Past, Present, and Future Atmospheric Nitrogen Deposition
Reactive nitrogen emissions into the atmosphere are increasing as a result of human activities, affecting nitrogen deposition to the surface and impacting the productivity of terrestrial and marine ecosystems. An atmospheric chemistry–transport model [Tracer Model 4 of the Environmental Chemical Pro...
Saved in:
Published in | Journal of the atmospheric sciences Vol. 73; no. 5; pp. 2039 - 2047 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Meteorological Society
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reactive nitrogen emissions into the atmosphere are increasing as a result of human activities, affecting nitrogen deposition to the surface and impacting the productivity of terrestrial and marine ecosystems. An atmospheric chemistry–transport model [Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4-ECPL)] is here used to calculate the global distribution of total nitrogen deposition, accounting for the first time for both its inorganic and organic fractions in gaseous and particulate phases and past and projected changes due to anthropogenic activities. The anthropogenic and biomass-burning Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) historical and RCP6.0 and RCP8.5 emissions scenarios are used. Accounting for organic nitrogen (ON) primary emissions, the present-day global nitrogen atmospheric source is about 60% anthropogenic, while total N deposition increases by about 20% relative to simulations without ON primary emissions. About 20%–25% of total deposited N is ON. About 10% of the emitted nitrogen oxides are deposited as ON instead of inorganic nitrogen (IN), as is considered in most global models. Almost a threefold increase over land (twofold over the ocean) has been calculated for soluble N deposition due to human activities from 1850 to present. The investigated projections indicate significant changes in the regional distribution of N deposition and chemical composition, with reduced compounds gaining importance relative to oxidized ones, but very small changes in the global total flux. Sensitivity simulations quantify uncertainties due to the investigated model parameterizations of IN partitioning onto aerosols and of N chemically fixed on organics to be within 10% for the total soluble N deposition and between 25% and 35% for the dissolved ON deposition. Larger uncertainties are associated with N emissions. |
---|---|
AbstractList | Reactive nitrogen emissions into the atmosphere are increasing due to human activities, affecting nitrogen deposition to the surface and impacting the productivity of terrestrial and marine ecosystems. An atmospheric chemistry-transport model (TM4-ECPL) is here used to calculate the global distribution of total nitrogen deposition, accounting for the first time for both its inorganic and organic fractions in gaseous and particulate phases, and past and projected changes due to anthropogenic activities. The anthropogenic and biomass burning ACCMIP historical and RCP6.0 and RCP8.5 emissions scenarios are used. Accounting for organic nitrogen (ON) primary emissions, the present-day global nitrogen atmospheric source is about 60% anthropogenic, while total N deposition increases by about 20% relative to simulations without ON primary emissions. About 20–25% of total deposited N is ON. About 10% of the emitted nitrogen oxides are deposited as ON instead of inorganic nitrogen (IN) as is considered in most global models. Almost a 3-fold increase over land (2-fold over the ocean) has been calculated for soluble N deposition due to human activities from 1850 to present. The investigated projections indicate significant changes in the regional distribution of N deposition and chemical composition, with reduced compounds gaining importance relative to oxidized ones, but very small changes in the global total flux. Sensitivity simulations quantify uncertainties due to the investigated model parameterizations of IN partitioning onto aerosols and of N chemically fixed on organics to be within 10% for the total soluble N deposition and between 25–35% for the dissolved ON deposition. Larger uncertainties are associated with N emissions. Reactive nitrogen emissions into the atmosphere are increasing as a result of human activities, affecting nitrogen deposition to the surface and impacting the productivity of terrestrial and marine ecosystems. An atmospheric chemistry–transport model [Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4-ECPL)] is here used to calculate the global distribution of total nitrogen deposition, accounting for the first time for both its inorganic and organic fractions in gaseous and particulate phases and past and projected changes due to anthropogenic activities. The anthropogenic and biomass-burning Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) historical and RCP6.0 and RCP8.5 emissions scenarios are used. Accounting for organic nitrogen (ON) primary emissions, the present-day global nitrogen atmospheric source is about 60% anthropogenic, while total N deposition increases by about 20% relative to simulations without ON primary emissions. About 20%–25% of total deposited N is ON. About 10% of the emitted nitrogen oxides are deposited as ON instead of inorganic nitrogen (IN), as is considered in most global models. Almost a threefold increase over land (twofold over the ocean) has been calculated for soluble N deposition due to human activities from 1850 to present. The investigated projections indicate significant changes in the regional distribution of N deposition and chemical composition, with reduced compounds gaining importance relative to oxidized ones, but very small changes in the global total flux. Sensitivity simulations quantify uncertainties due to the investigated model parameterizations of IN partitioning onto aerosols and of N chemically fixed on organics to be within 10% for the total soluble N deposition and between 25% and 35% for the dissolved ON deposition. Larger uncertainties are associated with N emissions. Reactive nitrogen emissions into the atmosphere are increasing due to human activities, affecting nitrogen deposition to the surface and impacting the productivity of terrestrial and marine ecosystems. An atmospheric chemistry-transport model (TM4-ECPL) is here used to calculate the global distribution of total nitrogen deposition, accounting for the first time for both its inorganic and organic fractions in gaseous and particulate phases, and past and projected changes due to anthropogenic activities. The anthropogenic and biomass burning ACCMIP historical and RCP6.0 and RCP8.5 emissions scenarios are used. Accounting for organic nitrogen (ON) primary emissions, the present-day global nitrogen atmospheric source is about 60% anthropogenic, while total N deposition increases by about 20% relative to simulations without ON primary emissions. About 20-25% of total deposited N is ON. About 10% of the emitted nitrogen oxides are deposited as ON instead of inorganic nitrogen (IN) as is considered in most global models. Almost a 3-fold increase over land (2-fold over the ocean) has been calculated for soluble N deposition due to human activities from 1850 to present. The investigated projections indicate significant changes in the regional distribution of N deposition and chemical composition, with reduced compounds gaining importance relative to oxidized ones, but very small changes in the global total flux. Sensitivity simulations quantify uncertainties due to the investigated model parameterizations of IN partitioning onto aerosols and of N chemically fixed on organics to be within 10% for the total soluble N deposition and between 25-35% for the dissolved ON deposition. Larger uncertainties are associated with N emissions.Reactive nitrogen emissions into the atmosphere are increasing due to human activities, affecting nitrogen deposition to the surface and impacting the productivity of terrestrial and marine ecosystems. An atmospheric chemistry-transport model (TM4-ECPL) is here used to calculate the global distribution of total nitrogen deposition, accounting for the first time for both its inorganic and organic fractions in gaseous and particulate phases, and past and projected changes due to anthropogenic activities. The anthropogenic and biomass burning ACCMIP historical and RCP6.0 and RCP8.5 emissions scenarios are used. Accounting for organic nitrogen (ON) primary emissions, the present-day global nitrogen atmospheric source is about 60% anthropogenic, while total N deposition increases by about 20% relative to simulations without ON primary emissions. About 20-25% of total deposited N is ON. About 10% of the emitted nitrogen oxides are deposited as ON instead of inorganic nitrogen (IN) as is considered in most global models. Almost a 3-fold increase over land (2-fold over the ocean) has been calculated for soluble N deposition due to human activities from 1850 to present. The investigated projections indicate significant changes in the regional distribution of N deposition and chemical composition, with reduced compounds gaining importance relative to oxidized ones, but very small changes in the global total flux. Sensitivity simulations quantify uncertainties due to the investigated model parameterizations of IN partitioning onto aerosols and of N chemically fixed on organics to be within 10% for the total soluble N deposition and between 25-35% for the dissolved ON deposition. Larger uncertainties are associated with N emissions. |
Author | Daskalakis, N. Baker, A. R. Mihalopoulos, N. Nenes, A. Kanakidou, M. Myriokefalitakis, S. Tsigaridis, K. Fanourgakis, G. |
AuthorAffiliation | 2 School of Earth and Atmospheric Sciences, and School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0100, USA 3 Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK 6 Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Athens, Greece 1 Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, P.O.Box 2208, 70013 Heraklion, Greece 4 Center for Climate Systems Research, Columbia University, New York, NY, USA 5 NASA Goddard Institute for Space Studies, New York, NY, USA |
AuthorAffiliation_xml | – name: 5 NASA Goddard Institute for Space Studies, New York, NY, USA – name: 1 Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, P.O.Box 2208, 70013 Heraklion, Greece – name: 3 Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK – name: 2 School of Earth and Atmospheric Sciences, and School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0100, USA – name: 6 Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Athens, Greece – name: 4 Center for Climate Systems Research, Columbia University, New York, NY, USA |
Author_xml | – sequence: 1 givenname: M. surname: Kanakidou fullname: Kanakidou, M. organization: Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece – sequence: 2 givenname: S. surname: Myriokefalitakis fullname: Myriokefalitakis, S. organization: Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece – sequence: 3 givenname: N. surname: Daskalakis fullname: Daskalakis, N. organization: Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece – sequence: 4 givenname: G. surname: Fanourgakis fullname: Fanourgakis, G. organization: Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece – sequence: 5 givenname: A. surname: Nenes fullname: Nenes, A. organization: School of Earth and Atmospheric Sciences, and School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia – sequence: 6 givenname: A. R. surname: Baker fullname: Baker, A. R. organization: Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom – sequence: 7 givenname: K. surname: Tsigaridis fullname: Tsigaridis, K. organization: Center for Climate Systems Research, Columbia University, and NASA Goddard Institute for Space Studies, New York, New York – sequence: 8 givenname: N. surname: Mihalopoulos fullname: Mihalopoulos, N. organization: Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, and Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Athens, Greece |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32747838$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kd1LHDEUxYOs6Gr73Lcy0Jc-OJqbyWwyL4XFdf1AWqH2OWSSO5plNlmTmUL_-2ZxlVYwLwnknMPv3nNEJj54JOQT0FMAUZ_dzH-WixLqkjIhT2GPTKFmtKR81kzIlFLGSt4weUiOUlrRfJiAA3JYMcGFrOSUNHc6DSfFXcSEPj-0t8VyHMaIxXxYh7R5xOhM8d0NMTygLxa4CckNLvgPZL_TfcKPu_uY_Fpe3J9flbc_Lq_P57el4VIMZTPr2pZ3jTRoudRYW9AzBi1teEUNAEfOOXS20a3oUFowYCVYZm2N2VhXx-Tbc-5mbNdoTcaMuleb6NY6_lFBO_X_j3eP6iH8VqJqJAeZA77uAmJ4GjENau2Swb7XHsOYFMsglaCimmXplzfSVRijz-MpEFKKSjK2Dfz8L9ErystWs6B-FpgYUorYKeMGvV1aBnS9Aqq27ancnlooqNW2PQXZd_bG9xL9nuMvc1GcIg |
CODEN | JAHSAK |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2021_148264 crossref_primary_10_1016_j_agrformet_2017_06_010 crossref_primary_10_1016_j_geoderma_2021_115541 crossref_primary_10_1016_j_scitotenv_2020_138183 crossref_primary_10_1016_j_envpol_2022_120693 crossref_primary_10_1029_2021GH000524 crossref_primary_10_1007_s40725_021_00141_y crossref_primary_10_1016_j_tplants_2023_05_009 crossref_primary_10_3390_agriculture11090822 crossref_primary_10_1029_2020GB006585 crossref_primary_10_1093_treephys_tpz143 crossref_primary_10_1093_forsci_fxac018 crossref_primary_10_2136_sssaj2018_08_0293 crossref_primary_10_4005_jjfs_105_199 crossref_primary_10_1016_j_scitotenv_2018_11_010 crossref_primary_10_1016_j_scitotenv_2024_172424 crossref_primary_10_1007_s10530_019_02004_x crossref_primary_10_3390_atmos14111675 crossref_primary_10_1029_2018GB005990 crossref_primary_10_1007_s00442_023_05362_5 crossref_primary_10_1016_j_ecolind_2023_111391 crossref_primary_10_1016_j_foreco_2018_11_038 crossref_primary_10_1016_j_gecco_2023_e02443 crossref_primary_10_5194_acp_17_8189_2017 crossref_primary_10_1016_j_agrformet_2018_08_009 crossref_primary_10_1016_j_scitotenv_2020_138738 crossref_primary_10_1016_j_scitotenv_2023_165273 crossref_primary_10_1029_2022JD037489 crossref_primary_10_12677_SD_2021_113032 crossref_primary_10_1007_s11356_021_16293_0 crossref_primary_10_5194_bg_17_1583_2020 crossref_primary_10_1111_1365_2435_13422 crossref_primary_10_1016_j_envres_2022_114497 crossref_primary_10_1016_j_ecolind_2022_109144 crossref_primary_10_3390_agriculture14081367 crossref_primary_10_1016_j_ecolind_2021_107801 crossref_primary_10_3390_atmos13020343 crossref_primary_10_1016_j_envpol_2017_09_086 crossref_primary_10_1007_s11104_020_04638_6 crossref_primary_10_1111_geb_13528 crossref_primary_10_1038_s41467_021_26552_w crossref_primary_10_5194_acp_23_1785_2023 crossref_primary_10_1139_er_2019_0064 crossref_primary_10_1371_journal_pone_0246433 crossref_primary_10_1093_treephys_tpac103 crossref_primary_10_3390_f14061112 crossref_primary_10_1016_j_chemosphere_2022_136109 crossref_primary_10_1016_j_aeue_2024_155444 crossref_primary_10_1002_wat2_1373 crossref_primary_10_1016_j_scitotenv_2020_137548 crossref_primary_10_3389_fpls_2022_864110 crossref_primary_10_1007_s40641_017_0056_z crossref_primary_10_1007_s00442_022_05182_z crossref_primary_10_1088_1748_9326_aba57f crossref_primary_10_5194_acp_19_14607_2019 crossref_primary_10_1002_ldr_2720 crossref_primary_10_1111_jvs_12946 crossref_primary_10_1016_j_envpol_2018_11_074 crossref_primary_10_1016_j_atmosenv_2019_117160 crossref_primary_10_1016_j_marchem_2021_103938 crossref_primary_10_3389_fevo_2021_711774 crossref_primary_10_1016_j_agee_2023_108630 crossref_primary_10_1016_j_jenvman_2023_120012 crossref_primary_10_5194_bg_13_6519_2016 crossref_primary_10_5194_acp_18_10931_2018 crossref_primary_10_1007_s11104_021_05221_3 crossref_primary_10_3390_agronomy12122969 crossref_primary_10_1016_j_scitotenv_2017_03_279 crossref_primary_10_3390_d11060087 crossref_primary_10_1016_j_scitotenv_2018_03_217 crossref_primary_10_5194_acp_25_2147_2025 crossref_primary_10_1007_s11356_024_34877_4 crossref_primary_10_1016_j_envpol_2020_115076 crossref_primary_10_3390_plants10020383 crossref_primary_10_1016_j_dsr2_2019_03_007 crossref_primary_10_1016_j_soilbio_2023_108982 crossref_primary_10_1016_j_soilbio_2023_109272 crossref_primary_10_1002_ecm_1345 crossref_primary_10_1021_acs_est_0c00706 crossref_primary_10_5194_os_16_1183_2020 crossref_primary_10_5194_acp_18_6847_2018 crossref_primary_10_1016_j_scitotenv_2023_162907 crossref_primary_10_1002_2016GB005586 crossref_primary_10_1111_1365_2435_13063 crossref_primary_10_1016_j_soilbio_2018_05_009 crossref_primary_10_1016_j_soilbio_2023_109247 crossref_primary_10_1111_1440_1703_1277 crossref_primary_10_5194_acp_21_6023_2021 crossref_primary_10_1016_j_scitotenv_2019_133975 crossref_primary_10_1021_acs_est_3c09173 crossref_primary_10_1051_epjconf_202431000003 crossref_primary_10_1073_pnas_2221459120 crossref_primary_10_1007_s11104_017_3497_1 crossref_primary_10_1016_j_scitotenv_2024_176904 crossref_primary_10_1111_1365_2435_13512 crossref_primary_10_5194_acp_18_12223_2018 crossref_primary_10_3389_fmars_2024_1418634 crossref_primary_10_1093_jpe_rtac006 crossref_primary_10_1016_j_marpolbul_2019_02_036 crossref_primary_10_1186_s13717_024_00541_5 crossref_primary_10_1016_j_scitotenv_2019_05_448 crossref_primary_10_1088_1748_9326_ac417e crossref_primary_10_1093_nsr_nwad244 crossref_primary_10_5194_acp_21_17743_2021 crossref_primary_10_1016_j_scitotenv_2019_07_288 crossref_primary_10_1038_s41598_021_04623_8 crossref_primary_10_1007_s11356_018_1389_4 crossref_primary_10_1002_ecy_3190 crossref_primary_10_1016_j_catena_2022_106335 crossref_primary_10_3390_f15091585 crossref_primary_10_1093_jpe_rtab006 crossref_primary_10_1007_s10533_020_00691_6 crossref_primary_10_1080_00380768_2021_1974799 crossref_primary_10_1007_s11356_023_26478_4 crossref_primary_10_12677_IJE_2022_114064 crossref_primary_10_1016_j_atmosres_2020_105137 crossref_primary_10_1016_j_scitotenv_2020_143137 crossref_primary_10_1007_s11738_022_03417_3 crossref_primary_10_5194_acp_21_18271_2021 crossref_primary_10_1016_j_ecolind_2023_111430 crossref_primary_10_1007_s10021_023_00850_4 crossref_primary_10_1073_pnas_1920068117 crossref_primary_10_1039_C8RA00721G crossref_primary_10_1007_s11104_024_07053_3 crossref_primary_10_1016_S1002_0160_20_60069_8 crossref_primary_10_3390_f14010021 crossref_primary_10_1016_j_scitotenv_2023_166403 crossref_primary_10_1016_j_catena_2021_105366 crossref_primary_10_1016_j_scitotenv_2022_159855 crossref_primary_10_1016_j_dsr_2019_03_008 crossref_primary_10_1007_s10021_022_00807_z crossref_primary_10_1016_j_jaridenv_2020_104317 crossref_primary_10_1016_j_scitotenv_2021_149774 crossref_primary_10_1016_j_ecolind_2021_107520 crossref_primary_10_1016_j_scitotenv_2018_01_132 crossref_primary_10_3390_biology11060842 crossref_primary_10_1146_annurev_marine_031921_013612 crossref_primary_10_5194_acp_18_9091_2018 crossref_primary_10_1007_s10874_023_09453_8 crossref_primary_10_1016_j_envpol_2018_09_084 crossref_primary_10_1016_j_foreco_2023_120768 crossref_primary_10_1088_1748_9326_ab3012 crossref_primary_10_1007_s10098_020_01891_2 crossref_primary_10_1038_s41467_025_57354_z crossref_primary_10_1007_s13762_022_04543_8 crossref_primary_10_1016_j_scitotenv_2024_172349 crossref_primary_10_1111_nph_15428 crossref_primary_10_1146_annurev_environ_012420_045120 crossref_primary_10_1002_ppp3_10341 crossref_primary_10_1007_s10533_024_01133_3 crossref_primary_10_1073_pnas_1714597115 crossref_primary_10_1016_j_soilbio_2019_107539 crossref_primary_10_1021_acs_est_1c05929 crossref_primary_10_1016_j_scitotenv_2021_150522 crossref_primary_10_1029_2018GB005922 crossref_primary_10_1007_s11356_021_15327_x crossref_primary_10_3390_jmse12112047 crossref_primary_10_1016_j_envpol_2018_03_089 crossref_primary_10_3390_f12091150 crossref_primary_10_3390_microorganisms12081624 crossref_primary_10_1016_j_geodrs_2024_e00804 crossref_primary_10_1016_j_heliyon_2024_e28635 crossref_primary_10_5194_acp_17_12911_2017 crossref_primary_10_5194_acp_22_12749_2022 crossref_primary_10_1016_j_gecco_2023_e02532 crossref_primary_10_3390_cli6040080 crossref_primary_10_1021_acsearthspacechem_7b00106 crossref_primary_10_1016_j_apsoil_2018_04_004 crossref_primary_10_1016_j_jenvman_2024_120239 crossref_primary_10_1111_gcb_15523 crossref_primary_10_5194_amt_17_423_2024 crossref_primary_10_1126_sciadv_abl9207 crossref_primary_10_5194_bg_16_135_2019 crossref_primary_10_1016_j_marpolbul_2017_05_008 crossref_primary_10_1016_j_rsma_2024_103902 crossref_primary_10_1016_j_scitotenv_2022_155146 crossref_primary_10_3390_su11061520 crossref_primary_10_1007_s10661_020_08645_z crossref_primary_10_1073_pnas_2016965118 crossref_primary_10_1016_j_jobe_2020_101466 crossref_primary_10_1016_j_scitotenv_2023_161676 crossref_primary_10_1016_j_scitotenv_2020_137442 crossref_primary_10_1128_mmbr_00109_21 crossref_primary_10_1016_j_scitotenv_2021_146461 crossref_primary_10_3389_ffgc_2019_00073 crossref_primary_10_1016_j_scitotenv_2021_145017 crossref_primary_10_1093_treephys_tpab163 crossref_primary_10_5194_os_16_45_2020 crossref_primary_10_1016_j_marpolbul_2023_115209 crossref_primary_10_1016_j_biocon_2017_02_022 crossref_primary_10_5194_acp_23_1619_2023 crossref_primary_10_1016_j_envpol_2022_119646 crossref_primary_10_1038_s41559_020_1269_4 crossref_primary_10_1007_s11104_025_07225_9 crossref_primary_10_1126_sciadv_abd8800 crossref_primary_10_2205_2018ES000629 crossref_primary_10_1080_11263504_2024_2327115 crossref_primary_10_1016_j_dsr2_2019_06_014 crossref_primary_10_1364_OE_24_0A1390 crossref_primary_10_1525_elementa_2023_00037 crossref_primary_10_1016_j_ecss_2021_107571 crossref_primary_10_1016_j_scitotenv_2025_179083 crossref_primary_10_1007_s00248_022_01971_4 crossref_primary_10_1016_j_scitotenv_2024_172164 crossref_primary_10_1016_j_ecolind_2021_107953 crossref_primary_10_5194_acp_17_10071_2017 crossref_primary_10_1039_D1EW00520K crossref_primary_10_1007_s10531_020_02057_8 crossref_primary_10_3390_f16010018 |
Cites_doi | 10.5194/acp-11-5761-2011 10.5194/bg-12-3225-2015 10.1126/science.1150369 10.1007/BF00696641 10.1016/j.atmosres.2011.07.009 10.1029/97GB02266 10.1029/RG021i004p00921 10.1016/j.atmosenv.2007.03.045 10.5194/acp-12-3557-2012 10.1038/nature15371 10.5194/acp-13-7997-2013 10.1029/2005GB002672 10.5194/bg-12-3973-2015 10.1016/j.atmosenv.2015.01.031 10.1002/2013GB004721 10.1016/j.atmosenv.2013.10.060 10.1016/j.atmosenv.2010.10.012 10.5194/acp-7-4639-2007 10.1016/j.envpol.2010.11.014 10.5194/acp-15-10529-2015 10.1007/s10584-011-0148-z 10.1029/2011GB004277 10.1002/qj.828 10.1007/s10584-011-0154-1 10.1021/es0488737 10.5194/acp-3-1849-2003 10.1088/1748-9326/8/1/014003 10.1021/es8018385 10.1016/j.jmarsys.2012.07.007 10.1029/91GB01778 10.1641/0006-3568(2003)053[0357:NPITNU]2.0.CO;2 10.5194/acp-14-8533-2014 10.1023/A:1015791622742 10.5194/gmd-6-179-2013 10.1038/nature02550 10.1126/science.1136674 10.5194/acp-16-1491-2016 10.5194/acp-6-5143-2006 |
ContentType | Journal Article |
Copyright | Copyright American Meteorological Society May 2016 |
Copyright_xml | – notice: Copyright American Meteorological Society May 2016 |
DBID | AAYXX CITATION NPM 3V. 7TG 7TN 7UA 7XB 88F 88I 8AF 8FD 8FE 8FG 8FK 8G5 ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ GUQSH H8D H96 HCIFZ KL. L.G L7M M1Q M2O M2P MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY Q9U R05 S0X 7X8 5PM |
DOI | 10.1175/JAS-D-15-0278.1 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Military Database (Alumni Edition) Science Database (Alumni Edition) STEM Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials eLibrary Curriculum ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection (ProQuest) Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Military Database Research Library Science Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic University of Michigan SIRS Editorial MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials elibrary ProQuest AP Science SciTech Premium Collection ProQuest Military Collection Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database Oceanic Abstracts ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace ProQuest Central Basic ProQuest Science Journals ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1520-0469 |
EndPage | 2047 |
ExternalDocumentID | PMC7398418 4055667811 32747838 10_1175_JAS_D_15_0278_1 |
Genre | Journal Article Feature |
GrantInformation_xml | – fundername: Science Planetary Science NASA |
GroupedDBID | -~X .4S .DC 29L 4.4 5GY 7XC 88I 8AF 8FE 8FG 8FH 8G5 8R4 8R5 AAYXX ABDBF ABDNZ ABPPZ ABUWG ACBEA ACGFO ACGOD ACIHN ACNCT ACUHS AEAQA AENEX AEUYN AFKRA AFRAH AGFAN ALMA_UNASSIGNED_HOLDINGS ALQLQ ARAPS ARCSS ATCPS AZQEC BCU BEC BENPR BES BGLVJ BHPHI BKOMP BKSAR BLC BPHCQ CCPQU CITATION CS3 D1K DU5 DWQXO E.L E3Z EAD EAP EAS EBS EDH EDO EJD EMK EPL EST ESX F8P FAC FAS FJW FRP GNUQQ GUQSH H13 HCIFZ I-F K6- LK5 M1Q M2O M2P M2Q M7R MV1 OK1 P2P P62 PATMY PCBAR PHGZM PHGZT PQQKQ PROAC PYCSY Q2X QF4 QM1 QM9 QN7 QO4 R05 RWA RWE RWL RXW S0X SJFOW TAE TN5 TUS U5U UNMZH UPT XSW YQT ~02 6TJ 8WZ A6W ABDPE ABEFU ABTAH ACKIV ACYGS AFFNX AI. BCR C1A CAG COF H~9 NPM OHT PEA RNS TR2 UQL VH1 XOL Y6R ZY4 3V. 7TG 7TN 7UA 7XB 8FD 8FK C1K F1W H8D H96 KL. L.G L7M MBDVC PKEHL PQEST PQGLB PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c487t-96fbb4f98ced48ae5d1a621b09430c114e4441fd9ab7fe8d1c1d81d2dd5ebb453 |
IEDL.DBID | BENPR |
ISSN | 0022-4928 |
IngestDate | Thu Aug 21 18:01:24 EDT 2025 Thu Jul 10 21:50:22 EDT 2025 Sat Jul 26 00:17:37 EDT 2025 Thu Apr 03 07:01:01 EDT 2025 Tue Jul 01 03:06:45 EDT 2025 Thu Apr 24 23:02:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c487t-96fbb4f98ced48ae5d1a621b09430c114e4441fd9ab7fe8d1c1d81d2dd5ebb453 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Current address: LATMOS, IPSL Paris, France |
OpenAccessLink | http://infoscience.epfl.ch/record/257370 |
PMID | 32747838 |
PQID | 1788738228 |
PQPubID | 31463 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7398418 proquest_miscellaneous_2430370736 proquest_journals_1788738228 pubmed_primary_32747838 crossref_citationtrail_10_1175_JAS_D_15_0278_1 crossref_primary_10_1175_JAS_D_15_0278_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Boston |
PublicationTitle | Journal of the atmospheric sciences |
PublicationTitleAlternate | J Atmos Sci |
PublicationYear | 2016 |
Publisher | American Meteorological Society |
Publisher_xml | – name: American Meteorological Society |
References | Duce (2020062002160652100_bib11) 2008; 320 Myriokefalitakis (2020062002160652100_bib29) 2011; 11 Kanakidou (2020062002160652100_bib21) 2014 Tsigaridis (2020062002160652100_bib38) 2007; 41 Vet (2020062002160652100_bib41) 2014; 93 Lelieveld (2020062002160652100_bib27) 2015; 525 Christodoulaki (2020062002160652100_bib4) 2013; 109–110 Dentener (2020062002160652100_bib7) 2006; 20 Galloway (2020062002160652100_bib15) 2008; 320 van Vuuren (2020062002160652100_bib40) 2011; 109 Cornell (2020062002160652100_bib5) 2011; 159 Fountoukis (2020062002160652100_bib13) 2007; 7 Mills (2020062002160652100_bib28) 2004; 429 Altieri (2020062002160652100_bib1) 2012; 12 Klimont (2020062002160652100_bib24) 2013; 8 Lamarque (2020062002160652100_bib26) 2013; 13 Bouwman (2020062002160652100_bib2) 1997; 11 Dee (2020062002160652100_bib6) 2011; 137 Franze (2020062002160652100_bib14) 2005; 39 Granier (2020062002160652100_bib17) 2011; 109 Neff (2020062002160652100_bib31) 2002; 57 Stohl (2020062002160652100_bib36) 2015; 15 Tsigaridis (2020062002160652100_bib39) 2006; 6 Karydis (2020062002160652100_bib23) 2016; 16 Facchini (2020062002160652100_bib12) 2008; 42 Myriokefalitakis (2020062002160652100_bib30) 2015; 12 Schade (2020062002160652100_bib33) 1995; 22 Sander (2020062002160652100_bib32) 1999 Driscoll (2020062002160652100_bib8) 2003; 53 Ito (2020062002160652100_bib18) 2014; 28 Tsigaridis (2020062002160652100_bib37) 2003; 3 Kanakidou (2020062002160652100_bib20) 2012; 26 Seinfeld (2020062002160652100_bib34) 2016 Ito (2020062002160652100_bib19) 2015; 121 Duce (2020062002160652100_bib9) 1983; 21 Lamarque (2020062002160652100_bib25) 2013; 6 Karl (2020062002160652100_bib22) 2014; 14 Duce (2020062002160652100_bib10) 1991; 5 Sintermann (2020062002160652100_bib35) 2015; 12 Ge (2020062002160652100_bib16) 2011; 45 Cape (2020062002160652100_bib3) 2011; 102 |
References_xml | – year: 2014 ident: 2020062002160652100_bib21 – volume: 11 start-page: 5761 year: 2011 ident: 2020062002160652100_bib29 article-title: In-cloud oxalate formation in the global troposphere: A 3-D modeling study publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-5761-2011 – volume: 12 start-page: 3225 year: 2015 ident: 2020062002160652100_bib35 article-title: Ideas and perspectives: On the emission of amines from terrestrial vegetation in the context of new atmospheric particle formation publication-title: Biogeosciences doi: 10.5194/bg-12-3225-2015 – volume: 320 start-page: 893 year: 2008 ident: 2020062002160652100_bib11 article-title: Impacts of atmospheric anthropogenic nitrogen on the open ocean publication-title: Science doi: 10.1126/science.1150369 – year: 2016 ident: 2020062002160652100_bib34 – volume: 22 start-page: 319 year: 1995 ident: 2020062002160652100_bib33 article-title: Emission of aliphatic amines from animal husbandry and their reactions: Potential source of N2O and HCN publication-title: J. Atmos. Chem. doi: 10.1007/BF00696641 – volume: 102 start-page: 30 year: 2011 ident: 2020062002160652100_bib3 article-title: Organic nitrogen in the atmosphere—Where does it come from? A review of sources and methods publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2011.07.009 – volume: 11 start-page: 561 year: 1997 ident: 2020062002160652100_bib2 article-title: A global high-resolution emission inventory for ammonia publication-title: Global Biogeochem. Cycles doi: 10.1029/97GB02266 – volume: 21 start-page: 921 year: 1983 ident: 2020062002160652100_bib9 article-title: Organic material in the global troposphere publication-title: Rev. Geophys. Space Phys. doi: 10.1029/RG021i004p00921 – volume: 41 start-page: 4682 year: 2007 ident: 2020062002160652100_bib38 article-title: Secondary organic aerosol importance in the future atmosphere publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2007.03.045 – volume: 12 start-page: 3557 year: 2012 ident: 2020062002160652100_bib1 article-title: Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-12-3557-2012 – volume: 525 start-page: 367 year: 2015 ident: 2020062002160652100_bib27 article-title: The contribution of outdoor air pollution sources to premature mortality on a global scale publication-title: Nature doi: 10.1038/nature15371 – volume: 13 start-page: 7997 year: 2013 ident: 2020062002160652100_bib26 article-title: Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of historical and projected future changes publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-13-7997-2013 – volume: 20 start-page: GB4003 year: 2006 ident: 2020062002160652100_bib7 article-title: Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation publication-title: Global Biogeochem. Cycles doi: 10.1029/2005GB002672 – year: 1999 ident: 2020062002160652100_bib32 – volume: 12 start-page: 3973 year: 2015 ident: 2020062002160652100_bib30 article-title: Changes in dissolved iron deposition to the oceans driven by human activity: A 3-D global modelling study publication-title: Biogeosciences doi: 10.5194/bg-12-3973-2015 – volume: 121 start-page: 103 year: 2015 ident: 2020062002160652100_bib19 article-title: Global modeling study of soluble organic nitrogen from open biomass burning publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.01.031 – volume: 28 start-page: 617 year: 2014 ident: 2020062002160652100_bib18 article-title: Reconciling modeled and observed atmospheric deposition of soluble organic nitrogen at coastal locations publication-title: Global Biogeochem. Cycles doi: 10.1002/2013GB004721 – volume: 93 start-page: 3 year: 2014 ident: 2020062002160652100_bib41 article-title: A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.10.060 – volume: 45 start-page: 524 year: 2011 ident: 2020062002160652100_bib16 article-title: Atmospheric amines—Part I. A review publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2010.10.012 – volume: 7 start-page: 4639 year: 2007 ident: 2020062002160652100_bib13 article-title: ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42−–NO3−–Cl−–H2O aerosols publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-7-4639-2007 – volume: 159 start-page: 2214 year: 2011 ident: 2020062002160652100_bib5 article-title: Atmospheric nitrogen deposition: Revisiting the question of the importance of the organic component publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2010.11.014 – volume: 15 start-page: 10 529 year: 2015 ident: 2020062002160652100_bib36 article-title: Evaluating the climate and air quality impacts of short-lived pollutants publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-10529-2015 – volume: 109 start-page: 5 year: 2011 ident: 2020062002160652100_bib40 article-title: The representative concentration pathways: An overview publication-title: Climatic Change doi: 10.1007/s10584-011-0148-z – volume: 26 start-page: GB3026 year: 2012 ident: 2020062002160652100_bib20 article-title: Atmospheric fluxes of organic N and P to the global ocean publication-title: Global Biogeochem. Cycles doi: 10.1029/2011GB004277 – volume: 137 start-page: 553 year: 2011 ident: 2020062002160652100_bib6 article-title: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.828 – volume: 109 start-page: 163 year: 2011 ident: 2020062002160652100_bib17 article-title: Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period publication-title: Climatic Change doi: 10.1007/s10584-011-0154-1 – volume: 39 start-page: 1673 year: 2005 ident: 2020062002160652100_bib14 article-title: Protein nitration by polluted air publication-title: Environ. Sci. Technol. doi: 10.1021/es0488737 – volume: 3 start-page: 1849 year: 2003 ident: 2020062002160652100_bib37 article-title: Global modelling of secondary organic aerosol in the troposphere: A sensitivity analysis publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-3-1849-2003 – volume: 8 start-page: 014003 year: 2013 ident: 2020062002160652100_bib24 article-title: The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/8/1/014003 – volume: 42 start-page: 9116 year: 2008 ident: 2020062002160652100_bib12 article-title: Important source of marine secondary organic aerosol from biogenic amines publication-title: Environ. Sci. Technol. doi: 10.1021/es8018385 – volume: 109–110 start-page: 78 year: 2013 ident: 2020062002160652100_bib4 article-title: Atmospheric deposition in the Eastern Mediterranean. A driving force for ecosystem dynamics publication-title: J. Mar. Syst. doi: 10.1016/j.jmarsys.2012.07.007 – volume: 5 start-page: 193 year: 1991 ident: 2020062002160652100_bib10 article-title: The atmospheric input of trace species to the world ocean publication-title: Global Biogeochem. Cycles doi: 10.1029/91GB01778 – volume: 53 start-page: 357 year: 2003 ident: 2020062002160652100_bib8 article-title: Nitrogen pollution in the northeastern United States: Sources, effects, and management options publication-title: Bioscience doi: 10.1641/0006-3568(2003)053[0357:NPITNU]2.0.CO;2 – volume: 14 start-page: 8533 year: 2014 ident: 2020062002160652100_bib22 article-title: Uncertainties in assessing the environmental impact of amine emissions from a CO2 capture plant publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-14-8533-2014 – volume: 57 start-page: 99 year: 2002 ident: 2020062002160652100_bib31 article-title: The origin, composition and rates of organic nitrogen deposition: A missing piece of the nitrogen cycle? publication-title: Biogeochemistry doi: 10.1023/A:1015791622742 – volume: 6 start-page: 179 year: 2013 ident: 2020062002160652100_bib25 article-title: The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics publication-title: Geosci. Model Dev. doi: 10.5194/gmd-6-179-2013 – volume: 429 start-page: 292 year: 2004 ident: 2020062002160652100_bib28 article-title: Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic publication-title: Nature doi: 10.1038/nature02550 – volume: 320 start-page: 889 year: 2008 ident: 2020062002160652100_bib15 article-title: Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions publication-title: Science doi: 10.1126/science.1136674 – volume: 16 start-page: 1491 year: 2016 ident: 2020062002160652100_bib23 article-title: Effects of mineral dust on global atmospheric nitrate concentrations publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-1491-2016 – volume: 6 start-page: 5143 year: 2006 ident: 2020062002160652100_bib39 article-title: Change in global aerosol composition since preindustrial times publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-6-5143-2006 |
SSID | ssj0000271 |
Score | 2.5936537 |
Snippet | Reactive nitrogen emissions into the atmosphere are increasing as a result of human activities, affecting nitrogen deposition to the surface and impacting the... Reactive nitrogen emissions into the atmosphere are increasing due to human activities, affecting nitrogen deposition to the surface and impacting the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2039 |
SubjectTerms | Ammonia Anthropogenic factors Atmosphere Atmospheric chemistry Biogeochemistry Carbon dioxide Climate models Ecosystems Emissions Marine ecosystems Nitrogen Nitrogen oxides Organic nitrogen Photochemicals Studies |
Title | Past, Present, and Future Atmospheric Nitrogen Deposition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32747838 https://www.proquest.com/docview/1788738228 https://www.proquest.com/docview/2430370736 https://pubmed.ncbi.nlm.nih.gov/PMC7398418 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R3QsXxJtAWRkJIQ5NG-dpn9But6Gq1NUKqNSb5fghVipJ2aT_n3HibFkQHCPbSjJjz3wzHn8GeB_rSOossmHcZ6tiq0OuOA9jyViayjxS_VmYy1V-fpVeXGfXPuHW-rLK0Sb2hlo3yuXIT6gre0vQnbFPtz9Dd2uU2131V2gcwBRNMGMTmC7OVusv97Y4LujIF57ymHlyH_SZJxfzr-EypO58csGO6b5f-gts_lkz-ZsTKh_DI48eyXxQ9xN4YOqnEFwi8G22fX6cfCCnNxtEof3TM-Br2XZHZD0cMjoistak7GlEyLz70bSOVGCjyGrTbRucSmRpxiqu53BVnn07PQ_9bQmhwqCjC3luqyq1nCmjUyZNpqnMY1q50sFIYdhjUoQ-VnNZFdYwTRXVCFZjrTODA7PkBUzqpjavgEirHI2ZtdyyVOe8SpQj8al0IjFCK6IAjkdZCeWpxN2NFjeiDymKTKBwxVLQTDjhChrAx92A24FF499dD0fhC7-cWnGv_ADe7ZpxIbjdDVmb5q4VMf5mUqDFygN4Oehq967Exd4swdHFnhZ3HRzJ9n5Lvfnek20XCWcpZa___1lv4CEiqXyohDyESbe9M28RrXTVDA5Y-XkG0_liuShnfoL-AkBP69M |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoAL4k2ggJEAcWja2HES-4DQqsuyfeyqEq3Um3H8ECuVpGxSIf4Uv5Gxk2xZENx6jBIryXg884098w1Cr6hJlMkSF9OwW0WdiYUWIqaKc8ZUnuhQCzOb59NTdnCWnW2gn0MtjE-rHGxiMNSm1n6PfJf4tLcU3Bl_f_Et9l2j_Onq0EKjU4tD--M7hGzNu_0xzO9rSicfTvamcd9VINYAzttY5K4smRNcW8O4spkhKqek9Cl2iYbwwDKACM4IVRbOckM0MQDqqDGZhYG-SwSY_BssBU_uK9MnH68sPy3IwE7OBOU9lRB46N2D0ad4HBNfDV3wHbLuBf-Ctn9maP7m8iZ30O0eq-JRp1x30Yat7qFoBjC7XobdePwG750vAPOGq_tIHKum3cbHXUnTNlaVwZNAWoJH7de68RQGC43ni3ZZg-LisR1yxh6g02uR4kO0WdWVfYywctqTpjknHGcmF2WqPWVQaVIF8WCRRGhnkJXUPXG5759xLkMAU2QShCvHkmTSC1eSCL1dDbjoODv-_ejWIHzZL95GXqlahF6ubsOy82cpqrL1ZSMp_GZagH3MI_Som6vVu1If6fMURhdrs7h6wFN6r9-pFl8CtXeRCs4If_L_z3qBbk5PZkfyaH9--BTdAgyXdzmYW2izXV7aZ4CT2vJ5UE6MPl_3avgF3m4msA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYS4IN4EChgJEIe6Gzsv-4DQ0nTVB12tgEq9uY4fYqWSlE0qxF_j1zHOY8uC4NZjZFtJxmPPN_bMNwi9ZCZUJgkdYe1pFXOGCC0EYYrzOFZpqNtcmONZun8SH54mpxvo55AL48Mqhz2x3ahNpf0Z-Zj6sLcIzBkfuz4sYp5P3118I76ClL9pHcppdCpyZH98B_etfnuQw1y_Ymy693l3n_QVBogGoN4QkbqiiJ3g2pqYK5sYqlJGCx9uF2pwFWwMcMEZoYrMWW6opgYAHjMmsTDQV4yA7X8z817RCG2-35vNP17ZAZbRgas8Foz3xEJgr8eHk08kJ9TnRmd8h67bxL-A7p_xmr8ZwOltdKtHrnjSqdodtGHLuyg4BtBdLduzefwa754vAAG3T_eQmKu62cbzLsFpG6vS4GlLYYInzdeq9oQGC41ni2ZZgRrj3A4RZPfRybXI8QEalVVpHyGsnPYUas4Jx2OTiiLSnkCoMJEC7zALA7QzyErqnsbcV9M4l607kyUShCtzSRPphStpgN6sBlx0DB7_7ro1CF_2S7mWV4oXoBerZliE_mZFlba6rCWD34wy2C3TAD3s5mr1rsj7_TyC0dnaLK46eILv9ZZy8aUl-s4iwWPKH___s56jG7AS5IeD2dETdBMAXdoFZG6hUbO8tE8BNDXFs147MTq77gXxC06cLEI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Past%2C+Present+and+Future+Atmospheric+Nitrogen+Deposition&rft.jtitle=Journal+of+the+atmospheric+sciences&rft.au=Kanakidou%2C+M&rft.au=Myriokefalitakis%2C+S&rft.au=Daskalakis%2C+N&rft.au=Fanourgakis%2C+G&rft.date=2016-05-01&rft.issn=0022-4928&rft.volume=73&rft.issue=5&rft.spage=2039&rft_id=info:doi/10.1175%2FJAS-D-15-0278.1&rft_id=info%3Apmid%2F32747838&rft.externalDocID=32747838 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4928&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4928&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4928&client=summon |