Dataset Growth in Medical Image Analysis Research
Medical image analysis research requires medical image datasets. Nevertheless, due to various impediments, researchers have been described as “data starved”. We hypothesize that implicit evolving community standards require researchers to use ever-growing datasets. In Phase I of this research, we sc...
Saved in:
Published in | Journal of imaging Vol. 7; no. 8; p. 155 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
20.08.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Medical image analysis research requires medical image datasets. Nevertheless, due to various impediments, researchers have been described as “data starved”. We hypothesize that implicit evolving community standards require researchers to use ever-growing datasets. In Phase I of this research, we scanned the MICCAI (Medical Image Computing and Computer-Assisted Intervention) conference proceedings from 2011 to 2018. We identified 907 papers involving human MRI, CT or fMRI datasets and extracted their sizes. The median dataset size had grown by 3–10 times from 2011 to 2018, depending on imaging modality. Statistical analysis revealed exponential growth of the geometric mean dataset size with an annual growth of 21% for MRI, 24% for CT and 31% for fMRI. Thereupon, we had issued a forecast for dataset sizes in MICCAI 2019 well before the conference. In Phase II of this research, we examined the MICCAI 2019 proceedings and analyzed 308 relevant papers. The MICCAI 2019 statistics compare well with the forecast. The revised annual growth rates of the geometric mean dataset size are 27% for MRI, 30% for CT and 32% for fMRI. We predict the respective dataset sizes in the MICCAI 2020 conference (that we have not yet analyzed) and the future MICCAI 2021 conference. |
---|---|
AbstractList | Medical image analysis research requires medical image datasets. Nevertheless, due to various impediments, researchers have been described as “data starved”. We hypothesize that implicit evolving community standards require researchers to use ever-growing datasets. In Phase I of this research, we scanned the MICCAI (Medical Image Computing and Computer-Assisted Intervention) conference proceedings from 2011 to 2018. We identified 907 papers involving human MRI, CT or fMRI datasets and extracted their sizes. The median dataset size had grown by 3–10 times from 2011 to 2018, depending on imaging modality. Statistical analysis revealed exponential growth of the geometric mean dataset size with an annual growth of 21% for MRI, 24% for CT and 31% for fMRI. Thereupon, we had issued a forecast for dataset sizes in MICCAI 2019 well before the conference. In Phase II of this research, we examined the MICCAI 2019 proceedings and analyzed 308 relevant papers. The MICCAI 2019 statistics compare well with the forecast. The revised annual growth rates of the geometric mean dataset size are 27% for MRI, 30% for CT and 32% for fMRI. We predict the respective dataset sizes in the MICCAI 2020 conference (that we have not yet analyzed) and the future MICCAI 2021 conference. Medical image analysis research requires medical image datasets. Nevertheless, due to various impediments, researchers have been described as "data starved". We hypothesize that implicit evolving community standards require researchers to use ever-growing datasets. In Phase I of this research, we scanned the MICCAI (Medical Image Computing and Computer-Assisted Intervention) conference proceedings from 2011 to 2018. We identified 907 papers involving human MRI, CT or fMRI datasets and extracted their sizes. The median dataset size had grown by 3-10 times from 2011 to 2018, depending on imaging modality. Statistical analysis revealed exponential growth of the geometric mean dataset size with an annual growth of 21% for MRI, 24% for CT and 31% for fMRI. Thereupon, we had issued a forecast for dataset sizes in MICCAI 2019 well before the conference. In Phase II of this research, we examined the MICCAI 2019 proceedings and analyzed 308 relevant papers. The MICCAI 2019 statistics compare well with the forecast. The revised annual growth rates of the geometric mean dataset size are 27% for MRI, 30% for CT and 32% for fMRI. We predict the respective dataset sizes in the MICCAI 2020 conference (that we have not yet analyzed) and the future MICCAI 2021 conference.Medical image analysis research requires medical image datasets. Nevertheless, due to various impediments, researchers have been described as "data starved". We hypothesize that implicit evolving community standards require researchers to use ever-growing datasets. In Phase I of this research, we scanned the MICCAI (Medical Image Computing and Computer-Assisted Intervention) conference proceedings from 2011 to 2018. We identified 907 papers involving human MRI, CT or fMRI datasets and extracted their sizes. The median dataset size had grown by 3-10 times from 2011 to 2018, depending on imaging modality. Statistical analysis revealed exponential growth of the geometric mean dataset size with an annual growth of 21% for MRI, 24% for CT and 31% for fMRI. Thereupon, we had issued a forecast for dataset sizes in MICCAI 2019 well before the conference. In Phase II of this research, we examined the MICCAI 2019 proceedings and analyzed 308 relevant papers. The MICCAI 2019 statistics compare well with the forecast. The revised annual growth rates of the geometric mean dataset size are 27% for MRI, 30% for CT and 32% for fMRI. We predict the respective dataset sizes in the MICCAI 2020 conference (that we have not yet analyzed) and the future MICCAI 2021 conference. |
Author | Landau, Yuval Kiryati, Nahum |
AuthorAffiliation | School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel; yuvi.landa7@gmail.com |
AuthorAffiliation_xml | – name: School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel; yuvi.landa7@gmail.com |
Author_xml | – sequence: 1 givenname: Nahum orcidid: 0000-0003-1436-2275 surname: Kiryati fullname: Kiryati, Nahum – sequence: 2 givenname: Yuval surname: Landau fullname: Landau, Yuval |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34460791$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1LXDEUxYNY1FrX7uRBN26m5vtjI4hWO2AplBa6C3l5981kePOiScbif2_G0aIDXYSEe8_5cZLcj2h3jCMgdEzwF8YMPluEpZuFcaawxkSIHXRAGWETztif3TfnfXSU8wJjTAyty-yhfca5xMqQA0SuXHEZSnOT4t8yb8LYfIcueDc000qH5mJ0w2MOufkJGVzy80_oQ--GDEcv-yH6ff311-W3ye2Pm-nlxe3Ec63KRHc9YGqUJ0q2RCqtsGqppwBadaantJW0w5ISJ40k0CsDtaUl7aGT3Bt2iKYbbhfdwt6letn0aKML9rkQ08y6VIIfwBreM9wCc555LlswhniHgWmBawTGK-t8w7pbtUvoPIwlueEd9H1nDHM7iw9Wc8wNURVw-gJI8X4FudhlyB6GwY0QV9lSIZXRgol17s9b0kVcpfqKzypR8wisq-rkbaJ_UV5_pgrERuBTzDlBb30oroS4DhgGS7BdD4HdGoLqO9vyvaL_53gCztu0EQ |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_109242 crossref_primary_10_3390_jimaging9070147 crossref_primary_10_1038_s41597_025_04382_5 crossref_primary_10_1186_s43055_024_01356_2 crossref_primary_10_3389_fmed_2023_1122222 crossref_primary_10_1016_j_media_2024_103296 crossref_primary_10_1088_1361_6560_ac9cb3 crossref_primary_10_1007_s11042_024_19485_1 crossref_primary_10_1055_a_2076_6736 crossref_primary_10_1016_j_neucom_2023_03_072 crossref_primary_10_1038_s41598_023_46433_0 crossref_primary_10_3390_electronics12112347 crossref_primary_10_3390_app122110763 |
Cites_doi | 10.1089/106652703321825928 10.1007/978-3-030-00937-3 10.1146/annurev-bioeng-071516-044442 10.1109/CVPR.2009.5206848 10.1007/978-3-030-32245-8 10.1007/978-3-642-23623-5 10.1007/s10278-017-9976-3 10.1007/978-3-319-24571-3 10.1007/978-3-319-10443-0 10.1007/978-3-319-46726-9 10.1016/j.media.2017.07.005 10.1007/978-3-030-00536-8_1 10.1109/34.31448 10.1007/978-3-319-66179-7 10.1007/978-3-319-46976-8_20 10.1007/978-3-642-33454-2 10.1109/TPAMI.1983.4767459 10.1155/2015/639021 10.1007/978-3-642-40811-3 10.1146/annurev.psych.59.103006.093735 10.1148/radiol.2272012051 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/jimaging7080155 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2313-433X |
ExternalDocumentID | oai_doaj_org_article_94f30be3ac3c46be991ca0e385002934 PMC8404917 34460791 10_3390_jimaging7080155 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Blavatnik Interdisciplinary Cyber Research Center at Tel Aviv University grantid: None |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ KQ8 MODMG M~E OK1 P62 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c487t-8dfe0297c176b1678707b2c2ee87d9f22b62d0621a6961ef79eee8862fed64c93 |
IEDL.DBID | DOA |
ISSN | 2313-433X |
IngestDate | Wed Aug 27 01:29:34 EDT 2025 Thu Aug 21 18:29:15 EDT 2025 Fri Jul 11 05:53:19 EDT 2025 Fri Jul 25 08:05:06 EDT 2025 Mon Jul 21 05:56:22 EDT 2025 Tue Jul 01 04:19:58 EDT 2025 Thu Apr 24 23:09:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | dataset size human subjects MICCAI conferences medical image analysis |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c487t-8dfe0297c176b1678707b2c2ee87d9f22b62d0621a6961ef79eee8862fed64c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1436-2275 |
OpenAccessLink | https://doaj.org/article/94f30be3ac3c46be991ca0e385002934 |
PMID | 34460791 |
PQID | 2565293508 |
PQPubID | 2059558 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_94f30be3ac3c46be991ca0e385002934 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8404917 proquest_miscellaneous_2567985359 proquest_journals_2565293508 pubmed_primary_34460791 crossref_citationtrail_10_3390_jimaging7080155 crossref_primary_10_3390_jimaging7080155 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210820 |
PublicationDateYYYYMMDD | 2021-08-20 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210820 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of imaging |
PublicationTitleAlternate | J Imaging |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Mukherjee (ref_10) 2003; 10 Maxwell (ref_11) 2008; 59 ref_14 Sahiner (ref_12) 2018; 46 ref_13 Shen (ref_28) 2017; 19 Adcock (ref_8) 1997; 46 Litjens (ref_6) 2017; 42 ref_19 ref_18 Boonyanunta (ref_2) 2004; Volume 3215 ref_17 ref_16 ref_15 Eng (ref_9) 2003; 227 Fukunaga (ref_7) 1989; 11 Baro (ref_5) 2015; 2015 Kohli (ref_4) 2017; 30 Tovino (ref_22) 2004; 49 ref_25 ref_24 ref_23 ref_21 ref_20 ref_3 ref_29 ref_26 Kalayeh (ref_1) 1983; 5 Hussain (ref_27) 2017; 2017 |
References_xml | – volume: 10 start-page: 119 year: 2003 ident: ref_10 article-title: Estimating dataset size requirements for classifying DNA microarray data publication-title: J. Comput. Biol. doi: 10.1089/106652703321825928 – ident: ref_20 doi: 10.1007/978-3-030-00937-3 – volume: 19 start-page: 221 year: 2017 ident: ref_28 article-title: Differential data augmentation techniques for medical imaging classification tasks publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071516-044442 – volume: 46 start-page: 261 year: 1997 ident: ref_8 article-title: Sample size determination: A review publication-title: J. R. Stat. Soc. Ser. D – ident: ref_25 doi: 10.1109/CVPR.2009.5206848 – ident: ref_3 – ident: ref_21 doi: 10.1007/978-3-030-32245-8 – ident: ref_24 – ident: ref_13 doi: 10.1007/978-3-642-23623-5 – volume: 30 start-page: 392 year: 2017 ident: ref_4 article-title: Medical image data and datasets in the era of machine learning—Whitepaper from the 2016 C-MIMI meeting dataset session publication-title: J. Digit. Imaging doi: 10.1007/s10278-017-9976-3 – ident: ref_17 doi: 10.1007/978-3-319-24571-3 – ident: ref_16 doi: 10.1007/978-3-319-10443-0 – ident: ref_18 doi: 10.1007/978-3-319-46726-9 – volume: 42 start-page: 60 year: 2017 ident: ref_6 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – volume: 46 start-page: e1 year: 2018 ident: ref_12 article-title: Deep learning in medical imaging and radiation therapy publication-title: Med. Phys. – volume: 2017 start-page: 979 year: 2017 ident: ref_27 article-title: Differential data augmentation techniques for medical imaging classification tasks publication-title: AMIA Annu. Symp. Proc. – ident: ref_29 doi: 10.1007/978-3-030-00536-8_1 – volume: 11 start-page: 873 year: 1989 ident: ref_7 article-title: Effects of sample size in classifier design publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.31448 – ident: ref_23 – ident: ref_19 doi: 10.1007/978-3-319-66179-7 – ident: ref_26 doi: 10.1007/978-3-319-46976-8_20 – volume: 49 start-page: 447 year: 2004 ident: ref_22 article-title: The use and disclosure of protected health information for research under the HIPAA privacy rule: Unrealized patient autonomy and burdensome government regulation publication-title: South Dak. Law Rev. – ident: ref_14 doi: 10.1007/978-3-642-33454-2 – volume: 5 start-page: 664 year: 1983 ident: ref_1 article-title: Predicting the required number of training samples publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1983.4767459 – volume: 2015 start-page: 639021 year: 2015 ident: ref_5 article-title: Toward a literature driven definition of big data in healthcare publication-title: Biomed. Res. Int. doi: 10.1155/2015/639021 – ident: ref_15 doi: 10.1007/978-3-642-40811-3 – volume: Volume 3215 start-page: 529 year: 2004 ident: ref_2 article-title: Predicting the relationship between the size of training sample and the predictive power of classifiers publication-title: Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Artificial Intelligence – volume: 59 start-page: 537 year: 2008 ident: ref_11 article-title: Sample size planning for statistical power and accuracy in parameter estimation publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev.psych.59.103006.093735 – volume: 227 start-page: 309 year: 2003 ident: ref_9 article-title: Sample size estimation: How many individuals should be studied? publication-title: Radiology doi: 10.1148/radiol.2272012051 |
SSID | ssj0001920199 |
Score | 2.300632 |
Snippet | Medical image analysis research requires medical image datasets. Nevertheless, due to various impediments, researchers have been described as “data starved”.... Medical image analysis research requires medical image datasets. Nevertheless, due to various impediments, researchers have been described as "data starved".... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 155 |
SubjectTerms | dataset size Datasets Deep learning Human subjects Hypotheses Image analysis Machine learning Magnetic resonance imaging Mean medical image analysis Medical imaging Medical research MICCAI conferences Peer review Statistical analysis |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5UIPVcszlFapxIFLILYTOz4haHlVAiEEErcotiewqM1SCP-fcdZZdlHhGjvRaCbz-DzjGYBNJRXWWGBSO14nGcM6MQSFkkoUlrlcap77-86nZ_L4Kvt9nV-HA7fHUFbZ28TOULuR9WfkO-Sac3JNFE_s3v9L_NQon10NIzQ-wDyZ4KIYwPz-wdn5xcspiyYHp_W4p48gfL9zN_zbjf9RFCoxf8Fvyh11Xfv_F2q-rpicckGHn-FTiB3jvbGwv8AcNovwcaqj4BKwX1VLfqmNjwhet7fxsIlDKiY-IYow7puQxH3J3TJcHR5c_jxOwlSExBK4aJPC1egnTlmmpGHSK5wy3HLEQjldc24kd6nkrJJaEu-VRloi4FKjk5nVYgUGzajBNYi5SZ2ymcJCG4IhRjviYpVXij6gkNkItnvmlDa0DPeTK_6UBB08N8tX3Ixga_LC_bhbxttb9z23J9t8m-vuwejhpgxaU-qsFqlBUVlhM2mQgllbpSiK3GcTRRbBRi-rMujeY_nyp0TwY7JMWuNTIVWDo6duj9IUqeQ6gtWxaCeUCELIqdIsAjUj9BlSZ1ea4W3XmZvQckb4d_19sr7CAveVMam3URswaB-e8BuFNq35Hv7fZ3cP-rw priority: 102 providerName: ProQuest |
Title | Dataset Growth in Medical Image Analysis Research |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34460791 https://www.proquest.com/docview/2565293508 https://www.proquest.com/docview/2567985359 https://pubmed.ncbi.nlm.nih.gov/PMC8404917 https://doaj.org/article/94f30be3ac3c46be991ca0e385002934 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4QwEJ74uOjB-BYfG0w8eEFpCy09-loficYYTbwRWobsGkWj-P-dArthjcaLBy5MIWWGMt-XDt8A7CmpsMAEgyLnRRAxLAJDVCjIRGJZHkvNY_e_8_WNvHiIrh7jx06rL1cT1sgDN4471FEhQoMis8JG0iDhGZuFKJLYbSiJWgmUcl6HTD01uIUO3Wj5COL1h0_Dl7rtjyKIxNyPfZ00VKv1_wQxv1dKdlJPfxEWWszoHzVzXYIpLJdhvqMkuALsNKsoH1X-OdHqauAPS7_dgvEvaUboj8RH_FGp3So89M_uTy6CthtCYIlUVEGSF-g6TVmmpGHSLTRluOWIicp1wbmRPA8lZ5nUknyuNJKJCEuBuYysFmswU76WuAE-N2GubKQw0Yboh9E5JbAszhTdQCGzHhyMnJPaVircdax4TokyOG-m37zpwf74grdGJeP3ocfO2-NhTt66PkFBT9ugp38F3YPtUazSds19pATeYjIS4vRgd2ym1eK2QLISXz_rMUoTQom1B-tNaMczEcSMQ6WZB2oi6BNTnbSUw0GtyE0sOSLeu_kfz7YFc9zVzYTuC7YNM9X7J-4Q8KlMD6aT_nkPZo_Pbm7vevUb_wVsgAQF |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEO-mFDASSFxCY8ex4wNCQNnu0seplXoLsT2hi2i2tKkQf4rfyDiP7W4F3HqNnWg0M_Z8E3u-AXiplcYKc4wrL6pYcqxiS6lQXKa54z5TRmSh3nlvX40P5eej7GgFfg-1MOFa5bAnthu1n7nwj3yTQnNGoYnwxLvTH3HoGhVOV4cWGp1b7OCvn5Synb-dbJF9Xwkx-nTwcRz3XQViR-C8iXNfYejY5LhWlqvgsNoKJxBz7U0lhFXCJ0rwUhlFsmuDNETAv0KvpAvkS7Tl35ApRfJQmT7avvynYyicGtMxCNF4svltetI2G9IEzHgoJ1wIfm2PgL8B26v3MxcC3ugu3OmRKnvfudY9WMH6Ptxe4C98AHyrbCgKNmybkvnmmE1r1h_8sAlJhGygPGHDBb-HcHgt2noEq_WsxjVgwiZeO6kxN5aSHms8hc0yKzV9QCN3EbwZlFO4nqA89Mn4XlCiErRZXNFmBK_nL5x23Bz_nvohaHs-LZBqtw9mZ1-Lfo0WRlZpYjEtXeqkskjQ2ZUJpnkWzi5TGcHGYKuiX-nnxaVfRvBiPkxrNBy8lDXOLto52hAuykwEjzvTziVJKR9PtOER6CWjL4m6PFJPj1secMrNJWXb6_8X6zncHB_s7Ra7k_2dJ3BLhDs5SdgdN2C1ObvApwSqGvus9WQGX6576fwB41k2EQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBAfEmpYCRQOISNnYSOz4gRNkuXQqrClGptzS2J3RRyZY2FeKv8esY57HdrYBbr7ETTcbz-uzxDMBzJRWWmGFYOlGGCccyNASFwiLOLHep1CL1950_TeXOfvLhID1Yg9_9XRifVtnbxMZQu7n1e-RDcs0puSaKJ4ZllxaxNxq_OfkR-g5S_qS1b6fRisgu_vpJ8O3s9WREa_1CiPH2l3c7YddhILQUqNdh5kr03ZssV9Jw6YVXGWEFYqacLoUwUrhICl5ILek_lEYaIhBQopOJ9YWYyPyvK4-KBrC-tT3d-3yxw6PJuWrd1hOKYx0Nv82-N62HFIVp3F8uXHKFTceAv4W5l7M1l9zf-Bbc7OJW9rYVtNuwhtUduLFUzfAu8FFRk0-s2XuC9vURm1WsOwZiE6IIWV8AhfXpfvdg_0r4dR8G1bzCh8CEiZyyicJMG4JARjtyokVaKPqAQm4DeNUzJ7dduXLfNeM4J9jiuZlf4mYALxcvnLSVOv49dctzezHNl9huHsxPv-adxuY6KePIYFzY2CbSIAXStogwzlJ_khknAWz2a5V3en-WX0hpAM8Ww6Sx_himqHB-3sxRmqKkVAfwoF3aBSUxofNIaR6AWln0FVJXR6rZUVMVnJB6Qth74_9kPYVrpDb5x8l09xFcFz5BJ_KmchMG9ek5PqYIqzZPOlFmcHjV2vMHV_E7ow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dataset+Growth+in+Medical+Image+Analysis+Research&rft.jtitle=Journal+of+imaging&rft.au=Nahum+Kiryati&rft.au=Yuval+Landau&rft.date=2021-08-20&rft.pub=MDPI+AG&rft.eissn=2313-433X&rft.volume=7&rft.issue=8&rft.spage=155&rft_id=info:doi/10.3390%2Fjimaging7080155&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_94f30be3ac3c46be991ca0e385002934 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon |