Fibrinogen binding to ICAM-1 promotes EGFR-dependent mucin production in human airway epithelial cells

1 Cardiovascular Research Institute, 2 Department of Medicine, and 3 Department of Physiology, University of California, San Francisco, California Submitted 2 February 2009 ; accepted in final form 4 May 2009 Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chron...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Lung cellular and molecular physiology Vol. 297; no. 1; pp. L174 - L183
Main Authors Kim, Suil, Nadel, Jay A
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.07.2009
Subjects
Online AccessGet full text
ISSN1040-0605
1522-1504
1522-1504
DOI10.1152/ajplung.00032.2009

Cover

Abstract 1 Cardiovascular Research Institute, 2 Department of Medicine, and 3 Department of Physiology, University of California, San Francisco, California Submitted 2 February 2009 ; accepted in final form 4 May 2009 Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Although mucins are produced via activation of an EGF receptor (EGFR) signaling cascade, the mechanisms leading to exaggerated mucin production in mucous hypersecretory diseases are unknown. Because expression of ICAM-1 and of the ICAM-1 ligand fibrinogen is increased in the airways of subjects with mucous hypersecretory diseases, we hypothesized that fibrinogen binding to ICAM-1 could increase EGFR-dependent mucin production in human airway (NCI-H292) epithelial cells. Consistent with this hypothesis, we found that an ICAM-1 neutralizing antibody and an ICAM-1(8–22) peptide that binds fibrinogen decreased mucin production induced by the EGFR ligand transforming growth factor (TGF)- dose-dependently. Exogenous fibrinogen and a fibrinogen(117–133) peptide that binds ICAM-1 rescued mucin production in cells treated with the ICAM-1(8–22) peptide. Surprisingly, the ICAM-1(8–22) peptide increased EGFR phosphotyrosine and phospho-ERK1/2 in cells treated with TGF- . The ICAM-1(8–22) peptide-induced increases in EGFR phosphotyrosine and phospho-ERK1/2 were prevented by exogenous fibrinogen, by the fibrinogen(117–133) peptide, and by selective inhibitors of phospholipase C (PLC), protein kinase C (PKC)- /β, and metalloproteases. These results suggest that fibrinogen binding to ICAM-1 promotes mucin production by decreasing TGF- -induced EGFR and ERK1/2 activation and that the fibrinogen-ICAM-1-dependent decrease in EGFR and ERK1/2 activation occurs via inhibition of an early positive feedback pathway involving PLC- and PKC- /β-dependent metalloprotease activation and subsequent metalloprotease-dependent EGFR reactivation. cell surface molecules; innate immunity; mucous hypersecretion; cell differentiation Address for reprint requests and other correspondence: S. Kim, Cardiovascular Research Inst., Univ. of California San Francisco, Box 0130, San Francisco, CA 94143-0130 (e-mail: suil.kim{at}ucsf.edu )
AbstractList Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Although mucins are produced via activation of an EGF receptor (EGFR) signaling cascade, the mechanisms leading to exaggerated mucin production in mucous hypersecretory diseases are unknown. Because expression of ICAM-1 and of the ICAM-1 ligand fibrinogen is increased in the airways of subjects with mucous hypersecretory diseases, we hypothesized that fibrinogen binding to ICAM-1 could increase EGFR-dependent mucin production in human airway (NCI-H292) epithelial cells. Consistent with this hypothesis, we found that an ICAM-1 neutralizing antibody and an ICAM-1(8–22) peptide that binds fibrinogen decreased mucin production induced by the EGFR ligand transforming growth factor (TGF)-α dose-dependently. Exogenous fibrinogen and a fibrinogen(117–133) peptide that binds ICAM-1 rescued mucin production in cells treated with the ICAM-1(8–22) peptide. Surprisingly, the ICAM-1(8–22) peptide increased EGFR phosphotyrosine and phospho-ERK1/2 in cells treated with TGF-α. The ICAM-1(8–22) peptide-induced increases in EGFR phosphotyrosine and phospho-ERK1/2 were prevented by exogenous fibrinogen, by the fibrinogen(117–133) peptide, and by selective inhibitors of phospholipase C (PLC), protein kinase C (PKC)-α/β, and metalloproteases. These results suggest that fibrinogen binding to ICAM-1 promotes mucin production by decreasing TGF-α-induced EGFR and ERK1/2 activation and that the fibrinogen-ICAM-1-dependent decrease in EGFR and ERK1/2 activation occurs via inhibition of an early positive feedback pathway involving PLC- and PKC-α/β-dependent metalloprotease activation and subsequent metalloprotease-dependent EGFR reactivation.
Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Although mucins are produced via activation of an EGF receptor (EGFR) signaling cascade, the mechanisms leading to exaggerated mucin production in mucous hypersecretory diseases are unknown. Because expression of ICAM-1 and of the ICAM-1 ligand fibrinogen is increased in the airways of subjects with mucous hypersecretory diseases, we hypothesized that fibrinogen binding to ICAM-1 could increase EGFR-dependent mucin production in human airway (NCI-H292) epithelial cells. Consistent with this hypothesis, we found that an ICAM-1 neutralizing antibody and an ICAM-1(8-22) peptide that binds fibrinogen decreased mucin production induced by the EGFR ligand transforming growth factor (TGF)-alpha dose-dependently. Exogenous fibrinogen and a fibrinogen(117-133) peptide that binds ICAM-1 rescued mucin production in cells treated with the ICAM-1(8-22) peptide. Surprisingly, the ICAM-1(8-22) peptide increased EGFR phosphotyrosine and phospho-ERK1/2 in cells treated with TGF-alpha. The ICAM-1(8-22) peptide-induced increases in EGFR phosphotyrosine and phospho-ERK1/2 were prevented by exogenous fibrinogen, by the fibrinogen(117-133) peptide, and by selective inhibitors of phospholipase C (PLC), protein kinase C (PKC)-alpha/beta, and metalloproteases. These results suggest that fibrinogen binding to ICAM-1 promotes mucin production by decreasing TGF-alpha-induced EGFR and ERK1/2 activation and that the fibrinogen-ICAM-1-dependent decrease in EGFR and ERK1/2 activation occurs via inhibition of an early positive feedback pathway involving PLC- and PKC-alpha/beta-dependent metalloprotease activation and subsequent metalloprotease-dependent EGFR reactivation.Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Although mucins are produced via activation of an EGF receptor (EGFR) signaling cascade, the mechanisms leading to exaggerated mucin production in mucous hypersecretory diseases are unknown. Because expression of ICAM-1 and of the ICAM-1 ligand fibrinogen is increased in the airways of subjects with mucous hypersecretory diseases, we hypothesized that fibrinogen binding to ICAM-1 could increase EGFR-dependent mucin production in human airway (NCI-H292) epithelial cells. Consistent with this hypothesis, we found that an ICAM-1 neutralizing antibody and an ICAM-1(8-22) peptide that binds fibrinogen decreased mucin production induced by the EGFR ligand transforming growth factor (TGF)-alpha dose-dependently. Exogenous fibrinogen and a fibrinogen(117-133) peptide that binds ICAM-1 rescued mucin production in cells treated with the ICAM-1(8-22) peptide. Surprisingly, the ICAM-1(8-22) peptide increased EGFR phosphotyrosine and phospho-ERK1/2 in cells treated with TGF-alpha. The ICAM-1(8-22) peptide-induced increases in EGFR phosphotyrosine and phospho-ERK1/2 were prevented by exogenous fibrinogen, by the fibrinogen(117-133) peptide, and by selective inhibitors of phospholipase C (PLC), protein kinase C (PKC)-alpha/beta, and metalloproteases. These results suggest that fibrinogen binding to ICAM-1 promotes mucin production by decreasing TGF-alpha-induced EGFR and ERK1/2 activation and that the fibrinogen-ICAM-1-dependent decrease in EGFR and ERK1/2 activation occurs via inhibition of an early positive feedback pathway involving PLC- and PKC-alpha/beta-dependent metalloprotease activation and subsequent metalloprotease-dependent EGFR reactivation.
Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Although mucins are produced via activation of an EGF receptor (EGFR) signaling cascade, the mechanisms leading to exaggerated mucin production in mucous hypersecretory diseases are unknown. Because expression of ICAM-1 and of the ICAM-1 ligand fibrinogen is increased in the airways of subjects with mucous hypersecretory diseases, we hypothesized that fibrinogen binding to ICAM-1 could increase EGFR- dependent mucin production in human airway (NCI-H292) epithelial cells. Consistent with this hypothesis, we found that an ICAM-1 neutralizing antibody and an ICAM-1(8-22) peptide that binds fibrinogen decreased mucin production induced by the EGFR ligand transforming growth factor (TGF)-α dose-dependently. Exogenous fibrinogen and a fibrinogen(117-133) peptide that binds ICAM-1 rescued mucin production in cells treated with the ICAM-1(8-22) peptide. Surprisingly, the ICAM-1(8-22) peptide increased EGFR phosphotyrosine and phospho- ERK1/2 in cells treated with TGF-α. The ICAM-1(8-22) peptide-induced increases in EGFR phosphotyrosine and phospho-ERK1/2 were prevented by exogenous fibrinogen, by the fibrinogen(117-133) peptide, and by selective inhibitors of phospholipase C (PLC), protein kinase C (PKC)-α/β, and metalloproteases. These results suggest that fibrinogen binding to ICAM-1 promotes mucin production by decreasing TGF- -induced EGFR and ERK1/2 activation and that the fibrinogen-ICAM-1-dependent decrease in EGFR and ERK1/2 activation occurs via inhibition of an early positive feedback pathway involving PLC- and PKC-α/β-dependent metalloprotease activation and subsequent metalloprotease-dependent EGFR reactivation. [PUBLICATION ABSTRACT]
Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Although mucins are produced via activation of an EGF receptor (EGFR) signaling cascade, the mechanisms leading to exaggerated mucin production in mucous hypersecretory diseases are unknown. Because expression of ICAM-1 and of the ICAM-1 ligand fibrinogen is increased in the airways of subjects with mucous hypersecretory diseases, we hypothesized that fibrinogen binding to ICAM-1 could increase EGFR-dependent mucin production in human airway (NCI-H292) epithelial cells. Consistent with this hypothesis, we found that an ICAM-1 neutralizing antibody and an ICAM-1(8-22) peptide that binds fibrinogen decreased mucin production induced by the EGFR ligand transforming growth factor (TGF)-alpha dose-dependently. Exogenous fibrinogen and a fibrinogen(117-133) peptide that binds ICAM-1 rescued mucin production in cells treated with the ICAM-1(8-22) peptide. Surprisingly, the ICAM-1(8-22) peptide increased EGFR phosphotyrosine and phospho-ERK1/2 in cells treated with TGF-alpha. The ICAM-1(8-22) peptide-induced increases in EGFR phosphotyrosine and phospho-ERK1/2 were prevented by exogenous fibrinogen, by the fibrinogen(117-133) peptide, and by selective inhibitors of phospholipase C (PLC), protein kinase C (PKC)-alpha/beta, and metalloproteases. These results suggest that fibrinogen binding to ICAM-1 promotes mucin production by decreasing TGF-alpha-induced EGFR and ERK1/2 activation and that the fibrinogen-ICAM-1-dependent decrease in EGFR and ERK1/2 activation occurs via inhibition of an early positive feedback pathway involving PLC- and PKC-alpha/beta-dependent metalloprotease activation and subsequent metalloprotease-dependent EGFR reactivation.
1 Cardiovascular Research Institute, 2 Department of Medicine, and 3 Department of Physiology, University of California, San Francisco, California Submitted 2 February 2009 ; accepted in final form 4 May 2009 Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Although mucins are produced via activation of an EGF receptor (EGFR) signaling cascade, the mechanisms leading to exaggerated mucin production in mucous hypersecretory diseases are unknown. Because expression of ICAM-1 and of the ICAM-1 ligand fibrinogen is increased in the airways of subjects with mucous hypersecretory diseases, we hypothesized that fibrinogen binding to ICAM-1 could increase EGFR-dependent mucin production in human airway (NCI-H292) epithelial cells. Consistent with this hypothesis, we found that an ICAM-1 neutralizing antibody and an ICAM-1(8–22) peptide that binds fibrinogen decreased mucin production induced by the EGFR ligand transforming growth factor (TGF)- dose-dependently. Exogenous fibrinogen and a fibrinogen(117–133) peptide that binds ICAM-1 rescued mucin production in cells treated with the ICAM-1(8–22) peptide. Surprisingly, the ICAM-1(8–22) peptide increased EGFR phosphotyrosine and phospho-ERK1/2 in cells treated with TGF- . The ICAM-1(8–22) peptide-induced increases in EGFR phosphotyrosine and phospho-ERK1/2 were prevented by exogenous fibrinogen, by the fibrinogen(117–133) peptide, and by selective inhibitors of phospholipase C (PLC), protein kinase C (PKC)- /β, and metalloproteases. These results suggest that fibrinogen binding to ICAM-1 promotes mucin production by decreasing TGF- -induced EGFR and ERK1/2 activation and that the fibrinogen-ICAM-1-dependent decrease in EGFR and ERK1/2 activation occurs via inhibition of an early positive feedback pathway involving PLC- and PKC- /β-dependent metalloprotease activation and subsequent metalloprotease-dependent EGFR reactivation. cell surface molecules; innate immunity; mucous hypersecretion; cell differentiation Address for reprint requests and other correspondence: S. Kim, Cardiovascular Research Inst., Univ. of California San Francisco, Box 0130, San Francisco, CA 94143-0130 (e-mail: suil.kim{at}ucsf.edu )
Author Kim, Suil
Nadel, Jay A
AuthorAffiliation 1 Cardiovascular Research Institute, 2 Department of Medicine, and 3 Department of Physiology, University of California, San Francisco, California
AuthorAffiliation_xml – name: 1 Cardiovascular Research Institute, 2 Department of Medicine, and 3 Department of Physiology, University of California, San Francisco, California
Author_xml – sequence: 1
  fullname: Kim, Suil
– sequence: 2
  fullname: Nadel, Jay A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19429776$$D View this record in MEDLINE/PubMed
BookMark eNp9UU2P1CAYbswa90P_gAdDPHjrCAy0cDExm53VZIyJ0TNh4G3LpIUK7W7m30udcaJ78ATk-eB53-e6uPDBQ1G8JnhFCKfv9X7sZ9-uMMZruqIYy2fFVQZoSThmF_mOGS5xhfllcZ3SPvM4xtWL4pJIRmVdV1dFs3G76HxowaOd89b5Fk0Bfb79-KUkaIxhCBMkdHe_-VZaGMFb8BMaZuP8gtrZTC54lF_dPGiPtIuP-oBgdFMHvdM9MtD36WXxvNF9glen86b4sbn7fvup3H69z39tS8NEPZWCVgaDWXMs68ZWGgyRDQdGGeFSALPEMMuEBtlUojFguWEN1dwyjYUAvL4pPhx9x3k3gDU5bNS9GqMbdDyooJ36F_GuU214ULQmRJA6G7w7GcTwc4Y0qcGlZQTtIcxJVTWjREiSiW-fEPdhjj4PpyjBkkgheSa9-TvOOcef_WeCOBJMDClFaJRxk15WmtO5XhGslqrVqWr1u2q1VJ2l9In07P4_UXkUda7tHl0ENXaH5EIf2sOZn6MporakZutfhn3AVQ
CitedBy_id crossref_primary_10_1371_journal_pone_0273107
crossref_primary_10_1016_j_yexcr_2011_08_023
crossref_primary_10_1271_bbb_100830
crossref_primary_10_2147_CMAR_S269244
crossref_primary_10_1038_s41598_019_40983_y
crossref_primary_10_1182_blood_2011_02_338061
crossref_primary_10_3389_fimmu_2020_01205
crossref_primary_10_1111_j_1475_097X_2011_01039_x
crossref_primary_10_1152_ajprenal_00189_2014
crossref_primary_10_1016_j_rmed_2023_107117
crossref_primary_10_4049_jimmunol_1003377
crossref_primary_10_1038_s41385_020_0272_z
crossref_primary_10_1177_0333102416665870
crossref_primary_10_1038_s41419_024_06989_9
Cites_doi 10.1006/abio.1995.1349
10.1016/0092-8674(95)90401-8
10.4049/jimmunol.161.11.6398
10.1016/S0014-2999(98)00020-X
10.1074/jbc.M308466200
10.1164/ajrccm.149.3.7509705
10.1046/j.1365-2249.2001.01456.x
10.1074/jbc.274.27.19347
10.1042/bj3130431
10.1128/IAI.74.2.830-838.2006
10.1046/j.1432-1327.2000.01520.x
10.1056/NEJMoa032158
10.1152/ajplung.00391.2004
10.1164/ajrccm.154.2.8756799
10.1183/09031936.98.12030619
10.1073/pnas.0408932102
10.1046/j.1365-2559.2002.01378.x
10.1016/0092-8674(87)90104-8
10.1073/pnas.1534804100
10.4049/jimmunol.165.11.6091
10.1182/blood.V89.3.873
10.3109/15513819209023312
10.1074/jbc.M112050200
10.1053/rmed.2001.1221
10.1002/1521-1878(200009)22:9<818::AID-BIES7>3.0.CO;2-6
10.1111/j.1365-2222.1997.tb01181.x
10.1093/emboj/18.24.6962
10.1074/jbc.M000240200
10.1074/jbc.271.6.3279
10.1128/MCB.18.11.6666
10.1073/pnas.0704045104
10.1165/ajrcmb/9.6.586
10.1042/bj3630211
10.1128/.66.9.4431-4439.1998
10.1152/ajplung.1992.263.1.L79
10.1016/0092-8674(94)90337-9
10.1074/jbc.274.17.11930
10.1126/science.7694367
10.1016/S0021-9258(18)43775-1
10.1074/jbc.271.39.24270
10.1152/ajplung.00388.2004
10.1074/jbc.M510797200
10.1165/ajrcmb.20.5.3308
10.1074/jbc.M011248200
10.1126/science.7694366
10.1152/ajplung.00455.2001
10.1128/MCB.23.21.7875-7886.2003
10.1038/sj.onc.1205684
10.1128/MCB.17.9.5598
10.1172/JCI200419569
10.1097/ACI.0b013e328012ce22
10.1016/0092-8674(89)90689-2
10.1038/nm0102-41
10.1016/j.amjmed.2003.09.009
10.1091/mbc.7.6.871
10.1128/MCB.18.12.7216
10.1016/0091-6749(93)90064-M
10.1165/ajrcmb/7.2.214
10.1002/jcp.10432
10.4049/jimmunol.168.11.5530
10.4049/jimmunol.167.10.5948
10.1165/rcmb.2003-0199OC
10.1073/pnas.96.6.3081
10.1074/jbc.271.18.10963
10.1136/thx.2006.062190
10.1165/ajrcmb/9.2.213
10.1152/ajprenal.00205.2004
10.1152/ajplung.00019.2004
ContentType Journal Article
Copyright Copyright American Physiological Society Jul 2009
Copyright © 2009, American Physiological Society
Copyright_xml – notice: Copyright American Physiological Society Jul 2009
– notice: Copyright © 2009, American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7U7
C1K
7X8
5PM
DOI 10.1152/ajplung.00032.2009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Physical Education Index
Toxicology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Toxicology Abstracts
Calcium & Calcified Tissue Abstracts
Physical Education Index
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Toxicology Abstracts
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1522-1504
EndPage L183
ExternalDocumentID PMC2711817
1769434921
19429776
10_1152_ajplung_00032_2009
ajplung_297_1_L174
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL-73906
GroupedDBID -
23M
2WC
39C
4.4
53G
5GY
5VS
ABFLS
ABPTK
ACPRK
ADACO
ADBBV
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
C1A
DIK
DL
E3Z
EBS
EJD
F5P
KQ8
O0-
OK1
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
WH7
WOQ
---
8M5
AAYXX
BKKCC
BTFSW
CITATION
EMOBN
H13
ITBOX
RPRKH
TR2
W8F
XSW
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7U7
C1K
7X8
5PM
ID FETCH-LOGICAL-c487t-826c0ec35097fd6aec19f5e4241598e4d1c4d48ae9f68fced5c4f2a5d4a088e03
ISSN 1040-0605
1522-1504
IngestDate Thu Aug 21 13:54:57 EDT 2025
Thu Jul 10 19:15:43 EDT 2025
Mon Jun 30 08:49:06 EDT 2025
Thu Apr 03 07:01:09 EDT 2025
Tue Jul 01 00:21:09 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
Tue Jan 05 17:55:44 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c487t-826c0ec35097fd6aec19f5e4241598e4d1c4d48ae9f68fced5c4f2a5d4a088e03
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Address for reprint requests and other correspondence: S. Kim, Cardiovascular Research Inst., Univ. of California San Francisco, Box 0130, San Francisco, CA 94143-0130 (e-mail: suil.kim@ucsf.edu)
PMID 19429776
PQID 210919895
PQPubID 31225
ParticipantIDs crossref_citationtrail_10_1152_ajplung_00032_2009
pubmed_primary_19429776
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2711817
crossref_primary_10_1152_ajplung_00032_2009
proquest_miscellaneous_67421891
highwire_physiology_ajplung_297_1_L174
proquest_journals_210919895
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-07-01
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle American journal of physiology. Lung cellular and molecular physiology
PublicationTitleAlternate Am J Physiol Lung Cell Mol Physiol
PublicationYear 2009
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References R61
R60
R63
R62
R21
R65
R20
R64
R23
R67
R22
R66
R25
R69
R24
R68
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R70
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R54
R53
R12
R56
R11
R55
R14
R58
R13
R57
R16
R15
R59
R18
R17
R19
8798673 - J Biol Chem. 1996 Sep 27;271(39):24270-7
10601018 - EMBO J. 1999 Dec 15;18(24):6962-72
15739255 - Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H1257-64
8572305 - Anal Biochem. 1995 Jul 1;228(2):267-73
9271435 - Mol Cell Biol. 1997 Sep;17(9):5598-611
11823465 - J Biol Chem. 2002 Apr 12;277(15):12838-45
15121636 - Am J Physiol Lung Cell Mol Physiol. 2004 Aug;287(2):L420-7
11860173 - Respir Med. 2002 Feb;96(2):81-6
16428725 - Infect Immun. 2006 Feb;74(2):830-8
2538244 - Cell. 1989 Mar 10;56(5):849-53
8631915 - J Biol Chem. 1996 May 3;271(18):10963-6
7664271 - Cancer Res. 1995 Sep 15;55(18):4000-3
8756799 - Am J Respir Crit Care Med. 1996 Aug;154(2 Pt 1):308-17
11086041 - J Immunol. 2000 Dec 1;165(11):6091-8
10383446 - J Biol Chem. 1999 Jul 2;274(27):19347-51
10903502 - Eur J Biochem. 2000 Aug;267(15):4693-704
15640347 - Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):767-72
15232617 - J Clin Invest. 2004 Jul;114(1):104-11
1353306 - Am J Physiol. 1992 Jul;263(1 Pt 1):L79-87
10944584 - Bioessays. 2000 Sep;22(9):818-26
12149643 - Oncogene. 2002 Aug 8;21(34):5213-23
10207014 - J Biol Chem. 1999 Apr 23;274(17):11930-6
14560030 - Mol Cell Biol. 2003 Nov;23(21):7875-86
3315233 - Cell. 1987 Dec 4;51(5):813-9
8573075 - Biochem J. 1996 Jan 15;313 ( Pt 2):431-9
8797599 - Cancer Res. 1996 Sep 15;56(18):4244-9
9819408 - Mol Cell Biol. 1998 Dec;18(12):7216-24
1409135 - Pediatr Pathol. 1992 May-Jun;12(3):313-24
10864922 - J Biol Chem. 2000 Sep 29;275(39):30029-36
9600638 - Eur J Pharmacol. 1998 Mar 19;345(2):199-206
7834738 - Cell. 1995 Jan 27;80(2):179-85
8338688 - Am J Respir Cell Mol Biol. 1993 Aug;9(2):213-20
11786905 - Nat Med. 2002 Jan;8(1):41-6
7509705 - Am J Respir Crit Care Med. 1994 Mar;149(3 Pt 1):803-10
7504927 - Am J Respir Cell Mol Biol. 1993 Dec;9(6):586-93
11943022 - Histopathology. 2002 Apr;40(4):367-73
17218812 - Curr Opin Allergy Clin Immunol. 2007 Feb;7(1):57-62
11278868 - J Biol Chem. 2001 Apr 20;276(16):13057-64
9762790 - Eur Respir J. 1998 Sep;12(3):619-26
14504278 - J Biol Chem. 2003 Nov 28;278(48):47731-43
15215480 - N Engl J Med. 2004 Jun 24;350(26):2645-53
16055478 - Am J Physiol Lung Cell Mol Physiol. 2005 Dec;289(6):L1049-60
16928707 - Thorax. 2007 Feb;62(2):153-61
17606926 - Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11814-9
9712798 - Infect Immun. 1998 Sep;66(9):4431-9
7694366 - Science. 1993 Nov 12;262(5136):1065-9
16100285 - Am J Physiol Lung Cell Mol Physiol. 2006 Jan;290(1):L86-96
16332693 - J Biol Chem. 2006 Feb 10;281(6):3157-64
10077640 - Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3081-6
11931648 - Biochem J. 2002 Apr 15;363(Pt 2):211-21
12972643 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11618-23
7507411 - Cell. 1994 Jan 28;76(2):301-14
7527024 - J Biol Chem. 1994 Dec 2;269(48):30081-4
9028318 - Blood. 1997 Feb 1;89(3):873-82
8621731 - J Biol Chem. 1996 Feb 9;271(6):3279-84
12169572 - Am J Physiol Lung Cell Mol Physiol. 2002 Sep;283(3):L531-40
14978732 - J Cell Physiol. 2004 Apr;199(1):32-9
9420140 - Clin Exp Allergy. 1997 Nov;27(11):1344-55
12023348 - J Immunol. 2002 Jun 1;168(11):5530-7
8816994 - Mol Biol Cell. 1996 Jun;7(6):871-81
1353976 - Am J Respir Cell Mol Biol. 1992 Aug;7(2):214-21
7694367 - Science. 1993 Nov 12;262(5136):1069-72
12867228 - Am J Med. 2003 Jul;115(1):6-11
14500256 - Am J Respir Cell Mol Biol. 2004 Apr;30(4):470-8
7505008 - J Allergy Clin Immunol. 1993 Dec;92(6):857-68
10226061 - Am J Respir Cell Mol Biol. 1999 May;20(5):914-23
11698473 - J Immunol. 2001 Nov 15;167(10):5948-54
9774681 - Mol Cell Biol. 1998 Nov;18(11):6666-78
9834131 - J Immunol. 1998 Dec 1;161(11):6398-405
11359444 - Clin Exp Immunol. 2001 Apr;124(1):69-76
References_xml – ident: R7
  doi: 10.1006/abio.1995.1349
– ident: R37
  doi: 10.1016/0092-8674(95)90401-8
– ident: R10
  doi: 10.4049/jimmunol.161.11.6398
– ident: R63
  doi: 10.1016/S0014-2999(98)00020-X
– ident: R68
  doi: 10.1074/jbc.M308466200
– ident: R17
  doi: 10.1164/ajrccm.149.3.7509705
– ident: R27
  doi: 10.1046/j.1365-2249.2001.01456.x
– ident: R44
  doi: 10.1074/jbc.274.27.19347
– ident: R49
– ident: R16
  doi: 10.1042/bj3130431
– ident: R2
  doi: 10.1128/IAI.74.2.830-838.2006
– ident: R47
  doi: 10.1046/j.1432-1327.2000.01520.x
– ident: R26
  doi: 10.1056/NEJMoa032158
– ident: R42
  doi: 10.1152/ajplung.00391.2004
– ident: R45
  doi: 10.1164/ajrccm.154.2.8756799
– ident: R5
  doi: 10.1183/09031936.98.12030619
– ident: R54
  doi: 10.1073/pnas.0408932102
– ident: R23
  doi: 10.1046/j.1365-2559.2002.01378.x
– ident: R36
  doi: 10.1016/0092-8674(87)90104-8
– ident: R56
  doi: 10.1073/pnas.1534804100
– ident: R21
  doi: 10.4049/jimmunol.165.11.6091
– ident: R25
  doi: 10.1182/blood.V89.3.873
– ident: R64
  doi: 10.3109/15513819209023312
– ident: R61
  doi: 10.1074/jbc.M112050200
– ident: R24
  doi: 10.1053/rmed.2001.1221
– ident: R50
  doi: 10.1002/1521-1878(200009)22:9<818::AID-BIES7>3.0.CO;2-6
– ident: R18
  doi: 10.1111/j.1365-2222.1997.tb01181.x
– ident: R43
– ident: R19
  doi: 10.1093/emboj/18.24.6962
– ident: R46
  doi: 10.1074/jbc.M000240200
– ident: R3
  doi: 10.1074/jbc.271.6.3279
– ident: R39
  doi: 10.1128/MCB.18.11.6666
– ident: R51
  doi: 10.1073/pnas.0704045104
– ident: R6
  doi: 10.1165/ajrcmb/9.6.586
– ident: R40
  doi: 10.1042/bj3630211
– ident: R57
  doi: 10.1128/.66.9.4431-4439.1998
– ident: R35
  doi: 10.1152/ajplung.1992.263.1.L79
– ident: R59
  doi: 10.1016/0092-8674(94)90337-9
– ident: R22
  doi: 10.1074/jbc.274.17.11930
– ident: R14
  doi: 10.1126/science.7694367
– ident: R38
  doi: 10.1016/S0021-9258(18)43775-1
– ident: R15
  doi: 10.1074/jbc.271.39.24270
– ident: R28
  doi: 10.1152/ajplung.00388.2004
– ident: R66
  doi: 10.1074/jbc.M510797200
– ident: R48
  doi: 10.1165/ajrcmb.20.5.3308
– ident: R52
  doi: 10.1074/jbc.M011248200
– ident: R70
  doi: 10.1126/science.7694366
– ident: R29
  doi: 10.1152/ajplung.00455.2001
– ident: R1
  doi: 10.1128/MCB.23.21.7875-7886.2003
– ident: R20
  doi: 10.1038/sj.onc.1205684
– ident: R69
  doi: 10.1128/MCB.17.9.5598
– ident: R67
  doi: 10.1172/JCI200419569
– ident: R41
  doi: 10.1097/ACI.0b013e328012ce22
– ident: R60
  doi: 10.1016/0092-8674(89)90689-2
– ident: R32
  doi: 10.1038/nm0102-41
– ident: R30
  doi: 10.1016/j.amjmed.2003.09.009
– ident: R11
  doi: 10.1091/mbc.7.6.871
– ident: R33
  doi: 10.1128/MCB.18.12.7216
– ident: R4
  doi: 10.1016/0091-6749(93)90064-M
– ident: R65
  doi: 10.1165/ajrcmb/7.2.214
– ident: R31
  doi: 10.1002/jcp.10432
– ident: R12
  doi: 10.4049/jimmunol.168.11.5530
– ident: R8
  doi: 10.4049/jimmunol.167.10.5948
– ident: R13
  doi: 10.1165/rcmb.2003-0199OC
– ident: R62
  doi: 10.1073/pnas.96.6.3081
– ident: R58
  doi: 10.1074/jbc.271.18.10963
– ident: R9
  doi: 10.1136/thx.2006.062190
– ident: R53
  doi: 10.1165/ajrcmb/9.2.213
– ident: R34
  doi: 10.1152/ajprenal.00205.2004
– ident: R55
  doi: 10.1152/ajplung.00019.2004
– reference: 9762790 - Eur Respir J. 1998 Sep;12(3):619-26
– reference: 15739255 - Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H1257-64
– reference: 10207014 - J Biol Chem. 1999 Apr 23;274(17):11930-6
– reference: 16100285 - Am J Physiol Lung Cell Mol Physiol. 2006 Jan;290(1):L86-96
– reference: 7527024 - J Biol Chem. 1994 Dec 2;269(48):30081-4
– reference: 17606926 - Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11814-9
– reference: 7507411 - Cell. 1994 Jan 28;76(2):301-14
– reference: 7694366 - Science. 1993 Nov 12;262(5136):1065-9
– reference: 11931648 - Biochem J. 2002 Apr 15;363(Pt 2):211-21
– reference: 10226061 - Am J Respir Cell Mol Biol. 1999 May;20(5):914-23
– reference: 14504278 - J Biol Chem. 2003 Nov 28;278(48):47731-43
– reference: 8338688 - Am J Respir Cell Mol Biol. 1993 Aug;9(2):213-20
– reference: 8621731 - J Biol Chem. 1996 Feb 9;271(6):3279-84
– reference: 7664271 - Cancer Res. 1995 Sep 15;55(18):4000-3
– reference: 8572305 - Anal Biochem. 1995 Jul 1;228(2):267-73
– reference: 11359444 - Clin Exp Immunol. 2001 Apr;124(1):69-76
– reference: 9712798 - Infect Immun. 1998 Sep;66(9):4431-9
– reference: 11278868 - J Biol Chem. 2001 Apr 20;276(16):13057-64
– reference: 11698473 - J Immunol. 2001 Nov 15;167(10):5948-54
– reference: 15121636 - Am J Physiol Lung Cell Mol Physiol. 2004 Aug;287(2):L420-7
– reference: 14560030 - Mol Cell Biol. 2003 Nov;23(21):7875-86
– reference: 16055478 - Am J Physiol Lung Cell Mol Physiol. 2005 Dec;289(6):L1049-60
– reference: 1353976 - Am J Respir Cell Mol Biol. 1992 Aug;7(2):214-21
– reference: 8816994 - Mol Biol Cell. 1996 Jun;7(6):871-81
– reference: 12149643 - Oncogene. 2002 Aug 8;21(34):5213-23
– reference: 9028318 - Blood. 1997 Feb 1;89(3):873-82
– reference: 12972643 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11618-23
– reference: 14978732 - J Cell Physiol. 2004 Apr;199(1):32-9
– reference: 11786905 - Nat Med. 2002 Jan;8(1):41-6
– reference: 12867228 - Am J Med. 2003 Jul;115(1):6-11
– reference: 8573075 - Biochem J. 1996 Jan 15;313 ( Pt 2):431-9
– reference: 10383446 - J Biol Chem. 1999 Jul 2;274(27):19347-51
– reference: 7834738 - Cell. 1995 Jan 27;80(2):179-85
– reference: 12169572 - Am J Physiol Lung Cell Mol Physiol. 2002 Sep;283(3):L531-40
– reference: 7509705 - Am J Respir Crit Care Med. 1994 Mar;149(3 Pt 1):803-10
– reference: 7504927 - Am J Respir Cell Mol Biol. 1993 Dec;9(6):586-93
– reference: 10944584 - Bioessays. 2000 Sep;22(9):818-26
– reference: 15232617 - J Clin Invest. 2004 Jul;114(1):104-11
– reference: 2538244 - Cell. 1989 Mar 10;56(5):849-53
– reference: 9271435 - Mol Cell Biol. 1997 Sep;17(9):5598-611
– reference: 9834131 - J Immunol. 1998 Dec 1;161(11):6398-405
– reference: 15215480 - N Engl J Med. 2004 Jun 24;350(26):2645-53
– reference: 3315233 - Cell. 1987 Dec 4;51(5):813-9
– reference: 1353306 - Am J Physiol. 1992 Jul;263(1 Pt 1):L79-87
– reference: 10601018 - EMBO J. 1999 Dec 15;18(24):6962-72
– reference: 1409135 - Pediatr Pathol. 1992 May-Jun;12(3):313-24
– reference: 8631915 - J Biol Chem. 1996 May 3;271(18):10963-6
– reference: 9600638 - Eur J Pharmacol. 1998 Mar 19;345(2):199-206
– reference: 9819408 - Mol Cell Biol. 1998 Dec;18(12):7216-24
– reference: 7694367 - Science. 1993 Nov 12;262(5136):1069-72
– reference: 8798673 - J Biol Chem. 1996 Sep 27;271(39):24270-7
– reference: 11860173 - Respir Med. 2002 Feb;96(2):81-6
– reference: 12023348 - J Immunol. 2002 Jun 1;168(11):5530-7
– reference: 15640347 - Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):767-72
– reference: 17218812 - Curr Opin Allergy Clin Immunol. 2007 Feb;7(1):57-62
– reference: 9774681 - Mol Cell Biol. 1998 Nov;18(11):6666-78
– reference: 9420140 - Clin Exp Allergy. 1997 Nov;27(11):1344-55
– reference: 8756799 - Am J Respir Crit Care Med. 1996 Aug;154(2 Pt 1):308-17
– reference: 10903502 - Eur J Biochem. 2000 Aug;267(15):4693-704
– reference: 10864922 - J Biol Chem. 2000 Sep 29;275(39):30029-36
– reference: 7505008 - J Allergy Clin Immunol. 1993 Dec;92(6):857-68
– reference: 11823465 - J Biol Chem. 2002 Apr 12;277(15):12838-45
– reference: 11086041 - J Immunol. 2000 Dec 1;165(11):6091-8
– reference: 8797599 - Cancer Res. 1996 Sep 15;56(18):4244-9
– reference: 16928707 - Thorax. 2007 Feb;62(2):153-61
– reference: 16332693 - J Biol Chem. 2006 Feb 10;281(6):3157-64
– reference: 10077640 - Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3081-6
– reference: 11943022 - Histopathology. 2002 Apr;40(4):367-73
– reference: 16428725 - Infect Immun. 2006 Feb;74(2):830-8
– reference: 14500256 - Am J Respir Cell Mol Biol. 2004 Apr;30(4):470-8
SSID ssj0005006
Score 2.0156338
Snippet 1 Cardiovascular Research Institute, 2 Department of Medicine, and 3 Department of Physiology, University of California, San Francisco, California Submitted 2...
Mucous hypersecretion is a serious feature of chronic airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis....
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage L174
SubjectTerms Antibodies - pharmacology
Binding sites
Biochemistry
Cell Line, Tumor
Cells
Chronic obstructive pulmonary disease
Cystic fibrosis
Enzyme Activation - drug effects
Epithelial Cells - drug effects
Epithelial Cells - enzymology
Extracellular Signal-Regulated MAP Kinases - metabolism
Fibrinogen - metabolism
Humans
Intercellular Adhesion Molecule-1 - metabolism
Lung - cytology
Metalloproteases - metabolism
Models, Biological
Mucins
Mucins - biosynthesis
Neutralization Tests
Peptides
Phosphorylation - drug effects
Phosphotyrosine - metabolism
Protein Binding - drug effects
Protein Kinase C - metabolism
Receptor, Epidermal Growth Factor - metabolism
Transforming Growth Factor alpha - pharmacology
Type C Phospholipases - metabolism
Title Fibrinogen binding to ICAM-1 promotes EGFR-dependent mucin production in human airway epithelial cells
URI http://ajplung.physiology.org/cgi/content/abstract/297/1/L174
https://www.ncbi.nlm.nih.gov/pubmed/19429776
https://www.proquest.com/docview/210919895
https://www.proquest.com/docview/67421891
https://pubmed.ncbi.nlm.nih.gov/PMC2711817
Volume 297
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEGIvCDYu2bj4Ae0lysjFTuLHUq0M2CZAm7S3yHUcUdSm1ZoKld_Cj-XYjpN0rdDgpUoTJ3LyfbGPT875DkJvY1LAtEJGXphI3yOMcI-LlAOXKeWU576fq9zh84v49Ip8uqbXvd7vTtTSshodi19b80r-B1XYB7iqLNl_QLa5KOyAbcAXfgFh-L0TxkMVr1_O4Lg7Gpv0FDAlPw76516gIq8ABrlwTz4Mv3m22G3lTpdirOOyciMcqzweplIfH9_85CtXzlWexkS50pVbf9G1X5sPPB3FCe0c0d75Y_dsqXJ44Swd3aqc8lNbf7fTrv3wPzWRQW2cx4WSrTThu6vaz2p9EqyJX7XDqIpT9GPffK-W9dAKy14wP0l37A1NcO4aycxIehaY6j2bQzxVkrH8x3wCd6TkJyOtJ8q6jQGm-VSDHjCYcJNki9r2rVmwiU2sr5zBaVmQqW7cQ_fDJNFBAJ-_tlr01NeVW5t7tSlZNHy32TstTmu6sm4BWVXqbSuc24G6Hcvn8jF6VC9ZcN_w7wnqyXIP7fdLXs2mK3yEvzS47qEH7-3Ww4EtJbiPipaouCYqrmbYEBVbouJ1omJNVNwSFcM_TVRsiIpbomJN1KfoanhyOTj16gIfnoB1cuXB0lb4UkRgtCZFHnMpAlZQSZRVyVJJ8kCQnKRcsiJOCyFzKmBo4TQnHCZH6UfP0E45K-ULhGXIiyglRRQUKeExS4GtEVhoOWdSjOLCQYF96Jmo1e9VEZZJplfBNMws7hozVZ2VOchtzpkb7Ze_tj6yWGbtC5Vt0slBhxbprH5ZF1moBHpZyqiD3jRHASX1-HgpZ8tFFicE7HEWOOi5YUXbqZpZDkrW-NI0UBry60fK8XetJR8mKvM8Obhr5w_RbvvCv0Q71c1SvgKzvBq91m_HH-7T6DQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fibrinogen+binding+to+ICAM-1+promotes+EGFR-dependent+mucin+production+in+human+airway+epithelial+cells&rft.jtitle=American+journal+of+physiology.+Lung+cellular+and+molecular+physiology&rft.au=Kim%2C+Suil&rft.au=Nadel%2C+Jay+A&rft.date=2009-07-01&rft.issn=1040-0605&rft.eissn=1522-1504&rft.volume=297&rft.issue=1&rft.spage=L174&rft_id=info:doi/10.1152%2Fajplung.00032.2009&rft_id=info%3Apmid%2F19429776&rft.externalDBID=n%2Fa&rft.externalDocID=ajplung_297_1_L174
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-0605&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-0605&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-0605&client=summon