_jbi_2021_103863 crossref_primary_10_1016_j_compmedimag_2022_102057 crossref_primary_10_1016_j_media_2020_101848 crossref_primary_10_1109_JBHI_2023_3262948 crossref_primary_10_1186_s12911_019_0858_0 crossref_primary_10_1016_j_media_2019_101600 crossref_primary_10_3389_fphys_2023_1188678 crossref_primary_10_1016_j_nicl_2020_102199 crossref_primary_10_1016_j_neuroimage_2020_117167 crossref_primary_10_3389_fgene_2018_00347 crossref_primary_10_1109_JBHI_2020_3006719 crossref_primary_10_1007_s11042_023_16928_z crossref_primary_10_1016_j_media_2024_103103 crossref_primary_10_1155_2021_3080640 crossref_primary_10_1109_ACCESS_2024_3412850 crossref_primary_10_1093_cercor_bhac137 crossref_primary_10_1109_TMI_2019_2913158 crossref_primary_10_1155_2022_8662238 crossref_primary_10_3233_JAD_210308 crossref_primary_10_1016_j_neurobiolaging_2019_08_033 crossref_primary_10_1007_s11042_024_19425_z crossref_primary_10_1016_j_neunet_2019_11_013 crossref_primary_10_1016_j_nicl_2023_103533 crossref_primary_10_1109_JBHI_2020_3042447 crossref_primary_10_3174_ajnr_A8059 crossref_primary_10_3389_fnins_2022_902528 crossref_primary_10_1016_j_nicl_2019_101929 crossref_primary_10_1002_trc2_12035 crossref_primary_10_1080_17512433_2023_2142561 crossref_primary_10_1109_JBHI_2021_3100918 crossref_primary_10_3390_diagnostics11081473 crossref_primary_10_1109_TMI_2019_2895894 crossref_primary_10_1016_j_media_2022_102643 crossref_primary_10_1016_j_neuroimage_2021_118143 crossref_primary_10_3390_app10041223 crossref_primary_10_1155_2022_2863893 crossref_primary_10_1016_j_artmed_2021_102097 crossref_primary_10_1016_j_media_2019_101630 crossref_primary_10_3390_e24070951 crossref_primary_10_1002_hbm_24428 |
Cites_doi | 10.1212/WNL.0b013e3181c0665f 10.1016/j.neuroimage.2013.08.015 10.1016/j.neuroimage.2006.08.007 10.1016/j.neuroimage.2011.09.069 10.1159/000452486 10.1109/42.906424 10.1109/TMI.2002.803111 10.1109/TKDE.2010.99 10.3389/fnagi.2016.00076 10.1371/journal.pone.0096458 10.1007/s00429-015-1140-6 10.1007/978-3-642-23626-6_78 10.1109/42.668698 10.1016/j.neurobiolaging.2003.12.007 10.1016/j.neuroimage.2014.10.002 10.1016/j.media.2015.06.002 10.3233/JAD-150570 10.1186/s13195-014-0082-1 10.1111/neup.12205 10.1137/080738970 10.1016/j.neuroimage.2008.10.031 10.1016/j.jalz.2013.05.1769 10.3233/JAD-2010-1220 10.1016/j.neuroimage.2012.03.059 10.1093/bioinformatics/17.6.520 10.1007/s10107-009-0306-5 10.1111/j.2517-6161.1996.tb02080.x 10.3389/fnagi.2015.00048 10.3233/JAD-151010 10.1007/s10208-009-9045-5 10.1371/journal.pone.0138866 10.1145/1970392.1970395 10.1109/TPAMI.2013.57 10.1001/archneur.63.5.674 10.1109/JBHI.2015.2429556 10.1109/MSP.2010.939739 10.1016/j.neurobiolaging.2010.05.023 10.1109/TBME.2015.2404809 10.1016/j.neuroimage.2014.01.033 10.1007/s11682-015-9356-x 10.3389/fnhum.2017.00033 10.1155/2014/439417 10.1016/S0140-6736(06)68542-5 10.1109/TPAMI.2012.88 10.1001/archneur.63.5.665 10.1109/TMI.2004.834616 10.1016/j.media.2006.06.007 10.1155/2016/7431012 10.1109/TPAMI.2012.132 10.1016/j.jalz.2013.05.419 10.1016/S1053-8119(18)31550-7 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. Copyright Elsevier BV Apr 2018 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Apr 2018 |
CorporateAuthor | for the Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: for the Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative |
DBID | AAYXX CITATION NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 5PM |
DOI | 10.1016/j.media.2018.01.002 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
EndPage | 82 |
ExternalDocumentID | PMC6892173 29414437 10_1016_j_media_2018_01_002 S1361841518300100 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION NPM 7QO 8FD EFKBS FR3 K9. NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c487t-979a97959fde58d2081fdfb31a236f8b3b0e26678dde78aeed5ab9631727dee93 |
IEDL.DBID | .~1 |
ISSN | 1361-8415 1361-8423 |
IngestDate | Thu Aug 21 14:04:13 EDT 2025 Fri Jul 11 15:57:24 EDT 2025 Sat Jul 26 03:23:34 EDT 2025 Thu Apr 03 07:10:23 EDT 2025 Thu Apr 24 23:05:13 EDT 2025 Tue Jul 01 02:49:26 EDT 2025 Fri Feb 23 02:28:17 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Low-rank representation Data imputation Multi-task learning Classification Matrix completion |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c487t-979a97959fde58d2081fdfb31a236f8b3b0e26678dde78aeed5ab9631727dee93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1379-2185 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6892173 |
PMID | 29414437 |
PQID | 2063746620 |
PQPubID | 2045428 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6892173 proquest_miscellaneous_1999681424 proquest_journals_2063746620 pubmed_primary_29414437 crossref_citationtrail_10_1016_j_media_2018_01_002 crossref_primary_10_1016_j_media_2018_01_002 elsevier_sciencedirect_doi_10_1016_j_media_2018_01_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Gauthier, Reisberg, Zaudig, Petersen, Ritchie, Broich, Belleville, Brodaty, Bennett, Chertkow (bib0017) 2006; 367 Shi, Yang, Yong, Zheng (bib0052) 2014; 2014 Association (bib0003) 2017; 13 Vidal (bib0065) 2010; 28 Guyon, Elisseeff (bib0019) 2003; 3 Li, Tran, Thung, Ji, Shen, Li (bib0025) 2014 Thung, Wee, Yap, Shen (bib0060) 2016; 221 Yogatama, Mann (bib0075) 2014; 33 Zhu, Suk, Thung, Zhu, Wu, Shen (bib0083) 2016 Nettiksimmons, DeCarli, Landau, Beckett (bib0042) 2013; 4 Thornton, Hutter, Hoos, Leyton-Brown (bib0056) 2013 Xue, Shen, Davatzikos (bib0072) 2004; 23 Sanroma, Wu, Gao, Thung, Guo, Shen (bib0048) 2015; 24 Ingalhalikar, Parker, Bloy, Roberts, Verma (bib0021) 2012 Sled, Zijdenbos, Evans (bib0053) 1998; 17 Liu, Chen, Ye (bib0032) 2009 Oulhaj, Wilcock, Smith, de Jager (bib0043) 2009; 73 Rasmussen (bib0046) 2004 Liu, Ye (bib0034) 2009 Zhou, Yang, Yu (bib0082) 2013; 35 Lin, Chen, Cao, Zhou, Zhang, Tang, Wang (bib0027) 2015; abs/1509.01719 Candès, Recht (bib0009) 2009; 9 Dukart, Sambataro, Bertolino (bib0014) 2016; 49 Cairns, Perrin, Franklin, Carter, Vincent, Xie, Bateman, Benzinger, Friedrichsen, Brooks (bib0007) 2015; 35 Thung, Yap, Shen (bib0062) 2017 Elhamifar, Vidal (bib0016) 2013; 35 Petersen, Parisi, Dickson, Johnson, Knopman, Boeve, Jicha, Ivnik, Smith, Tangalos (bib0044) 2006; 63 Adeli-Mosabbeb, Thung, An, Shi, Shen (bib0001) 2015 . Wei, Li, Fogelson, Li (bib0067) 2016; 8 Thung, Wee, Yap, Shen (bib0058) 2013 Chen, Zhang, Thung, Liu, Lu, Wu, Wang, Shen (bib0010) 2017 Lin, Chen, Cao, Zhou, Zhang, Wang (bib0028) 2015 Liu, Yan (bib0031) 2011 Liu, Chen, Yao, Guo (bib0035) 2017; 11 Zhu, Thung, Adeli, Zhang, Shen (bib0085) 2017 Rasmussen, Williams (bib0047) 2006; 1 Yu, Liu, Thung, Shen (bib0076) 2014; 9 Davatzikos, Bhatt, Shaw, Batmanghelich, Trojanowski (bib0013) 2011; 32 She, Gan, Ma, Luo, Potter, Zhang (bib0050) 2016; 2016 Zhang, Brady, Smith (bib0080) 2001; 20 Cai, Candès, Shen (bib0006) 2010; 20 Xu, Wu, Li, Chen, Long, Zhang, Guo, Yao (bib0071) 2016; 51 Zhang, Shen, Initiative (bib0079) 2012; 59 Kabani (bib0023) 1998; 7 Shen, Davatzikos (bib0051) 2002; 21 Liu, Lin, Yan, Sun, Yu, Ma (bib0029) 2013; 35 Wang, Nie, Yap, Shi, Guo, Shen (bib0066) 2011 Xiang, Yuan, Fan, Wang, Thompson, Ye, Initiative (bib0070) 2014; 102 Weiner, Veitch, Aisen, Beckett, Cairns, Green, Harvey, Jack, Jagust, Liu (bib0068) 2013; 9 Cheng, Liu, Zhang, Munsell, Shen (bib0012) 2015; 62 Markesbery (bib0037) 2010; 19 Thung, Adeli, Yap, Shen (bib0057) 2016 Goldberg, Recht, Xu, Nowak, Zhu (bib0018) 2010; 23 Michaud, Su, Siahpush, Murman (bib0038) 2017; 7 Korolev, Symonds, Bozoki, Initiative (bib0024) 2016; 11 Ma, Goldfarb, Chen (bib0036) 2011; 128 Snoek, Larochelle, Adams (bib0054) 2012 Cheng, Liu, Suk, Shen, Zhang, Initiative (bib0011) 2015; 9 Zhu, Zhang, Jin, Zhang, Xu (bib0086) 2011; 23 Miller Jr (bib0039) 2011; 66 Zhu, Suk, Zhu, Thung, Wu, Shen (bib0084) 2015 Brochu, Cora, De Freitas (bib0005) 2010 Huang, Gao, Jin, Thung, Shen (bib0020) 2015 Thung, Wee, Yap, Shen (bib0059) 2014; 91 Liu, J., Ji, S., Ye, J., 2009b. SLEP: Sparse Learning with Efficient Projections. Arizona State University. Rahimi, Kovacs (bib0045) 2014; 6 Candès, Li, Ma, Wright (bib0008) 2011; 58 Liu, Lin, Yu (bib0030) 2010 Stoub, Bulgakova, Wilson, Bennett, Leurgans, Wuu, Turner (bib0055) 2004; 25 Zhan, Zhou, Wang, Jin, Jahanshad, Prasad, Nir, Leonardo, Ye, Thompson (bib0078) 2015; 7 Troyanskaya, Cantor, Sherlock, Brown, Hastie, Tibshirani, Botstein, Altman (bib0064) 2001; 17 Yuan, Wang, Thompson, Narayan, Ye, Initiative (bib0077) 2012; 61 Bergstra, Bardenet, Bengio, Kégl (bib0004) 2011 Zhou, Thung, Zhu, Shen (bib0081) 2017 Tibshirani (bib0063) 1996 Jicha, Parisi, Dickson, Johnson, Cha, Ivnik, Tangalos, Boeve, Knopman, Braak (bib0022) 2006; 63 Sanroma, Wu, Thung, Guo, Shen (bib0049) 2014 Thung, Yap, Adeli-M, Shen (bib0061) 2015 Xue, Shen, Davatzikos (bib0073) 2006; 10 Li, Tran, Thung, Ji, Shen, Li (bib0026) 2015; 19 Moradi, Pepe, Gaser, Huttunen, Tohka, Initiative (bib0041) 2015; 104 Association (bib0002) 2016; 12 Elhamifar, Vidal (bib0015) 2011 Xue, Shen, Karacali, Stern, Rottenberg, Davatzikos (bib0074) 2006; 33 Wright, Ganesh, Rao, Peng, Ma (bib0069) 2009 Misra, Fan, Davatzikos (bib0040) 2009; 44 Troyanskaya (10.1016/j.media.2018.01.002_bib0064) 2001; 17 Candès (10.1016/j.media.2018.01.002_bib0008) 2011; 58 Lin (10.1016/j.media.2018.01.002_bib0028) 2015 Thung (10.1016/j.media.2018.01.002_bib0059) 2014; 91 Zhang (10.1016/j.media.2018.01.002_bib0079) 2012; 59 Wei (10.1016/j.media.2018.01.002_bib0067) 2016; 8 Sanroma (10.1016/j.media.2018.01.002_bib0049) 2014 Xue (10.1016/j.media.2018.01.002_bib0073) 2006; 10 Rasmussen (10.1016/j.media.2018.01.002_bib0047) 2006; 1 Jicha (10.1016/j.media.2018.01.002_bib0022) 2006; 63 Rahimi (10.1016/j.media.2018.01.002_bib0045) 2014; 6 Xiang (10.1016/j.media.2018.01.002_bib0070) 2014; 102 Adeli-Mosabbeb (10.1016/j.media.2018.01.002_bib0001) 2015 Kabani (10.1016/j.media.2018.01.002_bib0023) 1998; 7 Thung (10.1016/j.media.2018.01.002_bib0058) 2013 Miller Jr (10.1016/j.media.2018.01.002_bib0039) 2011; 66 Ingalhalikar (10.1016/j.media.2018.01.002_bib0021) 2012 Sanroma (10.1016/j.media.2018.01.002_bib0048) 2015; 24 Zhu (10.1016/j.media.2018.01.002_bib0084) 2015 Guyon (10.1016/j.media.2018.01.002_bib0019) 2003; 3 Tibshirani (10.1016/j.media.2018.01.002_bib0063) 1996 Ma (10.1016/j.media.2018.01.002_bib0036) 2011; 128 Zhou (10.1016/j.media.2018.01.002_bib0081) 2017 Michaud (10.1016/j.media.2018.01.002_bib0038) 2017; 7 Liu (10.1016/j.media.2018.01.002_bib0034) 2009 Zhan (10.1016/j.media.2018.01.002_bib0078) 2015; 7 Thung (10.1016/j.media.2018.01.002_bib0061) 2015 Xu (10.1016/j.media.2018.01.002_bib0071) 2016; 51 Cheng (10.1016/j.media.2018.01.002_bib0012) 2015; 62 Thung (10.1016/j.media.2018.01.002_bib0062) 2017 Shen (10.1016/j.media.2018.01.002_bib0051) 2002; 21 Xue (10.1016/j.media.2018.01.002_bib0072) 2004; 23 Li (10.1016/j.media.2018.01.002_bib0025) 2014 Li (10.1016/j.media.2018.01.002_bib0026) 2015; 19 Xue (10.1016/j.media.2018.01.002_bib0074) 2006; 33 Zhu (10.1016/j.media.2018.01.002_bib0083) 2016 Thung (10.1016/j.media.2018.01.002_bib0057) 2016 Yu (10.1016/j.media.2018.01.002_bib0076) 2014; 9 Association (10.1016/j.media.2018.01.002_bib0003) 2017; 13 Zhang (10.1016/j.media.2018.01.002_bib0080) 2001; 20 Dukart (10.1016/j.media.2018.01.002_bib0014) 2016; 49 Zhou (10.1016/j.media.2018.01.002_bib0082) 2013; 35 Candès (10.1016/j.media.2018.01.002_bib0009) 2009; 9 Vidal (10.1016/j.media.2018.01.002_bib0065) 2010; 28 Cairns (10.1016/j.media.2018.01.002_bib0007) 2015; 35 Wright (10.1016/j.media.2018.01.002_bib0069) 2009 She (10.1016/j.media.2018.01.002_bib0050) 2016; 2016 10.1016/j.media.2018.01.002_bib0033 Huang (10.1016/j.media.2018.01.002_bib0020) 2015 Chen (10.1016/j.media.2018.01.002_bib0010) 2017 Cai (10.1016/j.media.2018.01.002_bib0006) 2010; 20 Brochu (10.1016/j.media.2018.01.002_sbref0005) 2010 Nettiksimmons (10.1016/j.media.2018.01.002_bib0042) 2013; 4 Elhamifar (10.1016/j.media.2018.01.002_bib0016) 2013; 35 Cheng (10.1016/j.media.2018.01.002_bib0011) 2015; 9 Rasmussen (10.1016/j.media.2018.01.002_bib0046) 2004 Elhamifar (10.1016/j.media.2018.01.002_bib0015) 2011 Thornton (10.1016/j.media.2018.01.002_bib0056) 2013 Liu (10.1016/j.media.2018.01.002_bib0030) 2010 Zhu (10.1016/j.media.2018.01.002_bib0086) 2011; 23 Bergstra (10.1016/j.media.2018.01.002_bib0004) 2011 Shi (10.1016/j.media.2018.01.002_bib0052) 2014; 2014 Liu (10.1016/j.media.2018.01.002_bib0031) 2011 Moradi (10.1016/j.media.2018.01.002_bib0041) 2015; 104 Sled (10.1016/j.media.2018.01.002_bib0053) 1998; 17 Yuan (10.1016/j.media.2018.01.002_bib0077) 2012; 61 Association (10.1016/j.media.2018.01.002_bib0002) 2016; 12 Liu (10.1016/j.media.2018.01.002_bib0032) 2009 Misra (10.1016/j.media.2018.01.002_bib0040) 2009; 44 Liu (10.1016/j.media.2018.01.002_bib0035) 2017; 11 Stoub (10.1016/j.media.2018.01.002_bib0055) 2004; 25 Zhu (10.1016/j.media.2018.01.002_bib0085) 2017 Liu (10.1016/j.media.2018.01.002_bib0029) 2013; 35 Wang (10.1016/j.media.2018.01.002_bib0066) 2011 Davatzikos (10.1016/j.media.2018.01.002_bib0013) 2011; 32 Petersen (10.1016/j.media.2018.01.002_bib0044) 2006; 63 Korolev (10.1016/j.media.2018.01.002_bib0024) 2016; 11 Goldberg (10.1016/j.media.2018.01.002_bib0018) 2010; 23 Oulhaj (10.1016/j.media.2018.01.002_bib0043) 2009; 73 Thung (10.1016/j.media.2018.01.002_bib0060) 2016; 221 Yogatama (10.1016/j.media.2018.01.002_bib0075) 2014; 33 Markesbery (10.1016/j.media.2018.01.002_bib0037) 2010; 19 Snoek (10.1016/j.media.2018.01.002_bib0054) 2012 Gauthier (10.1016/j.media.2018.01.002_bib0017) 2006; 367 Lin (10.1016/j.media.2018.01.002_sbref0027) 2015; abs/1509.01719 Weiner (10.1016/j.media.2018.01.002_bib0068) 2013; 9 |
References_xml | – volume: 35 start-page: 390 year: 2015 end-page: 400 ident: bib0007 article-title: Neuropathologic assessment of participants in two multi-center longitudinal observational studies: the alzheimer disease neuroimaging initiative (ADNI) and the dominantly inherited alzheimer network (DIAN) publication-title: Neuropathology – volume: 128 start-page: 321 year: 2011 end-page: 353 ident: bib0036 article-title: Fixed point and bregman iterative methods for matrix rank minimization publication-title: Math. Program. – start-page: 658 year: 2015 end-page: 666 ident: bib0001 article-title: Robust feature-sample linear discriminant analysis for brain disorders diagnosis publication-title: Advances in Neural Information Processing Systems – start-page: 2951 year: 2012 end-page: 2959 ident: bib0054 article-title: Practical bayesian optimization of machine learning algorithms publication-title: Advances in Neural Information Processing Systems – volume: 58 start-page: 11 year: 2011 ident: bib0008 article-title: Robust principal component analysis? publication-title: J. ACM – start-page: 132 year: 2017 end-page: 140 ident: bib0081 article-title: Feature learning and fusion of multimodality neuroimaging and genetic data for multi-status dementia diagnosis publication-title: Proceedings of the International Workshop on Machine Learning in Medical Imaging – volume: 9 start-page: e111 year: 2013 end-page: e194 ident: bib0068 article-title: The alzheimer’s disease neuroimaging initiative: a review of papers published since its inception publication-title: Alzheimer’s Dementia – volume: 17 start-page: 87 year: 1998 end-page: 97 ident: bib0053 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans. Med. Imaging – volume: 17 start-page: 520 year: 2001 end-page: 525 ident: bib0064 article-title: Missing value estimation methods for DNA microarrays publication-title: Bioinformatics – volume: 66 year: 2011 ident: bib0039 publication-title: Survival Analysis – start-page: 635 year: 2011 end-page: 642 ident: bib0066 article-title: Robust deformable-surface-based skull-stripping for large-scale studies publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011 – volume: 51 start-page: 1045 year: 2016 end-page: 1056 ident: bib0071 article-title: Prediction of progressive mild cognitive impairment by multi-modal neuroimaging biomarkers publication-title: J. Alzheimers Dis. – start-page: 1615 year: 2011 end-page: 1622 ident: bib0031 article-title: Latent low-rank representation for subspace segmentation and feature extraction publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV) – volume: 7 year: 2015 ident: bib0078 article-title: Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease publication-title: Front Aging Neurosci – volume: 104 start-page: 398 year: 2015 end-page: 412 ident: bib0041 article-title: Machine learning framework for early MRI-based alzheimer’s conversion prediction in MCI subjects publication-title: Neuroimage – volume: 11 start-page: 33 year: 2017 ident: bib0035 article-title: Prediction of mild cognitive impairment conversion using a combination of independent component analysis and the cox model publication-title: Front. Hum. Neurosci. – start-page: 3461 year: 2015 end-page: 3465 ident: bib0028 article-title: Cross-domain recognition by identifying compact joint subspaces publication-title: Proceedings of the IEEE International Conference on Image Processing (ICIP) – volume: 28 start-page: 52 year: 2010 end-page: 68 ident: bib0065 article-title: A tutorial on subspace clustering publication-title: IEEE Signal Process. Mag. – volume: 11 start-page: e0138866 year: 2016 ident: bib0024 article-title: Predicting progression from mild cognitive impairment to alzheimer’s dementia using clinical, MRI, and plasma biomarkers via probabilistic pattern classification publication-title: PLoS ONE – start-page: 2546 year: 2011 end-page: 2554 ident: bib0004 article-title: Algorithms for hyper-parameter optimization publication-title: Advances in Neural Information Processing Systems – volume: 62 start-page: 1805 year: 2015 end-page: 1817 ident: bib0012 article-title: Domain transfer learning for MCI conversion prediction publication-title: IEEE Trans. Biomed. Eng. – volume: 23 start-page: 110 year: 2011 end-page: 121 ident: bib0086 article-title: Missing value estimation for mixed-attribute data sets publication-title: IEEE Trans. Knowl. Data Eng. – volume: 367 start-page: 1262 year: 2006 end-page: 1270 ident: bib0017 article-title: Mild cognitive impairment publication-title: Lancet – volume: 73 start-page: 1436 year: 2009 end-page: 1442 ident: bib0043 article-title: Predicting the time of conversion to MCI in the elderly role of verbal expression and learning publication-title: Neurology – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib0019 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 21 start-page: 1421 year: 2002 end-page: 1439 ident: bib0051 article-title: HAMMER: Hierarchical attribute matching mechanism for elastic registration publication-title: IEEE Trans. Med. Imaging – start-page: 527 year: 2015 end-page: 534 ident: bib0061 article-title: Joint diagnosis and conversion time prediction of progressive mild cognitive impairment (pmci) using low-rank subspace clustering and matrix completion publication-title: Proceedings of the Medical Image Computing and Computer-Assisted Intervention - MICCAI – start-page: 77 year: 2016 end-page: 85 ident: bib0083 article-title: Joint discriminative and representative feature selection for Alzheimer’s disease diagnosis publication-title: Proceedings of the International Workshop on Machine Learning in Medical Imaging – volume: abs/1509.01719 year: 2015 ident: bib0027 article-title: Unsupervised Cross-Domain Recognition by Identifying Compact Joint Subspaces publication-title: CoRR – volume: 4 start-page: P222 year: 2013 end-page: P223 ident: bib0042 article-title: Biological heterogeneity in ADNI amnestic MCI publication-title: Alzheimer’s & Dementia J. Alzheimer’s Assoc. – volume: 32 start-page: 2322.e19 year: 2011 end-page: 2322.e27 ident: bib0013 article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification publication-title: Neurobiol. Aging – start-page: 255 year: 2015 end-page: 262 ident: bib0084 article-title: Multi-view classification for identification of Alzheimer’s disease publication-title: Proceedings of the International Workshop on Machine Learning in Medical Imaging – start-page: 267 year: 1996 end-page: 288 ident: bib0063 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B Methodol. – volume: 61 start-page: 622 year: 2012 end-page: 632 ident: bib0077 article-title: Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data publication-title: Neuroimage – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: bib0080 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans. Med. Imaging – volume: 33 start-page: 855 year: 2006 end-page: 866 ident: bib0074 article-title: Simulating deformations of MR brain images for validation of atlas-based segmentation and registration algorithms publication-title: Neuroimage – volume: 7 start-page: S717 year: 1998 ident: bib0023 article-title: A 3d atlas of the human brain publication-title: Neuroimage – start-page: 72 year: 2017 end-page: 80 ident: bib0085 article-title: Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 246 year: 2015 end-page: 254 ident: bib0020 article-title: Soft-split sparse regression based random forest for predicting future clinical scores of Alzheimer’s disease publication-title: Proceedings of the International Workshop on Machine Learning in Medical Imaging – volume: 44 start-page: 1415 year: 2009 end-page: 1422 ident: bib0040 article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI publication-title: Neuroimage – year: 2010 ident: bib0005 article-title: A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning publication-title: CoRR – volume: 35 start-page: 171 year: 2013 end-page: 184 ident: bib0029 article-title: Robust recovery of subspace structures by low-rank representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 35 start-page: 597 year: 2013 end-page: 610 ident: bib0082 article-title: Moving object detection by detecting contiguous outliers in the low-rank representation publication-title: Pattern Anal. Mach. Intell. IEEE Trans. – volume: 221 start-page: 3979 year: 2016 end-page: 3995 ident: bib0060 article-title: Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans publication-title: Brain Struct. Funct. – start-page: 240 year: 2014 end-page: 247 ident: bib0025 article-title: Robust deep learning for improved classification of AD/MCI patients publication-title: Proceedings of the International Workshop on Machine Learning in Medical Imaging – start-page: 847 year: 2013 end-page: 855 ident: bib0056 article-title: Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms publication-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 23 start-page: 1276 year: 2004 end-page: 1291 ident: bib0072 article-title: Determining correspondence in 3-d MR brain images using attribute vectors as morphological signatures of voxels publication-title: IEEE Trans. Med. Imaging – start-page: 163 year: 2013 end-page: 170 ident: bib0058 article-title: Identification of Alzheimer’s disease using incomplete multimodal dataset via matrix shrinkage and completion publication-title: Proceedings of the International Workshop on Machine Learning in Medical Imaging – volume: 7 start-page: 15 year: 2017 end-page: 29 ident: bib0038 article-title: The risk of incident mild cognitive impairment and progression to dementia considering mild cognitive impairment subtypes publication-title: Dement. Geriatr. Cogn. Dis. Extra – volume: 25 start-page: 1197 year: 2004 end-page: 1203 ident: bib0055 article-title: MRI-Derived entorhinal volume is a good predictor of conversion from MCI to AD publication-title: Neurobiol. Aging. – start-page: 88 year: 2016 end-page: 96 ident: bib0057 article-title: Stability-weighted matrix completion of incomplete multi-modal data for disease diagnosis publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 663 year: 2010 end-page: 670 ident: bib0030 article-title: Robust subspace segmentation by low-rank representation publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10) – volume: 10 start-page: 740 year: 2006 end-page: 751 ident: bib0073 article-title: Statistical representation of high-dimensional deformation fields with application to statistically constrained 3D warping publication-title: Med. Image Anal. – volume: 59 start-page: 895 year: 2012 end-page: 907 ident: bib0079 article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease publication-title: Neuroimage – start-page: 160 year: 2017 end-page: 168 ident: bib0062 article-title: Multi-stage diagnosis of Alzheimer’s disease with incomplete multimodal data via multi-task deep learning publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – volume: 91 start-page: 386 year: 2014 end-page: 400 ident: bib0059 article-title: Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion publication-title: Neuroimage – volume: 23 start-page: 757 year: 2010 end-page: 765 ident: bib0018 article-title: Transduction with matrix completion: three birds with one stone publication-title: Adv. Neural Inf. Process. Syst. – volume: 33 start-page: 1077 year: 2014 end-page: 1085 ident: bib0075 article-title: Efficient Transfer Learning Method for Automatic Hyperparameter Tuning publication-title: Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics – volume: 9 start-page: 913 year: 2015 end-page: 926 ident: bib0011 article-title: Multimodal manifold-regularized transfer learning for MCI conversion prediction publication-title: Brain Imaging Behav. – volume: 102 start-page: 192 year: 2014 end-page: 206 ident: bib0070 article-title: Bi-level multi-source learning for heterogeneous block-wise missing data publication-title: Neuroimage – volume: 63 start-page: 665 year: 2006 end-page: 672 ident: bib0044 article-title: Neuropathologic features of amnestic mild cognitive impairment publication-title: Arch. Neurol. – start-page: 450 year: 2017 end-page: 458 ident: bib0010 article-title: Multi-label inductive matrix completion for joint MGMT and IDH1 status prediction for Glioma patients publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 6 start-page: 82 year: 2014 ident: bib0045 article-title: Prevalence of mixed pathologies in the aging brain publication-title: Alzheimer’s Res. Therapy – volume: 9 start-page: e96458 year: 2014 ident: bib0076 article-title: Multi-task linear programming discriminant analysis for the identification of progressive MCI individuals publication-title: PLoS ONE – volume: 20 start-page: 1956 year: 2010 end-page: 1982 ident: bib0006 article-title: A singular value thresholding algorithm for matrix completion publication-title: SIAM J. Optim. – start-page: 63 year: 2004 end-page: 71 ident: bib0046 article-title: Gaussian Processes in Machine Learning publication-title: Advanced Lectures on Machine Learning – start-page: 657 year: 2009 end-page: 664 ident: bib0034 article-title: Efficient euclidean projections in linear time publication-title: Proceedings of the 26th Annual International Conference on Machine Learning – start-page: 1085 year: 2011 end-page: 1089 ident: bib0015 article-title: Sparsity in unions of subspaces for classification and clustering of high-dimensional data publication-title: Proceedings of the 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton) – reference: Liu, J., Ji, S., Ye, J., 2009b. SLEP: Sparse Learning with Efficient Projections. Arizona State University. – reference: . – start-page: 2080 year: 2009 end-page: 2088 ident: bib0069 article-title: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization publication-title: Advances in Neural Information Processing Systems – volume: 12 start-page: 459 year: 2016 end-page: 509 ident: bib0002 article-title: Alzheimer’s disease facts and figures publication-title: Alzheimer’s & Dementia – volume: 63 start-page: 674 year: 2006 end-page: 681 ident: bib0022 article-title: Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia publication-title: Arch. Neurol. – volume: 2014 year: 2014 ident: bib0052 article-title: Low-rank representation for incomplete data publication-title: Math. Probl. Eng. – volume: 35 start-page: 2765 year: 2013 end-page: 2781 ident: bib0016 article-title: Sparse subspace clustering: algorithm, theory, and applications publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 19 start-page: 1610 year: 2015 end-page: 1616 ident: bib0026 article-title: A robust deep model for improved classification of AD/MCI patients publication-title: IEEE J. Biomed. Health Inform. – volume: 1 year: 2006 ident: bib0047 publication-title: Gaussian Processes for Machine Learning – volume: 2016 year: 2016 ident: bib0050 article-title: Scale-dependent signal identification in low-dimensional subspace: motor imagery task classification publication-title: Neural Plast. – start-page: 547 year: 2009 end-page: 556 ident: bib0032 article-title: Large-scale sparse logistic regression publication-title: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining – volume: 13 start-page: 325 year: 2017 end-page: 373 ident: bib0003 article-title: Alzheimer’s disease facts and figures publication-title: Alzheimer’s & Dementia – volume: 9 start-page: 717 year: 2009 end-page: 772 ident: bib0009 article-title: Exact matrix completion via convex optimization publication-title: Found. Comput. Math. – volume: 19 start-page: 221 year: 2010 end-page: 228 ident: bib0037 article-title: Neuropathologic alterations in mild cognitive impairment: a review publication-title: J. Alzheimers Dis. – volume: 24 start-page: 135 year: 2015 end-page: 148 ident: bib0048 article-title: A transversal approach for patch-based label fusion via matrix completion publication-title: Med. Image Anal. – start-page: 207 year: 2014 end-page: 214 ident: bib0049 article-title: Novel multi-atlas segmentation by matrix completion publication-title: Proceedings of the International Workshop on Machine Learning in Medical Imaging – start-page: 468 year: 2012 end-page: 475 ident: bib0021 article-title: Using multiparametric data with missing features for learning patterns of pathology publication-title: Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI – volume: 49 start-page: 1143 year: 2016 end-page: 1159 ident: bib0014 article-title: Accurate prediction of conversion to alzheimer’s disease using imaging, genetic, and neuropsychological biomarkers publication-title: J. Alzheimers Dis. – volume: 8 start-page: 76 year: 2016 ident: bib0067 article-title: Prediction of conversion from mild cognitive impairment to Alzheimer’s disease using MRI and structural network features publication-title: Front. Aging Neurosci. – volume: 73 start-page: 1436 issue: 18 year: 2009 ident: 10.1016/j.media.2018.01.002_bib0043 article-title: Predicting the time of conversion to MCI in the elderly role of verbal expression and learning publication-title: Neurology doi: 10.1212/WNL.0b013e3181c0665f – start-page: 132 year: 2017 ident: 10.1016/j.media.2018.01.002_bib0081 article-title: Feature learning and fusion of multimodality neuroimaging and genetic data for multi-status dementia diagnosis – volume: 102 start-page: 192 year: 2014 ident: 10.1016/j.media.2018.01.002_bib0070 article-title: Bi-level multi-source learning for heterogeneous block-wise missing data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.08.015 – year: 2010 ident: 10.1016/j.media.2018.01.002_sbref0005 article-title: A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning – volume: 33 start-page: 855 issue: 3 year: 2006 ident: 10.1016/j.media.2018.01.002_bib0074 article-title: Simulating deformations of MR brain images for validation of atlas-based segmentation and registration algorithms publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.08.007 – volume: 59 start-page: 895 issue: 2 year: 2012 ident: 10.1016/j.media.2018.01.002_bib0079 article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.069 – volume: 7 start-page: 15 issue: 1 year: 2017 ident: 10.1016/j.media.2018.01.002_bib0038 article-title: The risk of incident mild cognitive impairment and progression to dementia considering mild cognitive impairment subtypes publication-title: Dement. Geriatr. Cogn. Dis. Extra doi: 10.1159/000452486 – volume: 12 start-page: 459 issue: 4 year: 2016 ident: 10.1016/j.media.2018.01.002_bib0002 article-title: Alzheimer’s disease facts and figures publication-title: Alzheimer’s & Dementia – volume: 20 start-page: 45 issue: 1 year: 2001 ident: 10.1016/j.media.2018.01.002_bib0080 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906424 – volume: 21 start-page: 1421 issue: 11 year: 2002 ident: 10.1016/j.media.2018.01.002_bib0051 article-title: HAMMER: Hierarchical attribute matching mechanism for elastic registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2002.803111 – volume: 23 start-page: 110 issue: 1 year: 2011 ident: 10.1016/j.media.2018.01.002_bib0086 article-title: Missing value estimation for mixed-attribute data sets publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2010.99 – start-page: 88 year: 2016 ident: 10.1016/j.media.2018.01.002_bib0057 article-title: Stability-weighted matrix completion of incomplete multi-modal data for disease diagnosis – start-page: 246 year: 2015 ident: 10.1016/j.media.2018.01.002_bib0020 article-title: Soft-split sparse regression based random forest for predicting future clinical scores of Alzheimer’s disease – start-page: 63 year: 2004 ident: 10.1016/j.media.2018.01.002_bib0046 article-title: Gaussian Processes in Machine Learning – volume: 8 start-page: 76 year: 2016 ident: 10.1016/j.media.2018.01.002_bib0067 article-title: Prediction of conversion from mild cognitive impairment to Alzheimer’s disease using MRI and structural network features publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2016.00076 – volume: 9 start-page: e96458 issue: 5 year: 2014 ident: 10.1016/j.media.2018.01.002_bib0076 article-title: Multi-task linear programming discriminant analysis for the identification of progressive MCI individuals publication-title: PLoS ONE doi: 10.1371/journal.pone.0096458 – volume: 221 start-page: 3979 issue: 8 year: 2016 ident: 10.1016/j.media.2018.01.002_bib0060 article-title: Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans publication-title: Brain Struct. Funct. doi: 10.1007/s00429-015-1140-6 – start-page: 663 year: 2010 ident: 10.1016/j.media.2018.01.002_bib0030 article-title: Robust subspace segmentation by low-rank representation – volume: 13 start-page: 325 issue: 4 year: 2017 ident: 10.1016/j.media.2018.01.002_bib0003 article-title: Alzheimer’s disease facts and figures publication-title: Alzheimer’s & Dementia – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.media.2018.01.002_bib0019 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – start-page: 635 year: 2011 ident: 10.1016/j.media.2018.01.002_bib0066 article-title: Robust deformable-surface-based skull-stripping for large-scale studies publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011 doi: 10.1007/978-3-642-23626-6_78 – volume: 17 start-page: 87 issue: 1 year: 1998 ident: 10.1016/j.media.2018.01.002_bib0053 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.668698 – start-page: 163 year: 2013 ident: 10.1016/j.media.2018.01.002_bib0058 article-title: Identification of Alzheimer’s disease using incomplete multimodal dataset via matrix shrinkage and completion – volume: 25 start-page: 1197 issue: 9 year: 2004 ident: 10.1016/j.media.2018.01.002_bib0055 article-title: MRI-Derived entorhinal volume is a good predictor of conversion from MCI to AD publication-title: Neurobiol. Aging. doi: 10.1016/j.neurobiolaging.2003.12.007 – volume: 104 start-page: 398 year: 2015 ident: 10.1016/j.media.2018.01.002_bib0041 article-title: Machine learning framework for early MRI-based alzheimer’s conversion prediction in MCI subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.002 – volume: 24 start-page: 135 issue: 1 year: 2015 ident: 10.1016/j.media.2018.01.002_bib0048 article-title: A transversal approach for patch-based label fusion via matrix completion publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.06.002 – start-page: 160 year: 2017 ident: 10.1016/j.media.2018.01.002_bib0062 article-title: Multi-stage diagnosis of Alzheimer’s disease with incomplete multimodal data via multi-task deep learning – volume: 49 start-page: 1143 issue: 4 year: 2016 ident: 10.1016/j.media.2018.01.002_bib0014 article-title: Accurate prediction of conversion to alzheimer’s disease using imaging, genetic, and neuropsychological biomarkers publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-150570 – start-page: 657 year: 2009 ident: 10.1016/j.media.2018.01.002_bib0034 article-title: Efficient euclidean projections in linear time – volume: 6 start-page: 82 issue: 9 year: 2014 ident: 10.1016/j.media.2018.01.002_bib0045 article-title: Prevalence of mixed pathologies in the aging brain publication-title: Alzheimer’s Res. Therapy doi: 10.1186/s13195-014-0082-1 – volume: 35 start-page: 390 issue: 4 year: 2015 ident: 10.1016/j.media.2018.01.002_bib0007 article-title: Neuropathologic assessment of participants in two multi-center longitudinal observational studies: the alzheimer disease neuroimaging initiative (ADNI) and the dominantly inherited alzheimer network (DIAN) publication-title: Neuropathology doi: 10.1111/neup.12205 – start-page: 72 year: 2017 ident: 10.1016/j.media.2018.01.002_bib0085 article-title: Maximum mean discrepancy based multiple kernel learning for incomplete multimodality neuroimaging data – start-page: 2951 year: 2012 ident: 10.1016/j.media.2018.01.002_bib0054 article-title: Practical bayesian optimization of machine learning algorithms – volume: 20 start-page: 1956 issue: 4 year: 2010 ident: 10.1016/j.media.2018.01.002_bib0006 article-title: A singular value thresholding algorithm for matrix completion publication-title: SIAM J. Optim. doi: 10.1137/080738970 – start-page: 2080 year: 2009 ident: 10.1016/j.media.2018.01.002_bib0069 article-title: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization – volume: 44 start-page: 1415 issue: 4 year: 2009 ident: 10.1016/j.media.2018.01.002_bib0040 article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.031 – volume: 9 start-page: e111 issue: 5 year: 2013 ident: 10.1016/j.media.2018.01.002_bib0068 article-title: The alzheimer’s disease neuroimaging initiative: a review of papers published since its inception publication-title: Alzheimer’s Dementia doi: 10.1016/j.jalz.2013.05.1769 – volume: 66 year: 2011 ident: 10.1016/j.media.2018.01.002_bib0039 – volume: 19 start-page: 221 issue: 1 year: 2010 ident: 10.1016/j.media.2018.01.002_bib0037 article-title: Neuropathologic alterations in mild cognitive impairment: a review publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2010-1220 – volume: 33 start-page: 1077 year: 2014 ident: 10.1016/j.media.2018.01.002_bib0075 article-title: Efficient Transfer Learning Method for Automatic Hyperparameter Tuning – start-page: 1085 year: 2011 ident: 10.1016/j.media.2018.01.002_bib0015 article-title: Sparsity in unions of subspaces for classification and clustering of high-dimensional data – start-page: 207 year: 2014 ident: 10.1016/j.media.2018.01.002_bib0049 article-title: Novel multi-atlas segmentation by matrix completion – volume: 61 start-page: 622 issue: 3 year: 2012 ident: 10.1016/j.media.2018.01.002_bib0077 article-title: Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.059 – volume: 17 start-page: 520 issue: 6 year: 2001 ident: 10.1016/j.media.2018.01.002_bib0064 article-title: Missing value estimation methods for DNA microarrays publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.6.520 – start-page: 77 year: 2016 ident: 10.1016/j.media.2018.01.002_bib0083 article-title: Joint discriminative and representative feature selection for Alzheimer’s disease diagnosis – volume: 128 start-page: 321 issue: 1–2 year: 2011 ident: 10.1016/j.media.2018.01.002_bib0036 article-title: Fixed point and bregman iterative methods for matrix rank minimization publication-title: Math. Program. doi: 10.1007/s10107-009-0306-5 – start-page: 267 year: 1996 ident: 10.1016/j.media.2018.01.002_bib0063 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: abs/1509.01719 year: 2015 ident: 10.1016/j.media.2018.01.002_sbref0027 article-title: Unsupervised Cross-Domain Recognition by Identifying Compact Joint Subspaces publication-title: CoRR – volume: 7 year: 2015 ident: 10.1016/j.media.2018.01.002_bib0078 article-title: Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2015.00048 – volume: 51 start-page: 1045 issue: 4 year: 2016 ident: 10.1016/j.media.2018.01.002_bib0071 article-title: Prediction of progressive mild cognitive impairment by multi-modal neuroimaging biomarkers publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-151010 – volume: 9 start-page: 717 issue: 6 year: 2009 ident: 10.1016/j.media.2018.01.002_bib0009 article-title: Exact matrix completion via convex optimization publication-title: Found. Comput. Math. doi: 10.1007/s10208-009-9045-5 – volume: 11 start-page: e0138866 issue: 2 year: 2016 ident: 10.1016/j.media.2018.01.002_bib0024 article-title: Predicting progression from mild cognitive impairment to alzheimer’s dementia using clinical, MRI, and plasma biomarkers via probabilistic pattern classification publication-title: PLoS ONE doi: 10.1371/journal.pone.0138866 – volume: 58 start-page: 11 issue: 3 year: 2011 ident: 10.1016/j.media.2018.01.002_bib0008 article-title: Robust principal component analysis? publication-title: J. ACM doi: 10.1145/1970392.1970395 – start-page: 450 year: 2017 ident: 10.1016/j.media.2018.01.002_bib0010 article-title: Multi-label inductive matrix completion for joint MGMT and IDH1 status prediction for Glioma patients – ident: 10.1016/j.media.2018.01.002_bib0033 – volume: 35 start-page: 2765 issue: 11 year: 2013 ident: 10.1016/j.media.2018.01.002_bib0016 article-title: Sparse subspace clustering: algorithm, theory, and applications publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.57 – volume: 63 start-page: 674 issue: 5 year: 2006 ident: 10.1016/j.media.2018.01.002_bib0022 article-title: Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia publication-title: Arch. Neurol. doi: 10.1001/archneur.63.5.674 – start-page: 240 year: 2014 ident: 10.1016/j.media.2018.01.002_bib0025 article-title: Robust deep learning for improved classification of AD/MCI patients – volume: 19 start-page: 1610 issue: 5 year: 2015 ident: 10.1016/j.media.2018.01.002_bib0026 article-title: A robust deep model for improved classification of AD/MCI patients publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2015.2429556 – volume: 1 year: 2006 ident: 10.1016/j.media.2018.01.002_bib0047 – volume: 28 start-page: 52 issue: 2 year: 2010 ident: 10.1016/j.media.2018.01.002_bib0065 article-title: A tutorial on subspace clustering publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2010.939739 – volume: 32 start-page: 2322.e19 issue: 12 year: 2011 ident: 10.1016/j.media.2018.01.002_bib0013 article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2010.05.023 – start-page: 658 year: 2015 ident: 10.1016/j.media.2018.01.002_bib0001 article-title: Robust feature-sample linear discriminant analysis for brain disorders diagnosis – volume: 62 start-page: 1805 issue: 7 year: 2015 ident: 10.1016/j.media.2018.01.002_bib0012 article-title: Domain transfer learning for MCI conversion prediction publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2404809 – volume: 91 start-page: 386 year: 2014 ident: 10.1016/j.media.2018.01.002_bib0059 article-title: Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.01.033 – volume: 9 start-page: 913 issue: 4 year: 2015 ident: 10.1016/j.media.2018.01.002_bib0011 article-title: Multimodal manifold-regularized transfer learning for MCI conversion prediction publication-title: Brain Imaging Behav. doi: 10.1007/s11682-015-9356-x – volume: 11 start-page: 33 year: 2017 ident: 10.1016/j.media.2018.01.002_bib0035 article-title: Prediction of mild cognitive impairment conversion using a combination of independent component analysis and the cox model publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2017.00033 – volume: 2014 year: 2014 ident: 10.1016/j.media.2018.01.002_bib0052 article-title: Low-rank representation for incomplete data publication-title: Math. Probl. Eng. doi: 10.1155/2014/439417 – start-page: 2546 year: 2011 ident: 10.1016/j.media.2018.01.002_bib0004 article-title: Algorithms for hyper-parameter optimization – volume: 367 start-page: 1262 issue: 9518 year: 2006 ident: 10.1016/j.media.2018.01.002_bib0017 article-title: Mild cognitive impairment publication-title: Lancet doi: 10.1016/S0140-6736(06)68542-5 – start-page: 847 year: 2013 ident: 10.1016/j.media.2018.01.002_bib0056 article-title: Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms – start-page: 3461 year: 2015 ident: 10.1016/j.media.2018.01.002_bib0028 article-title: Cross-domain recognition by identifying compact joint subspaces – start-page: 547 year: 2009 ident: 10.1016/j.media.2018.01.002_bib0032 article-title: Large-scale sparse logistic regression – start-page: 255 year: 2015 ident: 10.1016/j.media.2018.01.002_bib0084 article-title: Multi-view classification for identification of Alzheimer’s disease – volume: 23 start-page: 757 year: 2010 ident: 10.1016/j.media.2018.01.002_bib0018 article-title: Transduction with matrix completion: three birds with one stone publication-title: Adv. Neural Inf. Process. Syst. – volume: 35 start-page: 171 issue: 1 year: 2013 ident: 10.1016/j.media.2018.01.002_bib0029 article-title: Robust recovery of subspace structures by low-rank representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.88 – volume: 63 start-page: 665 issue: 5 year: 2006 ident: 10.1016/j.media.2018.01.002_bib0044 article-title: Neuropathologic features of amnestic mild cognitive impairment publication-title: Arch. Neurol. doi: 10.1001/archneur.63.5.665 – start-page: 527 year: 2015 ident: 10.1016/j.media.2018.01.002_bib0061 article-title: Joint diagnosis and conversion time prediction of progressive mild cognitive impairment (pmci) using low-rank subspace clustering and matrix completion – volume: 23 start-page: 1276 issue: 10 year: 2004 ident: 10.1016/j.media.2018.01.002_bib0072 article-title: Determining correspondence in 3-d MR brain images using attribute vectors as morphological signatures of voxels publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.834616 – volume: 10 start-page: 740 issue: 5 year: 2006 ident: 10.1016/j.media.2018.01.002_bib0073 article-title: Statistical representation of high-dimensional deformation fields with application to statistically constrained 3D warping publication-title: Med. Image Anal. doi: 10.1016/j.media.2006.06.007 – volume: 2016 year: 2016 ident: 10.1016/j.media.2018.01.002_bib0050 article-title: Scale-dependent signal identification in low-dimensional subspace: motor imagery task classification publication-title: Neural Plast. doi: 10.1155/2016/7431012 – volume: 35 start-page: 597 issue: 3 year: 2013 ident: 10.1016/j.media.2018.01.002_bib0082 article-title: Moving object detection by detecting contiguous outliers in the low-rank representation publication-title: Pattern Anal. Mach. Intell. IEEE Trans. doi: 10.1109/TPAMI.2012.132 – volume: 4 start-page: P222 issue: 9 year: 2013 ident: 10.1016/j.media.2018.01.002_bib0042 article-title: Biological heterogeneity in ADNI amnestic MCI publication-title: Alzheimer’s & Dementia J. Alzheimer’s Assoc. doi: 10.1016/j.jalz.2013.05.419 – volume: 7 start-page: S717 year: 1998 ident: 10.1016/j.media.2018.01.002_bib0023 article-title: A 3d atlas of the human brain publication-title: Neuroimage doi: 10.1016/S1053-8119(18)31550-7 – start-page: 468 year: 2012 ident: 10.1016/j.media.2018.01.002_bib0021 article-title: Using multiparametric data with missing features for learning patterns of pathology – start-page: 1615 year: 2011 ident: 10.1016/j.media.2018.01.002_bib0031 article-title: Latent low-rank representation for subspace segmentation and feature extraction |
SSID | ssj0007440 |
Score | 2.5396564 |
Snippet | •Longitudinal MRI, PET and cognitive data are used jointly for pMCI prediction.•MCI subjects exhibit biological heterogeneity, and the data are incomplete and... In this paper, we aim to predict conversion and time-to-conversion of mild cognitive impairment (MCI) patients using multi-modal neuroimaging data and clinical... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 68 |
SubjectTerms | Affinity Alzheimer's disease Classification Cognition & reasoning Cognitive ability Conversion Correlation analysis Data imputation Impairment Longitudinal studies Low-rank representation Mathematical analysis Matrix completion Matrix methods Medical imaging Multi-task learning Multitasking Neuroimaging Neurology Noise reduction Regression analysis Subspace methods Subspaces |
Title | Conversion and time-to-conversion predictions of mild cognitive impairment using low-rank affinity pursuit denoising and matrix completion |
URI | https://dx.doi.org/10.1016/j.media.2018.01.002 https://www.ncbi.nlm.nih.gov/pubmed/29414437 https://www.proquest.com/docview/2063746620 https://www.proquest.com/docview/1999681424 https://pubmed.ncbi.nlm.nih.gov/PMC6892173 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJwQFBegVIZiSNmkzhxkuOyoiyP9gJFvVlJbEPQNlntZtVy4Qfwq5lxHu0C6oHTauNJ4l2PPTP2N98AvNA6tehWCF6WheVR4muivBVcB7nQYRGE0lDu8NGxnJ9E70_j0x2YDbkwBKvs1_5uTXerdX9l0v-bk2VVTT4FgoqVoMVKBUU2FLdHUUJa_urnJcyDCPC63KuAk_TAPOQwXi47g_BdqePu7PdW_mGd_vY-_wRRXrFKh3fhTu9OsmnX43uwY-o9uH2FZHAPbh71x-f34deMMOZug4zltWZUWJ63DS8vLy9XJO2UkTWWnVULzUaIEaOcympFG4qMAPNf2aI551T2neXWVij0gy03q_WmahmuZ03lZOhNZ1QJ4II5ALuhpz-Ak8M3n2dz3hdj4CXGNC3PkizPqDC51SZOdYiuhNW2EEEeCmnTQhS-QWOfpLheJmmOpjfOC5zd5CBpYzLxEHbrpjaPgcmCSIasb-LIRvi0LNYZBvjY0dDSqagH4TAIquyZyqlgxkINkLTvyo2copFTfqBw5Dx4Od607Ig6rheXw-iqLX1TaEquv3F_0AXVT_c1tkuRRFKGvgfPx2acqHT6ktem2awV8T3IlBILPXjUqc7Y0TCLMLAViQfJllKNAkQCvt1SV98cGbhMM4wqxZP__T1P4RZ968BI-7DbrjbmGfpZbXHgJtIB3Ji--zA_xs-3rz9-mf4GRoUuRA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NncTHA4LxFRhgJB6J2sSJkzxOFVPH1r6wSXuzktiGoC6p2lRs_wJ_NXeOE1ZAe-A1PqdO73wf9t3vAD4olRp0K7hfloXxo2SiCPKW-yrIuQqLIBSaaofnCzG7iD5fxpd7MO1rYSit0un-Tqdbbe2ejN2_OV5V1fhLwKlZCVqslFNkg3H7PqFTxSPYPzo5nS0GhUwYeF35VeDThB58yKZ52QINSvFKLXynO175h4H62wH9M4_ylmE6fgyPnEfJjrpFP4E9XR_Aw1s4gwdwb-5u0J_CzymlmdszMpbXilFveb9t_PL349WaqK08ssawq2qp2JBlxKisslrTmSKjnPmvbNn88KnzO8uNqZDohq226822ahmqtKayNPRLV9QM4JrZHHZNb38GF8efzqcz3_Vj8EsMa1o_S7I8o97kRuk4VSF6E0aZggd5yIVJC15MNNr7JEWVmaQ5Wt84L3CDk4-ktM74cxjVTa1fAhMF4QyZiY4jE-HbslhlGOPjQkNDF6MehD0TZOnAyqlnxlL2WWnfpeWcJM7JSSCRcx58HCatOqyOu8lFz125I3ISrcndEw97WZBux29wXPAkEiKcePB-GMa9Shcwea2b7UYS5INIqbbQgxed6AwLDbMIY1ueeJDsCNVAQDjguyN19c3igYs0w8CSv_rf73kH92fn8zN5drI4fQ0PaKTLTTqEUbve6jfodrXFW7etfgEEGS9m |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conversion+and+time-to-conversion+predictions+of+mild+cognitive+impairment+using+low-rank+affinity+pursuit+denoising+and+matrix+completion&rft.jtitle=Medical+image+analysis&rft.au=Thung%2C+Kim-Han&rft.au=Yap%2C+Pew-Thian&rft.au=Adeli%2C+Ehsan&rft.au=Lee%2C+Seong-Whan&rft.date=2018-04-01&rft.eissn=1361-8423&rft.volume=45&rft.spage=68&rft_id=info:doi/10.1016%2Fj.media.2018.01.002&rft_id=info%3Apmid%2F29414437&rft.externalDocID=29414437 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |