Degenerative adversarial neuroimage nets for brain scan simulations: Application in ageing and dementia

•We implemented a new deep learning framework capable of synthesising realistic and accurate 4D brain MRI in ageing and Alzheimer’s disease.•We proposed a sequence of memory-efficient techniques designed to improve model stability, reduce artefacts, and improve individualization.•Synthesised T1w MRI...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 75; p. 102257
Main Authors Ravi, Daniele, Blumberg, Stefano B., Ingala, Silvia, Barkhof, Frederik, Alexander, Daniel C., Oxtoby, Neil P.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2022
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We implemented a new deep learning framework capable of synthesising realistic and accurate 4D brain MRI in ageing and Alzheimer’s disease.•We proposed a sequence of memory-efficient techniques designed to improve model stability, reduce artefacts, and improve individualization.•Synthesised T1w MRI scans contain only minor structural differences with real data, and have minimal noise/texture artefacts.•Synthesised MRI scans were diagnostically indistinguishable from real scans.•Synthetic MRI can be used for: i) data augmentation, ii) model validation and iii) understanding biological/disease mechanisms in the brain. [Display omitted] Accurate and realistic simulation of high-dimensional medical images has become an important research area relevant to many AI-enabled healthcare applications. However, current state-of-the-art approaches lack the ability to produce satisfactory high-resolution and accurate subject-specific images. In this work, we present a deep learning framework, namely 4D-Degenerative Adversarial NeuroImage Net (4D-DANI-Net), to generate high-resolution, longitudinal MRI scans that mimic subject-specific neurodegeneration in ageing and dementia. 4D-DANI-Net is a modular framework based on adversarial training and a set of novel spatiotemporal, biologically-informed constraints. To ensure efficient training and overcome memory limitations affecting such high-dimensional problems, we rely on three key technological advances: i) a new 3D training consistency mechanism called Profile Weight Functions (PWFs), ii) a 3D super-resolution module and iii) a transfer learning strategy to fine-tune the system for a given individual. To evaluate our approach, we trained the framework on 9852 T1-weighted MRI scans from 876 participants in the Alzheimer’s Disease Neuroimaging Initiative dataset and held out a separate test set of 1283 MRI scans from 170 participants for quantitative and qualitative assessment of the personalised time series of synthetic images. We performed three evaluations: i) image quality assessment; ii) quantifying the accuracy of regional brain volumes over and above benchmark models; and iii) quantifying visual perception of the synthetic images by medical experts. Overall, both quantitative and qualitative results show that 4D-DANI-Net produces realistic, low-artefact, personalised time series of synthetic T1 MRI that outperforms benchmark models.
AbstractList Accurate and realistic simulation of high-dimensional medical images has become an important research area relevant to many AI-enabled healthcare applications. However, current state-of-the-art approaches lack the ability to produce satisfactory high-resolution and accurate subject-specific images. In this work, we present a deep learning framework, namely 4D-Degenerative Adversarial NeuroImage Net (4D-DANI-Net), to generate high-resolution, longitudinal MRI scans that mimic subject-specific neurodegeneration in ageing and dementia. 4D-DANI-Net is a modular framework based on adversarial training and a set of novel spatiotemporal, biologically-informed constraints. To ensure efficient training and overcome memory limitations affecting such high-dimensional problems, we rely on three key technological advances: i) a new 3D training consistency mechanism called Profile Weight Functions (PWFs), ii) a 3D super-resolution module and iii) a transfer learning strategy to fine-tune the system for a given individual. To evaluate our approach, we trained the framework on 9852 T1-weighted MRI scans from 876 participants in the Alzheimer's Disease Neuroimaging Initiative dataset and held out a separate test set of 1283 MRI scans from 170 participants for quantitative and qualitative assessment of the personalised time series of synthetic images. We performed three evaluations: i) image quality assessment; ii) quantifying the accuracy of regional brain volumes over and above benchmark models; and iii) quantifying visual perception of the synthetic images by medical experts. Overall, both quantitative and qualitative results show that 4D-DANI-Net produces realistic, low-artefact, personalised time series of synthetic T1 MRI that outperforms benchmark models.Accurate and realistic simulation of high-dimensional medical images has become an important research area relevant to many AI-enabled healthcare applications. However, current state-of-the-art approaches lack the ability to produce satisfactory high-resolution and accurate subject-specific images. In this work, we present a deep learning framework, namely 4D-Degenerative Adversarial NeuroImage Net (4D-DANI-Net), to generate high-resolution, longitudinal MRI scans that mimic subject-specific neurodegeneration in ageing and dementia. 4D-DANI-Net is a modular framework based on adversarial training and a set of novel spatiotemporal, biologically-informed constraints. To ensure efficient training and overcome memory limitations affecting such high-dimensional problems, we rely on three key technological advances: i) a new 3D training consistency mechanism called Profile Weight Functions (PWFs), ii) a 3D super-resolution module and iii) a transfer learning strategy to fine-tune the system for a given individual. To evaluate our approach, we trained the framework on 9852 T1-weighted MRI scans from 876 participants in the Alzheimer's Disease Neuroimaging Initiative dataset and held out a separate test set of 1283 MRI scans from 170 participants for quantitative and qualitative assessment of the personalised time series of synthetic images. We performed three evaluations: i) image quality assessment; ii) quantifying the accuracy of regional brain volumes over and above benchmark models; and iii) quantifying visual perception of the synthetic images by medical experts. Overall, both quantitative and qualitative results show that 4D-DANI-Net produces realistic, low-artefact, personalised time series of synthetic T1 MRI that outperforms benchmark models.
Accurate and realistic simulation of high-dimensional medical images has become an important research area relevant to many AI-enabled healthcare applications. However, current state-of-the-art approaches lack the ability to produce satisfactory high-resolution and accurate subject-specific images. In this work, we present a deep learning framework, namely 4D-Degenerative Adversarial NeuroImage Net (4D-DANI-Net), to generate high-resolution, longitudinal MRI scans that mimic subject-specific neurodegeneration in ageing and dementia. 4D-DANI-Net is a modular framework based on adversarial training and a set of novel spatiotemporal, biologically-informed constraints. To ensure efficient training and overcome memory limitations affecting such high-dimensional problems, we rely on three key technological advances: i) a new 3D training consistency mechanism called Profile Weight Functions (PWFs), ii) a 3D super-resolution module and iii) a transfer learning strategy to fine-tune the system for a given individual. To evaluate our approach, we trained the framework on 9852 T1-weighted MRI scans from 876 participants in the Alzheimer's Disease Neuroimaging Initiative dataset and held out a separate test set of 1283 MRI scans from 170 participants for quantitative and qualitative assessment of the personalised time series of synthetic images. We performed three evaluations: i) image quality assessment; ii) quantifying the accuracy of regional brain volumes over and above benchmark models; and iii) quantifying visual perception of the synthetic images by medical experts. Overall, both quantitative and qualitative results show that 4D-DANI-Net produces realistic, low-artefact, personalised time series of synthetic T1 MRI that outperforms benchmark models.
•We implemented a new deep learning framework capable of synthesising realistic and accurate 4D brain MRI in ageing and Alzheimer’s disease.•We proposed a sequence of memory-efficient techniques designed to improve model stability, reduce artefacts, and improve individualization.•Synthesised T1w MRI scans contain only minor structural differences with real data, and have minimal noise/texture artefacts.•Synthesised MRI scans were diagnostically indistinguishable from real scans.•Synthetic MRI can be used for: i) data augmentation, ii) model validation and iii) understanding biological/disease mechanisms in the brain. [Display omitted] Accurate and realistic simulation of high-dimensional medical images has become an important research area relevant to many AI-enabled healthcare applications. However, current state-of-the-art approaches lack the ability to produce satisfactory high-resolution and accurate subject-specific images. In this work, we present a deep learning framework, namely 4D-Degenerative Adversarial NeuroImage Net (4D-DANI-Net), to generate high-resolution, longitudinal MRI scans that mimic subject-specific neurodegeneration in ageing and dementia. 4D-DANI-Net is a modular framework based on adversarial training and a set of novel spatiotemporal, biologically-informed constraints. To ensure efficient training and overcome memory limitations affecting such high-dimensional problems, we rely on three key technological advances: i) a new 3D training consistency mechanism called Profile Weight Functions (PWFs), ii) a 3D super-resolution module and iii) a transfer learning strategy to fine-tune the system for a given individual. To evaluate our approach, we trained the framework on 9852 T1-weighted MRI scans from 876 participants in the Alzheimer’s Disease Neuroimaging Initiative dataset and held out a separate test set of 1283 MRI scans from 170 participants for quantitative and qualitative assessment of the personalised time series of synthetic images. We performed three evaluations: i) image quality assessment; ii) quantifying the accuracy of regional brain volumes over and above benchmark models; and iii) quantifying visual perception of the synthetic images by medical experts. Overall, both quantitative and qualitative results show that 4D-DANI-Net produces realistic, low-artefact, personalised time series of synthetic T1 MRI that outperforms benchmark models.
• We implemented a new deep learning framework capable of synthesising realistic and accurate 4D brain MRI in ageing and Alzheimer’s disease. • We proposed a sequence of memory-efficient techniques designed to improve model stability, reduce artefacts, and improve individualization. • Synthesised T1w MRI scans contain only minor structural differences with real data, and have minimal noise/texture artefacts. • Synthesised MRI scans were diagnostically indistinguishable from real scans. • Synthetic MRI can be used for: i) data augmentation, ii) model validation and iii) understanding biological/disease mechanisms in the brain. Accurate and realistic simulation of high-dimensional medical images has become an important research area relevant to many AI-enabled healthcare applications. However, current state-of-the-art approaches lack the ability to produce satisfactory high-resolution and accurate subject-specific images. In this work, we present a deep learning framework, namely 4D-Degenerative Adversarial NeuroImage Net (4D-DANI-Net), to generate high-resolution, longitudinal MRI scans that mimic subject-specific neurodegeneration in ageing and dementia. 4D-DANI-Net is a modular framework based on adversarial training and a set of novel spatiotemporal, biologically-informed constraints. To ensure efficient training and overcome memory limitations affecting such high-dimensional problems, we rely on three key technological advances: i) a new 3D training consistency mechanism called Profile Weight Functions (PWFs), ii) a 3D super-resolution module and iii) a transfer learning strategy to fine-tune the system for a given individual. To evaluate our approach, we trained the framework on 9852 T1-weighted MRI scans from 876 participants in the Alzheimer’s Disease Neuroimaging Initiative dataset and held out a separate test set of 1283 MRI scans from 170 participants for quantitative and qualitative assessment of the personalised time series of synthetic images. We performed three evaluations: i) image quality assessment; ii) quantifying the accuracy of regional brain volumes over and above benchmark models; and iii) quantifying visual perception of the synthetic images by medical experts. Overall, both quantitative and qualitative results show that 4D-DANI-Net produces realistic, low-artefact, personalised time series of synthetic T1 MRI that outperforms benchmark models.
ArticleNumber 102257
Author Alexander, Daniel C.
Oxtoby, Neil P.
Barkhof, Frederik
Blumberg, Stefano B.
Ingala, Silvia
Ravi, Daniele
Author_xml – sequence: 1
  givenname: Daniele
  surname: Ravi
  fullname: Ravi, Daniele
  email: d.ravi@ucl.ac.uk
  organization: Centre for Medical Image Computing (CMIC), Department of Computer Science, University College London, UK
– sequence: 2
  givenname: Stefano B.
  surname: Blumberg
  fullname: Blumberg, Stefano B.
  organization: Centre for Medical Image Computing (CMIC), Department of Computer Science, University College London, UK
– sequence: 3
  givenname: Silvia
  surname: Ingala
  fullname: Ingala, Silvia
  organization: Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
– sequence: 4
  givenname: Frederik
  surname: Barkhof
  fullname: Barkhof, Frederik
  organization: Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
– sequence: 5
  givenname: Daniel C.
  surname: Alexander
  fullname: Alexander, Daniel C.
  organization: Centre for Medical Image Computing (CMIC), Department of Computer Science, University College London, UK
– sequence: 6
  givenname: Neil P.
  surname: Oxtoby
  fullname: Oxtoby, Neil P.
  organization: Centre for Medical Image Computing (CMIC), Department of Computer Science, University College London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34731771$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1r3DAQFSWlSbb9BYVi6KWX3Y4ky7ILLYQk_YBAL-1ZyPLY1WJLW8le6L_vZDcJbQ4BIY1G7z3NzDtnJyEGZOw1hw0HXr3fbibsvN0IEJwyQij9jJ1xWfF1XQp58hBzdcrOc94CgC5LeMFOZakl15qfseEKBwyY7Oz3WNhujynb5O1YBFxS9JMdkMI5F31MRZusD0V2ljY_LSOxYsgfiovdbvTucCsIQBwfhsKGruhwwjB7-5I97-2Y8dXduWI_P1__uPy6vvn-5dvlxc3albWe13Wlu6YG3mtVia6vnRIdNNDqEtoSKoC-7YSVUFYodNkqqVvdKrCgKkpKlCv26ai7W1oaj6PPkx3NLlEn6Y-J1pv_X4L_ZYa4N3UDuq4UCby7E0jx94J5NpPPDsfRBoxLNkI1kpZQNUHfPoJu45ICtWcElaOErmjOK_bm34oeSrn3gADNEeBSzDlhb5yfD7OkAv1oOJhbv83WHPw2t36bo9_ElY-49_JPsz4eWUhO7D0mk53H4AiY0M2mi_5J_l-o9MUF
CitedBy_id crossref_primary_10_1002_hbm_26165
crossref_primary_10_18632_aging_206190
crossref_primary_10_1016_j_patcog_2022_109061
crossref_primary_10_1016_j_neuroimage_2023_119898
crossref_primary_10_1016_j_bspc_2025_107514
crossref_primary_10_3389_fnagi_2024_1410844
crossref_primary_10_1016_j_cmpb_2023_107685
crossref_primary_10_1016_j_media_2023_102807
crossref_primary_10_1109_JBHI_2024_3482001
crossref_primary_10_1016_j_cmpb_2024_108115
crossref_primary_10_1038_s41598_023_40364_6
crossref_primary_10_1109_ACCESS_2024_3454709
crossref_primary_10_1016_j_media_2024_103325
crossref_primary_10_1007_s00424_024_03016_w
crossref_primary_10_3389_fcvm_2022_983091
Cites_doi 10.1093/brain/awu176
10.1109/JBHI.2016.2636665
10.1109/TMI.2006.880588
10.1212/WNL.0b013e3181e7ca82
10.3389/fmolb.2019.00158
10.1002/cnm.3250
10.1097/WCO.0000000000000460
10.1016/j.ophtha.2020.06.036
10.1007/s11263-010-0367-1
10.1016/j.media.2010.02.002
10.1016/j.neurobiolaging.2014.07.046
10.1016/j.neuroimage.2008.02.015
10.1109/TMI.2012.2220375
10.1109/TMI.2016.2587628
10.1016/j.neuroimage.2017.08.059
10.1016/j.neuroimage.2004.07.051
10.3389/fnins.2017.00132
10.1016/j.neuroimage.2012.07.059
10.1006/nimg.2002.1132
10.1016/j.neuroimage.2012.01.062
10.1109/TMI.2006.873221
10.1038/s41467-018-05892-0
10.1016/j.neuroimage.2017.10.040
10.1038/nrneurol.2009.215
10.1016/j.media.2019.01.011
10.1016/j.jalz.2013.10.003
10.1016/j.neuroimage.2020.117284
10.1016/j.neuroimage.2014.01.009
10.1038/s42256-019-0104-6
10.1007/s11263-012-0592-x
10.1093/brain/awy050
ContentType Journal Article
Copyright 2021
Crown Copyright © 2021. Published by Elsevier B.V. All rights reserved.
Copyright Elsevier BV Jan 2022
Crown Copyright © 2021 Published by Elsevier B.V. 2021
Copyright_xml – notice: 2021
– notice: Crown Copyright © 2021. Published by Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Jan 2022
– notice: Crown Copyright © 2021 Published by Elsevier B.V. 2021
CorporateAuthor for the Alzheimer’s Disease Neuroimaging Initiative
Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: for the Alzheimer’s Disease Neuroimaging Initiative
– name: Alzheimer’s Disease Neuroimaging Initiative
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
DOI 10.1016/j.media.2021.102257
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID PMC8907865
34731771
10_1016_j_media_2021_102257
S1361841521003029
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/S03546X/1
– fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c487t-867d9801f7562df8c52d090b740b40600fbd2a3046e274b537b7b50a0563043e3
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Thu Aug 21 14:35:15 EDT 2025
Mon Jul 21 11:18:20 EDT 2025
Sat Jul 26 03:27:37 EDT 2025
Mon Jul 21 06:03:17 EDT 2025
Tue Jul 01 02:49:31 EDT 2025
Thu Apr 24 23:00:36 EDT 2025
Fri Feb 23 02:39:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Synthetic-images
Brain
4D-DANI-Net
Neuro-image
Adversarial training
Disease progression modelling
Neurodegeneration
Ageing
4D-MRI
Generative models
Dementia
Language English
License This is an open access article under the CC BY license.
Crown Copyright © 2021. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-867d9801f7562df8c52d090b740b40600fbd2a3046e274b537b7b50a0563043e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1361841521003029
PMID 34731771
PQID 2630527647
PQPubID 2045428
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8907865
proquest_miscellaneous_2593593258
proquest_journals_2630527647
pubmed_primary_34731771
crossref_citationtrail_10_1016_j_media_2021_102257
crossref_primary_10_1016_j_media_2021_102257
elsevier_sciencedirect_doi_10_1016_j_media_2021_102257
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Goyal, Wu, Ernst, Batra, Parikh, Lee (bib0015) 2019
Young, Marinescu, Oxtoby, Bocchetta, Yong, Firth, Cash, Thomas, Dick, Cardoso (bib0048) 2018; 9
Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (bib0016) 2017
Golriz Khatami, Robinson, Birkenbihl, Domingo-Fernández, Hoyt, Hofmann-Apitius (bib0013) 2020; 6
Oxtoby, Alexander (bib0030) 2017; 30
Prakosa, Sermesant, Delingette, Marchesseau, Saloux, Allain, Villain, Ayache (bib0033) 2013; 32
Davis, Fletcher, Bullitt, Joshi (bib0008) 2010; 90
Vemuri, Wiste, Weigand, Knopman, Trojanowski, Shaw, Bernstein, Aisen, Weiner, Petersen (bib0042) 2010; 75
Yoon, Jordon, Van Der Schaar (bib0047) 2018
Khanal, Ayache, Pennec (bib0023) 2017; 11
Young, Oxtoby, Daga, Cash, Fox, Ourselin, Schott, Alexander (bib0049) 2014; 137
Vaden, Gebregziabher, Eckert, Consortium (bib0040) 2020; 223
Chen, Xie, Zhou, Shi, Christodoulou, Li (bib0006) 2018
Camara, Schweiger, Scahill, Crum, Sneller, Schnabel, Ridgway, Cash, Hill, Fox (bib0003) 2006; 25
Lorenzi, Pennec, Frisoni, Ayache, Initiative (bib0026) 2015; 36
Ravi, Alexander, Oxtoby, the Alzheimers Disease Neuroimaging Initiative (bib0034) 2019
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney (bib0039) 2004; 23
Fonteijn, Modat, Clarkson, Barnes, Lehmann, Hobbs, Scahill, Tabrizi, Ourselin, Fox (bib0011) 2012; 60
Karaçali, Davatzikos (bib0022) 2006; 25
Varentsova, Zhang, Arfanakis (bib0041) 2014; 91
.
Ravì, Wong, Deligianni, Berthelot, Andreu-Perez, Lo, Yang (bib0036) 2016; 21
Modat, Simpson, Cardoso, Cash, Toussaint, Fox, Ourselin (bib0029) 2014
Dalca, A. V., Rakic, M., Guttag, J., Sabuncu, M. R., 2019. Learning conditional deformable templates with convolutional networks.
Pathan, S., Hong, Y., 2018. Predictive image regression for longitudinal studies with missing data.
Chen, Lu, Chen, Williamson, Mahmood (bib0005) 2021
Xia, T., Chartsias, A., Wang, C., Tsaftaris, S. A., 2019b. Learning to synthesise the ageing brain without longitudinal data.
Durrleman, Pennec, Trouvé, Braga, Gerig, Ayache (bib0010) 2013; 103
Ravì, Szczotka, Pereira, Vercauteren (bib0035) 2019; 53
Zhang, Shi, Wu, Wang, Yap, Shen (bib0050) 2016; 35
Jenkinson, Bannister, Brady, Smith (bib0020) 2002; 17
Singh, Hinkle, Joshi, Fletcher (bib0038) 2013
LaMontagne, Benzinger, Morris, Keefe, Hornbeck, Xiong, Grant, Hassenstab, Moulder, Vlassenko (bib0024) 2019
Weibull, Gustavsson, Mattsson, Svensson (bib0043) 2008; 41
Sharma, Noblet, Rousseau, Heitz, Rumbach, Armspach (bib0037) 2010; 14
Miller, Joldes, Bourantas, Warfield, Hyde, Kikinis, Wittek (bib0028) 2019; 35
Heusel, Ramsauer, Unterthiner, Nessler, Hochreiter (bib0017) 2017
Lorenzi, Filippone, Frisoni, Alexander, Ourselin, Initiative (bib0025) 2019; 190
Xia, Chartsias, Tsaftaris, Initiative (bib0045) 2019
Frisoni, Fox, Jack, Scheltens, Thompson (bib0012) 2010; 6
Marinescu, R. V., Oxtoby, N. P., Young, A. L., Bron, E. E., Toga, A. W., Weiner, M. W., Barkhof, F., Fox, N. C., Eshaghi, A., Toni, T., et al., 2020. The Alzheimer’s disease prediction of longitudinal evolution (TADPOLE) challenge: results after 1 year follow-up.
Woods, Chen, Teuscher (bib0044) 2019; 1
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0014) 2014
Blumberg, Tanno, Kokkinos, Alexander (bib0001) 2018
Jenkinson, Pechaud, Smith (bib0021) 2005; vol. 17
Donohue, Jacqmin-Gadda, Le Goff, Thomas, Raman, Gamst, Beckett, Jack Jr, Weiner, Dartigues (bib0009) 2014; 10
Zhang, Song, Qi (bib0051) 2017
Chang, Lee, Ha, Han, Bak, Choi, Yun, Kang, Shin, Shin (bib0004) 2021; 128
Huizinga, Poot, Vernooij, Roshchupkin, Bron, Ikram, Rueckert, Niessen, Klein, Initiative (bib0018) 2018; 169
Oxtoby, Young, Cash, Benzinger, Fagan, Morris, Bateman, Fox, Schott, Alexander (bib0031) 2018; 141
Bowles, Gunn, Hammers, Rueckert (bib0002) 2018; vol. 10574
Jedynak, Lang, Liu, Katz, Zhang, Wyman, Raunig, Jedynak, Caffo, Prince (bib0019) 2012; 63
Chang (10.1016/j.media.2021.102257_bib0004) 2021; 128
Durrleman (10.1016/j.media.2021.102257_bib0010) 2013; 103
Lorenzi (10.1016/j.media.2021.102257_bib0026) 2015; 36
Donohue (10.1016/j.media.2021.102257_bib0009) 2014; 10
Jedynak (10.1016/j.media.2021.102257_bib0019) 2012; 63
Bowles (10.1016/j.media.2021.102257_bib0002) 2018; vol. 10574
Prakosa (10.1016/j.media.2021.102257_bib0033) 2013; 32
Young (10.1016/j.media.2021.102257_bib0048) 2018; 9
Modat (10.1016/j.media.2021.102257_bib0029) 2014
10.1016/j.media.2021.102257_bib0007
Vaden (10.1016/j.media.2021.102257_bib0040) 2020; 223
Oxtoby (10.1016/j.media.2021.102257_bib0031) 2018; 141
Ravi (10.1016/j.media.2021.102257_bib0034) 2019
Ravì (10.1016/j.media.2021.102257_bib0035) 2019; 53
10.1016/j.media.2021.102257_bib0046
Fonteijn (10.1016/j.media.2021.102257_bib0011) 2012; 60
Karaçali (10.1016/j.media.2021.102257_bib0022) 2006; 25
Oxtoby (10.1016/j.media.2021.102257_bib0030) 2017; 30
Chen (10.1016/j.media.2021.102257_bib0006) 2018
Chen (10.1016/j.media.2021.102257_bib0005) 2021
Goodfellow (10.1016/j.media.2021.102257_bib0014) 2014
Frisoni (10.1016/j.media.2021.102257_bib0012) 2010; 6
10.1016/j.media.2021.102257_bib0032
Smith (10.1016/j.media.2021.102257_bib0039) 2004; 23
Jenkinson (10.1016/j.media.2021.102257_bib0021) 2005; vol. 17
Varentsova (10.1016/j.media.2021.102257_bib0041) 2014; 91
Weibull (10.1016/j.media.2021.102257_bib0043) 2008; 41
Woods (10.1016/j.media.2021.102257_bib0044) 2019; 1
Young (10.1016/j.media.2021.102257_bib0049) 2014; 137
10.1016/j.media.2021.102257_bib0027
Blumberg (10.1016/j.media.2021.102257_bib0001) 2018
Singh (10.1016/j.media.2021.102257_bib0038) 2013
Lorenzi (10.1016/j.media.2021.102257_bib0025) 2019; 190
Khanal (10.1016/j.media.2021.102257_bib0023) 2017; 11
Zhang (10.1016/j.media.2021.102257_bib0050) 2016; 35
Huizinga (10.1016/j.media.2021.102257_bib0018) 2018; 169
Miller (10.1016/j.media.2021.102257_bib0028) 2019; 35
Davis (10.1016/j.media.2021.102257_bib0008) 2010; 90
Xia (10.1016/j.media.2021.102257_bib0045) 2019
Sharma (10.1016/j.media.2021.102257_bib0037) 2010; 14
Golriz Khatami (10.1016/j.media.2021.102257_bib0013) 2020; 6
Vemuri (10.1016/j.media.2021.102257_bib0042) 2010; 75
Jenkinson (10.1016/j.media.2021.102257_bib0020) 2002; 17
Heusel (10.1016/j.media.2021.102257_bib0017) 2017
Zhang (10.1016/j.media.2021.102257_bib0051) 2017
Yoon (10.1016/j.media.2021.102257_bib0047) 2018
Camara (10.1016/j.media.2021.102257_bib0003) 2006; 25
Gulrajani (10.1016/j.media.2021.102257_bib0016) 2017
Ravì (10.1016/j.media.2021.102257_bib0036) 2016; 21
LaMontagne (10.1016/j.media.2021.102257_bib0024) 2019
Goyal (10.1016/j.media.2021.102257_bib0015) 2019
References_xml – start-page: 2672
  year: 2014
  end-page: 2680
  ident: bib0014
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– start-page: 2376
  year: 2019
  end-page: 2384
  ident: bib0015
  article-title: Counterfactual visual explanations
  publication-title: International Conference on Machine Learning
– volume: 6
  start-page: 158
  year: 2020
  ident: bib0013
  article-title: Challenges of integrative disease modeling in Alzheimer’s disease
  publication-title: Front. Mol. Biosci.
– volume: 25
  start-page: 649
  year: 2006
  end-page: 652
  ident: bib0022
  article-title: Simulation of tissue atrophy using a topology preserving transformation model
  publication-title: IEEE Trans. Med. Imaging
– start-page: 5767
  year: 2017
  end-page: 5777
  ident: bib0016
  article-title: Improved training of wasserstein GANs
  publication-title: Advances in Neural Information Processing Systems
– volume: 75
  start-page: 143
  year: 2010
  end-page: 151
  ident: bib0042
  article-title: Serial MRI and CSF biomarkers in normal aging, MCI, and AD
  publication-title: Neurology
– volume: 36
  start-page: S42
  year: 2015
  end-page: S52
  ident: bib0026
  article-title: Disentangling normal aging from Alzheimer’s disease in structural magnetic resonance images
  publication-title: Neurobiol. Aging
– volume: 53
  start-page: 123
  year: 2019
  end-page: 131
  ident: bib0035
  article-title: Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy
  publication-title: Med. Image Anal.
– volume: 190
  start-page: 56
  year: 2019
  end-page: 68
  ident: bib0025
  article-title: Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in Alzheimer’s disease
  publication-title: Neuroimage
– start-page: 739
  year: 2018
  end-page: 742
  ident: bib0006
  article-title: Brain MRI super resolution using 3D deep densely connected neural networks
  publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
– reference: Dalca, A. V., Rakic, M., Guttag, J., Sabuncu, M. R., 2019. Learning conditional deformable templates with convolutional networks.
– volume: 103
  start-page: 22
  year: 2013
  end-page: 59
  ident: bib0010
  article-title: Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data
  publication-title: Int. J. Comput. Vis.
– volume: 25
  start-page: 1417
  year: 2006
  end-page: 1430
  ident: bib0003
  article-title: Phenomenological model of diffuse global and regional atrophy using finite-element methods
  publication-title: IEEE Trans. Med. Imaging
– reference: Marinescu, R. V., Oxtoby, N. P., Young, A. L., Bron, E. E., Toga, A. W., Weiner, M. W., Barkhof, F., Fox, N. C., Eshaghi, A., Toni, T., et al., 2020. The Alzheimer’s disease prediction of longitudinal evolution (TADPOLE) challenge: results after 1 year follow-up.
– volume: 35
  start-page: 2568
  year: 2016
  end-page: 2577
  ident: bib0050
  article-title: Consistent spatial-temporal longitudinal atlas construction for developing infant brains
  publication-title: IEEE Trans. Med. Imaging
– volume: 128
  start-page: 78
  year: 2021
  end-page: 88
  ident: bib0004
  article-title: Explaining the rationale of deep learning glaucoma decisions with adversarial examples
  publication-title: Ophthalmology
– start-page: 57
  year: 2014
  end-page: 64
  ident: bib0029
  article-title: Simulating neurodegeneration through longitudinal population analysis of structural and diffusion weighted MRI data
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 223
  start-page: 117284
  year: 2020
  ident: bib0040
  article-title: Fully synthetic neuroimaging data for replication and exploration
  publication-title: Neuroimage
– volume: vol. 17
  start-page: 167
  year: 2005
  ident: bib0021
  article-title: BET2: MR-based estimation of brain, skull and scalp surfaces
  publication-title: Eleventh Annual Meeting of the Organization for Human Brain Mapping
– volume: 137
  start-page: 2564
  year: 2014
  end-page: 2577
  ident: bib0049
  article-title: A data-driven model of biomarker changes in sporadic Alzheimer’s disease
  publication-title: Brain
– volume: 35
  start-page: e3250
  year: 2019
  ident: bib0028
  article-title: Biomechanical modeling and computer simulation of the brain during neurosurgery
  publication-title: Int. J. Numer. Method Biomed. Eng.
– start-page: 164
  year: 2019
  end-page: 172
  ident: bib0034
  article-title: Degenerative adversarial neuroimage nets: generating images that mimic disease progression
  publication-title: MICCAI
– volume: 30
  start-page: 371
  year: 2017
  end-page: 379
  ident: bib0030
  article-title: Imaging plus X
  publication-title: Curr. Opin. Neurol.
– start-page: 750
  year: 2019
  end-page: 758
  ident: bib0045
  article-title: Consistent brain ageing synthesis
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 6
  start-page: 67
  year: 2010
  end-page: 77
  ident: bib0012
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nat. Rev. Neurol.
– volume: vol. 10574
  start-page: 105741K
  year: 2018
  ident: bib0002
  article-title: Modelling the progression of Alzheimer’s disease in MRI using generative adversarial networks
  publication-title: Medical Imaging 2018: Image Processing
– volume: 10
  start-page: S400
  year: 2014
  end-page: S410
  ident: bib0009
  article-title: Estimating long-term multivariate progression from short-term data
  publication-title: Alzheimer’s Dementia
– volume: 91
  start-page: 177
  year: 2014
  end-page: 186
  ident: bib0041
  article-title: Development of a high angular resolution diffusion imaging human brain template
  publication-title: Neuroimage
– reference: Xia, T., Chartsias, A., Wang, C., Tsaftaris, S. A., 2019b. Learning to synthesise the ageing brain without longitudinal data.
– year: 2019
  ident: bib0024
  article-title: Oasis-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease
  publication-title: MedRxiv
– volume: 14
  start-page: 373
  year: 2010
  end-page: 389
  ident: bib0037
  article-title: Evaluation of brain atrophy estimation algorithms using simulated ground-truth data
  publication-title: Med. Image Anal.
– start-page: 6626
  year: 2017
  end-page: 6637
  ident: bib0017
  article-title: GANs trained by a two time-scale update rule converge to a local Nash equilibrium
  publication-title: Advances in Neural Information Processing Systems
– volume: 41
  start-page: 346
  year: 2008
  end-page: 353
  ident: bib0043
  article-title: Investigation of spatial resolution, partial volume effects and smoothing in functional MRI using artificial 3d time series
  publication-title: Neuroimage
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bib0020
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 90
  start-page: 255
  year: 2010
  end-page: 266
  ident: bib0008
  article-title: Population shape regression from random design data
  publication-title: Int. J. Comput. Vis.
– start-page: 1
  year: 2021
  end-page: 5
  ident: bib0005
  article-title: Synthetic data in machine learning for medicine and healthcare
  publication-title: Nat. Biomed. Eng.
– volume: 63
  start-page: 1478
  year: 2012
  end-page: 1486
  ident: bib0019
  article-title: A computational neurodegenerative disease progression score: method and results with the Alzheimer’s disease neuroimaging initiative cohort
  publication-title: Neuroimage
– volume: 32
  start-page: 99
  year: 2013
  end-page: 109
  ident: bib0033
  article-title: Generation of synthetic but visually realistic time series of cardiac images combining a biophysical model and clinical images
  publication-title: IEEE Trans. Med. Imaging
– volume: 9
  start-page: 1
  year: 2018
  end-page: 16
  ident: bib0048
  article-title: Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with subtype and stage inference
  publication-title: Nat. Commun.
– start-page: 118
  year: 2018
  end-page: 125
  ident: bib0001
  article-title: Deeper image quality transfer: training low-memory neural networks for 3D images
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018
– volume: 21
  start-page: 4
  year: 2016
  end-page: 21
  ident: bib0036
  article-title: Deep learning for health informatics
  publication-title: IEEE J. Biomed. Health Inform.
– start-page: 5810
  year: 2017
  end-page: 5818
  ident: bib0051
  article-title: Age progression/regression by conditional adversarial autoencoder
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 11
  start-page: 132
  year: 2017
  ident: bib0023
  article-title: Simulating longitudinal brain MRIs with known volume changes and realistic variations in image intensity
  publication-title: Front. Neurosci.
– reference: Pathan, S., Hong, Y., 2018. Predictive image regression for longitudinal studies with missing data.
– start-page: 1219
  year: 2013
  end-page: 1222
  ident: bib0038
  article-title: A vector momenta formulation of diffeomorphisms for improved geodesic regression and atlas construction
  publication-title: 2013 IEEE 10th International Symposium on Biomedical Imaging
– volume: 1
  start-page: 508
  year: 2019
  end-page: 516
  ident: bib0044
  article-title: Adversarial explanations for understanding image classification decisions and improved neural network robustness
  publication-title: Nat. Mach. Intell.
– volume: 169
  start-page: 11
  year: 2018
  end-page: 22
  ident: bib0018
  article-title: A spatio-temporal reference model of the aging brain
  publication-title: Neuroimage
– reference: .
– volume: 60
  start-page: 1880
  year: 2012
  end-page: 1889
  ident: bib0011
  article-title: An event-based model for disease progression and its application in familial Alzheimer’s disease and Huntington’s disease
  publication-title: Neuroimage
– volume: 141
  start-page: 1529
  year: 2018
  end-page: 1544
  ident: bib0031
  article-title: Data-driven models of dominantly-inherited Alzheimers disease progression
  publication-title: Brain
– year: 2018
  ident: bib0047
  article-title: GANITE: estimation of individualized treatment effects using generative adversarial nets
  publication-title: International Conference on Learning Representations
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  ident: bib0039
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
– year: 2018
  ident: 10.1016/j.media.2021.102257_bib0047
  article-title: GANITE: estimation of individualized treatment effects using generative adversarial nets
– start-page: 57
  year: 2014
  ident: 10.1016/j.media.2021.102257_bib0029
  article-title: Simulating neurodegeneration through longitudinal population analysis of structural and diffusion weighted MRI data
– start-page: 118
  year: 2018
  ident: 10.1016/j.media.2021.102257_bib0001
  article-title: Deeper image quality transfer: training low-memory neural networks for 3D images
– volume: 137
  start-page: 2564
  issue: 9
  year: 2014
  ident: 10.1016/j.media.2021.102257_bib0049
  article-title: A data-driven model of biomarker changes in sporadic Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awu176
– volume: 21
  start-page: 4
  issue: 1
  year: 2016
  ident: 10.1016/j.media.2021.102257_bib0036
  article-title: Deep learning for health informatics
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2636665
– volume: 25
  start-page: 1417
  issue: 11
  year: 2006
  ident: 10.1016/j.media.2021.102257_bib0003
  article-title: Phenomenological model of diffuse global and regional atrophy using finite-element methods
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.880588
– volume: 75
  start-page: 143
  issue: 2
  year: 2010
  ident: 10.1016/j.media.2021.102257_bib0042
  article-title: Serial MRI and CSF biomarkers in normal aging, MCI, and AD
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181e7ca82
– start-page: 739
  year: 2018
  ident: 10.1016/j.media.2021.102257_bib0006
  article-title: Brain MRI super resolution using 3D deep densely connected neural networks
– volume: 6
  start-page: 158
  year: 2020
  ident: 10.1016/j.media.2021.102257_bib0013
  article-title: Challenges of integrative disease modeling in Alzheimer’s disease
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2019.00158
– volume: 35
  start-page: e3250
  issue: 10
  year: 2019
  ident: 10.1016/j.media.2021.102257_bib0028
  article-title: Biomechanical modeling and computer simulation of the brain during neurosurgery
  publication-title: Int. J. Numer. Method Biomed. Eng.
  doi: 10.1002/cnm.3250
– volume: 30
  start-page: 371
  issue: 4
  year: 2017
  ident: 10.1016/j.media.2021.102257_bib0030
  article-title: Imaging plus X
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0000000000000460
– ident: 10.1016/j.media.2021.102257_bib0032
– ident: 10.1016/j.media.2021.102257_bib0027
– volume: 128
  start-page: 78
  issue: 1
  year: 2021
  ident: 10.1016/j.media.2021.102257_bib0004
  article-title: Explaining the rationale of deep learning glaucoma decisions with adversarial examples
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2020.06.036
– ident: 10.1016/j.media.2021.102257_bib0046
– volume: 90
  start-page: 255
  issue: 2
  year: 2010
  ident: 10.1016/j.media.2021.102257_bib0008
  article-title: Population shape regression from random design data
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-010-0367-1
– volume: 14
  start-page: 373
  issue: 3
  year: 2010
  ident: 10.1016/j.media.2021.102257_bib0037
  article-title: Evaluation of brain atrophy estimation algorithms using simulated ground-truth data
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.02.002
– start-page: 2376
  year: 2019
  ident: 10.1016/j.media.2021.102257_bib0015
  article-title: Counterfactual visual explanations
– start-page: 2672
  year: 2014
  ident: 10.1016/j.media.2021.102257_bib0014
  article-title: Generative adversarial nets
– volume: 36
  start-page: S42
  year: 2015
  ident: 10.1016/j.media.2021.102257_bib0026
  article-title: Disentangling normal aging from Alzheimer’s disease in structural magnetic resonance images
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.07.046
– volume: 41
  start-page: 346
  issue: 2
  year: 2008
  ident: 10.1016/j.media.2021.102257_bib0043
  article-title: Investigation of spatial resolution, partial volume effects and smoothing in functional MRI using artificial 3d time series
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.015
– start-page: 6626
  year: 2017
  ident: 10.1016/j.media.2021.102257_bib0017
  article-title: GANs trained by a two time-scale update rule converge to a local Nash equilibrium
– volume: 32
  start-page: 99
  issue: 1
  year: 2013
  ident: 10.1016/j.media.2021.102257_bib0033
  article-title: Generation of synthetic but visually realistic time series of cardiac images combining a biophysical model and clinical images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2220375
– start-page: 1
  year: 2021
  ident: 10.1016/j.media.2021.102257_bib0005
  article-title: Synthetic data in machine learning for medicine and healthcare
  publication-title: Nat. Biomed. Eng.
– volume: 35
  start-page: 2568
  issue: 12
  year: 2016
  ident: 10.1016/j.media.2021.102257_bib0050
  article-title: Consistent spatial-temporal longitudinal atlas construction for developing infant brains
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2587628
– volume: 190
  start-page: 56
  year: 2019
  ident: 10.1016/j.media.2021.102257_bib0025
  article-title: Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.059
– volume: 23
  start-page: S208
  year: 2004
  ident: 10.1016/j.media.2021.102257_bib0039
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– start-page: 1219
  year: 2013
  ident: 10.1016/j.media.2021.102257_bib0038
  article-title: A vector momenta formulation of diffeomorphisms for improved geodesic regression and atlas construction
– ident: 10.1016/j.media.2021.102257_bib0007
– volume: 11
  start-page: 132
  year: 2017
  ident: 10.1016/j.media.2021.102257_bib0023
  article-title: Simulating longitudinal brain MRIs with known volume changes and realistic variations in image intensity
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00132
– volume: 63
  start-page: 1478
  issue: 3
  year: 2012
  ident: 10.1016/j.media.2021.102257_bib0019
  article-title: A computational neurodegenerative disease progression score: method and results with the Alzheimer’s disease neuroimaging initiative cohort
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.07.059
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 10.1016/j.media.2021.102257_bib0020
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 60
  start-page: 1880
  issue: 3
  year: 2012
  ident: 10.1016/j.media.2021.102257_bib0011
  article-title: An event-based model for disease progression and its application in familial Alzheimer’s disease and Huntington’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.062
– volume: 25
  start-page: 649
  issue: 5
  year: 2006
  ident: 10.1016/j.media.2021.102257_bib0022
  article-title: Simulation of tissue atrophy using a topology preserving transformation model
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.873221
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.media.2021.102257_bib0048
  article-title: Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with subtype and stage inference
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05892-0
– volume: 169
  start-page: 11
  year: 2018
  ident: 10.1016/j.media.2021.102257_bib0018
  article-title: A spatio-temporal reference model of the aging brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.10.040
– volume: 6
  start-page: 67
  issue: 2
  year: 2010
  ident: 10.1016/j.media.2021.102257_bib0012
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2009.215
– volume: 53
  start-page: 123
  year: 2019
  ident: 10.1016/j.media.2021.102257_bib0035
  article-title: Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.01.011
– volume: 10
  start-page: S400
  year: 2014
  ident: 10.1016/j.media.2021.102257_bib0009
  article-title: Estimating long-term multivariate progression from short-term data
  publication-title: Alzheimer’s Dementia
  doi: 10.1016/j.jalz.2013.10.003
– start-page: 164
  year: 2019
  ident: 10.1016/j.media.2021.102257_bib0034
  article-title: Degenerative adversarial neuroimage nets: generating images that mimic disease progression
– year: 2019
  ident: 10.1016/j.media.2021.102257_bib0024
  article-title: Oasis-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease
  publication-title: MedRxiv
– start-page: 5767
  year: 2017
  ident: 10.1016/j.media.2021.102257_bib0016
  article-title: Improved training of wasserstein GANs
– volume: vol. 17
  start-page: 167
  year: 2005
  ident: 10.1016/j.media.2021.102257_bib0021
  article-title: BET2: MR-based estimation of brain, skull and scalp surfaces
– volume: 223
  start-page: 117284
  year: 2020
  ident: 10.1016/j.media.2021.102257_bib0040
  article-title: Fully synthetic neuroimaging data for replication and exploration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117284
– volume: 91
  start-page: 177
  year: 2014
  ident: 10.1016/j.media.2021.102257_bib0041
  article-title: Development of a high angular resolution diffusion imaging human brain template
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.01.009
– start-page: 5810
  year: 2017
  ident: 10.1016/j.media.2021.102257_bib0051
  article-title: Age progression/regression by conditional adversarial autoencoder
– start-page: 750
  year: 2019
  ident: 10.1016/j.media.2021.102257_bib0045
  article-title: Consistent brain ageing synthesis
– volume: vol. 10574
  start-page: 105741K
  year: 2018
  ident: 10.1016/j.media.2021.102257_bib0002
  article-title: Modelling the progression of Alzheimer’s disease in MRI using generative adversarial networks
– volume: 1
  start-page: 508
  issue: 11
  year: 2019
  ident: 10.1016/j.media.2021.102257_bib0044
  article-title: Adversarial explanations for understanding image classification decisions and improved neural network robustness
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0104-6
– volume: 103
  start-page: 22
  issue: 1
  year: 2013
  ident: 10.1016/j.media.2021.102257_bib0010
  article-title: Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-012-0592-x
– volume: 141
  start-page: 1529
  issue: 5
  year: 2018
  ident: 10.1016/j.media.2021.102257_bib0031
  article-title: Data-driven models of dominantly-inherited Alzheimers disease progression
  publication-title: Brain
  doi: 10.1093/brain/awy050
SSID ssj0007440
Score 2.5352263
Snippet •We implemented a new deep learning framework capable of synthesising realistic and accurate 4D brain MRI in ageing and Alzheimer’s disease.•We proposed a...
Accurate and realistic simulation of high-dimensional medical images has become an important research area relevant to many AI-enabled healthcare applications....
• We implemented a new deep learning framework capable of synthesising realistic and accurate 4D brain MRI in ageing and Alzheimer’s disease. • We proposed a...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102257
SubjectTerms 4D-DANI-Net
4D-MRI
Adversarial training
Ageing
Aging
Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Benchmarks
Brain
Brain - diagnostic imaging
Customization
Deep learning
Dementia
Dementia disorders
Disease progression modelling
Evaluation
Generative models
High resolution
Humans
Image Processing, Computer-Assisted
Image quality
Image resolution
Magnetic Resonance Imaging
Medical imaging
Medical research
Neuro-image
Neurodegeneration
Neurodegenerative diseases
Neuroimaging
Quality assessment
Quality control
Synthetic-images
Time series
Training
Transfer learning
Visual perception
Weighting functions
Title Degenerative adversarial neuroimage nets for brain scan simulations: Application in ageing and dementia
URI https://dx.doi.org/10.1016/j.media.2021.102257
https://www.ncbi.nlm.nih.gov/pubmed/34731771
https://www.proquest.com/docview/2630527647
https://www.proquest.com/docview/2593593258
https://pubmed.ncbi.nlm.nih.gov/PMC8907865
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkJwqEp5bSmVkTgS1vEjznJbCmV59QJFvVn22i5BNK3I9trf3hnH2XYB9cBpo_VYSTzjmXFm5htCXmAsCrxYXVRWTwpZR15YwXwRFZOeKxHkPKF9HlazI_nxWB2vkf2hFgbTKrPu73V60tb5n3FezfF504y_lgKblaD9QUnlWMQnpUYpf3V5neaBAHh97VVZIPWAPJRyvFJ1BhwSeYkQBhxt1L-t09_e559JlDes0sEW2czuJJ32T3yfrIV2m9y7ATK4Te58yeHzB-TkbThJMNOo46jFXsydRQmkCdayOQXlApeLjoIrSx12j6AdrD3tmtPc5qt7TafXMW8KBDAH7kNt66lP3xob-5AcHbz7tj8rcqeFYg4HlkVRV9pPwFZFDe6Qj_Vccc8mzGnJHFh8xqLz3GIQNcAp1imhnXaKWYboYlIE8Yist2dteEIoiz6IMtY1LKiM0jstbKycl0G76LgcET6ssJlnGHLshvHLDPlmP01ii0G2mJ4tI_JyOem8R-G4nbwaWGdWhMmAnbh94u7AaJP3cmc4vKPiupIw_Hw5DLsQQyu2DWcXQKOwwllwVY_I414ulg8qpAYnTZcjolckZkmACN-rI23zIyF91xPw4Cq187_v85Tc5ViukT4Z7ZL1xe-L8AycqIXbS7tkj2xMP3yaHcLv-zefv0-vABWHHOw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9UwDI_GkGAcEAwYDwYEiSPlpfloWm7TYHrAtgubtFuUvCSjiHUTfbvyt2On6dseoB24VY2jtrFjO7X9MyFvMBYFXqwuKqubQtaRF1YwX0TFpOdKBDlPaJ-H1exYfj5RJ2tkd6yFwbTKrPsHnZ60db4zzas5vWjb6ddSYLMStD8oqby5RW5L2L7YxuDdr6s8D0TAG4qvygLJR-ihlOSVyjPglMhLxDDgaKT-bZ7-dj__zKK8Zpb2HpD72Z-kO8MrPyRrodsk966hDG6SOwc5fv6InH4IpwlnGpUctdiMubcogjThWrZnoF3gctFT8GWpw_YRtIfFp317lvt89e_pzlXQmwIBzIHnUNt56tPPxtY-Jsd7H492Z0VutVDM4cSyKOpK-waMVdTgD_lYzxX3rGFOS-bA5DMWnecWo6gBjrFOCe20U8wyhBeTIognZL0778JTQln0QZSxrmFBZZTeaWFj5bwM2kXH5YTwcYXNPOOQYzuMH2ZMOPtuElsMssUMbJmQt8tJFwMMx83k1cg6syJNBgzFzRO3R0abvJl7w-EbFdeVhOHXy2HYhhhbsV04vwQahSXOgqt6QrYGuVi-qJAavDRdTohekZglAUJ8r4507bcE9V034MJV6tn_fs8rcnd2dLBv9j8dfnlONjjWbqT_R9tkffHzMrwAj2rhXqYd8xt86Bzr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degenerative+adversarial+neuroimage+nets+for+brain+scan+simulations%3A+Application+in+ageing+and+dementia&rft.jtitle=Medical+image+analysis&rft.au=Ravi%2C+Daniele&rft.au=Blumberg%2C+Stefano+B&rft.au=Ingala%2C+Silvia&rft.au=Barkhof%2C+Frederik&rft.date=2022-01-01&rft.pub=Elsevier+BV&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=75&rft.spage=1&rft_id=info:doi/10.1016%2Fj.media.2021.102257&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon