Fibrinogen binding to ICAM-1 promotes EGFR-dependent mucin production in human airway epithelial cells
1 Cardiovascular Research Institute, 2 Department of Medicine, and 3 Department of Physiology, University of California, San Francisco, California Submitted 2 February 2009 ; accepted in final form 4 May 2009 Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chron...
Saved in:
Published in | American journal of physiology. Lung cellular and molecular physiology Vol. 297; no. 1; pp. L174 - L183 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.07.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 1040-0605 1522-1504 1522-1504 |
DOI | 10.1152/ajplung.00032.2009 |
Cover
Abstract | 1 Cardiovascular Research Institute, 2 Department of Medicine, and 3 Department of Physiology, University of California, San Francisco, California
Submitted 2 February 2009
; accepted in final form 4 May 2009
Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Although mucins are produced via activation of an EGF receptor (EGFR) signaling cascade, the mechanisms leading to exaggerated mucin production in mucous hypersecretory diseases are unknown. Because expression of ICAM-1 and of the ICAM-1 ligand fibrinogen is increased in the airways of subjects with mucous hypersecretory diseases, we hypothesized that fibrinogen binding to ICAM-1 could increase EGFR-dependent mucin production in human airway (NCI-H292) epithelial cells. Consistent with this hypothesis, we found that an ICAM-1 neutralizing antibody and an ICAM-1(8–22) peptide that binds fibrinogen decreased mucin production induced by the EGFR ligand transforming growth factor (TGF)- dose-dependently. Exogenous fibrinogen and a fibrinogen(117–133) peptide that binds ICAM-1 rescued mucin production in cells treated with the ICAM-1(8–22) peptide. Surprisingly, the ICAM-1(8–22) peptide increased EGFR phosphotyrosine and phospho-ERK1/2 in cells treated with TGF- . The ICAM-1(8–22) peptide-induced increases in EGFR phosphotyrosine and phospho-ERK1/2 were prevented by exogenous fibrinogen, by the fibrinogen(117–133) peptide, and by selective inhibitors of phospholipase C (PLC), protein kinase C (PKC)- /β, and metalloproteases. These results suggest that fibrinogen binding to ICAM-1 promotes mucin production by decreasing TGF- -induced EGFR and ERK1/2 activation and that the fibrinogen-ICAM-1-dependent decrease in EGFR and ERK1/2 activation occurs via inhibition of an early positive feedback pathway involving PLC- and PKC- /β-dependent metalloprotease activation and subsequent metalloprotease-dependent EGFR reactivation.
cell surface molecules; innate immunity; mucous hypersecretion; cell differentiation
Address for reprint requests and other correspondence: S. Kim, Cardiovascular Research Inst., Univ. of California San Francisco, Box 0130, San Francisco, CA 94143-0130 (e-mail: suil.kim{at}ucsf.edu ) |
---|---|
AbstractList | Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Although mucins are produced via activation of an EGF receptor (EGFR) signaling cascade, the mechanisms leading to exaggerated mucin production in mucous hypersecretory diseases are unknown. Because expression of ICAM-1 and of the ICAM-1 ligand fibrinogen is increased in the airways of subjects with mucous hypersecretory diseases, we hypothesized that fibrinogen binding to ICAM-1 could increase EGFR-dependent mucin production in human airway (NCI-H292) epithelial cells. Consistent with this hypothesis, we found that an ICAM-1 neutralizing antibody and an ICAM-1(8–22) peptide that binds fibrinogen decreased mucin production induced by the EGFR ligand transforming growth factor (TGF)-α dose-dependently. Exogenous fibrinogen and a fibrinogen(117–133) peptide that binds ICAM-1 rescued mucin production in cells treated with the ICAM-1(8–22) peptide. Surprisingly, the ICAM-1(8–22) peptide increased EGFR phosphotyrosine and phospho-ERK1/2 in cells treated with TGF-α. The ICAM-1(8–22) peptide-induced increases in EGFR phosphotyrosine and phospho-ERK1/2 were prevented by exogenous fibrinogen, by the fibrinogen(117–133) peptide, and by selective inhibitors of phospholipase C (PLC), protein kinase C (PKC)-α/β, and metalloproteases. These results suggest that fibrinogen binding to ICAM-1 promotes mucin production by decreasing TGF-α-induced EGFR and ERK1/2 activation and that the fibrinogen-ICAM-1-dependent decrease in EGFR and ERK1/2 activation occurs via inhibition of an early positive feedback pathway involving PLC- and PKC-α/β-dependent metalloprotease activation and subsequent metalloprotease-dependent EGFR reactivation. Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Although mucins are produced via activation of an EGF receptor (EGFR) signaling cascade, the mechanisms leading to exaggerated mucin production in mucous hypersecretory diseases are unknown. Because expression of ICAM-1 and of the ICAM-1 ligand fibrinogen is increased in the airways of subjects with mucous hypersecretory diseases, we hypothesized that fibrinogen binding to ICAM-1 could increase EGFR-dependent mucin production in human airway (NCI-H292) epithelial cells. Consistent with this hypothesis, we found that an ICAM-1 neutralizing antibody and an ICAM-1(8-22) peptide that binds fibrinogen decreased mucin production induced by the EGFR ligand transforming growth factor (TGF)-alpha dose-dependently. Exogenous fibrinogen and a fibrinogen(117-133) peptide that binds ICAM-1 rescued mucin production in cells treated with the ICAM-1(8-22) peptide. Surprisingly, the ICAM-1(8-22) peptide increased EGFR phosphotyrosine and phospho-ERK1/2 in cells treated with TGF-alpha. The ICAM-1(8-22) peptide-induced increases in EGFR phosphotyrosine and phospho-ERK1/2 were prevented by exogenous fibrinogen, by the fibrinogen(117-133) peptide, and by selective inhibitors of phospholipase C (PLC), protein kinase C (PKC)-alpha/beta, and metalloproteases. These results suggest that fibrinogen binding to ICAM-1 promotes mucin production by decreasing TGF-alpha-induced EGFR and ERK1/2 activation and that the fibrinogen-ICAM-1-dependent decrease in EGFR and ERK1/2 activation occurs via inhibition of an early positive feedback pathway involving PLC- and PKC-alpha/beta-dependent metalloprotease activation and subsequent metalloprotease-dependent EGFR reactivation.Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Although mucins are produced via activation of an EGF receptor (EGFR) signaling cascade, the mechanisms leading to exaggerated mucin production in mucous hypersecretory diseases are unknown. Because expression of ICAM-1 and of the ICAM-1 ligand fibrinogen is increased in the airways of subjects with mucous hypersecretory diseases, we hypothesized that fibrinogen binding to ICAM-1 could increase EGFR-dependent mucin production in human airway (NCI-H292) epithelial cells. Consistent with this hypothesis, we found that an ICAM-1 neutralizing antibody and an ICAM-1(8-22) peptide that binds fibrinogen decreased mucin production induced by the EGFR ligand transforming growth factor (TGF)-alpha dose-dependently. Exogenous fibrinogen and a fibrinogen(117-133) peptide that binds ICAM-1 rescued mucin production in cells treated with the ICAM-1(8-22) peptide. Surprisingly, the ICAM-1(8-22) peptide increased EGFR phosphotyrosine and phospho-ERK1/2 in cells treated with TGF-alpha. The ICAM-1(8-22) peptide-induced increases in EGFR phosphotyrosine and phospho-ERK1/2 were prevented by exogenous fibrinogen, by the fibrinogen(117-133) peptide, and by selective inhibitors of phospholipase C (PLC), protein kinase C (PKC)-alpha/beta, and metalloproteases. These results suggest that fibrinogen binding to ICAM-1 promotes mucin production by decreasing TGF-alpha-induced EGFR and ERK1/2 activation and that the fibrinogen-ICAM-1-dependent decrease in EGFR and ERK1/2 activation occurs via inhibition of an early positive feedback pathway involving PLC- and PKC-alpha/beta-dependent metalloprotease activation and subsequent metalloprotease-dependent EGFR reactivation. Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Although mucins are produced via activation of an EGF receptor (EGFR) signaling cascade, the mechanisms leading to exaggerated mucin production in mucous hypersecretory diseases are unknown. Because expression of ICAM-1 and of the ICAM-1 ligand fibrinogen is increased in the airways of subjects with mucous hypersecretory diseases, we hypothesized that fibrinogen binding to ICAM-1 could increase EGFR- dependent mucin production in human airway (NCI-H292) epithelial cells. Consistent with this hypothesis, we found that an ICAM-1 neutralizing antibody and an ICAM-1(8-22) peptide that binds fibrinogen decreased mucin production induced by the EGFR ligand transforming growth factor (TGF)-α dose-dependently. Exogenous fibrinogen and a fibrinogen(117-133) peptide that binds ICAM-1 rescued mucin production in cells treated with the ICAM-1(8-22) peptide. Surprisingly, the ICAM-1(8-22) peptide increased EGFR phosphotyrosine and phospho- ERK1/2 in cells treated with TGF-α. The ICAM-1(8-22) peptide-induced increases in EGFR phosphotyrosine and phospho-ERK1/2 were prevented by exogenous fibrinogen, by the fibrinogen(117-133) peptide, and by selective inhibitors of phospholipase C (PLC), protein kinase C (PKC)-α/β, and metalloproteases. These results suggest that fibrinogen binding to ICAM-1 promotes mucin production by decreasing TGF- -induced EGFR and ERK1/2 activation and that the fibrinogen-ICAM-1-dependent decrease in EGFR and ERK1/2 activation occurs via inhibition of an early positive feedback pathway involving PLC- and PKC-α/β-dependent metalloprotease activation and subsequent metalloprotease-dependent EGFR reactivation. [PUBLICATION ABSTRACT] Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Although mucins are produced via activation of an EGF receptor (EGFR) signaling cascade, the mechanisms leading to exaggerated mucin production in mucous hypersecretory diseases are unknown. Because expression of ICAM-1 and of the ICAM-1 ligand fibrinogen is increased in the airways of subjects with mucous hypersecretory diseases, we hypothesized that fibrinogen binding to ICAM-1 could increase EGFR-dependent mucin production in human airway (NCI-H292) epithelial cells. Consistent with this hypothesis, we found that an ICAM-1 neutralizing antibody and an ICAM-1(8-22) peptide that binds fibrinogen decreased mucin production induced by the EGFR ligand transforming growth factor (TGF)-alpha dose-dependently. Exogenous fibrinogen and a fibrinogen(117-133) peptide that binds ICAM-1 rescued mucin production in cells treated with the ICAM-1(8-22) peptide. Surprisingly, the ICAM-1(8-22) peptide increased EGFR phosphotyrosine and phospho-ERK1/2 in cells treated with TGF-alpha. The ICAM-1(8-22) peptide-induced increases in EGFR phosphotyrosine and phospho-ERK1/2 were prevented by exogenous fibrinogen, by the fibrinogen(117-133) peptide, and by selective inhibitors of phospholipase C (PLC), protein kinase C (PKC)-alpha/beta, and metalloproteases. These results suggest that fibrinogen binding to ICAM-1 promotes mucin production by decreasing TGF-alpha-induced EGFR and ERK1/2 activation and that the fibrinogen-ICAM-1-dependent decrease in EGFR and ERK1/2 activation occurs via inhibition of an early positive feedback pathway involving PLC- and PKC-alpha/beta-dependent metalloprotease activation and subsequent metalloprotease-dependent EGFR reactivation. 1 Cardiovascular Research Institute, 2 Department of Medicine, and 3 Department of Physiology, University of California, San Francisco, California Submitted 2 February 2009 ; accepted in final form 4 May 2009 Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Although mucins are produced via activation of an EGF receptor (EGFR) signaling cascade, the mechanisms leading to exaggerated mucin production in mucous hypersecretory diseases are unknown. Because expression of ICAM-1 and of the ICAM-1 ligand fibrinogen is increased in the airways of subjects with mucous hypersecretory diseases, we hypothesized that fibrinogen binding to ICAM-1 could increase EGFR-dependent mucin production in human airway (NCI-H292) epithelial cells. Consistent with this hypothesis, we found that an ICAM-1 neutralizing antibody and an ICAM-1(8–22) peptide that binds fibrinogen decreased mucin production induced by the EGFR ligand transforming growth factor (TGF)- dose-dependently. Exogenous fibrinogen and a fibrinogen(117–133) peptide that binds ICAM-1 rescued mucin production in cells treated with the ICAM-1(8–22) peptide. Surprisingly, the ICAM-1(8–22) peptide increased EGFR phosphotyrosine and phospho-ERK1/2 in cells treated with TGF- . The ICAM-1(8–22) peptide-induced increases in EGFR phosphotyrosine and phospho-ERK1/2 were prevented by exogenous fibrinogen, by the fibrinogen(117–133) peptide, and by selective inhibitors of phospholipase C (PLC), protein kinase C (PKC)- /β, and metalloproteases. These results suggest that fibrinogen binding to ICAM-1 promotes mucin production by decreasing TGF- -induced EGFR and ERK1/2 activation and that the fibrinogen-ICAM-1-dependent decrease in EGFR and ERK1/2 activation occurs via inhibition of an early positive feedback pathway involving PLC- and PKC- /β-dependent metalloprotease activation and subsequent metalloprotease-dependent EGFR reactivation. cell surface molecules; innate immunity; mucous hypersecretion; cell differentiation Address for reprint requests and other correspondence: S. Kim, Cardiovascular Research Inst., Univ. of California San Francisco, Box 0130, San Francisco, CA 94143-0130 (e-mail: suil.kim{at}ucsf.edu ) |
Author | Kim, Suil Nadel, Jay A |
AuthorAffiliation | 1 Cardiovascular Research Institute, 2 Department of Medicine, and 3 Department of Physiology, University of California, San Francisco, California |
AuthorAffiliation_xml | – name: 1 Cardiovascular Research Institute, 2 Department of Medicine, and 3 Department of Physiology, University of California, San Francisco, California |
Author_xml | – sequence: 1 fullname: Kim, Suil – sequence: 2 fullname: Nadel, Jay A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19429776$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU2P1CAYbswa90P_gAdDPHjrCAy0cDExm53VZIyJ0TNh4G3LpIUK7W7m30udcaJ78ATk-eB53-e6uPDBQ1G8JnhFCKfv9X7sZ9-uMMZruqIYy2fFVQZoSThmF_mOGS5xhfllcZ3SPvM4xtWL4pJIRmVdV1dFs3G76HxowaOd89b5Fk0Bfb79-KUkaIxhCBMkdHe_-VZaGMFb8BMaZuP8gtrZTC54lF_dPGiPtIuP-oBgdFMHvdM9MtD36WXxvNF9glen86b4sbn7fvup3H69z39tS8NEPZWCVgaDWXMs68ZWGgyRDQdGGeFSALPEMMuEBtlUojFguWEN1dwyjYUAvL4pPhx9x3k3gDU5bNS9GqMbdDyooJ36F_GuU214ULQmRJA6G7w7GcTwc4Y0qcGlZQTtIcxJVTWjREiSiW-fEPdhjj4PpyjBkkgheSa9-TvOOcef_WeCOBJMDClFaJRxk15WmtO5XhGslqrVqWr1u2q1VJ2l9In07P4_UXkUda7tHl0ENXaH5EIf2sOZn6MporakZutfhn3AVQ |
CitedBy_id | crossref_primary_10_1371_journal_pone_0273107 crossref_primary_10_1016_j_yexcr_2011_08_023 crossref_primary_10_1271_bbb_100830 crossref_primary_10_2147_CMAR_S269244 crossref_primary_10_1038_s41598_019_40983_y crossref_primary_10_1182_blood_2011_02_338061 crossref_primary_10_3389_fimmu_2020_01205 crossref_primary_10_1111_j_1475_097X_2011_01039_x crossref_primary_10_1152_ajprenal_00189_2014 crossref_primary_10_1016_j_rmed_2023_107117 crossref_primary_10_4049_jimmunol_1003377 crossref_primary_10_1038_s41385_020_0272_z crossref_primary_10_1177_0333102416665870 crossref_primary_10_1038_s41419_024_06989_9 |
Cites_doi | 10.1006/abio.1995.1349 10.1016/0092-8674(95)90401-8 10.4049/jimmunol.161.11.6398 10.1016/S0014-2999(98)00020-X 10.1074/jbc.M308466200 10.1164/ajrccm.149.3.7509705 10.1046/j.1365-2249.2001.01456.x 10.1074/jbc.274.27.19347 10.1042/bj3130431 10.1128/IAI.74.2.830-838.2006 10.1046/j.1432-1327.2000.01520.x 10.1056/NEJMoa032158 10.1152/ajplung.00391.2004 10.1164/ajrccm.154.2.8756799 10.1183/09031936.98.12030619 10.1073/pnas.0408932102 10.1046/j.1365-2559.2002.01378.x 10.1016/0092-8674(87)90104-8 10.1073/pnas.1534804100 10.4049/jimmunol.165.11.6091 10.1182/blood.V89.3.873 10.3109/15513819209023312 10.1074/jbc.M112050200 10.1053/rmed.2001.1221 10.1002/1521-1878(200009)22:9<818::AID-BIES7>3.0.CO;2-6 10.1111/j.1365-2222.1997.tb01181.x 10.1093/emboj/18.24.6962 10.1074/jbc.M000240200 10.1074/jbc.271.6.3279 10.1128/MCB.18.11.6666 10.1073/pnas.0704045104 10.1165/ajrcmb/9.6.586 10.1042/bj3630211 10.1128/.66.9.4431-4439.1998 10.1152/ajplung.1992.263.1.L79 10.1016/0092-8674(94)90337-9 10.1074/jbc.274.17.11930 10.1126/science.7694367 10.1016/S0021-9258(18)43775-1 10.1074/jbc.271.39.24270 10.1152/ajplung.00388.2004 10.1074/jbc.M510797200 10.1165/ajrcmb.20.5.3308 10.1074/jbc.M011248200 10.1126/science.7694366 10.1152/ajplung.00455.2001 10.1128/MCB.23.21.7875-7886.2003 10.1038/sj.onc.1205684 10.1128/MCB.17.9.5598 10.1172/JCI200419569 10.1097/ACI.0b013e328012ce22 10.1016/0092-8674(89)90689-2 10.1038/nm0102-41 10.1016/j.amjmed.2003.09.009 10.1091/mbc.7.6.871 10.1128/MCB.18.12.7216 10.1016/0091-6749(93)90064-M 10.1165/ajrcmb/7.2.214 10.1002/jcp.10432 10.4049/jimmunol.168.11.5530 10.4049/jimmunol.167.10.5948 10.1165/rcmb.2003-0199OC 10.1073/pnas.96.6.3081 10.1074/jbc.271.18.10963 10.1136/thx.2006.062190 10.1165/ajrcmb/9.2.213 10.1152/ajprenal.00205.2004 10.1152/ajplung.00019.2004 |
ContentType | Journal Article |
Copyright | Copyright American Physiological Society Jul 2009 Copyright © 2009, American Physiological Society |
Copyright_xml | – notice: Copyright American Physiological Society Jul 2009 – notice: Copyright © 2009, American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TS 7U7 C1K 7X8 5PM |
DOI | 10.1152/ajplung.00032.2009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Physical Education Index Toxicology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Toxicology Abstracts Calcium & Calcified Tissue Abstracts Physical Education Index Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Toxicology Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1522-1504 |
EndPage | L183 |
ExternalDocumentID | PMC2711817 1769434921 19429776 10_1152_ajplung_00032_2009 ajplung_297_1_L174 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL-73906 |
GroupedDBID | - 23M 2WC 39C 4.4 53G 5GY 5VS ABFLS ABPTK ACPRK ADACO ADBBV AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP C1A DIK DL E3Z EBS EJD F5P KQ8 O0- OK1 P2P PQEST PQQKQ RAP RHF RHI RPL WH7 WOQ --- 8M5 AAYXX BKKCC BTFSW CITATION EMOBN H13 ITBOX RPRKH TR2 W8F XSW YSK CGR CUY CVF ECM EIF NPM 7QP 7TS 7U7 C1K 7X8 5PM |
ID | FETCH-LOGICAL-c487t-826c0ec35097fd6aec19f5e4241598e4d1c4d48ae9f68fced5c4f2a5d4a088e03 |
ISSN | 1040-0605 1522-1504 |
IngestDate | Thu Aug 21 13:54:57 EDT 2025 Thu Jul 10 19:15:43 EDT 2025 Mon Jun 30 08:49:06 EDT 2025 Thu Apr 03 07:01:09 EDT 2025 Tue Jul 01 00:21:09 EDT 2025 Thu Apr 24 23:01:53 EDT 2025 Tue Jan 05 17:55:44 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c487t-826c0ec35097fd6aec19f5e4241598e4d1c4d48ae9f68fced5c4f2a5d4a088e03 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Address for reprint requests and other correspondence: S. Kim, Cardiovascular Research Inst., Univ. of California San Francisco, Box 0130, San Francisco, CA 94143-0130 (e-mail: suil.kim@ucsf.edu) |
PMID | 19429776 |
PQID | 210919895 |
PQPubID | 31225 |
ParticipantIDs | crossref_citationtrail_10_1152_ajplung_00032_2009 pubmed_primary_19429776 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2711817 crossref_primary_10_1152_ajplung_00032_2009 proquest_miscellaneous_67421891 highwire_physiology_ajplung_297_1_L174 proquest_journals_210919895 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-07-01 |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | American journal of physiology. Lung cellular and molecular physiology |
PublicationTitleAlternate | Am J Physiol Lung Cell Mol Physiol |
PublicationYear | 2009 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | R61 R60 R63 R62 R21 R65 R20 R64 R23 R67 R22 R66 R25 R69 R24 R68 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R70 R30 R32 R31 R34 R33 R36 R35 R38 R37 R39 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R50 R52 R51 R10 R54 R53 R12 R56 R11 R55 R14 R58 R13 R57 R16 R15 R59 R18 R17 R19 8798673 - J Biol Chem. 1996 Sep 27;271(39):24270-7 10601018 - EMBO J. 1999 Dec 15;18(24):6962-72 15739255 - Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H1257-64 8572305 - Anal Biochem. 1995 Jul 1;228(2):267-73 9271435 - Mol Cell Biol. 1997 Sep;17(9):5598-611 11823465 - J Biol Chem. 2002 Apr 12;277(15):12838-45 15121636 - Am J Physiol Lung Cell Mol Physiol. 2004 Aug;287(2):L420-7 11860173 - Respir Med. 2002 Feb;96(2):81-6 16428725 - Infect Immun. 2006 Feb;74(2):830-8 2538244 - Cell. 1989 Mar 10;56(5):849-53 8631915 - J Biol Chem. 1996 May 3;271(18):10963-6 7664271 - Cancer Res. 1995 Sep 15;55(18):4000-3 8756799 - Am J Respir Crit Care Med. 1996 Aug;154(2 Pt 1):308-17 11086041 - J Immunol. 2000 Dec 1;165(11):6091-8 10383446 - J Biol Chem. 1999 Jul 2;274(27):19347-51 10903502 - Eur J Biochem. 2000 Aug;267(15):4693-704 15640347 - Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):767-72 15232617 - J Clin Invest. 2004 Jul;114(1):104-11 1353306 - Am J Physiol. 1992 Jul;263(1 Pt 1):L79-87 10944584 - Bioessays. 2000 Sep;22(9):818-26 12149643 - Oncogene. 2002 Aug 8;21(34):5213-23 10207014 - J Biol Chem. 1999 Apr 23;274(17):11930-6 14560030 - Mol Cell Biol. 2003 Nov;23(21):7875-86 3315233 - Cell. 1987 Dec 4;51(5):813-9 8573075 - Biochem J. 1996 Jan 15;313 ( Pt 2):431-9 8797599 - Cancer Res. 1996 Sep 15;56(18):4244-9 9819408 - Mol Cell Biol. 1998 Dec;18(12):7216-24 1409135 - Pediatr Pathol. 1992 May-Jun;12(3):313-24 10864922 - J Biol Chem. 2000 Sep 29;275(39):30029-36 9600638 - Eur J Pharmacol. 1998 Mar 19;345(2):199-206 7834738 - Cell. 1995 Jan 27;80(2):179-85 8338688 - Am J Respir Cell Mol Biol. 1993 Aug;9(2):213-20 11786905 - Nat Med. 2002 Jan;8(1):41-6 7509705 - Am J Respir Crit Care Med. 1994 Mar;149(3 Pt 1):803-10 7504927 - Am J Respir Cell Mol Biol. 1993 Dec;9(6):586-93 11943022 - Histopathology. 2002 Apr;40(4):367-73 17218812 - Curr Opin Allergy Clin Immunol. 2007 Feb;7(1):57-62 11278868 - J Biol Chem. 2001 Apr 20;276(16):13057-64 9762790 - Eur Respir J. 1998 Sep;12(3):619-26 14504278 - J Biol Chem. 2003 Nov 28;278(48):47731-43 15215480 - N Engl J Med. 2004 Jun 24;350(26):2645-53 16055478 - Am J Physiol Lung Cell Mol Physiol. 2005 Dec;289(6):L1049-60 16928707 - Thorax. 2007 Feb;62(2):153-61 17606926 - Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11814-9 9712798 - Infect Immun. 1998 Sep;66(9):4431-9 7694366 - Science. 1993 Nov 12;262(5136):1065-9 16100285 - Am J Physiol Lung Cell Mol Physiol. 2006 Jan;290(1):L86-96 16332693 - J Biol Chem. 2006 Feb 10;281(6):3157-64 10077640 - Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3081-6 11931648 - Biochem J. 2002 Apr 15;363(Pt 2):211-21 12972643 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11618-23 7507411 - Cell. 1994 Jan 28;76(2):301-14 7527024 - J Biol Chem. 1994 Dec 2;269(48):30081-4 9028318 - Blood. 1997 Feb 1;89(3):873-82 8621731 - J Biol Chem. 1996 Feb 9;271(6):3279-84 12169572 - Am J Physiol Lung Cell Mol Physiol. 2002 Sep;283(3):L531-40 14978732 - J Cell Physiol. 2004 Apr;199(1):32-9 9420140 - Clin Exp Allergy. 1997 Nov;27(11):1344-55 12023348 - J Immunol. 2002 Jun 1;168(11):5530-7 8816994 - Mol Biol Cell. 1996 Jun;7(6):871-81 1353976 - Am J Respir Cell Mol Biol. 1992 Aug;7(2):214-21 7694367 - Science. 1993 Nov 12;262(5136):1069-72 12867228 - Am J Med. 2003 Jul;115(1):6-11 14500256 - Am J Respir Cell Mol Biol. 2004 Apr;30(4):470-8 7505008 - J Allergy Clin Immunol. 1993 Dec;92(6):857-68 10226061 - Am J Respir Cell Mol Biol. 1999 May;20(5):914-23 11698473 - J Immunol. 2001 Nov 15;167(10):5948-54 9774681 - Mol Cell Biol. 1998 Nov;18(11):6666-78 9834131 - J Immunol. 1998 Dec 1;161(11):6398-405 11359444 - Clin Exp Immunol. 2001 Apr;124(1):69-76 |
References_xml | – ident: R7 doi: 10.1006/abio.1995.1349 – ident: R37 doi: 10.1016/0092-8674(95)90401-8 – ident: R10 doi: 10.4049/jimmunol.161.11.6398 – ident: R63 doi: 10.1016/S0014-2999(98)00020-X – ident: R68 doi: 10.1074/jbc.M308466200 – ident: R17 doi: 10.1164/ajrccm.149.3.7509705 – ident: R27 doi: 10.1046/j.1365-2249.2001.01456.x – ident: R44 doi: 10.1074/jbc.274.27.19347 – ident: R49 – ident: R16 doi: 10.1042/bj3130431 – ident: R2 doi: 10.1128/IAI.74.2.830-838.2006 – ident: R47 doi: 10.1046/j.1432-1327.2000.01520.x – ident: R26 doi: 10.1056/NEJMoa032158 – ident: R42 doi: 10.1152/ajplung.00391.2004 – ident: R45 doi: 10.1164/ajrccm.154.2.8756799 – ident: R5 doi: 10.1183/09031936.98.12030619 – ident: R54 doi: 10.1073/pnas.0408932102 – ident: R23 doi: 10.1046/j.1365-2559.2002.01378.x – ident: R36 doi: 10.1016/0092-8674(87)90104-8 – ident: R56 doi: 10.1073/pnas.1534804100 – ident: R21 doi: 10.4049/jimmunol.165.11.6091 – ident: R25 doi: 10.1182/blood.V89.3.873 – ident: R64 doi: 10.3109/15513819209023312 – ident: R61 doi: 10.1074/jbc.M112050200 – ident: R24 doi: 10.1053/rmed.2001.1221 – ident: R50 doi: 10.1002/1521-1878(200009)22:9<818::AID-BIES7>3.0.CO;2-6 – ident: R18 doi: 10.1111/j.1365-2222.1997.tb01181.x – ident: R43 – ident: R19 doi: 10.1093/emboj/18.24.6962 – ident: R46 doi: 10.1074/jbc.M000240200 – ident: R3 doi: 10.1074/jbc.271.6.3279 – ident: R39 doi: 10.1128/MCB.18.11.6666 – ident: R51 doi: 10.1073/pnas.0704045104 – ident: R6 doi: 10.1165/ajrcmb/9.6.586 – ident: R40 doi: 10.1042/bj3630211 – ident: R57 doi: 10.1128/.66.9.4431-4439.1998 – ident: R35 doi: 10.1152/ajplung.1992.263.1.L79 – ident: R59 doi: 10.1016/0092-8674(94)90337-9 – ident: R22 doi: 10.1074/jbc.274.17.11930 – ident: R14 doi: 10.1126/science.7694367 – ident: R38 doi: 10.1016/S0021-9258(18)43775-1 – ident: R15 doi: 10.1074/jbc.271.39.24270 – ident: R28 doi: 10.1152/ajplung.00388.2004 – ident: R66 doi: 10.1074/jbc.M510797200 – ident: R48 doi: 10.1165/ajrcmb.20.5.3308 – ident: R52 doi: 10.1074/jbc.M011248200 – ident: R70 doi: 10.1126/science.7694366 – ident: R29 doi: 10.1152/ajplung.00455.2001 – ident: R1 doi: 10.1128/MCB.23.21.7875-7886.2003 – ident: R20 doi: 10.1038/sj.onc.1205684 – ident: R69 doi: 10.1128/MCB.17.9.5598 – ident: R67 doi: 10.1172/JCI200419569 – ident: R41 doi: 10.1097/ACI.0b013e328012ce22 – ident: R60 doi: 10.1016/0092-8674(89)90689-2 – ident: R32 doi: 10.1038/nm0102-41 – ident: R30 doi: 10.1016/j.amjmed.2003.09.009 – ident: R11 doi: 10.1091/mbc.7.6.871 – ident: R33 doi: 10.1128/MCB.18.12.7216 – ident: R4 doi: 10.1016/0091-6749(93)90064-M – ident: R65 doi: 10.1165/ajrcmb/7.2.214 – ident: R31 doi: 10.1002/jcp.10432 – ident: R12 doi: 10.4049/jimmunol.168.11.5530 – ident: R8 doi: 10.4049/jimmunol.167.10.5948 – ident: R13 doi: 10.1165/rcmb.2003-0199OC – ident: R62 doi: 10.1073/pnas.96.6.3081 – ident: R58 doi: 10.1074/jbc.271.18.10963 – ident: R9 doi: 10.1136/thx.2006.062190 – ident: R53 doi: 10.1165/ajrcmb/9.2.213 – ident: R34 doi: 10.1152/ajprenal.00205.2004 – ident: R55 doi: 10.1152/ajplung.00019.2004 – reference: 9762790 - Eur Respir J. 1998 Sep;12(3):619-26 – reference: 15739255 - Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H1257-64 – reference: 10207014 - J Biol Chem. 1999 Apr 23;274(17):11930-6 – reference: 16100285 - Am J Physiol Lung Cell Mol Physiol. 2006 Jan;290(1):L86-96 – reference: 7527024 - J Biol Chem. 1994 Dec 2;269(48):30081-4 – reference: 17606926 - Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11814-9 – reference: 7507411 - Cell. 1994 Jan 28;76(2):301-14 – reference: 7694366 - Science. 1993 Nov 12;262(5136):1065-9 – reference: 11931648 - Biochem J. 2002 Apr 15;363(Pt 2):211-21 – reference: 10226061 - Am J Respir Cell Mol Biol. 1999 May;20(5):914-23 – reference: 14504278 - J Biol Chem. 2003 Nov 28;278(48):47731-43 – reference: 8338688 - Am J Respir Cell Mol Biol. 1993 Aug;9(2):213-20 – reference: 8621731 - J Biol Chem. 1996 Feb 9;271(6):3279-84 – reference: 7664271 - Cancer Res. 1995 Sep 15;55(18):4000-3 – reference: 8572305 - Anal Biochem. 1995 Jul 1;228(2):267-73 – reference: 11359444 - Clin Exp Immunol. 2001 Apr;124(1):69-76 – reference: 9712798 - Infect Immun. 1998 Sep;66(9):4431-9 – reference: 11278868 - J Biol Chem. 2001 Apr 20;276(16):13057-64 – reference: 11698473 - J Immunol. 2001 Nov 15;167(10):5948-54 – reference: 15121636 - Am J Physiol Lung Cell Mol Physiol. 2004 Aug;287(2):L420-7 – reference: 14560030 - Mol Cell Biol. 2003 Nov;23(21):7875-86 – reference: 16055478 - Am J Physiol Lung Cell Mol Physiol. 2005 Dec;289(6):L1049-60 – reference: 1353976 - Am J Respir Cell Mol Biol. 1992 Aug;7(2):214-21 – reference: 8816994 - Mol Biol Cell. 1996 Jun;7(6):871-81 – reference: 12149643 - Oncogene. 2002 Aug 8;21(34):5213-23 – reference: 9028318 - Blood. 1997 Feb 1;89(3):873-82 – reference: 12972643 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11618-23 – reference: 14978732 - J Cell Physiol. 2004 Apr;199(1):32-9 – reference: 11786905 - Nat Med. 2002 Jan;8(1):41-6 – reference: 12867228 - Am J Med. 2003 Jul;115(1):6-11 – reference: 8573075 - Biochem J. 1996 Jan 15;313 ( Pt 2):431-9 – reference: 10383446 - J Biol Chem. 1999 Jul 2;274(27):19347-51 – reference: 7834738 - Cell. 1995 Jan 27;80(2):179-85 – reference: 12169572 - Am J Physiol Lung Cell Mol Physiol. 2002 Sep;283(3):L531-40 – reference: 7509705 - Am J Respir Crit Care Med. 1994 Mar;149(3 Pt 1):803-10 – reference: 7504927 - Am J Respir Cell Mol Biol. 1993 Dec;9(6):586-93 – reference: 10944584 - Bioessays. 2000 Sep;22(9):818-26 – reference: 15232617 - J Clin Invest. 2004 Jul;114(1):104-11 – reference: 2538244 - Cell. 1989 Mar 10;56(5):849-53 – reference: 9271435 - Mol Cell Biol. 1997 Sep;17(9):5598-611 – reference: 9834131 - J Immunol. 1998 Dec 1;161(11):6398-405 – reference: 15215480 - N Engl J Med. 2004 Jun 24;350(26):2645-53 – reference: 3315233 - Cell. 1987 Dec 4;51(5):813-9 – reference: 1353306 - Am J Physiol. 1992 Jul;263(1 Pt 1):L79-87 – reference: 10601018 - EMBO J. 1999 Dec 15;18(24):6962-72 – reference: 1409135 - Pediatr Pathol. 1992 May-Jun;12(3):313-24 – reference: 8631915 - J Biol Chem. 1996 May 3;271(18):10963-6 – reference: 9600638 - Eur J Pharmacol. 1998 Mar 19;345(2):199-206 – reference: 9819408 - Mol Cell Biol. 1998 Dec;18(12):7216-24 – reference: 7694367 - Science. 1993 Nov 12;262(5136):1069-72 – reference: 8798673 - J Biol Chem. 1996 Sep 27;271(39):24270-7 – reference: 11860173 - Respir Med. 2002 Feb;96(2):81-6 – reference: 12023348 - J Immunol. 2002 Jun 1;168(11):5530-7 – reference: 15640347 - Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):767-72 – reference: 17218812 - Curr Opin Allergy Clin Immunol. 2007 Feb;7(1):57-62 – reference: 9774681 - Mol Cell Biol. 1998 Nov;18(11):6666-78 – reference: 9420140 - Clin Exp Allergy. 1997 Nov;27(11):1344-55 – reference: 8756799 - Am J Respir Crit Care Med. 1996 Aug;154(2 Pt 1):308-17 – reference: 10903502 - Eur J Biochem. 2000 Aug;267(15):4693-704 – reference: 10864922 - J Biol Chem. 2000 Sep 29;275(39):30029-36 – reference: 7505008 - J Allergy Clin Immunol. 1993 Dec;92(6):857-68 – reference: 11823465 - J Biol Chem. 2002 Apr 12;277(15):12838-45 – reference: 11086041 - J Immunol. 2000 Dec 1;165(11):6091-8 – reference: 8797599 - Cancer Res. 1996 Sep 15;56(18):4244-9 – reference: 16928707 - Thorax. 2007 Feb;62(2):153-61 – reference: 16332693 - J Biol Chem. 2006 Feb 10;281(6):3157-64 – reference: 10077640 - Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3081-6 – reference: 11943022 - Histopathology. 2002 Apr;40(4):367-73 – reference: 16428725 - Infect Immun. 2006 Feb;74(2):830-8 – reference: 14500256 - Am J Respir Cell Mol Biol. 2004 Apr;30(4):470-8 |
SSID | ssj0005006 |
Score | 2.0156338 |
Snippet | 1 Cardiovascular Research Institute, 2 Department of Medicine, and 3 Department of Physiology, University of California, San Francisco, California
Submitted 2... Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis.... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | L174 |
SubjectTerms | Antibodies - pharmacology Binding sites Biochemistry Cell Line, Tumor Cells Chronic obstructive pulmonary disease Cystic fibrosis Enzyme Activation - drug effects Epithelial Cells - drug effects Epithelial Cells - enzymology Extracellular Signal-Regulated MAP Kinases - metabolism Fibrinogen - metabolism Humans Intercellular Adhesion Molecule-1 - metabolism Lung - cytology Metalloproteases - metabolism Models, Biological Mucins Mucins - biosynthesis Neutralization Tests Peptides Phosphorylation - drug effects Phosphotyrosine - metabolism Protein Binding - drug effects Protein Kinase C - metabolism Receptor, Epidermal Growth Factor - metabolism Transforming Growth Factor alpha - pharmacology Type C Phospholipases - metabolism |
Title | Fibrinogen binding to ICAM-1 promotes EGFR-dependent mucin production in human airway epithelial cells |
URI | http://ajplung.physiology.org/cgi/content/abstract/297/1/L174 https://www.ncbi.nlm.nih.gov/pubmed/19429776 https://www.proquest.com/docview/210919895 https://www.proquest.com/docview/67421891 https://pubmed.ncbi.nlm.nih.gov/PMC2711817 |
Volume | 297 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEGIvCDYu2bj4Ae0lysjFTuLHUq0M2CZAm7S3yHUcUdSm1ZoKld_Cj-XYjpN0rdDgpUoTJ3LyfbGPT875DkJvY1LAtEJGXphI3yOMcI-LlAOXKeWU576fq9zh84v49Ip8uqbXvd7vTtTSshodi19b80r-B1XYB7iqLNl_QLa5KOyAbcAXfgFh-L0TxkMVr1_O4Lg7Gpv0FDAlPw76516gIq8ABrlwTz4Mv3m22G3lTpdirOOyciMcqzweplIfH9_85CtXzlWexkS50pVbf9G1X5sPPB3FCe0c0d75Y_dsqXJ44Swd3aqc8lNbf7fTrv3wPzWRQW2cx4WSrTThu6vaz2p9EqyJX7XDqIpT9GPffK-W9dAKy14wP0l37A1NcO4aycxIehaY6j2bQzxVkrH8x3wCd6TkJyOtJ8q6jQGm-VSDHjCYcJNki9r2rVmwiU2sr5zBaVmQqW7cQ_fDJNFBAJ-_tlr01NeVW5t7tSlZNHy32TstTmu6sm4BWVXqbSuc24G6Hcvn8jF6VC9ZcN_w7wnqyXIP7fdLXs2mK3yEvzS47qEH7-3Ww4EtJbiPipaouCYqrmbYEBVbouJ1omJNVNwSFcM_TVRsiIpbomJN1KfoanhyOTj16gIfnoB1cuXB0lb4UkRgtCZFHnMpAlZQSZRVyVJJ8kCQnKRcsiJOCyFzKmBo4TQnHCZH6UfP0E45K-ULhGXIiyglRRQUKeExS4GtEVhoOWdSjOLCQYF96Jmo1e9VEZZJplfBNMws7hozVZ2VOchtzpkb7Ze_tj6yWGbtC5Vt0slBhxbprH5ZF1moBHpZyqiD3jRHASX1-HgpZ8tFFicE7HEWOOi5YUXbqZpZDkrW-NI0UBry60fK8XetJR8mKvM8Obhr5w_RbvvCv0Q71c1SvgKzvBq91m_HH-7T6DQ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fibrinogen+binding+to+ICAM-1+promotes+EGFR-dependent+mucin+production+in+human+airway+epithelial+cells&rft.jtitle=American+journal+of+physiology.+Lung+cellular+and+molecular+physiology&rft.au=Kim%2C+Suil&rft.au=Nadel%2C+Jay+A&rft.date=2009-07-01&rft.issn=1040-0605&rft.eissn=1522-1504&rft.volume=297&rft.issue=1&rft.spage=L174&rft_id=info:doi/10.1152%2Fajplung.00032.2009&rft_id=info%3Apmid%2F19429776&rft.externalDBID=n%2Fa&rft.externalDocID=ajplung_297_1_L174 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-0605&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-0605&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-0605&client=summon |