Zika virus infection enhances future risk of severe dengue disease

Dengue and Zika virus epidemics have been lapping each other around the globe. These are closely related mosquito-borne viruses with about 40% homology within the envelope protein. We know that subsequent dengue infections bring a risk of antibody-dependent disease enhancement. Whereas emphasis has...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 369; no. 6507; pp. 1123 - 1128
Main Authors Katzelnick, Leah C., Narvaez, César, Arguello, Sonia, Lopez Mercado, Brenda, Collado, Damaris, Ampie, Oscarlett, Elizondo, Douglas, Miranda, Tatiana, Bustos Carillo, Fausto, Mercado, Juan Carlos, Latta, Krista, Schiller, Amy, Segovia-Chumbez, Bruno, Ojeda, Sergio, Sanchez, Nery, Plazaola, Miguel, Coloma, Josefina, Halloran, M. Elizabeth, Premkumar, Lakshmanane, Gordon, Aubree, Narvaez, Federico, de Silva, Aravinda M., Kuan, Guillermina, Balmaseda, Angel, Harris, Eva
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 28.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dengue and Zika virus epidemics have been lapping each other around the globe. These are closely related mosquito-borne viruses with about 40% homology within the envelope protein. We know that subsequent dengue infections bring a risk of antibody-dependent disease enhancement. Whereas emphasis has been placed on how prior dengue immunity affects Zika infection, little is known about how prior Zika immunity may affect dengue disease. Katzelnick et al. have been following a well-characterized and established pediatric cohort in Nicaragua who were serially exposed to both flaviviruses in recent years (see the Perspective by Clapham). This study shows not only that a previous history of just one round of dengue is a problem but also that prior Zika immunity creates an increased risk for severe dengue virus sereotype 2 infection. By contrast, multiple infections raise antibodies to protective levels. Science , this issue p. 1123 ; see also p. 1055 Prior immunity to Zika virus increases the risk of severe dengue disease via cross-reacting antibodies. The Zika pandemic sparked intense interest in whether immune interactions among dengue virus serotypes 1 to 4 (DENV1 to -4) extend to the closely related Zika virus (ZIKV). We investigated prospective pediatric cohorts in Nicaragua that experienced sequential DENV1 to -3 (2004 to 2015), Zika (2016 to 2017), and DENV2 (2018 to 2020) epidemics. Risk of symptomatic DENV2 infection and severe disease was elevated by one prior ZIKV infection, one prior DENV infection, or one prior DENV infection followed by one ZIKV infection, compared with being flavivirus-naïve. By contrast, multiple prior DENV infections reduced dengue risk. Further, although high preexisting anti-DENV antibody titers protected against DENV1, DENV3, and ZIKV disease, intermediate titers induced by previous ZIKV or DENV infection enhanced future risk of DENV2 disease and severity, as well as DENV3 severity. The observation that prior ZIKV infection can modulate dengue disease severity like a DENV serotype poses challenges to development of dengue and Zika vaccines.
AbstractList Dengue and Zika virus epidemics have been lapping each other around the globe. These are closely related mosquito-borne viruses with about 40% homology within the envelope protein. We know that subsequent dengue infections bring a risk of antibody-dependent disease enhancement. Whereas emphasis has been placed on how prior dengue immunity affects Zika infection, little is known about how prior Zika immunity may affect dengue disease. Katzelnick et al. have been following a well-characterized and established pediatric cohort in Nicaragua who were serially exposed to both flaviviruses in recent years (see the Perspective by Clapham). This study shows not only that a previous history of just one round of dengue is a problem but also that prior Zika immunity creates an increased risk for severe dengue virus sereotype 2 infection. By contrast, multiple infections raise antibodies to protective levels. Science , this issue p. 1123 ; see also p. 1055 Prior immunity to Zika virus increases the risk of severe dengue disease via cross-reacting antibodies. The Zika pandemic sparked intense interest in whether immune interactions among dengue virus serotypes 1 to 4 (DENV1 to -4) extend to the closely related Zika virus (ZIKV). We investigated prospective pediatric cohorts in Nicaragua that experienced sequential DENV1 to -3 (2004 to 2015), Zika (2016 to 2017), and DENV2 (2018 to 2020) epidemics. Risk of symptomatic DENV2 infection and severe disease was elevated by one prior ZIKV infection, one prior DENV infection, or one prior DENV infection followed by one ZIKV infection, compared with being flavivirus-naïve. By contrast, multiple prior DENV infections reduced dengue risk. Further, although high preexisting anti-DENV antibody titers protected against DENV1, DENV3, and ZIKV disease, intermediate titers induced by previous ZIKV or DENV infection enhanced future risk of DENV2 disease and severity, as well as DENV3 severity. The observation that prior ZIKV infection can modulate dengue disease severity like a DENV serotype poses challenges to development of dengue and Zika vaccines.
The Zika pandemic sparked intense interest in whether immune interactions among dengue viruses 1–4 (DENV1–4) extend to the closely related Zika virus (ZIKV). We investigated prospective pediatric cohorts in Nicaragua that experienced sequential DENV1–3 (2004–15), Zika (2016–17), and DENV2 (2018–20) epidemics. Risk of symptomatic DENV2 infection and severe disease was elevated by one prior ZIKV infection, one prior DENV infection, or one prior DENV infection followed by one ZIKV infection, compared with being flavivirus-naïve. In contrast, multiple prior DENV infections reduced dengue risk. Further, although high preexisting anti-DENV antibody titers protected against DENV1, DENV3, and ZIKV disease, intermediate titers induced by previous ZIKV or DENV infection enhanced future risk of DENV2 disease and severity, as well as DENV3 severity. The observation that prior ZIKV infection can modulate dengue disease severity like a DENV serotype poses challenges to development of dengue and Zika vaccines.
The Zika pandemic sparked intense interest in whether immune interactions among dengue virus serotypes 1 to 4 (DENV1 to -4) extend to the closely related Zika virus (ZIKV). We investigated prospective pediatric cohorts in Nicaragua that experienced sequential DENV1 to -3 (2004 to 2015), Zika (2016 to 2017), and DENV2 (2018 to 2020) epidemics. Risk of symptomatic DENV2 infection and severe disease was elevated by one prior ZIKV infection, one prior DENV infection, or one prior DENV infection followed by one ZIKV infection, compared with being flavivirus-naïve. By contrast, multiple prior DENV infections reduced dengue risk. Further, although high preexisting anti-DENV antibody titers protected against DENV1, DENV3, and ZIKV disease, intermediate titers induced by previous ZIKV or DENV infection enhanced future risk of DENV2 disease and severity, as well as DENV3 severity. The observation that prior ZIKV infection can modulate dengue disease severity like a DENV serotype poses challenges to development of dengue and Zika vaccines.
Double whammyDengue and Zika virus epidemics have been lapping each other around the globe. These are closely related mosquito-borne viruses with about 40% homology within the envelope protein. We know that subsequent dengue infections bring a risk of antibody-dependent disease enhancement. Whereas emphasis has been placed on how prior dengue immunity affects Zika infection, little is known about how prior Zika immunity may affect dengue disease. Katzelnick et al. have been following a well-characterized and established pediatric cohort in Nicaragua who were serially exposed to both flaviviruses in recent years (see the Perspective by Clapham). This study shows not only that a previous history of just one round of dengue is a problem but also that prior Zika immunity creates an increased risk for severe dengue virus sereotype 2 infection. By contrast, multiple infections raise antibodies to protective levels.Science, this issue p. 1123; see also p. 1055The Zika pandemic sparked intense interest in whether immune interactions among dengue virus serotypes 1 to 4 (DENV1 to -4) extend to the closely related Zika virus (ZIKV). We investigated prospective pediatric cohorts in Nicaragua that experienced sequential DENV1 to -3 (2004 to 2015), Zika (2016 to 2017), and DENV2 (2018 to 2020) epidemics. Risk of symptomatic DENV2 infection and severe disease was elevated by one prior ZIKV infection, one prior DENV infection, or one prior DENV infection followed by one ZIKV infection, compared with being flavivirus-naïve. By contrast, multiple prior DENV infections reduced dengue risk. Further, although high preexisting anti-DENV antibody titers protected against DENV1, DENV3, and ZIKV disease, intermediate titers induced by previous ZIKV or DENV infection enhanced future risk of DENV2 disease and severity, as well as DENV3 severity. The observation that prior ZIKV infection can modulate dengue disease severity like a DENV serotype poses challenges to development of dengue and Zika vaccines.
The Zika pandemic sparked intense interest in whether immune interactions among dengue virus serotypes 1 to 4 (DENV1 to -4) extend to the closely related Zika virus (ZIKV). We investigated prospective pediatric cohorts in Nicaragua that experienced sequential DENV1 to -3 (2004 to 2015), Zika (2016 to 2017), and DENV2 (2018 to 2020) epidemics. Risk of symptomatic DENV2 infection and severe disease was elevated by one prior ZIKV infection, one prior DENV infection, or one prior DENV infection followed by one ZIKV infection, compared with being flavivirus-naïve. By contrast, multiple prior DENV infections reduced dengue risk. Further, although high preexisting anti-DENV antibody titers protected against DENV1, DENV3, and ZIKV disease, intermediate titers induced by previous ZIKV or DENV infection enhanced future risk of DENV2 disease and severity, as well as DENV3 severity. The observation that prior ZIKV infection can modulate dengue disease severity like a DENV serotype poses challenges to development of dengue and Zika vaccines.The Zika pandemic sparked intense interest in whether immune interactions among dengue virus serotypes 1 to 4 (DENV1 to -4) extend to the closely related Zika virus (ZIKV). We investigated prospective pediatric cohorts in Nicaragua that experienced sequential DENV1 to -3 (2004 to 2015), Zika (2016 to 2017), and DENV2 (2018 to 2020) epidemics. Risk of symptomatic DENV2 infection and severe disease was elevated by one prior ZIKV infection, one prior DENV infection, or one prior DENV infection followed by one ZIKV infection, compared with being flavivirus-naïve. By contrast, multiple prior DENV infections reduced dengue risk. Further, although high preexisting anti-DENV antibody titers protected against DENV1, DENV3, and ZIKV disease, intermediate titers induced by previous ZIKV or DENV infection enhanced future risk of DENV2 disease and severity, as well as DENV3 severity. The observation that prior ZIKV infection can modulate dengue disease severity like a DENV serotype poses challenges to development of dengue and Zika vaccines.
Author Narvaez, César
Arguello, Sonia
Latta, Krista
Ampie, Oscarlett
Segovia-Chumbez, Bruno
Katzelnick, Leah C.
Lopez Mercado, Brenda
Coloma, Josefina
Harris, Eva
Kuan, Guillermina
Gordon, Aubree
Premkumar, Lakshmanane
Elizondo, Douglas
Mercado, Juan Carlos
Collado, Damaris
de Silva, Aravinda M.
Plazaola, Miguel
Sanchez, Nery
Miranda, Tatiana
Halloran, M. Elizabeth
Ojeda, Sergio
Schiller, Amy
Narvaez, Federico
Bustos Carillo, Fausto
Balmaseda, Angel
AuthorAffiliation 2 Sustainable Sciences Institute, Managua, Nicaragua
4 Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
7 Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
8 Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
6 Department of Biostatistics, University of Washington, Seattle, WA, USA
1 Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
3 Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
5 Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
AuthorAffiliation_xml – name: 3 Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
– name: 2 Sustainable Sciences Institute, Managua, Nicaragua
– name: 4 Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
– name: 6 Department of Biostatistics, University of Washington, Seattle, WA, USA
– name: 5 Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
– name: 7 Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
– name: 8 Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
– name: 1 Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
Author_xml – sequence: 1
  givenname: Leah C.
  orcidid: 0000-0003-1033-6758
  surname: Katzelnick
  fullname: Katzelnick, Leah C.
  organization: Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
– sequence: 2
  givenname: César
  surname: Narvaez
  fullname: Narvaez, César
  organization: Sustainable Sciences Institute, Managua, Nicaragua
– sequence: 3
  givenname: Sonia
  surname: Arguello
  fullname: Arguello, Sonia
  organization: Sustainable Sciences Institute, Managua, Nicaragua
– sequence: 4
  givenname: Brenda
  orcidid: 0000-0002-9584-2571
  surname: Lopez Mercado
  fullname: Lopez Mercado, Brenda
  organization: Sustainable Sciences Institute, Managua, Nicaragua
– sequence: 5
  givenname: Damaris
  orcidid: 0000-0002-0878-3260
  surname: Collado
  fullname: Collado, Damaris
  organization: Sustainable Sciences Institute, Managua, Nicaragua
– sequence: 6
  givenname: Oscarlett
  orcidid: 0000-0002-5637-2239
  surname: Ampie
  fullname: Ampie, Oscarlett
  organization: Sustainable Sciences Institute, Managua, Nicaragua
– sequence: 7
  givenname: Douglas
  surname: Elizondo
  fullname: Elizondo, Douglas
  organization: Sustainable Sciences Institute, Managua, Nicaragua
– sequence: 8
  givenname: Tatiana
  orcidid: 0000-0001-7358-982X
  surname: Miranda
  fullname: Miranda, Tatiana
  organization: Sustainable Sciences Institute, Managua, Nicaragua
– sequence: 9
  givenname: Fausto
  orcidid: 0000-0002-7263-5625
  surname: Bustos Carillo
  fullname: Bustos Carillo, Fausto
  organization: Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
– sequence: 10
  givenname: Juan Carlos
  surname: Mercado
  fullname: Mercado, Juan Carlos
  organization: Sustainable Sciences Institute, Managua, Nicaragua., Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
– sequence: 11
  givenname: Krista
  orcidid: 0000-0002-5218-2702
  surname: Latta
  fullname: Latta, Krista
  organization: Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
– sequence: 12
  givenname: Amy
  orcidid: 0000-0002-1000-3665
  surname: Schiller
  fullname: Schiller, Amy
  organization: Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
– sequence: 13
  givenname: Bruno
  orcidid: 0000-0002-7730-9386
  surname: Segovia-Chumbez
  fullname: Segovia-Chumbez, Bruno
  organization: Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
– sequence: 14
  givenname: Sergio
  orcidid: 0000-0003-2512-2306
  surname: Ojeda
  fullname: Ojeda, Sergio
  organization: Sustainable Sciences Institute, Managua, Nicaragua
– sequence: 15
  givenname: Nery
  surname: Sanchez
  fullname: Sanchez, Nery
  organization: Sustainable Sciences Institute, Managua, Nicaragua
– sequence: 16
  givenname: Miguel
  surname: Plazaola
  fullname: Plazaola, Miguel
  organization: Sustainable Sciences Institute, Managua, Nicaragua
– sequence: 17
  givenname: Josefina
  surname: Coloma
  fullname: Coloma, Josefina
  organization: Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
– sequence: 18
  givenname: M. Elizabeth
  orcidid: 0000-0002-3127-1757
  surname: Halloran
  fullname: Halloran, M. Elizabeth
  organization: Department of Biostatistics, University of Washington, Seattle, WA, USA., Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
– sequence: 19
  givenname: Lakshmanane
  orcidid: 0000-0002-1736-1350
  surname: Premkumar
  fullname: Premkumar, Lakshmanane
  organization: Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
– sequence: 20
  givenname: Aubree
  orcidid: 0000-0002-9352-7877
  surname: Gordon
  fullname: Gordon, Aubree
  organization: Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
– sequence: 21
  givenname: Federico
  surname: Narvaez
  fullname: Narvaez, Federico
  organization: Sustainable Sciences Institute, Managua, Nicaragua
– sequence: 22
  givenname: Aravinda M.
  orcidid: 0000-0003-3317-5950
  surname: de Silva
  fullname: de Silva, Aravinda M.
  organization: Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
– sequence: 23
  givenname: Guillermina
  surname: Kuan
  fullname: Kuan, Guillermina
  organization: Sustainable Sciences Institute, Managua, Nicaragua., Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
– sequence: 24
  givenname: Angel
  surname: Balmaseda
  fullname: Balmaseda, Angel
  organization: Sustainable Sciences Institute, Managua, Nicaragua., Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
– sequence: 25
  givenname: Eva
  orcidid: 0000-0002-7238-4037
  surname: Harris
  fullname: Harris, Eva
  organization: Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32855339$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LAzEQxYNUbKuevcmCFy9tk81mN3sRtPgFBS968RKy2dk27TapyW7B_97UtqIFT8Mwv_d4M9NHHWMNIHRB8JCQOB15pcEoGMqiSElCj1CP4JwN8hjTDuphTNMBxxnror73c4zDLKcnqEtjzhileQ_dveuFjNbatT7SpgLVaGsiMDMZbH1UtU3rIHLaLyJbRR7WENoSzLQNRXuQHs7QcSVrD-e7eoreHu5fx0-Dycvj8_h2MlAJz5qQgzAusSoJUUCxLFmSshxkRiDFWZEXVVkWaUgVeiCYFTymKQGqCpZlecnoKbrZ-q7aYgmlAtM4WYuV00vpPoWVWvydGD0TU7sWPM6SPNsYXO8MnP1owTdiqb2CupYGbOtFnFCe8oTgJKBXB-jcts6E9b4pTBLGcaAufyf6ibI_bwDYFlDOeu-gEko3cnPiEFDXgmCxeaPYvVHs3hh0owPd3vo_xRdIKaLW
CitedBy_id crossref_primary_10_1371_journal_pntd_0011710
crossref_primary_10_3390_antib12020036
crossref_primary_10_1542_peds_2021_055522
crossref_primary_10_3390_ijms222112004
crossref_primary_10_1038_s41579_021_00610_y
crossref_primary_10_1038_s41598_021_88933_x
crossref_primary_10_1111_nyas_14960
crossref_primary_10_3390_v14020233
crossref_primary_10_1111_iwj_14514
crossref_primary_10_1371_journal_pntd_0010588
crossref_primary_10_3390_vaccines11040755
crossref_primary_10_1093_infdis_jiab541
crossref_primary_10_3390_pathogens13020177
crossref_primary_10_1016_j_virol_2023_109951
crossref_primary_10_3389_fimmu_2023_1161149
crossref_primary_10_1016_S1473_3099_24_00566_8
crossref_primary_10_1126_scitranslmed_adi1734
crossref_primary_10_1186_s12879_021_06482_0
crossref_primary_10_4110_in_2021_21_e8
crossref_primary_10_1002_rmv_2425
crossref_primary_10_1021_acs_accounts_1c00598
crossref_primary_10_3389_fcimb_2022_887729
crossref_primary_10_3390_v14122776
crossref_primary_10_1016_j_ebiom_2022_103930
crossref_primary_10_1186_s12879_023_08299_5
crossref_primary_10_3389_fmicb_2024_1472824
crossref_primary_10_1099_jgv_0_001588
crossref_primary_10_1016_S1473_3099_24_00750_3
crossref_primary_10_3390_vaccines9020148
crossref_primary_10_1016_j_vaccine_2022_09_012
crossref_primary_10_1093_jtm_taac127
crossref_primary_10_3389_fmedt_2021_640964
crossref_primary_10_1016_j_mbs_2020_108499
crossref_primary_10_1093_jtm_taaa227
crossref_primary_10_1093_infdis_jiac482
crossref_primary_10_1093_infdis_jiae384
crossref_primary_10_3390_v15071408
crossref_primary_10_1002_bit_28392
crossref_primary_10_1016_j_ijid_2022_07_017
crossref_primary_10_1016_j_celrep_2022_110655
crossref_primary_10_1073_pnas_2312755121
crossref_primary_10_3389_fimmu_2021_717425
crossref_primary_10_1016_j_celrep_2024_114298
crossref_primary_10_1016_S1473_3099_20_30871_9
crossref_primary_10_1016_j_vaccine_2021_10_049
crossref_primary_10_3390_microorganisms9030545
crossref_primary_10_1038_s41467_025_57343_2
crossref_primary_10_1038_s42003_023_05661_w
crossref_primary_10_1038_s41541_022_00464_2
crossref_primary_10_1038_s41577_024_01016_6
crossref_primary_10_1186_s12862_023_02156_4
crossref_primary_10_3389_fimmu_2021_750365
crossref_primary_10_3390_microorganisms9040674
crossref_primary_10_1016_j_jointm_2023_07_007
crossref_primary_10_1051_medsci_2022007
crossref_primary_10_1371_journal_pntd_0010602
crossref_primary_10_1002_jmv_27826
crossref_primary_10_3390_ma16062355
crossref_primary_10_15585_mmwr_rr7006a1
crossref_primary_10_1038_s41467_024_53242_0
crossref_primary_10_1084_jem_20230184
crossref_primary_10_1128_JVI_01415_20
crossref_primary_10_1007_s40259_021_00495_6
crossref_primary_10_3201_eid3006_231553
crossref_primary_10_1128_JVI_00619_21
crossref_primary_10_1021_acs_jmedchem_1c01860
crossref_primary_10_1093_bib_bbac194
crossref_primary_10_3390_v13081441
crossref_primary_10_2196_54281
crossref_primary_10_1016_j_cmi_2021_05_047
crossref_primary_10_3390_v15030796
crossref_primary_10_1371_journal_pone_0266664
crossref_primary_10_1016_j_ijid_2020_12_039
crossref_primary_10_3390_v13112215
crossref_primary_10_1002_adhm_202002140
crossref_primary_10_3390_v14020242
crossref_primary_10_3390_ijms251910311
crossref_primary_10_1016_j_bjid_2024_103766
crossref_primary_10_15252_embj_2022112096
crossref_primary_10_3390_microorganisms12071492
crossref_primary_10_1016_j_chom_2020_12_011
crossref_primary_10_3389_fmed_2022_889998
crossref_primary_10_1038_s41572_023_00429_2
crossref_primary_10_1016_j_vaccine_2023_06_068
crossref_primary_10_1016_j_bioorg_2022_105639
crossref_primary_10_1038_s41467_024_45043_2
crossref_primary_10_1038_s41541_025_01094_0
crossref_primary_10_1128_JVI_00132_21
crossref_primary_10_1371_journal_pntd_0012601
crossref_primary_10_3201_eid2712_211150
crossref_primary_10_1080_22221751_2023_2301666
crossref_primary_10_1186_s12916_020_01845_x
crossref_primary_10_1128_jcm_00593_24
crossref_primary_10_1016_S1473_3099_23_00192_5
crossref_primary_10_1016_j_ebiom_2023_104815
crossref_primary_10_3389_fimmu_2021_686411
crossref_primary_10_1016_S1473_3099_20_30768_4
crossref_primary_10_1093_infdis_jiab185
crossref_primary_10_2807_1560_7917_ES_2023_28_2_2200344
crossref_primary_10_1128_JCM_00400_21
crossref_primary_10_1371_journal_ppat_1010814
crossref_primary_10_1016_j_colsurfb_2021_111820
crossref_primary_10_1099_jmm_0_001852
crossref_primary_10_3389_fimmu_2020_621043
crossref_primary_10_1016_S1473_3099_24_00376_1
crossref_primary_10_1111_tmi_13526
crossref_primary_10_1126_scitranslmed_abg9478
crossref_primary_10_1128_JVI_00383_21
crossref_primary_10_3389_fimmu_2021_624293
crossref_primary_10_3390_pathogens11070741
crossref_primary_10_3390_v12121351
crossref_primary_10_1016_j_ijantimicag_2024_107367
crossref_primary_10_1038_s41579_020_00455_x
crossref_primary_10_3390_pathogens11030294
crossref_primary_10_1038_s41467_021_22921_7
crossref_primary_10_1093_infdis_jiae222
crossref_primary_10_1016_j_apsb_2021_09_025
crossref_primary_10_1038_s41541_021_00426_0
crossref_primary_10_1038_s41577_020_00480_0
crossref_primary_10_3390_pathogens12010007
crossref_primary_10_1038_s41598_022_22231_y
crossref_primary_10_3389_fcimb_2023_1279147
crossref_primary_10_1038_s41467_024_44799_x
crossref_primary_10_1128_jvi_01414_23
crossref_primary_10_1038_s41598_022_07910_0
crossref_primary_10_1371_journal_pntd_0010365
crossref_primary_10_1128_mbio_03160_23
crossref_primary_10_1126_scitranslmed_adn2199
crossref_primary_10_3390_ijms22010035
crossref_primary_10_1186_s12916_021_02101_6
crossref_primary_10_1128_spectrum_00711_21
crossref_primary_10_1126_science_abd5922
crossref_primary_10_3389_fmicb_2022_932408
crossref_primary_10_3390_vaccines8030496
crossref_primary_10_1002_adhm_202303897
crossref_primary_10_1016_S1473_3099_22_00764_2
crossref_primary_10_1016_j_mbs_2023_109024
crossref_primary_10_1016_S0140_6736_23_02576_X
crossref_primary_10_1128_jvi_01773_23
crossref_primary_10_1371_journal_pcbi_1009375
crossref_primary_10_1016_j_coviro_2020_08_006
crossref_primary_10_3389_fmedt_2020_604160
crossref_primary_10_4103_apjtm_apjtm_680_23
crossref_primary_10_1126_scitranslmed_abm3151
crossref_primary_10_3389_fcimb_2020_572681
crossref_primary_10_1371_journal_ppat_1011722
crossref_primary_10_1056_NEJMe2314240
crossref_primary_10_1146_annurev_virology_100422_024648
crossref_primary_10_1186_s13071_023_05778_1
crossref_primary_10_1093_cid_ciab410
crossref_primary_10_1371_journal_pntd_0009641
crossref_primary_10_1016_j_chembiol_2022_02_004
crossref_primary_10_1111_imm_13380
crossref_primary_10_1360_TB_2024_0261
crossref_primary_10_3389_fimmu_2021_703887
crossref_primary_10_1093_trstmh_trad013
crossref_primary_10_1128_spectrum_00758_24
crossref_primary_10_3390_v12121371
crossref_primary_10_1016_j_lanmic_2024_07_014
crossref_primary_10_1371_journal_pntd_0010359
crossref_primary_10_1016_j_antiviral_2022_105500
crossref_primary_10_1016_j_virol_2021_03_005
crossref_primary_10_1093_cid_ciae360
crossref_primary_10_3390_jcm9124060
crossref_primary_10_1038_s41590_021_00966_6
crossref_primary_10_1038_s41541_024_00889_x
crossref_primary_10_1038_s41467_021_27578_w
crossref_primary_10_1038_s41467_023_44330_8
crossref_primary_10_1007_s00253_023_12817_5
crossref_primary_10_3390_v15091936
crossref_primary_10_1080_14760584_2021_1945447
crossref_primary_10_3390_v13102106
crossref_primary_10_1093_infdis_jiad193
crossref_primary_10_1128_mBio_03179_20
crossref_primary_10_1073_pnas_2318704121
crossref_primary_10_3390_ph15030354
crossref_primary_10_1038_s41467_024_45806_x
crossref_primary_10_3390_v15051156
Cites_doi 10.1038/ncomms15674
10.1093/infdis/jiv289
10.1093/infdis/jiy482
10.1093/aje/152.9.793
10.1371/journal.ppat.1006487
10.1126/science.aav6618
10.1016/j.virol.2017.12.032
10.1038/nature22401
10.1093/ofid/ofz320
10.1111/j.1365-3156.2006.01641.x
10.1128/JCM.01504-17
10.1073/pnas.1809253115
10.1093/infdis/jiy164
10.1002/rmv.2101
10.1038/s41586-018-0157-4
10.1073/pnas.1704984114
10.1093/aje/kwp092
10.1093/cid/cix472
10.1371/journal.ppat.1000790
10.1093/infdis/jix473
10.1126/science.1185181
10.1007/978-981-10-8727-1_5
10.1016/j.jcv.2016.01.007
10.1128/JCM.01785-17
10.1111/j.1365-3156.2011.02793.x
10.1371/journal.ppat.1007766
10.1172/jci.insight.133653
10.1093/oxfordjournals.aje.a113932
10.4269/ajtmh.1958.7.561
10.1126/scitranslmed.aax4144
10.1093/oxfordjournals.aje.a118408
10.1038/s41598-019-45816-6
10.1093/infdis/jiz618
10.1590/S0074-02761990000300012
10.1126/science.aal4365
10.1093/cid/cix558
10.1126/science.aaf8505
10.1016/j.celrep.2020.107569
10.1146/annurev-immunol-042617-053142
10.4269/ajtmh.2005.73.1063
10.1128/JCM.36.9.2634-2639.1998
10.1146/annurev-med-040717-051127
10.1126/science.aan6836
10.1371/journal.ppat.1004386
10.1056/NEJMoa1503877
10.1038/s41467-017-01669-z
10.1073/pnas.1804672115
10.1126/science.aai8128
10.1371/journal.pntd.0001397
10.4269/ajtmh.2009.81.287
10.4269/ajtmh.1989.40.444
10.1128/JVI. 01469-17
10.1093/infdis/140.4.527
10.1038/s41598-017-10901-1
10.1371/journal.pntd.0005554
10.1038/s41591-019-0746-2
10.1016/j.chom.2018.10.008
10.1016/j.chom.2018.09.015
10.1093/infdis/jix609
10.1086/382280
10.1073/pnas.1812055115
10.1098/rsif.2013.0414
10.1016/j.cell.2017.04.024
10.1371/journal.pntd.0002462
10.1371/journal.pntd.0002357
10.1371/journal.pmed.1002726
10.1093/infdis/jit436
10.18637/jss.v015.i02
10.1126/scitranslmed.aaa3787
10.1111/j.1467-9868.2010.00749.x
10.1038/s41467-019-12295-2
10.1038/s41467-019-08845-3
10.1056/NEJMoa1800820
10.4269/ajtmh.15-0337
10.4269/ajtmh.1999.61.893
10.1371/journal.pntd.0003230
ContentType Journal Article
Copyright Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.abb6143
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1128
ExternalDocumentID PMC8274975
32855339
10_1126_science_abb6143
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Nicaragua
GeographicLocations_xml – name: Nicaragua
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI107731
– fundername: NIAID NIH HHS
  grantid: R01 AI099631
– fundername: FIC NIH HHS
  grantid: D43 TW010540
– fundername: NIAID NIH HHS
  grantid: P01 AI106695
– fundername: NIAID NIH HHS
  grantid: U19 AI168631
– fundername: NIAID NIH HHS
  grantid: U19 AI118610
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c487t-80158a0cd11ce30ad54659ea71e607b9bfddb65331e6e105b82361e3cb5779d53
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 18:19:34 EDT 2025
Fri Jul 11 09:14:59 EDT 2025
Fri Jul 25 10:40:54 EDT 2025
Mon Jul 21 06:17:32 EDT 2025
Tue Jul 01 01:35:19 EDT 2025
Thu Apr 24 23:07:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6507
Language English
License Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c487t-80158a0cd11ce30ad54659ea71e607b9bfddb65331e6e105b82361e3cb5779d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: L.C.K., A.B., and E.H. conceived the project; G.K., S.O., N.S., M.P., F.N., E.H., J.C., and A.G. led and managed the clinical studies; A.B., E.H., J.C.M., L.P., and A.M.dS, designed and oversaw all laboratory analyses; D.C., O.A., T.M., and B.S.C. collected the serological data; C.N., S.A., B.L.M, D.E., K.L., A.S., and L.C.K. managed the clinical and laboratory databases and organized the data for analysis; L.C.K. E.H., A.B., A.M.dS., L.P., C.N., A.G., F.B., M.E.H. analyzed and discussed the data; L.C.K. and E.H. wrote the first draft of the manuscript and created the figures; all authors reviewed the manuscript.
ORCID 0000-0001-7358-982X
0000-0002-1736-1350
0000-0002-3127-1757
0000-0002-1000-3665
0000-0003-1033-6758
0000-0002-9584-2571
0000-0002-9352-7877
0000-0003-3317-5950
0000-0002-7238-4037
0000-0002-5218-2702
0000-0002-7730-9386
0000-0002-7263-5625
0000-0002-5637-2239
0000-0002-0878-3260
0000-0003-2512-2306
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8274975
PMID 32855339
PQID 2438014580
PQPubID 1256
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8274975
proquest_miscellaneous_2438684104
proquest_journals_2438014580
pubmed_primary_32855339
crossref_citationtrail_10_1126_science_abb6143
crossref_primary_10_1126_science_abb6143
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-28
20200828
PublicationDateYYYYMMDD 2020-08-28
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2020
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
Galo S. S. (e_1_3_2_70_2) 2017; 41
e_1_3_2_60_2
e_1_3_2_81_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_79_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_77_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_82_2
e_1_3_2_80_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_2_2
e_1_3_2_72_2
32855325 - Science. 2020 Aug 28;369(6507):1055-1056. doi: 10.1126/science.abd5922
References_xml – ident: e_1_3_2_22_2
  doi: 10.1038/ncomms15674
– ident: e_1_3_2_55_2
  doi: 10.1093/infdis/jiv289
– ident: e_1_3_2_34_2
  doi: 10.1093/infdis/jiy482
– ident: e_1_3_2_45_2
  doi: 10.1093/aje/152.9.793
– ident: e_1_3_2_23_2
  doi: 10.1371/journal.ppat.1006487
– ident: e_1_3_2_30_2
  doi: 10.1126/science.aav6618
– ident: e_1_3_2_52_2
  doi: 10.1016/j.virol.2017.12.032
– ident: e_1_3_2_3_2
  doi: 10.1038/nature22401
– ident: e_1_3_2_26_2
  doi: 10.1093/ofid/ofz320
– ident: e_1_3_2_64_2
  doi: 10.1111/j.1365-3156.2006.01641.x
– ident: e_1_3_2_41_2
  doi: 10.1128/JCM.01504-17
– ident: e_1_3_2_59_2
  doi: 10.1073/pnas.1809253115
– ident: e_1_3_2_42_2
  doi: 10.1093/infdis/jiy164
– ident: e_1_3_2_6_2
  doi: 10.1002/rmv.2101
– ident: e_1_3_2_14_2
  doi: 10.1038/s41586-018-0157-4
– ident: e_1_3_2_69_2
  doi: 10.1073/pnas.1704984114
– ident: e_1_3_2_37_2
  doi: 10.1093/aje/kwp092
– ident: e_1_3_2_28_2
  doi: 10.1093/cid/cix472
– ident: e_1_3_2_65_2
  doi: 10.1371/journal.ppat.1000790
– ident: e_1_3_2_53_2
  doi: 10.1093/infdis/jix473
– ident: e_1_3_2_16_2
  doi: 10.1126/science.1185181
– ident: e_1_3_2_10_2
  doi: 10.1007/978-981-10-8727-1_5
– ident: e_1_3_2_60_2
  doi: 10.1016/j.jcv.2016.01.007
– ident: e_1_3_2_39_2
  doi: 10.1128/JCM.01785-17
– ident: e_1_3_2_82_2
  doi: 10.1111/j.1365-3156.2011.02793.x
– ident: e_1_3_2_24_2
  doi: 10.1371/journal.ppat.1007766
– ident: e_1_3_2_32_2
  doi: 10.1172/jci.insight.133653
– ident: e_1_3_2_9_2
  doi: 10.1093/oxfordjournals.aje.a113932
– ident: e_1_3_2_66_2
  doi: 10.4269/ajtmh.1958.7.561
– ident: e_1_3_2_2_2
  doi: 10.1126/scitranslmed.aax4144
– ident: e_1_3_2_67_2
  doi: 10.1093/oxfordjournals.aje.a118408
– ident: e_1_3_2_46_2
  doi: 10.1038/s41598-019-45816-6
– ident: e_1_3_2_15_2
  doi: 10.1093/infdis/jiz618
– ident: e_1_3_2_63_2
  doi: 10.1590/S0074-02761990000300012
– ident: e_1_3_2_20_2
  doi: 10.1126/science.aal4365
– ident: e_1_3_2_25_2
  doi: 10.1093/cid/cix558
– ident: e_1_3_2_68_2
  doi: 10.1126/science.aaf8505
– ident: e_1_3_2_58_2
– ident: e_1_3_2_27_2
  doi: 10.1016/j.celrep.2020.107569
– ident: e_1_3_2_18_2
  doi: 10.1146/annurev-immunol-042617-053142
– ident: e_1_3_2_80_2
  doi: 10.4269/ajtmh.2005.73.1063
– ident: e_1_3_2_61_2
  doi: 10.1128/JCM.36.9.2634-2639.1998
– ident: e_1_3_2_5_2
  doi: 10.1146/annurev-med-040717-051127
– ident: e_1_3_2_13_2
  doi: 10.1126/science.aan6836
– volume: 41
  year: 2017
  ident: e_1_3_2_70_2
  article-title: Development of in-house serological methods for diagnosis and surveillance of chikungunya
  publication-title: Rev. Panam. Salud Publica
– ident: e_1_3_2_17_2
  doi: 10.1371/journal.ppat.1004386
– ident: e_1_3_2_40_2
  doi: 10.1056/NEJMoa1503877
– ident: e_1_3_2_31_2
  doi: 10.1038/s41467-017-01669-z
– ident: e_1_3_2_77_2
  doi: 10.1073/pnas.1804672115
– ident: e_1_3_2_4_2
– ident: e_1_3_2_57_2
  doi: 10.1126/science.aai8128
– ident: e_1_3_2_79_2
  doi: 10.1371/journal.pntd.0001397
– ident: e_1_3_2_81_2
  doi: 10.4269/ajtmh.2009.81.287
– ident: e_1_3_2_12_2
  doi: 10.4269/ajtmh.1989.40.444
– ident: e_1_3_2_54_2
  doi: 10.1128/JVI. 01469-17
– ident: e_1_3_2_11_2
  doi: 10.1093/infdis/140.4.527
– ident: e_1_3_2_35_2
  doi: 10.1038/s41598-017-10901-1
– ident: e_1_3_2_50_2
  doi: 10.1371/journal.pntd.0005554
– ident: e_1_3_2_51_2
  doi: 10.1038/s41591-019-0746-2
– ident: e_1_3_2_21_2
  doi: 10.1016/j.chom.2018.10.008
– ident: e_1_3_2_33_2
  doi: 10.1016/j.chom.2018.09.015
– ident: e_1_3_2_49_2
  doi: 10.1093/infdis/jix609
– ident: e_1_3_2_72_2
– ident: e_1_3_2_47_2
  doi: 10.1086/382280
– ident: e_1_3_2_56_2
  doi: 10.1073/pnas.1812055115
– ident: e_1_3_2_76_2
  doi: 10.1098/rsif.2013.0414
– ident: e_1_3_2_44_2
  doi: 10.1016/j.cell.2017.04.024
– ident: e_1_3_2_71_2
  doi: 10.1371/journal.pntd.0002462
– ident: e_1_3_2_75_2
  doi: 10.1371/journal.pntd.0002357
– ident: e_1_3_2_29_2
  doi: 10.1371/journal.pmed.1002726
– ident: e_1_3_2_74_2
  doi: 10.1093/infdis/jit436
– ident: e_1_3_2_78_2
  doi: 10.18637/jss.v015.i02
– ident: e_1_3_2_19_2
  doi: 10.1126/scitranslmed.aaa3787
– ident: e_1_3_2_73_2
  doi: 10.1111/j.1467-9868.2010.00749.x
– ident: e_1_3_2_36_2
  doi: 10.1038/s41467-019-12295-2
– ident: e_1_3_2_43_2
  doi: 10.1038/s41467-019-08845-3
– ident: e_1_3_2_7_2
  doi: 10.1056/NEJMoa1800820
– ident: e_1_3_2_8_2
  doi: 10.4269/ajtmh.15-0337
– ident: e_1_3_2_62_2
  doi: 10.4269/ajtmh.1999.61.893
– ident: e_1_3_2_48_2
  doi: 10.1371/journal.pntd.0003230
– reference: 32855325 - Science. 2020 Aug 28;369(6507):1055-1056. doi: 10.1126/science.abd5922
SSID ssj0009593
Score 2.6668746
Snippet Dengue and Zika virus epidemics have been lapping each other around the globe. These are closely related mosquito-borne viruses with about 40% homology within...
The Zika pandemic sparked intense interest in whether immune interactions among dengue virus serotypes 1 to 4 (DENV1 to -4) extend to the closely related Zika...
Double whammyDengue and Zika virus epidemics have been lapping each other around the globe. These are closely related mosquito-borne viruses with about 40%...
The Zika pandemic sparked intense interest in whether immune interactions among dengue viruses 1–4 (DENV1–4) extend to the closely related Zika virus (ZIKV)....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1123
SubjectTerms Antibodies
Antibodies, Viral - blood
Dengue fever
Dengue hemorrhagic fever
Dengue Vaccines - immunology
Dengue Virus - immunology
Epidemics
Homology
Humans
Immunity
Immunogenicity, Vaccine
Infections
Nicaragua - epidemiology
Pandemics
Pediatrics
Risk
Serogroup
Serotypes
Severe Dengue - epidemiology
Vaccines
Vector-borne diseases
Viral envelope proteins
Viruses
Zika virus
Zika Virus - immunology
Zika Virus Infection - epidemiology
Zika Virus Infection - immunology
Title Zika virus infection enhances future risk of severe dengue disease
URI https://www.ncbi.nlm.nih.gov/pubmed/32855339
https://www.proquest.com/docview/2438014580
https://www.proquest.com/docview/2438684104
https://pubmed.ncbi.nlm.nih.gov/PMC8274975
Volume 369
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJtBeEBu3wkBG4mGoSpWLYyeP7WCagO2FTZp4iRzHoRUjrdIGif4B_jbH8aUJbBLwErWJ47T5Ph9_to_PQeh1QIKkSCj3Ik6oR_KQeElcpl4gCmh6IEFoofYOn53T00vy_iq-Ggx-dryWmnU-Fpsb95X8D6pwDnBVu2T_AVlXKZyAz4AvHAFhOP4Vxp_nX_no-7xutk5V1UhWM4XkaqTDhTjncegCZa12SVVfGtlbmDHa1DZz0JxuHaeDnnNInGi3AetFYG7rTCl84OuNvK5sjnbJZ9u52HOVi0jPWh_rRfoVr7esg59mFoM-gbFxXcbHxVJuRmeyFrxYaEpKO5dgpizC1mHObAGX2sz6KkNk6EddOxzpnC2GcKAcWcewgiyMbrb4nRyVcszzHPRGryRAtvzWEiAKkxjUbbrt-pxDor10B-2GMN4Ag7k7mb6dnvTiN5vIUJ09V_Z5e-ieraGvb_4YtPzue9sRMxcP0H0zCsETTal9NJDVAbqr85L-OED7BtMVPjJhyd88RFPFNtyyDTu2Ycs2rNmGFdvwosSabVizDRu2PUKXJ-8ujk89k4HDEzCQXSv5EifcF0UQCBn5vIgJjVPJWSCpz_I0L4sip_C34bsEpZ4nKpaPjEQeM5YWcfQY7VSLSj5FWPiMiagUaVqWhJZhCjWCNKVUMlL6TAzR2L63TJjw9CpLynXWDlNDmpl3npl3PkRH7oaljsxye9FDC0Rmmu8qC1WuhYDEiT9Er9xlMK5qxYxXctHoMjQhgU-G6InGzT3LAj5ErIeoK6ACt_evVPNZG8A9CRlJWfzs1jqfo71tuzlEO-u6kS9A_K7zl4aYvwAr_rNh
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zika+virus+infection+enhances+future+risk+of+severe+dengue+disease&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Katzelnick%2C+Leah+C&rft.au=Narvaez%2C+C%C3%A9sar&rft.au=Arguello%2C+Sonia&rft.au=Lopez+Mercado%2C+Brenda&rft.date=2020-08-28&rft.eissn=1095-9203&rft.volume=369&rft.issue=6507&rft.spage=1123&rft_id=info:doi/10.1126%2Fscience.abb6143&rft_id=info%3Apmid%2F32855339&rft.externalDocID=32855339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon