Structure of the human TRPM4 ion channel in a lipid nanodisc

Transient receptor potential melastatin (TRPM) ion channels constitute the largest TRP subfamily and are involved in many physiological processes. TRPM8 is the primary cold and menthol sensor, and TRPM4 is associated with cardiovascular disorders. Yin et al. and Autzen et al. shed light on the gener...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 359; no. 6372; pp. 228 - 232
Main Authors Autzen, Henriette E., Myasnikov, Alexander G., Campbell, Melody G., Asarnow, Daniel, Julius, David, Cheng, Yifan
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 12.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transient receptor potential melastatin (TRPM) ion channels constitute the largest TRP subfamily and are involved in many physiological processes. TRPM8 is the primary cold and menthol sensor, and TRPM4 is associated with cardiovascular disorders. Yin et al. and Autzen et al. shed light on the general architecture of the TRPM subfamily by solving the structures of TRPM8 and TRPM4, respectively (see the Perspective by Bae et al. ). The three-layered architecture of the TRPM8 channel provides the framework for understanding the mechanisms of cold and menthol sensing. The two distinct closed states of TRPM4, with and without calcium, reveal a calcium-binding site and calcium-binding-induced conformational changes. Science , this issue p. 237 , p. 228 ; see also p. 160 Structures of a human cation channel revealed by single-particle cryo–electron microscopy elucidate the calcium-binding site. Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage-dependent manner but, unlike many other TRP channels, is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo–electron microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening.
AbstractList Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage-dependent manner but, unlike many other TRP channels, is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo-electron microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening.Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage-dependent manner but, unlike many other TRP channels, is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo-electron microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening.
Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage dependent manner, but unlike many other TRP channels is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3Å resolution as determined by single particle electron cryo-microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium binding site within the intracellular side of the S1–S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening.
Transient receptor potential melastatin (TRPM) ion channels constitute the largest TRP subfamily and are involved in many physiological processes. TRPM8 is the primary cold and menthol sensor, and TRPM4 is associated with cardiovascular disorders. Yin et al. and Autzen et al. shed light on the general architecture of the TRPM subfamily by solving the structures of TRPM8 and TRPM4, respectively (see the Perspective by Bae et al. ). The three-layered architecture of the TRPM8 channel provides the framework for understanding the mechanisms of cold and menthol sensing. The two distinct closed states of TRPM4, with and without calcium, reveal a calcium-binding site and calcium-binding-induced conformational changes. Science , this issue p. 237 , p. 228 ; see also p. 160 Structures of a human cation channel revealed by single-particle cryo–electron microscopy elucidate the calcium-binding site. Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage-dependent manner but, unlike many other TRP channels, is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo–electron microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening.
Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage-dependent manner but, unlike many other TRP channels, is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo-electron microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening.
Architecture of the TRPM subfamilyTransient receptor potential melastatin (TRPM) ion channels constitute the largest TRP subfamily and are involved in many physiological processes. TRPM8 is the primary cold and menthol sensor, and TRPM4 is associated with cardiovascular disorders. Yin et al. and Autzen et al. shed light on the general architecture of the TRPM subfamily by solving the structures of TRPM8 and TRPM4, respectively (see the Perspective by Bae et al.). The three-layered architecture of the TRPM8 channel provides the framework for understanding the mechanisms of cold and menthol sensing. The two distinct closed states of TRPM4, with and without calcium, reveal a calcium-binding site and calcium-binding-induced conformational changes.Science, this issue p. 237, p. 228; see also p. 160Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage-dependent manner but, unlike many other TRP channels, is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo–electron microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening.
Author Campbell, Melody G.
Julius, David
Asarnow, Daniel
Cheng, Yifan
Autzen, Henriette E.
Myasnikov, Alexander G.
AuthorAffiliation 3 Department of Physiology, University of California, San Francisco, California, 94143, USA
1 Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA
4 Howard Hughes Medical Institute, University of California, San Francisco, 94143, USA
2 Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus, Denmark
AuthorAffiliation_xml – name: 4 Howard Hughes Medical Institute, University of California, San Francisco, 94143, USA
– name: 3 Department of Physiology, University of California, San Francisco, California, 94143, USA
– name: 1 Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA
– name: 2 Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus, Denmark
Author_xml – sequence: 1
  givenname: Henriette E.
  orcidid: 0000-0003-3691-5010
  surname: Autzen
  fullname: Autzen, Henriette E.
  organization: Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA., Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus, Denmark
– sequence: 2
  givenname: Alexander G.
  orcidid: 0000-0003-2607-7121
  surname: Myasnikov
  fullname: Myasnikov, Alexander G.
  organization: Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
– sequence: 3
  givenname: Melody G.
  orcidid: 0000-0003-1909-5751
  surname: Campbell
  fullname: Campbell, Melody G.
  organization: Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
– sequence: 4
  givenname: Daniel
  orcidid: 0000-0001-7870-5308
  surname: Asarnow
  fullname: Asarnow, Daniel
  organization: Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
– sequence: 5
  givenname: David
  orcidid: 0000-0002-6365-4867
  surname: Julius
  fullname: Julius, David
  organization: Department of Physiology, University of California, San Francisco, CA 94143, USA
– sequence: 6
  givenname: Yifan
  orcidid: 0000-0001-9535-0369
  surname: Cheng
  fullname: Cheng, Yifan
  organization: Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA., Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29217581$$D View this record in MEDLINE/PubMed
BookMark eNp1kd1LHDEUxYNs0dX67FsJ9MWX0dyZyRcUQcS2whbF6nPIZBI3MpusyUyh_30jbpe60Kc83N85OfeeQzQLMViEToCcAdTsPBtvg7FnWqeWAtlDcyCSVrImzQzNCWlYJQinB-gw52dCykw2--igljVwKmCOvvwc02TGKVkcHR6XFi-nlQ744f7uR4t9DNgsdQh2wD5gjQe_9j0OOsTeZ_MRfXB6yPZ48x6hx6_XD1ffq8Xtt5ury0VlWsHHSoLTDeWd6RztmDYghbRd24Jk0HJpCOmMdaJrNDAneC2ZZKbmwkFPneF9c4Qu3nzXU7eyvbFhTHpQ6-RXOv1WUXv1fhL8Uj3FX4oKKcovxeB0Y5Diy2TzqFYlvh0GHWycsgLJKQEGwAv6eQd9jlMKZb1CSWiFZKwp1Kd_E22j_D1sAc7fAJNizsm6LQJEvVanNtWpTXVFQXcUxo96LBWUlfzwX90fePOgBA
CitedBy_id crossref_primary_10_1085_jgp_201811998
crossref_primary_10_1016_j_jid_2018_10_044
crossref_primary_10_1073_pnas_2403333121
crossref_primary_10_1134_S1063774521050072
crossref_primary_10_1007_s00424_021_02525_2
crossref_primary_10_3389_fphar_2024_1494205
crossref_primary_10_1371_journal_pbio_3001936
crossref_primary_10_1360_TB_2023_0029
crossref_primary_10_3389_fendo_2019_00053
crossref_primary_10_1111_febs_14639
crossref_primary_10_3390_biom13060957
crossref_primary_10_1073_pnas_1722038115
crossref_primary_10_1021_acs_biochem_0c00924
crossref_primary_10_1016_j_ceca_2019_102111
crossref_primary_10_1016_j_ceca_2019_102075
crossref_primary_10_1074_jbc_RA118_003183
crossref_primary_10_1038_s41467_025_56131_2
crossref_primary_10_1038_s41467_020_19458_6
crossref_primary_10_3390_biom10030478
crossref_primary_10_1146_annurev_pharmtox_010919_023411
crossref_primary_10_31857_S0207401X24020108
crossref_primary_10_3390_biom11020229
crossref_primary_10_1126_science_aax6672
crossref_primary_10_7554_eLife_50175
crossref_primary_10_1002_smll_202304370
crossref_primary_10_1016_j_neuron_2019_01_011
crossref_primary_10_1126_science_aat4346
crossref_primary_10_1631_jzus_B1900477
crossref_primary_10_1038_s41467_018_05247_9
crossref_primary_10_1134_S1990793124010238
crossref_primary_10_1126_science_aav4809
crossref_primary_10_1016_j_ceca_2019_03_005
crossref_primary_10_1016_j_jaci_2024_02_026
crossref_primary_10_1038_s41422_018_0038_2
crossref_primary_10_1146_annurev_biochem_032620_105738
crossref_primary_10_3390_life11050397
crossref_primary_10_1001_jamanetworkopen_2021_16839
crossref_primary_10_1126_science_adj2609
crossref_primary_10_3390_cells10050983
crossref_primary_10_3389_fphar_2021_627875
crossref_primary_10_1016_j_pharmthera_2020_107497
crossref_primary_10_3390_cells7060062
crossref_primary_10_1016_j_ceca_2019_02_011
crossref_primary_10_1523_ENEURO_0143_18_2018
crossref_primary_10_1021_acs_chemrev_8b00538
crossref_primary_10_1096_fj_202000097RR
crossref_primary_10_1515_hsz_2019_0171
crossref_primary_10_1007_s00018_022_04192_7
crossref_primary_10_3390_molecules23030610
crossref_primary_10_1007_s00424_018_2107_2
crossref_primary_10_1126_science_aay3302
crossref_primary_10_1038_s41581_023_00777_y
crossref_primary_10_1080_19336950_2019_1626793
crossref_primary_10_1002_jcp_28168
crossref_primary_10_1016_j_celrep_2018_06_034
crossref_primary_10_1074_jbc_RA118_003563
crossref_primary_10_1186_s12576_024_00937_0
crossref_primary_10_3390_medicines6030086
crossref_primary_10_1038_s41586_018_0558_4
crossref_primary_10_1016_j_tibtech_2023_02_006
crossref_primary_10_3390_biology9110400
crossref_primary_10_1113_JP283831
crossref_primary_10_3390_ijms251910284
crossref_primary_10_7554_eLife_44556
crossref_primary_10_1073_pnas_2001177117
crossref_primary_10_1016_j_bpj_2019_10_011
crossref_primary_10_1038_s42003_020_01419_w
crossref_primary_10_3389_fphar_2022_900623
crossref_primary_10_1038_s41598_022_22077_4
crossref_primary_10_1042_BST20180269
crossref_primary_10_1080_19336950_2023_2212349
crossref_primary_10_2183_pjab_95_010
crossref_primary_10_7554_eLife_73645
crossref_primary_10_1021_acs_langmuir_1c02449
crossref_primary_10_1155_2020_6615038
crossref_primary_10_1016_j_arr_2018_07_002
crossref_primary_10_1016_j_celrep_2021_110025
crossref_primary_10_1016_j_ultramic_2018_11_016
crossref_primary_10_1016_j_bpj_2024_01_021
crossref_primary_10_1021_jacs_4c02629
crossref_primary_10_7717_peerj_13381
crossref_primary_10_1038_s41392_023_01464_x
crossref_primary_10_1021_acschemneuro_9b00404
crossref_primary_10_3390_ijms241411798
crossref_primary_10_1016_j_forsciint_2018_10_006
crossref_primary_10_3389_fimmu_2024_1294357
crossref_primary_10_1242_jcs_258372
crossref_primary_10_3389_fonc_2022_1065935
crossref_primary_10_1111_bph_15310
crossref_primary_10_1371_journal_pone_0233884
crossref_primary_10_1016_j_str_2022_04_011
crossref_primary_10_1111_bph_14220
crossref_primary_10_1021_acs_biochem_1c00647
crossref_primary_10_7554_eLife_39775
crossref_primary_10_3390_ijms22147267
crossref_primary_10_1016_j_bbagen_2020_129580
crossref_primary_10_1038_s41598_019_49912_5
crossref_primary_10_1096_fj_201900136R
crossref_primary_10_7554_eLife_84387
crossref_primary_10_1111_jfd_13493
crossref_primary_10_1016_j_chempr_2020_08_004
crossref_primary_10_3390_cells11071190
crossref_primary_10_1016_j_isci_2024_111425
crossref_primary_10_1126_science_aar6205
crossref_primary_10_1126_science_aav9334
crossref_primary_10_3389_fphys_2021_798102
crossref_primary_10_1126_sciadv_aaw7935
crossref_primary_10_3390_cryst10100886
crossref_primary_10_7554_eLife_58660
crossref_primary_10_1085_jgp_201812124
crossref_primary_10_3389_fchem_2022_1047874
crossref_primary_10_1038_s41586_020_2480_9
crossref_primary_10_3390_ijms20184430
crossref_primary_10_1063_5_0102149
crossref_primary_10_1016_j_neuron_2021_12_023
crossref_primary_10_1021_acschembio_8b00644
crossref_primary_10_1085_jgp_201912533
crossref_primary_10_1016_j_bmc_2023_117584
crossref_primary_10_7554_eLife_36409
crossref_primary_10_7554_eLife_99643
crossref_primary_10_3390_ijms21124323
crossref_primary_10_3389_fcell_2020_00777
crossref_primary_10_4196_kjpp_2023_27_4_417
crossref_primary_10_1093_jnen_nlaa134
crossref_primary_10_1107_S2052252520013184
crossref_primary_10_1016_j_sbi_2019_05_022
crossref_primary_10_12688_f1000research_16234_1
crossref_primary_10_7554_eLife_82947
crossref_primary_10_1074_jbc_RA118_005066
crossref_primary_10_3390_cells9122604
crossref_primary_10_1016_j_ultramic_2019_112849
crossref_primary_10_2174_1573406415666181219101613
crossref_primary_10_1038_s41467_019_11733_5
crossref_primary_10_1016_j_sbi_2019_06_011
crossref_primary_10_1021_acsnano_2c05532
crossref_primary_10_3389_fphar_2023_1213337
crossref_primary_10_1038_s41586_024_07436_7
crossref_primary_10_1515_hsz_2018_0455
crossref_primary_10_2174_0113895575261945231122062659
crossref_primary_10_1016_j_str_2019_11_005
crossref_primary_10_1016_j_str_2021_08_003
crossref_primary_10_1080_01677063_2022_2121824
crossref_primary_10_48130_fia_0024_0024
crossref_primary_10_1111_febs_14939
crossref_primary_10_7554_eLife_60603
crossref_primary_10_3390_ijms19041256
crossref_primary_10_1016_j_tibs_2020_05_008
crossref_primary_10_1093_cvr_cvad126
crossref_primary_10_1016_j_jmb_2021_166914
crossref_primary_10_1038_s41594_021_00607_4
crossref_primary_10_3390_cells11030491
crossref_primary_10_1038_s41594_024_01463_8
crossref_primary_10_1016_j_bbamem_2020_183272
crossref_primary_10_1016_j_isci_2018_11_037
crossref_primary_10_7554_eLife_36852
crossref_primary_10_7554_eLife_36615
crossref_primary_10_1101_cshperspect_a035048
crossref_primary_10_1038_s41467_022_30919_y
crossref_primary_10_1113_JP274888
crossref_primary_10_2139_ssrn_3310822
crossref_primary_10_7554_eLife_99643_3
crossref_primary_10_1038_s41589_025_01841_3
crossref_primary_10_1073_pnas_2013756118
crossref_primary_10_1113_JP279024
crossref_primary_10_1038_s41467_021_25216_z
crossref_primary_10_3389_fimmu_2022_1025499
crossref_primary_10_3390_membranes12080758
crossref_primary_10_3390_ph15010081
crossref_primary_10_3390_ijms20082012
crossref_primary_10_1038_s41594_024_01316_4
crossref_primary_10_1093_nsr_nwz127
crossref_primary_10_1016_j_chemphyslip_2019_01_013
crossref_primary_10_12688_f1000research_19006_1
crossref_primary_10_7554_eLife_63429
crossref_primary_10_1038_s41467_018_07117_w
crossref_primary_10_1073_pnas_1810719115
crossref_primary_10_1093_gbe_evac009
crossref_primary_10_12688_f1000research_19006_2
crossref_primary_10_3390_ijms21051877
crossref_primary_10_3390_ijms252011269
crossref_primary_10_3390_ijms242015162
crossref_primary_10_1016_j_sbi_2018_08_008
crossref_primary_10_7554_eLife_37558
crossref_primary_10_1021_acs_accounts_9b00075
crossref_primary_10_1038_s41467_018_04828_y
crossref_primary_10_34133_research_0106
crossref_primary_10_1089_neu_2018_6124
crossref_primary_10_1080_10408398_2021_1909532
Cites_doi 10.1038/nature12823
10.1016/0263-7855(96)00018-5
10.1074/jbc.M114.606087
10.1038/nature14367
10.1074/jbc.M411089200
10.1074/jbc.M707205200
10.1038/nature719
10.1107/S0907444909052925
10.1016/j.cell.2016.09.048
10.1073/pnas.97.2.623
10.1093/nar/gku316
10.1038/nmeth.4193
10.1016/j.jsb.2015.11.003
10.1038/nature17964
10.1038/nmeth.3541
10.1016/S0960-9822(03)00431-7
10.1038/nprot.2014.173
10.1038/nature22981
10.1038/nature12822
10.1038/nature24035
10.1107/S0907444909042073
10.1038/nature24036
10.1038/nmeth.2115
10.1002/pro.3293
10.1016/j.neuron.2004.08.038
10.1113/jphysiol.2004.070839
10.1126/science.1098845
10.1101/gad.272278.115
10.1073/pnas.1402809111
10.1107/S0907444910007493
10.1016/bs.mie.2016.04.013
10.1016/S0092-8674(02)00719-5
10.1007/978-3-642-54215-2_16
10.1016/S0263-7855(97)00009-X
10.1073/pnas.1210373109
10.1146/annurev-cellbio-101011-155833
10.1038/nature24055
10.1251/bpo70
10.1016/j.bpc.2015.06.004
10.1107/S0021889808006985
10.2174/1874091X01509010024
10.1038/nprot.2012.085
10.1126/science.1185954
10.1074/jbc.M501686200
10.1016/j.jmb.2003.07.013
10.1016/S0076-6879(09)64011-8
10.1126/science.1240585
10.1016/j.jsb.2012.09.006
10.1074/jbc.M305127200
10.1109/TPAMI.2016.2627573
10.1002/jcc.20084
ContentType Journal Article
Copyright Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.aar4510
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Architecture
EISSN 1095-9203
EndPage 232
ExternalDocumentID PMC5898196
29217581
10_1126_science_aar4510
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM098672
– fundername: Howard Hughes Medical Institute
– fundername: NIH HHS
  grantid: S10 OD020054
– fundername: NINDS NIH HHS
  grantid: R01 NS047723
– fundername: NIH HHS
  grantid: S10 OD021741
– fundername: NINDS NIH HHS
  grantid: R35 NS105038
– fundername: NIGMS NIH HHS
  grantid: T32 GM008284
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
C51
CITATION
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
0B8
CGR
CUY
CVF
ECM
EIF
ESX
GX1
IGG
NPM
OK1
PKN
RHF
UIG
VQA
YCJ
YIF
YIN
ZKG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ACHIC
ADQXQ
AQVQM
ID FETCH-LOGICAL-c487t-91fa357bcbf5b6ac1989eb441961479c00bcef8b3a16f8729696c278f1d5fc7d3
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 18:11:15 EDT 2025
Fri Jul 11 03:58:17 EDT 2025
Fri Jul 25 10:43:10 EDT 2025
Wed Feb 19 02:32:45 EST 2025
Tue Jul 01 01:51:09 EDT 2025
Thu Apr 24 23:05:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6372
Language English
License Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c487t-91fa357bcbf5b6ac1989eb441961479c00bcef8b3a16f8729696c278f1d5fc7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7870-5308
0000-0002-6365-4867
0000-0003-2607-7121
0000-0003-3691-5010
0000-0001-9535-0369
0000-0003-1909-5751
OpenAccessLink https://escholarship.org/content/qt1n54z3pk/qt1n54z3pk.pdf
PMID 29217581
PQID 1991489663
PQPubID 1256
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5898196
proquest_miscellaneous_1975016117
proquest_journals_1991489663
pubmed_primary_29217581
crossref_primary_10_1126_science_aar4510
crossref_citationtrail_10_1126_science_aar4510
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-12
PublicationDateYYYYMMDD 2018-01-12
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2018
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
29326261 - Science. 2018 Jan 12;359(6372):160-161
References_xml – ident: e_1_3_2_23_2
  doi: 10.1038/nature12823
– ident: e_1_3_2_51_2
  doi: 10.1016/0263-7855(96)00018-5
– ident: e_1_3_2_18_2
  doi: 10.1074/jbc.M114.606087
– ident: e_1_3_2_12_2
  doi: 10.1038/nature14367
– ident: e_1_3_2_29_2
  doi: 10.1074/jbc.M411089200
– ident: e_1_3_2_15_2
  doi: 10.1074/jbc.M707205200
– ident: e_1_3_2_21_2
  doi: 10.1038/nature719
– ident: e_1_3_2_45_2
  doi: 10.1107/S0907444909052925
– ident: e_1_3_2_14_2
  doi: 10.1016/j.cell.2016.09.048
– ident: e_1_3_2_25_2
  doi: 10.1073/pnas.97.2.623
– ident: e_1_3_2_52_2
  doi: 10.1093/nar/gku316
– ident: e_1_3_2_33_2
  doi: 10.1038/nmeth.4193
– ident: e_1_3_2_34_2
  doi: 10.1016/j.jsb.2015.11.003
– ident: e_1_3_2_7_2
  doi: 10.1038/nature17964
– ident: e_1_3_2_48_2
  doi: 10.1038/nmeth.3541
– ident: e_1_3_2_20_2
  doi: 10.1016/S0960-9822(03)00431-7
– ident: e_1_3_2_30_2
  doi: 10.1038/nprot.2014.173
– ident: e_1_3_2_10_2
  doi: 10.1038/nature22981
– ident: e_1_3_2_11_2
  doi: 10.1038/nature12822
– ident: e_1_3_2_8_2
  doi: 10.1038/nature24035
– ident: e_1_3_2_47_2
  doi: 10.1107/S0907444909042073
– ident: e_1_3_2_13_2
  doi: 10.1038/nature24036
– ident: e_1_3_2_40_2
  doi: 10.1038/nmeth.2115
– ident: e_1_3_2_42_2
  doi: 10.1002/pro.3293
– ident: e_1_3_2_22_2
  doi: 10.1016/j.neuron.2004.08.038
– ident: e_1_3_2_6_2
  doi: 10.1113/jphysiol.2004.070839
– ident: e_1_3_2_4_2
  doi: 10.1126/science.1098845
– ident: e_1_3_2_39_2
  doi: 10.1101/gad.272278.115
– ident: e_1_3_2_16_2
  doi: 10.1073/pnas.1402809111
– ident: e_1_3_2_43_2
  doi: 10.1107/S0907444910007493
– ident: e_1_3_2_38_2
  doi: 10.1016/bs.mie.2016.04.013
– ident: e_1_3_2_3_2
  doi: 10.1016/S0092-8674(02)00719-5
– ident: e_1_3_2_19_2
  doi: 10.1007/978-3-642-54215-2_16
– ident: e_1_3_2_49_2
  doi: 10.1016/S0263-7855(97)00009-X
– ident: e_1_3_2_28_2
  doi: 10.1073/pnas.1210373109
– ident: e_1_3_2_2_2
  doi: 10.1146/annurev-cellbio-101011-155833
– ident: e_1_3_2_9_2
  doi: 10.1038/nature24055
– ident: e_1_3_2_32_2
  doi: 10.1251/bpo70
– ident: e_1_3_2_26_2
  doi: 10.1016/j.bpc.2015.06.004
– ident: e_1_3_2_44_2
  doi: 10.1107/S0021889808006985
– ident: e_1_3_2_27_2
  doi: 10.2174/1874091X01509010024
– ident: e_1_3_2_46_2
  doi: 10.1038/nprot.2012.085
– ident: e_1_3_2_17_2
  doi: 10.1126/science.1185954
– ident: e_1_3_2_24_2
  doi: 10.1074/jbc.M501686200
– ident: e_1_3_2_41_2
  doi: 10.1016/j.jmb.2003.07.013
– ident: e_1_3_2_31_2
  doi: 10.1016/S0076-6879(09)64011-8
– ident: e_1_3_2_37_2
  doi: 10.1126/science.1240585
– ident: e_1_3_2_36_2
  doi: 10.1016/j.jsb.2012.09.006
– ident: e_1_3_2_5_2
  doi: 10.1074/jbc.M305127200
– ident: e_1_3_2_35_2
  doi: 10.1109/TPAMI.2016.2627573
– ident: e_1_3_2_50_2
  doi: 10.1002/jcc.20084
– reference: 29326261 - Science. 2018 Jan 12;359(6372):160-161
SSID ssj0009593
Score 2.6179104
Snippet Transient receptor potential melastatin (TRPM) ion channels constitute the largest TRP subfamily and are involved in many physiological processes. TRPM8 is the...
Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is...
Architecture of the TRPM subfamilyTransient receptor potential melastatin (TRPM) ion channels constitute the largest TRP subfamily and are involved in many...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 228
SubjectTerms Architecture
Binding Sites
Calcium
Calcium (intracellular)
Calcium - chemistry
Calcium - metabolism
Calcium channels
Calcium channels (voltage-gated)
Calcium-binding protein
Cations
Cryoelectron Microscopy
Disorders
Electric potential
Electron microscopy
Humans
Hydrophobic and Hydrophilic Interactions
Intracellular
Ion channels
Lipids
Menthol
Models, Molecular
Nanostructures
Protein Conformation
Protein Domains
Protein Structure, Secondary
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Recombinant Proteins - ultrastructure
Transient receptor potential proteins
TRPM Cation Channels - chemistry
TRPM Cation Channels - metabolism
TRPM Cation Channels - ultrastructure
Title Structure of the human TRPM4 ion channel in a lipid nanodisc
URI https://www.ncbi.nlm.nih.gov/pubmed/29217581
https://www.proquest.com/docview/1991489663
https://www.proquest.com/docview/1975016117
https://pubmed.ncbi.nlm.nih.gov/PMC5898196
Volume 359
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9swEBZZymAMxpq9ZeuGBvvQEVxi-U2GfXHXhewlpawp9JuRZJmZBbs0ySD9ffthO1myrazrWPfFBL_Etp7z6U53zx1Cb3LCaUwD6ZDYl46fcfjmaOA70ZhGXi5k7NbcqtlxOD3zP50H573eTytrab3iB-Lqj7yS_0EV9gGuiiV7C2TbP4Ud8BvwhS0gDNt_wvi0Lv6qQgAm0q877s2_nsz8kcJV0XpLqcpqjNhoUVwU2ahkZaWouLZV2nzgYG22ERwLtzYVMdEJA03-gLnMXkxYr660HlPkh0KlEXVUh9mGLcvie_WjY9V0nb3sGMhMLqps0x1Lluyy1DEozYi3lypclSXnuJ1jO--4Mrd5C1t9m-rJevLSGnusmk2SsWerdM9UGdeyG3q6O1Cjow0bXU_3RC-vXp9JrN6X8oCxSz8w-bdbNbunyWl6cjRJv3w8_nwH7RBwVkgf7SSHR4eTG4s_mxJTFnmrucG2dXTN5fk9c9cyheYP0QPjw-BEC-Qu6slygO4nVkhqgO7qJqebAdo1A7zE-6bG-dtH6F0rurjKMaCCa9HFtehiQAsb0cVFiRmuRRc3ovsYnU0-zN9PHdPIwxHgD69gQs2ZF0Rc8DzgIRMqT09yMMRjMA6jWIzHXMicco-5YU7B3QvjUJCI5m4W5CLKvCeoX1alfIZwRrKYSj8QnvR9zhgjEqYkIWhAYxFmwRAdNAOYClPlXjVbWaS1t0vC1Ix4akZ8iPbbCy50gZebT91rEEmNFlimKnXQpzEY7kP0uj0MOloF3lgpq7U6B-xycK3caIieagDbe5GYgAVP3SGKtqBtT1D137ePlMW3ug48vDLY8-Hzvz_WC3Sv-xb3UB_glS_BkF7xV0ZOfwFCN88_
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+of+the+human+TRPM4+ion+channel+in+a+lipid+nanodisc&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Autzen%2C+Henriette+E&rft.au=Myasnikov+Alexander+G&rft.au=Campbell%2C+Melody+G&rft.au=Asarnow%2C+Daniel&rft.date=2018-01-12&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=359&rft.issue=6372&rft.spage=228&rft.epage=232&rft_id=info:doi/10.1126%2Fscience.aar4510&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon