Dataset Growth in Medical Image Analysis Research

Medical image analysis research requires medical image datasets. Nevertheless, due to various impediments, researchers have been described as “data starved”. We hypothesize that implicit evolving community standards require researchers to use ever-growing datasets. In Phase I of this research, we sc...

Full description

Saved in:
Bibliographic Details
Published inJournal of imaging Vol. 7; no. 8; p. 155
Main Authors Kiryati, Nahum, Landau, Yuval
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.08.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Medical image analysis research requires medical image datasets. Nevertheless, due to various impediments, researchers have been described as “data starved”. We hypothesize that implicit evolving community standards require researchers to use ever-growing datasets. In Phase I of this research, we scanned the MICCAI (Medical Image Computing and Computer-Assisted Intervention) conference proceedings from 2011 to 2018. We identified 907 papers involving human MRI, CT or fMRI datasets and extracted their sizes. The median dataset size had grown by 3–10 times from 2011 to 2018, depending on imaging modality. Statistical analysis revealed exponential growth of the geometric mean dataset size with an annual growth of 21% for MRI, 24% for CT and 31% for fMRI. Thereupon, we had issued a forecast for dataset sizes in MICCAI 2019 well before the conference. In Phase II of this research, we examined the MICCAI 2019 proceedings and analyzed 308 relevant papers. The MICCAI 2019 statistics compare well with the forecast. The revised annual growth rates of the geometric mean dataset size are 27% for MRI, 30% for CT and 32% for fMRI. We predict the respective dataset sizes in the MICCAI 2020 conference (that we have not yet analyzed) and the future MICCAI 2021 conference.
AbstractList Medical image analysis research requires medical image datasets. Nevertheless, due to various impediments, researchers have been described as “data starved”. We hypothesize that implicit evolving community standards require researchers to use ever-growing datasets. In Phase I of this research, we scanned the MICCAI (Medical Image Computing and Computer-Assisted Intervention) conference proceedings from 2011 to 2018. We identified 907 papers involving human MRI, CT or fMRI datasets and extracted their sizes. The median dataset size had grown by 3–10 times from 2011 to 2018, depending on imaging modality. Statistical analysis revealed exponential growth of the geometric mean dataset size with an annual growth of 21% for MRI, 24% for CT and 31% for fMRI. Thereupon, we had issued a forecast for dataset sizes in MICCAI 2019 well before the conference. In Phase II of this research, we examined the MICCAI 2019 proceedings and analyzed 308 relevant papers. The MICCAI 2019 statistics compare well with the forecast. The revised annual growth rates of the geometric mean dataset size are 27% for MRI, 30% for CT and 32% for fMRI. We predict the respective dataset sizes in the MICCAI 2020 conference (that we have not yet analyzed) and the future MICCAI 2021 conference.
Medical image analysis research requires medical image datasets. Nevertheless, due to various impediments, researchers have been described as "data starved". We hypothesize that implicit evolving community standards require researchers to use ever-growing datasets. In Phase I of this research, we scanned the MICCAI (Medical Image Computing and Computer-Assisted Intervention) conference proceedings from 2011 to 2018. We identified 907 papers involving human MRI, CT or fMRI datasets and extracted their sizes. The median dataset size had grown by 3-10 times from 2011 to 2018, depending on imaging modality. Statistical analysis revealed exponential growth of the geometric mean dataset size with an annual growth of 21% for MRI, 24% for CT and 31% for fMRI. Thereupon, we had issued a forecast for dataset sizes in MICCAI 2019 well before the conference. In Phase II of this research, we examined the MICCAI 2019 proceedings and analyzed 308 relevant papers. The MICCAI 2019 statistics compare well with the forecast. The revised annual growth rates of the geometric mean dataset size are 27% for MRI, 30% for CT and 32% for fMRI. We predict the respective dataset sizes in the MICCAI 2020 conference (that we have not yet analyzed) and the future MICCAI 2021 conference.Medical image analysis research requires medical image datasets. Nevertheless, due to various impediments, researchers have been described as "data starved". We hypothesize that implicit evolving community standards require researchers to use ever-growing datasets. In Phase I of this research, we scanned the MICCAI (Medical Image Computing and Computer-Assisted Intervention) conference proceedings from 2011 to 2018. We identified 907 papers involving human MRI, CT or fMRI datasets and extracted their sizes. The median dataset size had grown by 3-10 times from 2011 to 2018, depending on imaging modality. Statistical analysis revealed exponential growth of the geometric mean dataset size with an annual growth of 21% for MRI, 24% for CT and 31% for fMRI. Thereupon, we had issued a forecast for dataset sizes in MICCAI 2019 well before the conference. In Phase II of this research, we examined the MICCAI 2019 proceedings and analyzed 308 relevant papers. The MICCAI 2019 statistics compare well with the forecast. The revised annual growth rates of the geometric mean dataset size are 27% for MRI, 30% for CT and 32% for fMRI. We predict the respective dataset sizes in the MICCAI 2020 conference (that we have not yet analyzed) and the future MICCAI 2021 conference.
Author Landau, Yuval
Kiryati, Nahum
AuthorAffiliation School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel; yuvi.landa7@gmail.com
AuthorAffiliation_xml – name: School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel; yuvi.landa7@gmail.com
Author_xml – sequence: 1
  givenname: Nahum
  orcidid: 0000-0003-1436-2275
  surname: Kiryati
  fullname: Kiryati, Nahum
– sequence: 2
  givenname: Yuval
  surname: Landau
  fullname: Landau, Yuval
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34460791$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1LXDEUxYNY1FrX7uRBN26m5vtjI4hWO2AplBa6C3l5981kePOiScbif2_G0aIDXYSEe8_5cZLcj2h3jCMgdEzwF8YMPluEpZuFcaawxkSIHXRAGWETztif3TfnfXSU8wJjTAyty-yhfca5xMqQA0SuXHEZSnOT4t8yb8LYfIcueDc000qH5mJ0w2MOufkJGVzy80_oQ--GDEcv-yH6ff311-W3ye2Pm-nlxe3Ec63KRHc9YGqUJ0q2RCqtsGqppwBadaantJW0w5ISJ40k0CsDtaUl7aGT3Bt2iKYbbhfdwt6letn0aKML9rkQ08y6VIIfwBreM9wCc555LlswhniHgWmBawTGK-t8w7pbtUvoPIwlueEd9H1nDHM7iw9Wc8wNURVw-gJI8X4FudhlyB6GwY0QV9lSIZXRgol17s9b0kVcpfqKzypR8wisq-rkbaJ_UV5_pgrERuBTzDlBb30oroS4DhgGS7BdD4HdGoLqO9vyvaL_53gCztu0EQ
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109242
crossref_primary_10_3390_jimaging9070147
crossref_primary_10_1038_s41597_025_04382_5
crossref_primary_10_1186_s43055_024_01356_2
crossref_primary_10_3389_fmed_2023_1122222
crossref_primary_10_1016_j_media_2024_103296
crossref_primary_10_1088_1361_6560_ac9cb3
crossref_primary_10_1007_s11042_024_19485_1
crossref_primary_10_1055_a_2076_6736
crossref_primary_10_1016_j_neucom_2023_03_072
crossref_primary_10_1038_s41598_023_46433_0
crossref_primary_10_3390_electronics12112347
crossref_primary_10_3390_app122110763
Cites_doi 10.1089/106652703321825928
10.1007/978-3-030-00937-3
10.1146/annurev-bioeng-071516-044442
10.1109/CVPR.2009.5206848
10.1007/978-3-030-32245-8
10.1007/978-3-642-23623-5
10.1007/s10278-017-9976-3
10.1007/978-3-319-24571-3
10.1007/978-3-319-10443-0
10.1007/978-3-319-46726-9
10.1016/j.media.2017.07.005
10.1007/978-3-030-00536-8_1
10.1109/34.31448
10.1007/978-3-319-66179-7
10.1007/978-3-319-46976-8_20
10.1007/978-3-642-33454-2
10.1109/TPAMI.1983.4767459
10.1155/2015/639021
10.1007/978-3-642-40811-3
10.1146/annurev.psych.59.103006.093735
10.1148/radiol.2272012051
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/jimaging7080155
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2313-433X
ExternalDocumentID oai_doaj_org_article_94f30be3ac3c46be991ca0e385002934
PMC8404917
34460791
10_3390_jimaging7080155
Genre Journal Article
GrantInformation_xml – fundername: Blavatnik Interdisciplinary Cyber Research Center at Tel Aviv University
  grantid: None
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
KQ8
MODMG
M~E
OK1
P62
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c487t-8dfe0297c176b1678707b2c2ee87d9f22b62d0621a6961ef79eee8862fed64c93
IEDL.DBID DOA
ISSN 2313-433X
IngestDate Wed Aug 27 01:29:34 EDT 2025
Thu Aug 21 18:29:15 EDT 2025
Fri Jul 11 05:53:19 EDT 2025
Fri Jul 25 08:05:06 EDT 2025
Mon Jul 21 05:56:22 EDT 2025
Tue Jul 01 04:19:58 EDT 2025
Thu Apr 24 23:09:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords dataset size
human subjects
MICCAI conferences
medical image analysis
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-8dfe0297c176b1678707b2c2ee87d9f22b62d0621a6961ef79eee8862fed64c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1436-2275
OpenAccessLink https://doaj.org/article/94f30be3ac3c46be991ca0e385002934
PMID 34460791
PQID 2565293508
PQPubID 2059558
ParticipantIDs doaj_primary_oai_doaj_org_article_94f30be3ac3c46be991ca0e385002934
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8404917
proquest_miscellaneous_2567985359
proquest_journals_2565293508
pubmed_primary_34460791
crossref_citationtrail_10_3390_jimaging7080155
crossref_primary_10_3390_jimaging7080155
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210820
PublicationDateYYYYMMDD 2021-08-20
PublicationDate_xml – month: 8
  year: 2021
  text: 20210820
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of imaging
PublicationTitleAlternate J Imaging
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Mukherjee (ref_10) 2003; 10
Maxwell (ref_11) 2008; 59
ref_14
Sahiner (ref_12) 2018; 46
ref_13
Shen (ref_28) 2017; 19
Adcock (ref_8) 1997; 46
Litjens (ref_6) 2017; 42
ref_19
ref_18
Boonyanunta (ref_2) 2004; Volume 3215
ref_17
ref_16
ref_15
Eng (ref_9) 2003; 227
Fukunaga (ref_7) 1989; 11
Baro (ref_5) 2015; 2015
Kohli (ref_4) 2017; 30
Tovino (ref_22) 2004; 49
ref_25
ref_24
ref_23
ref_21
ref_20
ref_3
ref_29
ref_26
Kalayeh (ref_1) 1983; 5
Hussain (ref_27) 2017; 2017
References_xml – volume: 10
  start-page: 119
  year: 2003
  ident: ref_10
  article-title: Estimating dataset size requirements for classifying DNA microarray data
  publication-title: J. Comput. Biol.
  doi: 10.1089/106652703321825928
– ident: ref_20
  doi: 10.1007/978-3-030-00937-3
– volume: 19
  start-page: 221
  year: 2017
  ident: ref_28
  article-title: Differential data augmentation techniques for medical imaging classification tasks
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 46
  start-page: 261
  year: 1997
  ident: ref_8
  article-title: Sample size determination: A review
  publication-title: J. R. Stat. Soc. Ser. D
– ident: ref_25
  doi: 10.1109/CVPR.2009.5206848
– ident: ref_3
– ident: ref_21
  doi: 10.1007/978-3-030-32245-8
– ident: ref_24
– ident: ref_13
  doi: 10.1007/978-3-642-23623-5
– volume: 30
  start-page: 392
  year: 2017
  ident: ref_4
  article-title: Medical image data and datasets in the era of machine learning—Whitepaper from the 2016 C-MIMI meeting dataset session
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-017-9976-3
– ident: ref_17
  doi: 10.1007/978-3-319-24571-3
– ident: ref_16
  doi: 10.1007/978-3-319-10443-0
– ident: ref_18
  doi: 10.1007/978-3-319-46726-9
– volume: 42
  start-page: 60
  year: 2017
  ident: ref_6
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 46
  start-page: e1
  year: 2018
  ident: ref_12
  article-title: Deep learning in medical imaging and radiation therapy
  publication-title: Med. Phys.
– volume: 2017
  start-page: 979
  year: 2017
  ident: ref_27
  article-title: Differential data augmentation techniques for medical imaging classification tasks
  publication-title: AMIA Annu. Symp. Proc.
– ident: ref_29
  doi: 10.1007/978-3-030-00536-8_1
– volume: 11
  start-page: 873
  year: 1989
  ident: ref_7
  article-title: Effects of sample size in classifier design
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.31448
– ident: ref_23
– ident: ref_19
  doi: 10.1007/978-3-319-66179-7
– ident: ref_26
  doi: 10.1007/978-3-319-46976-8_20
– volume: 49
  start-page: 447
  year: 2004
  ident: ref_22
  article-title: The use and disclosure of protected health information for research under the HIPAA privacy rule: Unrealized patient autonomy and burdensome government regulation
  publication-title: South Dak. Law Rev.
– ident: ref_14
  doi: 10.1007/978-3-642-33454-2
– volume: 5
  start-page: 664
  year: 1983
  ident: ref_1
  article-title: Predicting the required number of training samples
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1983.4767459
– volume: 2015
  start-page: 639021
  year: 2015
  ident: ref_5
  article-title: Toward a literature driven definition of big data in healthcare
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2015/639021
– ident: ref_15
  doi: 10.1007/978-3-642-40811-3
– volume: Volume 3215
  start-page: 529
  year: 2004
  ident: ref_2
  article-title: Predicting the relationship between the size of training sample and the predictive power of classifiers
  publication-title: Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Artificial Intelligence
– volume: 59
  start-page: 537
  year: 2008
  ident: ref_11
  article-title: Sample size planning for statistical power and accuracy in parameter estimation
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev.psych.59.103006.093735
– volume: 227
  start-page: 309
  year: 2003
  ident: ref_9
  article-title: Sample size estimation: How many individuals should be studied?
  publication-title: Radiology
  doi: 10.1148/radiol.2272012051
SSID ssj0001920199
Score 2.300632
Snippet Medical image analysis research requires medical image datasets. Nevertheless, due to various impediments, researchers have been described as “data starved”....
Medical image analysis research requires medical image datasets. Nevertheless, due to various impediments, researchers have been described as "data starved"....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 155
SubjectTerms dataset size
Datasets
Deep learning
Human subjects
Hypotheses
Image analysis
Machine learning
Magnetic resonance imaging
Mean
medical image analysis
Medical imaging
Medical research
MICCAI conferences
Peer review
Statistical analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5UIPVcszlFapxIFLILYTOz4haHlVAiEEErcotiewqM1SCP-fcdZZdlHhGjvRaCbz-DzjGYBNJRXWWGBSO14nGcM6MQSFkkoUlrlcap77-86nZ_L4Kvt9nV-HA7fHUFbZ28TOULuR9WfkO-Sac3JNFE_s3v9L_NQon10NIzQ-wDyZ4KIYwPz-wdn5xcspiyYHp_W4p48gfL9zN_zbjf9RFCoxf8Fvyh11Xfv_F2q-rpicckGHn-FTiB3jvbGwv8AcNovwcaqj4BKwX1VLfqmNjwhet7fxsIlDKiY-IYow7puQxH3J3TJcHR5c_jxOwlSExBK4aJPC1egnTlmmpGHSK5wy3HLEQjldc24kd6nkrJJaEu-VRloi4FKjk5nVYgUGzajBNYi5SZ2ymcJCG4IhRjviYpVXij6gkNkItnvmlDa0DPeTK_6UBB08N8tX3Ixga_LC_bhbxttb9z23J9t8m-vuwejhpgxaU-qsFqlBUVlhM2mQgllbpSiK3GcTRRbBRi-rMujeY_nyp0TwY7JMWuNTIVWDo6duj9IUqeQ6gtWxaCeUCELIqdIsAjUj9BlSZ1ea4W3XmZvQckb4d_19sr7CAveVMam3URswaB-e8BuFNq35Hv7fZ3cP-rw
  priority: 102
  providerName: ProQuest
Title Dataset Growth in Medical Image Analysis Research
URI https://www.ncbi.nlm.nih.gov/pubmed/34460791
https://www.proquest.com/docview/2565293508
https://www.proquest.com/docview/2567985359
https://pubmed.ncbi.nlm.nih.gov/PMC8404917
https://doaj.org/article/94f30be3ac3c46be991ca0e385002934
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4QwEJ74uOjB-BYfG0w8eEFpCy09-loficYYTbwRWobsGkWj-P-dArthjcaLBy5MIWWGMt-XDt8A7CmpsMAEgyLnRRAxLAJDVCjIRGJZHkvNY_e_8_WNvHiIrh7jx06rL1cT1sgDN4471FEhQoMis8JG0iDhGZuFKJLYbSiJWgmUcl6HTD01uIUO3Wj5COL1h0_Dl7rtjyKIxNyPfZ00VKv1_wQxv1dKdlJPfxEWWszoHzVzXYIpLJdhvqMkuALsNKsoH1X-OdHqauAPS7_dgvEvaUboj8RH_FGp3So89M_uTy6CthtCYIlUVEGSF-g6TVmmpGHSLTRluOWIicp1wbmRPA8lZ5nUknyuNJKJCEuBuYysFmswU76WuAE-N2GubKQw0Yboh9E5JbAszhTdQCGzHhyMnJPaVircdax4TokyOG-m37zpwf74grdGJeP3ocfO2-NhTt66PkFBT9ugp38F3YPtUazSds19pATeYjIS4vRgd2ym1eK2QLISXz_rMUoTQom1B-tNaMczEcSMQ6WZB2oi6BNTnbSUw0GtyE0sOSLeu_kfz7YFc9zVzYTuC7YNM9X7J-4Q8KlMD6aT_nkPZo_Pbm7vevUb_wVsgAQF
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEO-mFDASSFxCY8ex4wNCQNnu0seplXoLsT2hi2i2tKkQf4rfyDiP7W4F3HqNnWg0M_Z8E3u-AXiplcYKc4wrL6pYcqxiS6lQXKa54z5TRmSh3nlvX40P5eej7GgFfg-1MOFa5bAnthu1n7nwj3yTQnNGoYnwxLvTH3HoGhVOV4cWGp1b7OCvn5Synb-dbJF9Xwkx-nTwcRz3XQViR-C8iXNfYejY5LhWlqvgsNoKJxBz7U0lhFXCJ0rwUhlFsmuDNETAv0KvpAvkS7Tl35ApRfJQmT7avvynYyicGtMxCNF4svltetI2G9IEzHgoJ1wIfm2PgL8B26v3MxcC3ugu3OmRKnvfudY9WMH6Ptxe4C98AHyrbCgKNmybkvnmmE1r1h_8sAlJhGygPGHDBb-HcHgt2noEq_WsxjVgwiZeO6kxN5aSHms8hc0yKzV9QCN3EbwZlFO4nqA89Mn4XlCiErRZXNFmBK_nL5x23Bz_nvohaHs-LZBqtw9mZ1-Lfo0WRlZpYjEtXeqkskjQ2ZUJpnkWzi5TGcHGYKuiX-nnxaVfRvBiPkxrNBy8lDXOLto52hAuykwEjzvTziVJKR9PtOER6CWjL4m6PFJPj1secMrNJWXb6_8X6zncHB_s7Ra7k_2dJ3BLhDs5SdgdN2C1ObvApwSqGvus9WQGX6576fwB41k2EQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBAfEmpYCRQOISNnYSOz4gRNkuXQqrClGptzS2J3RRyZY2FeKv8esY57HdrYBbr7ETTcbz-uzxDMBzJRWWmGFYOlGGCccyNASFwiLOLHep1CL1950_TeXOfvLhID1Yg9_9XRifVtnbxMZQu7n1e-RDcs0puSaKJ4ZllxaxNxq_OfkR-g5S_qS1b6fRisgu_vpJ8O3s9WREa_1CiPH2l3c7YddhILQUqNdh5kr03ZssV9Jw6YVXGWEFYqacLoUwUrhICl5ILek_lEYaIhBQopOJ9YWYyPyvK4-KBrC-tT3d-3yxw6PJuWrd1hOKYx0Nv82-N62HFIVp3F8uXHKFTceAv4W5l7M1l9zf-Bbc7OJW9rYVtNuwhtUduLFUzfAu8FFRk0-s2XuC9vURm1WsOwZiE6IIWV8AhfXpfvdg_0r4dR8G1bzCh8CEiZyyicJMG4JARjtyokVaKPqAQm4DeNUzJ7dduXLfNeM4J9jiuZlf4mYALxcvnLSVOv49dctzezHNl9huHsxPv-adxuY6KePIYFzY2CbSIAXStogwzlJ_khknAWz2a5V3en-WX0hpAM8Ww6Sx_himqHB-3sxRmqKkVAfwoF3aBSUxofNIaR6AWln0FVJXR6rZUVMVnJB6Qth74_9kPYVrpDb5x8l09xFcFz5BJ_KmchMG9ek5PqYIqzZPOlFmcHjV2vMHV_E7ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dataset+Growth+in+Medical+Image+Analysis+Research&rft.jtitle=Journal+of+imaging&rft.au=Nahum+Kiryati&rft.au=Yuval+Landau&rft.date=2021-08-20&rft.pub=MDPI+AG&rft.eissn=2313-433X&rft.volume=7&rft.issue=8&rft.spage=155&rft_id=info:doi/10.3390%2Fjimaging7080155&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_94f30be3ac3c46be991ca0e385002934
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon