Structure of the human TRPM4 ion channel in a lipid nanodisc
Transient receptor potential melastatin (TRPM) ion channels constitute the largest TRP subfamily and are involved in many physiological processes. TRPM8 is the primary cold and menthol sensor, and TRPM4 is associated with cardiovascular disorders. Yin et al. and Autzen et al. shed light on the gener...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 359; no. 6372; pp. 228 - 232 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
12.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transient receptor potential melastatin (TRPM) ion channels constitute the largest TRP subfamily and are involved in many physiological processes. TRPM8 is the primary cold and menthol sensor, and TRPM4 is associated with cardiovascular disorders. Yin
et al.
and Autzen
et al.
shed light on the general architecture of the TRPM subfamily by solving the structures of TRPM8 and TRPM4, respectively (see the Perspective by Bae
et al.
). The three-layered architecture of the TRPM8 channel provides the framework for understanding the mechanisms of cold and menthol sensing. The two distinct closed states of TRPM4, with and without calcium, reveal a calcium-binding site and calcium-binding-induced conformational changes.
Science
, this issue p.
237
, p.
228
; see also p.
160
Structures of a human cation channel revealed by single-particle cryo–electron microscopy elucidate the calcium-binding site.
Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage-dependent manner but, unlike many other TRP channels, is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo–electron microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening. |
---|---|
AbstractList | Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage-dependent manner but, unlike many other TRP channels, is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo-electron microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening.Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage-dependent manner but, unlike many other TRP channels, is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo-electron microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening. Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage dependent manner, but unlike many other TRP channels is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3Å resolution as determined by single particle electron cryo-microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium binding site within the intracellular side of the S1–S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening. Transient receptor potential melastatin (TRPM) ion channels constitute the largest TRP subfamily and are involved in many physiological processes. TRPM8 is the primary cold and menthol sensor, and TRPM4 is associated with cardiovascular disorders. Yin et al. and Autzen et al. shed light on the general architecture of the TRPM subfamily by solving the structures of TRPM8 and TRPM4, respectively (see the Perspective by Bae et al. ). The three-layered architecture of the TRPM8 channel provides the framework for understanding the mechanisms of cold and menthol sensing. The two distinct closed states of TRPM4, with and without calcium, reveal a calcium-binding site and calcium-binding-induced conformational changes. Science , this issue p. 237 , p. 228 ; see also p. 160 Structures of a human cation channel revealed by single-particle cryo–electron microscopy elucidate the calcium-binding site. Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage-dependent manner but, unlike many other TRP channels, is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo–electron microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening. Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage-dependent manner but, unlike many other TRP channels, is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo-electron microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening. Architecture of the TRPM subfamilyTransient receptor potential melastatin (TRPM) ion channels constitute the largest TRP subfamily and are involved in many physiological processes. TRPM8 is the primary cold and menthol sensor, and TRPM4 is associated with cardiovascular disorders. Yin et al. and Autzen et al. shed light on the general architecture of the TRPM subfamily by solving the structures of TRPM8 and TRPM4, respectively (see the Perspective by Bae et al.). The three-layered architecture of the TRPM8 channel provides the framework for understanding the mechanisms of cold and menthol sensing. The two distinct closed states of TRPM4, with and without calcium, reveal a calcium-binding site and calcium-binding-induced conformational changes.Science, this issue p. 237, p. 228; see also p. 160Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage-dependent manner but, unlike many other TRP channels, is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo–electron microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening. |
Author | Campbell, Melody G. Julius, David Asarnow, Daniel Cheng, Yifan Autzen, Henriette E. Myasnikov, Alexander G. |
AuthorAffiliation | 3 Department of Physiology, University of California, San Francisco, California, 94143, USA 1 Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA 4 Howard Hughes Medical Institute, University of California, San Francisco, 94143, USA 2 Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus, Denmark |
AuthorAffiliation_xml | – name: 4 Howard Hughes Medical Institute, University of California, San Francisco, 94143, USA – name: 3 Department of Physiology, University of California, San Francisco, California, 94143, USA – name: 1 Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA – name: 2 Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus, Denmark |
Author_xml | – sequence: 1 givenname: Henriette E. orcidid: 0000-0003-3691-5010 surname: Autzen fullname: Autzen, Henriette E. organization: Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA., Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus, Denmark – sequence: 2 givenname: Alexander G. orcidid: 0000-0003-2607-7121 surname: Myasnikov fullname: Myasnikov, Alexander G. organization: Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA – sequence: 3 givenname: Melody G. orcidid: 0000-0003-1909-5751 surname: Campbell fullname: Campbell, Melody G. organization: Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA – sequence: 4 givenname: Daniel orcidid: 0000-0001-7870-5308 surname: Asarnow fullname: Asarnow, Daniel organization: Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA – sequence: 5 givenname: David orcidid: 0000-0002-6365-4867 surname: Julius fullname: Julius, David organization: Department of Physiology, University of California, San Francisco, CA 94143, USA – sequence: 6 givenname: Yifan orcidid: 0000-0001-9535-0369 surname: Cheng fullname: Cheng, Yifan organization: Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA., Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29217581$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kd1LHDEUxYNs0dX67FsJ9MWX0dyZyRcUQcS2whbF6nPIZBI3MpusyUyh_30jbpe60Kc83N85OfeeQzQLMViEToCcAdTsPBtvg7FnWqeWAtlDcyCSVrImzQzNCWlYJQinB-gw52dCykw2--igljVwKmCOvvwc02TGKVkcHR6XFi-nlQ744f7uR4t9DNgsdQh2wD5gjQe_9j0OOsTeZ_MRfXB6yPZ48x6hx6_XD1ffq8Xtt5ury0VlWsHHSoLTDeWd6RztmDYghbRd24Jk0HJpCOmMdaJrNDAneC2ZZKbmwkFPneF9c4Qu3nzXU7eyvbFhTHpQ6-RXOv1WUXv1fhL8Uj3FX4oKKcovxeB0Y5Diy2TzqFYlvh0GHWycsgLJKQEGwAv6eQd9jlMKZb1CSWiFZKwp1Kd_E22j_D1sAc7fAJNizsm6LQJEvVanNtWpTXVFQXcUxo96LBWUlfzwX90fePOgBA |
CitedBy_id | crossref_primary_10_1085_jgp_201811998 crossref_primary_10_1016_j_jid_2018_10_044 crossref_primary_10_1073_pnas_2403333121 crossref_primary_10_1134_S1063774521050072 crossref_primary_10_1007_s00424_021_02525_2 crossref_primary_10_3389_fphar_2024_1494205 crossref_primary_10_1371_journal_pbio_3001936 crossref_primary_10_1360_TB_2023_0029 crossref_primary_10_3389_fendo_2019_00053 crossref_primary_10_1111_febs_14639 crossref_primary_10_3390_biom13060957 crossref_primary_10_1073_pnas_1722038115 crossref_primary_10_1021_acs_biochem_0c00924 crossref_primary_10_1016_j_ceca_2019_102111 crossref_primary_10_1016_j_ceca_2019_102075 crossref_primary_10_1074_jbc_RA118_003183 crossref_primary_10_1038_s41467_025_56131_2 crossref_primary_10_1038_s41467_020_19458_6 crossref_primary_10_3390_biom10030478 crossref_primary_10_1146_annurev_pharmtox_010919_023411 crossref_primary_10_31857_S0207401X24020108 crossref_primary_10_3390_biom11020229 crossref_primary_10_1126_science_aax6672 crossref_primary_10_7554_eLife_50175 crossref_primary_10_1002_smll_202304370 crossref_primary_10_1016_j_neuron_2019_01_011 crossref_primary_10_1126_science_aat4346 crossref_primary_10_1631_jzus_B1900477 crossref_primary_10_1038_s41467_018_05247_9 crossref_primary_10_1134_S1990793124010238 crossref_primary_10_1126_science_aav4809 crossref_primary_10_1016_j_ceca_2019_03_005 crossref_primary_10_1016_j_jaci_2024_02_026 crossref_primary_10_1038_s41422_018_0038_2 crossref_primary_10_1146_annurev_biochem_032620_105738 crossref_primary_10_3390_life11050397 crossref_primary_10_1001_jamanetworkopen_2021_16839 crossref_primary_10_1126_science_adj2609 crossref_primary_10_3390_cells10050983 crossref_primary_10_3389_fphar_2021_627875 crossref_primary_10_1016_j_pharmthera_2020_107497 crossref_primary_10_3390_cells7060062 crossref_primary_10_1016_j_ceca_2019_02_011 crossref_primary_10_1523_ENEURO_0143_18_2018 crossref_primary_10_1021_acs_chemrev_8b00538 crossref_primary_10_1096_fj_202000097RR crossref_primary_10_1515_hsz_2019_0171 crossref_primary_10_1007_s00018_022_04192_7 crossref_primary_10_3390_molecules23030610 crossref_primary_10_1007_s00424_018_2107_2 crossref_primary_10_1126_science_aay3302 crossref_primary_10_1038_s41581_023_00777_y crossref_primary_10_1080_19336950_2019_1626793 crossref_primary_10_1002_jcp_28168 crossref_primary_10_1016_j_celrep_2018_06_034 crossref_primary_10_1074_jbc_RA118_003563 crossref_primary_10_1186_s12576_024_00937_0 crossref_primary_10_3390_medicines6030086 crossref_primary_10_1038_s41586_018_0558_4 crossref_primary_10_1016_j_tibtech_2023_02_006 crossref_primary_10_3390_biology9110400 crossref_primary_10_1113_JP283831 crossref_primary_10_3390_ijms251910284 crossref_primary_10_7554_eLife_44556 crossref_primary_10_1073_pnas_2001177117 crossref_primary_10_1016_j_bpj_2019_10_011 crossref_primary_10_1038_s42003_020_01419_w crossref_primary_10_3389_fphar_2022_900623 crossref_primary_10_1038_s41598_022_22077_4 crossref_primary_10_1042_BST20180269 crossref_primary_10_1080_19336950_2023_2212349 crossref_primary_10_2183_pjab_95_010 crossref_primary_10_7554_eLife_73645 crossref_primary_10_1021_acs_langmuir_1c02449 crossref_primary_10_1155_2020_6615038 crossref_primary_10_1016_j_arr_2018_07_002 crossref_primary_10_1016_j_celrep_2021_110025 crossref_primary_10_1016_j_ultramic_2018_11_016 crossref_primary_10_1016_j_bpj_2024_01_021 crossref_primary_10_1021_jacs_4c02629 crossref_primary_10_7717_peerj_13381 crossref_primary_10_1038_s41392_023_01464_x crossref_primary_10_1021_acschemneuro_9b00404 crossref_primary_10_3390_ijms241411798 crossref_primary_10_1016_j_forsciint_2018_10_006 crossref_primary_10_3389_fimmu_2024_1294357 crossref_primary_10_1242_jcs_258372 crossref_primary_10_3389_fonc_2022_1065935 crossref_primary_10_1111_bph_15310 crossref_primary_10_1371_journal_pone_0233884 crossref_primary_10_1016_j_str_2022_04_011 crossref_primary_10_1111_bph_14220 crossref_primary_10_1021_acs_biochem_1c00647 crossref_primary_10_7554_eLife_39775 crossref_primary_10_3390_ijms22147267 crossref_primary_10_1016_j_bbagen_2020_129580 crossref_primary_10_1038_s41598_019_49912_5 crossref_primary_10_1096_fj_201900136R crossref_primary_10_7554_eLife_84387 crossref_primary_10_1111_jfd_13493 crossref_primary_10_1016_j_chempr_2020_08_004 crossref_primary_10_3390_cells11071190 crossref_primary_10_1016_j_isci_2024_111425 crossref_primary_10_1126_science_aar6205 crossref_primary_10_1126_science_aav9334 crossref_primary_10_3389_fphys_2021_798102 crossref_primary_10_1126_sciadv_aaw7935 crossref_primary_10_3390_cryst10100886 crossref_primary_10_7554_eLife_58660 crossref_primary_10_1085_jgp_201812124 crossref_primary_10_3389_fchem_2022_1047874 crossref_primary_10_1038_s41586_020_2480_9 crossref_primary_10_3390_ijms20184430 crossref_primary_10_1063_5_0102149 crossref_primary_10_1016_j_neuron_2021_12_023 crossref_primary_10_1021_acschembio_8b00644 crossref_primary_10_1085_jgp_201912533 crossref_primary_10_1016_j_bmc_2023_117584 crossref_primary_10_7554_eLife_36409 crossref_primary_10_7554_eLife_99643 crossref_primary_10_3390_ijms21124323 crossref_primary_10_3389_fcell_2020_00777 crossref_primary_10_4196_kjpp_2023_27_4_417 crossref_primary_10_1093_jnen_nlaa134 crossref_primary_10_1107_S2052252520013184 crossref_primary_10_1016_j_sbi_2019_05_022 crossref_primary_10_12688_f1000research_16234_1 crossref_primary_10_7554_eLife_82947 crossref_primary_10_1074_jbc_RA118_005066 crossref_primary_10_3390_cells9122604 crossref_primary_10_1016_j_ultramic_2019_112849 crossref_primary_10_2174_1573406415666181219101613 crossref_primary_10_1038_s41467_019_11733_5 crossref_primary_10_1016_j_sbi_2019_06_011 crossref_primary_10_1021_acsnano_2c05532 crossref_primary_10_3389_fphar_2023_1213337 crossref_primary_10_1038_s41586_024_07436_7 crossref_primary_10_1515_hsz_2018_0455 crossref_primary_10_2174_0113895575261945231122062659 crossref_primary_10_1016_j_str_2019_11_005 crossref_primary_10_1016_j_str_2021_08_003 crossref_primary_10_1080_01677063_2022_2121824 crossref_primary_10_48130_fia_0024_0024 crossref_primary_10_1111_febs_14939 crossref_primary_10_7554_eLife_60603 crossref_primary_10_3390_ijms19041256 crossref_primary_10_1016_j_tibs_2020_05_008 crossref_primary_10_1093_cvr_cvad126 crossref_primary_10_1016_j_jmb_2021_166914 crossref_primary_10_1038_s41594_021_00607_4 crossref_primary_10_3390_cells11030491 crossref_primary_10_1038_s41594_024_01463_8 crossref_primary_10_1016_j_bbamem_2020_183272 crossref_primary_10_1016_j_isci_2018_11_037 crossref_primary_10_7554_eLife_36852 crossref_primary_10_7554_eLife_36615 crossref_primary_10_1101_cshperspect_a035048 crossref_primary_10_1038_s41467_022_30919_y crossref_primary_10_1113_JP274888 crossref_primary_10_2139_ssrn_3310822 crossref_primary_10_7554_eLife_99643_3 crossref_primary_10_1038_s41589_025_01841_3 crossref_primary_10_1073_pnas_2013756118 crossref_primary_10_1113_JP279024 crossref_primary_10_1038_s41467_021_25216_z crossref_primary_10_3389_fimmu_2022_1025499 crossref_primary_10_3390_membranes12080758 crossref_primary_10_3390_ph15010081 crossref_primary_10_3390_ijms20082012 crossref_primary_10_1038_s41594_024_01316_4 crossref_primary_10_1093_nsr_nwz127 crossref_primary_10_1016_j_chemphyslip_2019_01_013 crossref_primary_10_12688_f1000research_19006_1 crossref_primary_10_7554_eLife_63429 crossref_primary_10_1038_s41467_018_07117_w crossref_primary_10_1073_pnas_1810719115 crossref_primary_10_1093_gbe_evac009 crossref_primary_10_12688_f1000research_19006_2 crossref_primary_10_3390_ijms21051877 crossref_primary_10_3390_ijms252011269 crossref_primary_10_3390_ijms242015162 crossref_primary_10_1016_j_sbi_2018_08_008 crossref_primary_10_7554_eLife_37558 crossref_primary_10_1021_acs_accounts_9b00075 crossref_primary_10_1038_s41467_018_04828_y crossref_primary_10_34133_research_0106 crossref_primary_10_1089_neu_2018_6124 crossref_primary_10_1080_10408398_2021_1909532 |
Cites_doi | 10.1038/nature12823 10.1016/0263-7855(96)00018-5 10.1074/jbc.M114.606087 10.1038/nature14367 10.1074/jbc.M411089200 10.1074/jbc.M707205200 10.1038/nature719 10.1107/S0907444909052925 10.1016/j.cell.2016.09.048 10.1073/pnas.97.2.623 10.1093/nar/gku316 10.1038/nmeth.4193 10.1016/j.jsb.2015.11.003 10.1038/nature17964 10.1038/nmeth.3541 10.1016/S0960-9822(03)00431-7 10.1038/nprot.2014.173 10.1038/nature22981 10.1038/nature12822 10.1038/nature24035 10.1107/S0907444909042073 10.1038/nature24036 10.1038/nmeth.2115 10.1002/pro.3293 10.1016/j.neuron.2004.08.038 10.1113/jphysiol.2004.070839 10.1126/science.1098845 10.1101/gad.272278.115 10.1073/pnas.1402809111 10.1107/S0907444910007493 10.1016/bs.mie.2016.04.013 10.1016/S0092-8674(02)00719-5 10.1007/978-3-642-54215-2_16 10.1016/S0263-7855(97)00009-X 10.1073/pnas.1210373109 10.1146/annurev-cellbio-101011-155833 10.1038/nature24055 10.1251/bpo70 10.1016/j.bpc.2015.06.004 10.1107/S0021889808006985 10.2174/1874091X01509010024 10.1038/nprot.2012.085 10.1126/science.1185954 10.1074/jbc.M501686200 10.1016/j.jmb.2003.07.013 10.1016/S0076-6879(09)64011-8 10.1126/science.1240585 10.1016/j.jsb.2012.09.006 10.1074/jbc.M305127200 10.1109/TPAMI.2016.2627573 10.1002/jcc.20084 |
ContentType | Journal Article |
Copyright | Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.aar4510 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Architecture |
EISSN | 1095-9203 |
EndPage | 232 |
ExternalDocumentID | PMC5898196 29217581 10_1126_science_aar4510 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM098672 – fundername: Howard Hughes Medical Institute – fundername: NIH HHS grantid: S10 OD020054 – fundername: NINDS NIH HHS grantid: R01 NS047723 – fundername: NIH HHS grantid: S10 OD021741 – fundername: NINDS NIH HHS grantid: R35 NS105038 – fundername: NIGMS NIH HHS grantid: T32 GM008284 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADUKH ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 C51 CITATION CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 0B8 CGR CUY CVF ECM EIF ESX GX1 IGG NPM OK1 PKN RHF UIG VQA YCJ YIF YIN ZKG 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM ACHIC ADQXQ AQVQM |
ID | FETCH-LOGICAL-c487t-91fa357bcbf5b6ac1989eb441961479c00bcef8b3a16f8729696c278f1d5fc7d3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 18:11:15 EDT 2025 Fri Jul 11 03:58:17 EDT 2025 Fri Jul 25 10:43:10 EDT 2025 Wed Feb 19 02:32:45 EST 2025 Tue Jul 01 01:51:09 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6372 |
Language | English |
License | Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c487t-91fa357bcbf5b6ac1989eb441961479c00bcef8b3a16f8729696c278f1d5fc7d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7870-5308 0000-0002-6365-4867 0000-0003-2607-7121 0000-0003-3691-5010 0000-0001-9535-0369 0000-0003-1909-5751 |
OpenAccessLink | https://escholarship.org/content/qt1n54z3pk/qt1n54z3pk.pdf |
PMID | 29217581 |
PQID | 1991489663 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5898196 proquest_miscellaneous_1975016117 proquest_journals_1991489663 pubmed_primary_29217581 crossref_primary_10_1126_science_aar4510 crossref_citationtrail_10_1126_science_aar4510 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-12 |
PublicationDateYYYYMMDD | 2018-01-12 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2018 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 29326261 - Science. 2018 Jan 12;359(6372):160-161 |
References_xml | – ident: e_1_3_2_23_2 doi: 10.1038/nature12823 – ident: e_1_3_2_51_2 doi: 10.1016/0263-7855(96)00018-5 – ident: e_1_3_2_18_2 doi: 10.1074/jbc.M114.606087 – ident: e_1_3_2_12_2 doi: 10.1038/nature14367 – ident: e_1_3_2_29_2 doi: 10.1074/jbc.M411089200 – ident: e_1_3_2_15_2 doi: 10.1074/jbc.M707205200 – ident: e_1_3_2_21_2 doi: 10.1038/nature719 – ident: e_1_3_2_45_2 doi: 10.1107/S0907444909052925 – ident: e_1_3_2_14_2 doi: 10.1016/j.cell.2016.09.048 – ident: e_1_3_2_25_2 doi: 10.1073/pnas.97.2.623 – ident: e_1_3_2_52_2 doi: 10.1093/nar/gku316 – ident: e_1_3_2_33_2 doi: 10.1038/nmeth.4193 – ident: e_1_3_2_34_2 doi: 10.1016/j.jsb.2015.11.003 – ident: e_1_3_2_7_2 doi: 10.1038/nature17964 – ident: e_1_3_2_48_2 doi: 10.1038/nmeth.3541 – ident: e_1_3_2_20_2 doi: 10.1016/S0960-9822(03)00431-7 – ident: e_1_3_2_30_2 doi: 10.1038/nprot.2014.173 – ident: e_1_3_2_10_2 doi: 10.1038/nature22981 – ident: e_1_3_2_11_2 doi: 10.1038/nature12822 – ident: e_1_3_2_8_2 doi: 10.1038/nature24035 – ident: e_1_3_2_47_2 doi: 10.1107/S0907444909042073 – ident: e_1_3_2_13_2 doi: 10.1038/nature24036 – ident: e_1_3_2_40_2 doi: 10.1038/nmeth.2115 – ident: e_1_3_2_42_2 doi: 10.1002/pro.3293 – ident: e_1_3_2_22_2 doi: 10.1016/j.neuron.2004.08.038 – ident: e_1_3_2_6_2 doi: 10.1113/jphysiol.2004.070839 – ident: e_1_3_2_4_2 doi: 10.1126/science.1098845 – ident: e_1_3_2_39_2 doi: 10.1101/gad.272278.115 – ident: e_1_3_2_16_2 doi: 10.1073/pnas.1402809111 – ident: e_1_3_2_43_2 doi: 10.1107/S0907444910007493 – ident: e_1_3_2_38_2 doi: 10.1016/bs.mie.2016.04.013 – ident: e_1_3_2_3_2 doi: 10.1016/S0092-8674(02)00719-5 – ident: e_1_3_2_19_2 doi: 10.1007/978-3-642-54215-2_16 – ident: e_1_3_2_49_2 doi: 10.1016/S0263-7855(97)00009-X – ident: e_1_3_2_28_2 doi: 10.1073/pnas.1210373109 – ident: e_1_3_2_2_2 doi: 10.1146/annurev-cellbio-101011-155833 – ident: e_1_3_2_9_2 doi: 10.1038/nature24055 – ident: e_1_3_2_32_2 doi: 10.1251/bpo70 – ident: e_1_3_2_26_2 doi: 10.1016/j.bpc.2015.06.004 – ident: e_1_3_2_44_2 doi: 10.1107/S0021889808006985 – ident: e_1_3_2_27_2 doi: 10.2174/1874091X01509010024 – ident: e_1_3_2_46_2 doi: 10.1038/nprot.2012.085 – ident: e_1_3_2_17_2 doi: 10.1126/science.1185954 – ident: e_1_3_2_24_2 doi: 10.1074/jbc.M501686200 – ident: e_1_3_2_41_2 doi: 10.1016/j.jmb.2003.07.013 – ident: e_1_3_2_31_2 doi: 10.1016/S0076-6879(09)64011-8 – ident: e_1_3_2_37_2 doi: 10.1126/science.1240585 – ident: e_1_3_2_36_2 doi: 10.1016/j.jsb.2012.09.006 – ident: e_1_3_2_5_2 doi: 10.1074/jbc.M305127200 – ident: e_1_3_2_35_2 doi: 10.1109/TPAMI.2016.2627573 – ident: e_1_3_2_50_2 doi: 10.1002/jcc.20084 – reference: 29326261 - Science. 2018 Jan 12;359(6372):160-161 |
SSID | ssj0009593 |
Score | 2.6179104 |
Snippet | Transient receptor potential melastatin (TRPM) ion channels constitute the largest TRP subfamily and are involved in many physiological processes. TRPM8 is the... Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is... Architecture of the TRPM subfamilyTransient receptor potential melastatin (TRPM) ion channels constitute the largest TRP subfamily and are involved in many... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 228 |
SubjectTerms | Architecture Binding Sites Calcium Calcium (intracellular) Calcium - chemistry Calcium - metabolism Calcium channels Calcium channels (voltage-gated) Calcium-binding protein Cations Cryoelectron Microscopy Disorders Electric potential Electron microscopy Humans Hydrophobic and Hydrophilic Interactions Intracellular Ion channels Lipids Menthol Models, Molecular Nanostructures Protein Conformation Protein Domains Protein Structure, Secondary Recombinant Proteins - chemistry Recombinant Proteins - metabolism Recombinant Proteins - ultrastructure Transient receptor potential proteins TRPM Cation Channels - chemistry TRPM Cation Channels - metabolism TRPM Cation Channels - ultrastructure |
Title | Structure of the human TRPM4 ion channel in a lipid nanodisc |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29217581 https://www.proquest.com/docview/1991489663 https://www.proquest.com/docview/1975016117 https://pubmed.ncbi.nlm.nih.gov/PMC5898196 |
Volume | 359 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9swEBZZymAMxpq9ZeuGBvvQEVxi-U2GfXHXhewlpawp9JuRZJmZBbs0ySD9ffthO1myrazrWPfFBL_Etp7z6U53zx1Cb3LCaUwD6ZDYl46fcfjmaOA70ZhGXi5k7NbcqtlxOD3zP50H573eTytrab3iB-Lqj7yS_0EV9gGuiiV7C2TbP4Ud8BvwhS0gDNt_wvi0Lv6qQgAm0q877s2_nsz8kcJV0XpLqcpqjNhoUVwU2ahkZaWouLZV2nzgYG22ERwLtzYVMdEJA03-gLnMXkxYr660HlPkh0KlEXVUh9mGLcvie_WjY9V0nb3sGMhMLqps0x1Lluyy1DEozYi3lypclSXnuJ1jO--4Mrd5C1t9m-rJevLSGnusmk2SsWerdM9UGdeyG3q6O1Cjow0bXU_3RC-vXp9JrN6X8oCxSz8w-bdbNbunyWl6cjRJv3w8_nwH7RBwVkgf7SSHR4eTG4s_mxJTFnmrucG2dXTN5fk9c9cyheYP0QPjw-BEC-Qu6slygO4nVkhqgO7qJqebAdo1A7zE-6bG-dtH6F0rurjKMaCCa9HFtehiQAsb0cVFiRmuRRc3ovsYnU0-zN9PHdPIwxHgD69gQs2ZF0Rc8DzgIRMqT09yMMRjMA6jWIzHXMicco-5YU7B3QvjUJCI5m4W5CLKvCeoX1alfIZwRrKYSj8QnvR9zhgjEqYkIWhAYxFmwRAdNAOYClPlXjVbWaS1t0vC1Ix4akZ8iPbbCy50gZebT91rEEmNFlimKnXQpzEY7kP0uj0MOloF3lgpq7U6B-xycK3caIieagDbe5GYgAVP3SGKtqBtT1D137ePlMW3ug48vDLY8-Hzvz_WC3Sv-xb3UB_glS_BkF7xV0ZOfwFCN88_ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+of+the+human+TRPM4+ion+channel+in+a+lipid+nanodisc&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Autzen%2C+Henriette+E&rft.au=Myasnikov+Alexander+G&rft.au=Campbell%2C+Melody+G&rft.au=Asarnow%2C+Daniel&rft.date=2018-01-12&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=359&rft.issue=6372&rft.spage=228&rft.epage=232&rft_id=info:doi/10.1126%2Fscience.aar4510&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |