Zika virus infection enhances future risk of severe dengue disease
Dengue and Zika virus epidemics have been lapping each other around the globe. These are closely related mosquito-borne viruses with about 40% homology within the envelope protein. We know that subsequent dengue infections bring a risk of antibody-dependent disease enhancement. Whereas emphasis has...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 369; no. 6507; pp. 1123 - 1128 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
28.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dengue and Zika virus epidemics have been lapping each other around the globe. These are closely related mosquito-borne viruses with about 40% homology within the envelope protein. We know that subsequent dengue infections bring a risk of antibody-dependent disease enhancement. Whereas emphasis has been placed on how prior dengue immunity affects Zika infection, little is known about how prior Zika immunity may affect dengue disease. Katzelnick
et al.
have been following a well-characterized and established pediatric cohort in Nicaragua who were serially exposed to both flaviviruses in recent years (see the Perspective by Clapham). This study shows not only that a previous history of just one round of dengue is a problem but also that prior Zika immunity creates an increased risk for severe dengue virus sereotype 2 infection. By contrast, multiple infections raise antibodies to protective levels.
Science
, this issue p.
1123
; see also p.
1055
Prior immunity to Zika virus increases the risk of severe dengue disease via cross-reacting antibodies.
The Zika pandemic sparked intense interest in whether immune interactions among dengue virus serotypes 1 to 4 (DENV1 to -4) extend to the closely related Zika virus (ZIKV). We investigated prospective pediatric cohorts in Nicaragua that experienced sequential DENV1 to -3 (2004 to 2015), Zika (2016 to 2017), and DENV2 (2018 to 2020) epidemics. Risk of symptomatic DENV2 infection and severe disease was elevated by one prior ZIKV infection, one prior DENV infection, or one prior DENV infection followed by one ZIKV infection, compared with being flavivirus-naïve. By contrast, multiple prior DENV infections reduced dengue risk. Further, although high preexisting anti-DENV antibody titers protected against DENV1, DENV3, and ZIKV disease, intermediate titers induced by previous ZIKV or DENV infection enhanced future risk of DENV2 disease and severity, as well as DENV3 severity. The observation that prior ZIKV infection can modulate dengue disease severity like a DENV serotype poses challenges to development of dengue and Zika vaccines. |
---|---|
AbstractList | Dengue and Zika virus epidemics have been lapping each other around the globe. These are closely related mosquito-borne viruses with about 40% homology within the envelope protein. We know that subsequent dengue infections bring a risk of antibody-dependent disease enhancement. Whereas emphasis has been placed on how prior dengue immunity affects Zika infection, little is known about how prior Zika immunity may affect dengue disease. Katzelnick
et al.
have been following a well-characterized and established pediatric cohort in Nicaragua who were serially exposed to both flaviviruses in recent years (see the Perspective by Clapham). This study shows not only that a previous history of just one round of dengue is a problem but also that prior Zika immunity creates an increased risk for severe dengue virus sereotype 2 infection. By contrast, multiple infections raise antibodies to protective levels.
Science
, this issue p.
1123
; see also p.
1055
Prior immunity to Zika virus increases the risk of severe dengue disease via cross-reacting antibodies.
The Zika pandemic sparked intense interest in whether immune interactions among dengue virus serotypes 1 to 4 (DENV1 to -4) extend to the closely related Zika virus (ZIKV). We investigated prospective pediatric cohorts in Nicaragua that experienced sequential DENV1 to -3 (2004 to 2015), Zika (2016 to 2017), and DENV2 (2018 to 2020) epidemics. Risk of symptomatic DENV2 infection and severe disease was elevated by one prior ZIKV infection, one prior DENV infection, or one prior DENV infection followed by one ZIKV infection, compared with being flavivirus-naïve. By contrast, multiple prior DENV infections reduced dengue risk. Further, although high preexisting anti-DENV antibody titers protected against DENV1, DENV3, and ZIKV disease, intermediate titers induced by previous ZIKV or DENV infection enhanced future risk of DENV2 disease and severity, as well as DENV3 severity. The observation that prior ZIKV infection can modulate dengue disease severity like a DENV serotype poses challenges to development of dengue and Zika vaccines. The Zika pandemic sparked intense interest in whether immune interactions among dengue viruses 1–4 (DENV1–4) extend to the closely related Zika virus (ZIKV). We investigated prospective pediatric cohorts in Nicaragua that experienced sequential DENV1–3 (2004–15), Zika (2016–17), and DENV2 (2018–20) epidemics. Risk of symptomatic DENV2 infection and severe disease was elevated by one prior ZIKV infection, one prior DENV infection, or one prior DENV infection followed by one ZIKV infection, compared with being flavivirus-naïve. In contrast, multiple prior DENV infections reduced dengue risk. Further, although high preexisting anti-DENV antibody titers protected against DENV1, DENV3, and ZIKV disease, intermediate titers induced by previous ZIKV or DENV infection enhanced future risk of DENV2 disease and severity, as well as DENV3 severity. The observation that prior ZIKV infection can modulate dengue disease severity like a DENV serotype poses challenges to development of dengue and Zika vaccines. The Zika pandemic sparked intense interest in whether immune interactions among dengue virus serotypes 1 to 4 (DENV1 to -4) extend to the closely related Zika virus (ZIKV). We investigated prospective pediatric cohorts in Nicaragua that experienced sequential DENV1 to -3 (2004 to 2015), Zika (2016 to 2017), and DENV2 (2018 to 2020) epidemics. Risk of symptomatic DENV2 infection and severe disease was elevated by one prior ZIKV infection, one prior DENV infection, or one prior DENV infection followed by one ZIKV infection, compared with being flavivirus-naïve. By contrast, multiple prior DENV infections reduced dengue risk. Further, although high preexisting anti-DENV antibody titers protected against DENV1, DENV3, and ZIKV disease, intermediate titers induced by previous ZIKV or DENV infection enhanced future risk of DENV2 disease and severity, as well as DENV3 severity. The observation that prior ZIKV infection can modulate dengue disease severity like a DENV serotype poses challenges to development of dengue and Zika vaccines. Double whammyDengue and Zika virus epidemics have been lapping each other around the globe. These are closely related mosquito-borne viruses with about 40% homology within the envelope protein. We know that subsequent dengue infections bring a risk of antibody-dependent disease enhancement. Whereas emphasis has been placed on how prior dengue immunity affects Zika infection, little is known about how prior Zika immunity may affect dengue disease. Katzelnick et al. have been following a well-characterized and established pediatric cohort in Nicaragua who were serially exposed to both flaviviruses in recent years (see the Perspective by Clapham). This study shows not only that a previous history of just one round of dengue is a problem but also that prior Zika immunity creates an increased risk for severe dengue virus sereotype 2 infection. By contrast, multiple infections raise antibodies to protective levels.Science, this issue p. 1123; see also p. 1055The Zika pandemic sparked intense interest in whether immune interactions among dengue virus serotypes 1 to 4 (DENV1 to -4) extend to the closely related Zika virus (ZIKV). We investigated prospective pediatric cohorts in Nicaragua that experienced sequential DENV1 to -3 (2004 to 2015), Zika (2016 to 2017), and DENV2 (2018 to 2020) epidemics. Risk of symptomatic DENV2 infection and severe disease was elevated by one prior ZIKV infection, one prior DENV infection, or one prior DENV infection followed by one ZIKV infection, compared with being flavivirus-naïve. By contrast, multiple prior DENV infections reduced dengue risk. Further, although high preexisting anti-DENV antibody titers protected against DENV1, DENV3, and ZIKV disease, intermediate titers induced by previous ZIKV or DENV infection enhanced future risk of DENV2 disease and severity, as well as DENV3 severity. The observation that prior ZIKV infection can modulate dengue disease severity like a DENV serotype poses challenges to development of dengue and Zika vaccines. The Zika pandemic sparked intense interest in whether immune interactions among dengue virus serotypes 1 to 4 (DENV1 to -4) extend to the closely related Zika virus (ZIKV). We investigated prospective pediatric cohorts in Nicaragua that experienced sequential DENV1 to -3 (2004 to 2015), Zika (2016 to 2017), and DENV2 (2018 to 2020) epidemics. Risk of symptomatic DENV2 infection and severe disease was elevated by one prior ZIKV infection, one prior DENV infection, or one prior DENV infection followed by one ZIKV infection, compared with being flavivirus-naïve. By contrast, multiple prior DENV infections reduced dengue risk. Further, although high preexisting anti-DENV antibody titers protected against DENV1, DENV3, and ZIKV disease, intermediate titers induced by previous ZIKV or DENV infection enhanced future risk of DENV2 disease and severity, as well as DENV3 severity. The observation that prior ZIKV infection can modulate dengue disease severity like a DENV serotype poses challenges to development of dengue and Zika vaccines.The Zika pandemic sparked intense interest in whether immune interactions among dengue virus serotypes 1 to 4 (DENV1 to -4) extend to the closely related Zika virus (ZIKV). We investigated prospective pediatric cohorts in Nicaragua that experienced sequential DENV1 to -3 (2004 to 2015), Zika (2016 to 2017), and DENV2 (2018 to 2020) epidemics. Risk of symptomatic DENV2 infection and severe disease was elevated by one prior ZIKV infection, one prior DENV infection, or one prior DENV infection followed by one ZIKV infection, compared with being flavivirus-naïve. By contrast, multiple prior DENV infections reduced dengue risk. Further, although high preexisting anti-DENV antibody titers protected against DENV1, DENV3, and ZIKV disease, intermediate titers induced by previous ZIKV or DENV infection enhanced future risk of DENV2 disease and severity, as well as DENV3 severity. The observation that prior ZIKV infection can modulate dengue disease severity like a DENV serotype poses challenges to development of dengue and Zika vaccines. |
Author | Narvaez, César Arguello, Sonia Latta, Krista Ampie, Oscarlett Segovia-Chumbez, Bruno Katzelnick, Leah C. Lopez Mercado, Brenda Coloma, Josefina Harris, Eva Kuan, Guillermina Gordon, Aubree Premkumar, Lakshmanane Elizondo, Douglas Mercado, Juan Carlos Collado, Damaris de Silva, Aravinda M. Plazaola, Miguel Sanchez, Nery Miranda, Tatiana Halloran, M. Elizabeth Ojeda, Sergio Schiller, Amy Narvaez, Federico Bustos Carillo, Fausto Balmaseda, Angel |
AuthorAffiliation | 2 Sustainable Sciences Institute, Managua, Nicaragua 4 Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA 7 Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA 8 Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua 6 Department of Biostatistics, University of Washington, Seattle, WA, USA 1 Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA 3 Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua 5 Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA |
AuthorAffiliation_xml | – name: 3 Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua – name: 2 Sustainable Sciences Institute, Managua, Nicaragua – name: 4 Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA – name: 6 Department of Biostatistics, University of Washington, Seattle, WA, USA – name: 5 Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA – name: 7 Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA – name: 8 Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua – name: 1 Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA |
Author_xml | – sequence: 1 givenname: Leah C. orcidid: 0000-0003-1033-6758 surname: Katzelnick fullname: Katzelnick, Leah C. organization: Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA – sequence: 2 givenname: César surname: Narvaez fullname: Narvaez, César organization: Sustainable Sciences Institute, Managua, Nicaragua – sequence: 3 givenname: Sonia surname: Arguello fullname: Arguello, Sonia organization: Sustainable Sciences Institute, Managua, Nicaragua – sequence: 4 givenname: Brenda orcidid: 0000-0002-9584-2571 surname: Lopez Mercado fullname: Lopez Mercado, Brenda organization: Sustainable Sciences Institute, Managua, Nicaragua – sequence: 5 givenname: Damaris orcidid: 0000-0002-0878-3260 surname: Collado fullname: Collado, Damaris organization: Sustainable Sciences Institute, Managua, Nicaragua – sequence: 6 givenname: Oscarlett orcidid: 0000-0002-5637-2239 surname: Ampie fullname: Ampie, Oscarlett organization: Sustainable Sciences Institute, Managua, Nicaragua – sequence: 7 givenname: Douglas surname: Elizondo fullname: Elizondo, Douglas organization: Sustainable Sciences Institute, Managua, Nicaragua – sequence: 8 givenname: Tatiana orcidid: 0000-0001-7358-982X surname: Miranda fullname: Miranda, Tatiana organization: Sustainable Sciences Institute, Managua, Nicaragua – sequence: 9 givenname: Fausto orcidid: 0000-0002-7263-5625 surname: Bustos Carillo fullname: Bustos Carillo, Fausto organization: Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA – sequence: 10 givenname: Juan Carlos surname: Mercado fullname: Mercado, Juan Carlos organization: Sustainable Sciences Institute, Managua, Nicaragua., Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua – sequence: 11 givenname: Krista orcidid: 0000-0002-5218-2702 surname: Latta fullname: Latta, Krista organization: Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA – sequence: 12 givenname: Amy orcidid: 0000-0002-1000-3665 surname: Schiller fullname: Schiller, Amy organization: Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA – sequence: 13 givenname: Bruno orcidid: 0000-0002-7730-9386 surname: Segovia-Chumbez fullname: Segovia-Chumbez, Bruno organization: Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA – sequence: 14 givenname: Sergio orcidid: 0000-0003-2512-2306 surname: Ojeda fullname: Ojeda, Sergio organization: Sustainable Sciences Institute, Managua, Nicaragua – sequence: 15 givenname: Nery surname: Sanchez fullname: Sanchez, Nery organization: Sustainable Sciences Institute, Managua, Nicaragua – sequence: 16 givenname: Miguel surname: Plazaola fullname: Plazaola, Miguel organization: Sustainable Sciences Institute, Managua, Nicaragua – sequence: 17 givenname: Josefina surname: Coloma fullname: Coloma, Josefina organization: Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA – sequence: 18 givenname: M. Elizabeth orcidid: 0000-0002-3127-1757 surname: Halloran fullname: Halloran, M. Elizabeth organization: Department of Biostatistics, University of Washington, Seattle, WA, USA., Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA – sequence: 19 givenname: Lakshmanane orcidid: 0000-0002-1736-1350 surname: Premkumar fullname: Premkumar, Lakshmanane organization: Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA – sequence: 20 givenname: Aubree orcidid: 0000-0002-9352-7877 surname: Gordon fullname: Gordon, Aubree organization: Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA – sequence: 21 givenname: Federico surname: Narvaez fullname: Narvaez, Federico organization: Sustainable Sciences Institute, Managua, Nicaragua – sequence: 22 givenname: Aravinda M. orcidid: 0000-0003-3317-5950 surname: de Silva fullname: de Silva, Aravinda M. organization: Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA – sequence: 23 givenname: Guillermina surname: Kuan fullname: Kuan, Guillermina organization: Sustainable Sciences Institute, Managua, Nicaragua., Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua – sequence: 24 givenname: Angel surname: Balmaseda fullname: Balmaseda, Angel organization: Sustainable Sciences Institute, Managua, Nicaragua., Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua – sequence: 25 givenname: Eva orcidid: 0000-0002-7238-4037 surname: Harris fullname: Harris, Eva organization: Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32855339$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1LAzEQxYNUbKuevcmCFy9tk81mN3sRtPgFBS968RKy2dk27TapyW7B_97UtqIFT8Mwv_d4M9NHHWMNIHRB8JCQOB15pcEoGMqiSElCj1CP4JwN8hjTDuphTNMBxxnror73c4zDLKcnqEtjzhileQ_dveuFjNbatT7SpgLVaGsiMDMZbH1UtU3rIHLaLyJbRR7WENoSzLQNRXuQHs7QcSVrD-e7eoreHu5fx0-Dycvj8_h2MlAJz5qQgzAusSoJUUCxLFmSshxkRiDFWZEXVVkWaUgVeiCYFTymKQGqCpZlecnoKbrZ-q7aYgmlAtM4WYuV00vpPoWVWvydGD0TU7sWPM6SPNsYXO8MnP1owTdiqb2CupYGbOtFnFCe8oTgJKBXB-jcts6E9b4pTBLGcaAufyf6ibI_bwDYFlDOeu-gEko3cnPiEFDXgmCxeaPYvVHs3hh0owPd3vo_xRdIKaLW |
CitedBy_id | crossref_primary_10_1371_journal_pntd_0011710 crossref_primary_10_3390_antib12020036 crossref_primary_10_1542_peds_2021_055522 crossref_primary_10_3390_ijms222112004 crossref_primary_10_1038_s41579_021_00610_y crossref_primary_10_1038_s41598_021_88933_x crossref_primary_10_1111_nyas_14960 crossref_primary_10_3390_v14020233 crossref_primary_10_1111_iwj_14514 crossref_primary_10_1371_journal_pntd_0010588 crossref_primary_10_3390_vaccines11040755 crossref_primary_10_1093_infdis_jiab541 crossref_primary_10_3390_pathogens13020177 crossref_primary_10_1016_j_virol_2023_109951 crossref_primary_10_3389_fimmu_2023_1161149 crossref_primary_10_1016_S1473_3099_24_00566_8 crossref_primary_10_1126_scitranslmed_adi1734 crossref_primary_10_1186_s12879_021_06482_0 crossref_primary_10_4110_in_2021_21_e8 crossref_primary_10_1002_rmv_2425 crossref_primary_10_1021_acs_accounts_1c00598 crossref_primary_10_3389_fcimb_2022_887729 crossref_primary_10_3390_v14122776 crossref_primary_10_1016_j_ebiom_2022_103930 crossref_primary_10_1186_s12879_023_08299_5 crossref_primary_10_3389_fmicb_2024_1472824 crossref_primary_10_1099_jgv_0_001588 crossref_primary_10_1016_S1473_3099_24_00750_3 crossref_primary_10_3390_vaccines9020148 crossref_primary_10_1016_j_vaccine_2022_09_012 crossref_primary_10_1093_jtm_taac127 crossref_primary_10_3389_fmedt_2021_640964 crossref_primary_10_1016_j_mbs_2020_108499 crossref_primary_10_1093_jtm_taaa227 crossref_primary_10_1093_infdis_jiac482 crossref_primary_10_1093_infdis_jiae384 crossref_primary_10_3390_v15071408 crossref_primary_10_1002_bit_28392 crossref_primary_10_1016_j_ijid_2022_07_017 crossref_primary_10_1016_j_celrep_2022_110655 crossref_primary_10_1073_pnas_2312755121 crossref_primary_10_3389_fimmu_2021_717425 crossref_primary_10_1016_j_celrep_2024_114298 crossref_primary_10_1016_S1473_3099_20_30871_9 crossref_primary_10_1016_j_vaccine_2021_10_049 crossref_primary_10_3390_microorganisms9030545 crossref_primary_10_1038_s41467_025_57343_2 crossref_primary_10_1038_s42003_023_05661_w crossref_primary_10_1038_s41541_022_00464_2 crossref_primary_10_1038_s41577_024_01016_6 crossref_primary_10_1186_s12862_023_02156_4 crossref_primary_10_3389_fimmu_2021_750365 crossref_primary_10_3390_microorganisms9040674 crossref_primary_10_1016_j_jointm_2023_07_007 crossref_primary_10_1051_medsci_2022007 crossref_primary_10_1371_journal_pntd_0010602 crossref_primary_10_1002_jmv_27826 crossref_primary_10_3390_ma16062355 crossref_primary_10_15585_mmwr_rr7006a1 crossref_primary_10_1038_s41467_024_53242_0 crossref_primary_10_1084_jem_20230184 crossref_primary_10_1128_JVI_01415_20 crossref_primary_10_1007_s40259_021_00495_6 crossref_primary_10_3201_eid3006_231553 crossref_primary_10_1128_JVI_00619_21 crossref_primary_10_1021_acs_jmedchem_1c01860 crossref_primary_10_1093_bib_bbac194 crossref_primary_10_3390_v13081441 crossref_primary_10_2196_54281 crossref_primary_10_1016_j_cmi_2021_05_047 crossref_primary_10_3390_v15030796 crossref_primary_10_1371_journal_pone_0266664 crossref_primary_10_1016_j_ijid_2020_12_039 crossref_primary_10_3390_v13112215 crossref_primary_10_1002_adhm_202002140 crossref_primary_10_3390_v14020242 crossref_primary_10_3390_ijms251910311 crossref_primary_10_1016_j_bjid_2024_103766 crossref_primary_10_15252_embj_2022112096 crossref_primary_10_3390_microorganisms12071492 crossref_primary_10_1016_j_chom_2020_12_011 crossref_primary_10_3389_fmed_2022_889998 crossref_primary_10_1038_s41572_023_00429_2 crossref_primary_10_1016_j_vaccine_2023_06_068 crossref_primary_10_1016_j_bioorg_2022_105639 crossref_primary_10_1038_s41467_024_45043_2 crossref_primary_10_1038_s41541_025_01094_0 crossref_primary_10_1128_JVI_00132_21 crossref_primary_10_1371_journal_pntd_0012601 crossref_primary_10_3201_eid2712_211150 crossref_primary_10_1080_22221751_2023_2301666 crossref_primary_10_1186_s12916_020_01845_x crossref_primary_10_1128_jcm_00593_24 crossref_primary_10_1016_S1473_3099_23_00192_5 crossref_primary_10_1016_j_ebiom_2023_104815 crossref_primary_10_3389_fimmu_2021_686411 crossref_primary_10_1016_S1473_3099_20_30768_4 crossref_primary_10_1093_infdis_jiab185 crossref_primary_10_2807_1560_7917_ES_2023_28_2_2200344 crossref_primary_10_1128_JCM_00400_21 crossref_primary_10_1371_journal_ppat_1010814 crossref_primary_10_1016_j_colsurfb_2021_111820 crossref_primary_10_1099_jmm_0_001852 crossref_primary_10_3389_fimmu_2020_621043 crossref_primary_10_1016_S1473_3099_24_00376_1 crossref_primary_10_1111_tmi_13526 crossref_primary_10_1126_scitranslmed_abg9478 crossref_primary_10_1128_JVI_00383_21 crossref_primary_10_3389_fimmu_2021_624293 crossref_primary_10_3390_pathogens11070741 crossref_primary_10_3390_v12121351 crossref_primary_10_1016_j_ijantimicag_2024_107367 crossref_primary_10_1038_s41579_020_00455_x crossref_primary_10_3390_pathogens11030294 crossref_primary_10_1038_s41467_021_22921_7 crossref_primary_10_1093_infdis_jiae222 crossref_primary_10_1016_j_apsb_2021_09_025 crossref_primary_10_1038_s41541_021_00426_0 crossref_primary_10_1038_s41577_020_00480_0 crossref_primary_10_3390_pathogens12010007 crossref_primary_10_1038_s41598_022_22231_y crossref_primary_10_3389_fcimb_2023_1279147 crossref_primary_10_1038_s41467_024_44799_x crossref_primary_10_1128_jvi_01414_23 crossref_primary_10_1038_s41598_022_07910_0 crossref_primary_10_1371_journal_pntd_0010365 crossref_primary_10_1128_mbio_03160_23 crossref_primary_10_1126_scitranslmed_adn2199 crossref_primary_10_3390_ijms22010035 crossref_primary_10_1186_s12916_021_02101_6 crossref_primary_10_1128_spectrum_00711_21 crossref_primary_10_1126_science_abd5922 crossref_primary_10_3389_fmicb_2022_932408 crossref_primary_10_3390_vaccines8030496 crossref_primary_10_1002_adhm_202303897 crossref_primary_10_1016_S1473_3099_22_00764_2 crossref_primary_10_1016_j_mbs_2023_109024 crossref_primary_10_1016_S0140_6736_23_02576_X crossref_primary_10_1128_jvi_01773_23 crossref_primary_10_1371_journal_pcbi_1009375 crossref_primary_10_1016_j_coviro_2020_08_006 crossref_primary_10_3389_fmedt_2020_604160 crossref_primary_10_4103_apjtm_apjtm_680_23 crossref_primary_10_1126_scitranslmed_abm3151 crossref_primary_10_3389_fcimb_2020_572681 crossref_primary_10_1371_journal_ppat_1011722 crossref_primary_10_1056_NEJMe2314240 crossref_primary_10_1146_annurev_virology_100422_024648 crossref_primary_10_1186_s13071_023_05778_1 crossref_primary_10_1093_cid_ciab410 crossref_primary_10_1371_journal_pntd_0009641 crossref_primary_10_1016_j_chembiol_2022_02_004 crossref_primary_10_1111_imm_13380 crossref_primary_10_1360_TB_2024_0261 crossref_primary_10_3389_fimmu_2021_703887 crossref_primary_10_1093_trstmh_trad013 crossref_primary_10_1128_spectrum_00758_24 crossref_primary_10_3390_v12121371 crossref_primary_10_1016_j_lanmic_2024_07_014 crossref_primary_10_1371_journal_pntd_0010359 crossref_primary_10_1016_j_antiviral_2022_105500 crossref_primary_10_1016_j_virol_2021_03_005 crossref_primary_10_1093_cid_ciae360 crossref_primary_10_3390_jcm9124060 crossref_primary_10_1038_s41590_021_00966_6 crossref_primary_10_1038_s41541_024_00889_x crossref_primary_10_1038_s41467_021_27578_w crossref_primary_10_1038_s41467_023_44330_8 crossref_primary_10_1007_s00253_023_12817_5 crossref_primary_10_3390_v15091936 crossref_primary_10_1080_14760584_2021_1945447 crossref_primary_10_3390_v13102106 crossref_primary_10_1093_infdis_jiad193 crossref_primary_10_1128_mBio_03179_20 crossref_primary_10_1073_pnas_2318704121 crossref_primary_10_3390_ph15030354 crossref_primary_10_1038_s41467_024_45806_x crossref_primary_10_3390_v15051156 |
Cites_doi | 10.1038/ncomms15674 10.1093/infdis/jiv289 10.1093/infdis/jiy482 10.1093/aje/152.9.793 10.1371/journal.ppat.1006487 10.1126/science.aav6618 10.1016/j.virol.2017.12.032 10.1038/nature22401 10.1093/ofid/ofz320 10.1111/j.1365-3156.2006.01641.x 10.1128/JCM.01504-17 10.1073/pnas.1809253115 10.1093/infdis/jiy164 10.1002/rmv.2101 10.1038/s41586-018-0157-4 10.1073/pnas.1704984114 10.1093/aje/kwp092 10.1093/cid/cix472 10.1371/journal.ppat.1000790 10.1093/infdis/jix473 10.1126/science.1185181 10.1007/978-981-10-8727-1_5 10.1016/j.jcv.2016.01.007 10.1128/JCM.01785-17 10.1111/j.1365-3156.2011.02793.x 10.1371/journal.ppat.1007766 10.1172/jci.insight.133653 10.1093/oxfordjournals.aje.a113932 10.4269/ajtmh.1958.7.561 10.1126/scitranslmed.aax4144 10.1093/oxfordjournals.aje.a118408 10.1038/s41598-019-45816-6 10.1093/infdis/jiz618 10.1590/S0074-02761990000300012 10.1126/science.aal4365 10.1093/cid/cix558 10.1126/science.aaf8505 10.1016/j.celrep.2020.107569 10.1146/annurev-immunol-042617-053142 10.4269/ajtmh.2005.73.1063 10.1128/JCM.36.9.2634-2639.1998 10.1146/annurev-med-040717-051127 10.1126/science.aan6836 10.1371/journal.ppat.1004386 10.1056/NEJMoa1503877 10.1038/s41467-017-01669-z 10.1073/pnas.1804672115 10.1126/science.aai8128 10.1371/journal.pntd.0001397 10.4269/ajtmh.2009.81.287 10.4269/ajtmh.1989.40.444 10.1128/JVI. 01469-17 10.1093/infdis/140.4.527 10.1038/s41598-017-10901-1 10.1371/journal.pntd.0005554 10.1038/s41591-019-0746-2 10.1016/j.chom.2018.10.008 10.1016/j.chom.2018.09.015 10.1093/infdis/jix609 10.1086/382280 10.1073/pnas.1812055115 10.1098/rsif.2013.0414 10.1016/j.cell.2017.04.024 10.1371/journal.pntd.0002462 10.1371/journal.pntd.0002357 10.1371/journal.pmed.1002726 10.1093/infdis/jit436 10.18637/jss.v015.i02 10.1126/scitranslmed.aaa3787 10.1111/j.1467-9868.2010.00749.x 10.1038/s41467-019-12295-2 10.1038/s41467-019-08845-3 10.1056/NEJMoa1800820 10.4269/ajtmh.15-0337 10.4269/ajtmh.1999.61.893 10.1371/journal.pntd.0003230 |
ContentType | Journal Article |
Copyright | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.abb6143 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1128 |
ExternalDocumentID | PMC8274975 32855339 10_1126_science_abb6143 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Nicaragua |
GeographicLocations_xml | – name: Nicaragua |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI107731 – fundername: NIAID NIH HHS grantid: R01 AI099631 – fundername: FIC NIH HHS grantid: D43 TW010540 – fundername: NIAID NIH HHS grantid: P01 AI106695 – fundername: NIAID NIH HHS grantid: U19 AI168631 – fundername: NIAID NIH HHS grantid: U19 AI118610 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c487t-80158a0cd11ce30ad54659ea71e607b9bfddb65331e6e105b82361e3cb5779d53 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 18:19:34 EDT 2025 Fri Jul 11 09:14:59 EDT 2025 Fri Jul 25 10:40:54 EDT 2025 Mon Jul 21 06:17:32 EDT 2025 Tue Jul 01 01:35:19 EDT 2025 Thu Apr 24 23:07:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6507 |
Language | English |
License | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c487t-80158a0cd11ce30ad54659ea71e607b9bfddb65331e6e105b82361e3cb5779d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: L.C.K., A.B., and E.H. conceived the project; G.K., S.O., N.S., M.P., F.N., E.H., J.C., and A.G. led and managed the clinical studies; A.B., E.H., J.C.M., L.P., and A.M.dS, designed and oversaw all laboratory analyses; D.C., O.A., T.M., and B.S.C. collected the serological data; C.N., S.A., B.L.M, D.E., K.L., A.S., and L.C.K. managed the clinical and laboratory databases and organized the data for analysis; L.C.K. E.H., A.B., A.M.dS., L.P., C.N., A.G., F.B., M.E.H. analyzed and discussed the data; L.C.K. and E.H. wrote the first draft of the manuscript and created the figures; all authors reviewed the manuscript. |
ORCID | 0000-0001-7358-982X 0000-0002-1736-1350 0000-0002-3127-1757 0000-0002-1000-3665 0000-0003-1033-6758 0000-0002-9584-2571 0000-0002-9352-7877 0000-0003-3317-5950 0000-0002-7238-4037 0000-0002-5218-2702 0000-0002-7730-9386 0000-0002-7263-5625 0000-0002-5637-2239 0000-0002-0878-3260 0000-0003-2512-2306 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8274975 |
PMID | 32855339 |
PQID | 2438014580 |
PQPubID | 1256 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8274975 proquest_miscellaneous_2438684104 proquest_journals_2438014580 pubmed_primary_32855339 crossref_citationtrail_10_1126_science_abb6143 crossref_primary_10_1126_science_abb6143 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-28 20200828 |
PublicationDateYYYYMMDD | 2020-08-28 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2020 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 Galo S. S. (e_1_3_2_70_2) 2017; 41 e_1_3_2_60_2 e_1_3_2_81_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_79_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_77_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_82_2 e_1_3_2_80_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_2_2 e_1_3_2_72_2 32855325 - Science. 2020 Aug 28;369(6507):1055-1056. doi: 10.1126/science.abd5922 |
References_xml | – ident: e_1_3_2_22_2 doi: 10.1038/ncomms15674 – ident: e_1_3_2_55_2 doi: 10.1093/infdis/jiv289 – ident: e_1_3_2_34_2 doi: 10.1093/infdis/jiy482 – ident: e_1_3_2_45_2 doi: 10.1093/aje/152.9.793 – ident: e_1_3_2_23_2 doi: 10.1371/journal.ppat.1006487 – ident: e_1_3_2_30_2 doi: 10.1126/science.aav6618 – ident: e_1_3_2_52_2 doi: 10.1016/j.virol.2017.12.032 – ident: e_1_3_2_3_2 doi: 10.1038/nature22401 – ident: e_1_3_2_26_2 doi: 10.1093/ofid/ofz320 – ident: e_1_3_2_64_2 doi: 10.1111/j.1365-3156.2006.01641.x – ident: e_1_3_2_41_2 doi: 10.1128/JCM.01504-17 – ident: e_1_3_2_59_2 doi: 10.1073/pnas.1809253115 – ident: e_1_3_2_42_2 doi: 10.1093/infdis/jiy164 – ident: e_1_3_2_6_2 doi: 10.1002/rmv.2101 – ident: e_1_3_2_14_2 doi: 10.1038/s41586-018-0157-4 – ident: e_1_3_2_69_2 doi: 10.1073/pnas.1704984114 – ident: e_1_3_2_37_2 doi: 10.1093/aje/kwp092 – ident: e_1_3_2_28_2 doi: 10.1093/cid/cix472 – ident: e_1_3_2_65_2 doi: 10.1371/journal.ppat.1000790 – ident: e_1_3_2_53_2 doi: 10.1093/infdis/jix473 – ident: e_1_3_2_16_2 doi: 10.1126/science.1185181 – ident: e_1_3_2_10_2 doi: 10.1007/978-981-10-8727-1_5 – ident: e_1_3_2_60_2 doi: 10.1016/j.jcv.2016.01.007 – ident: e_1_3_2_39_2 doi: 10.1128/JCM.01785-17 – ident: e_1_3_2_82_2 doi: 10.1111/j.1365-3156.2011.02793.x – ident: e_1_3_2_24_2 doi: 10.1371/journal.ppat.1007766 – ident: e_1_3_2_32_2 doi: 10.1172/jci.insight.133653 – ident: e_1_3_2_9_2 doi: 10.1093/oxfordjournals.aje.a113932 – ident: e_1_3_2_66_2 doi: 10.4269/ajtmh.1958.7.561 – ident: e_1_3_2_2_2 doi: 10.1126/scitranslmed.aax4144 – ident: e_1_3_2_67_2 doi: 10.1093/oxfordjournals.aje.a118408 – ident: e_1_3_2_46_2 doi: 10.1038/s41598-019-45816-6 – ident: e_1_3_2_15_2 doi: 10.1093/infdis/jiz618 – ident: e_1_3_2_63_2 doi: 10.1590/S0074-02761990000300012 – ident: e_1_3_2_20_2 doi: 10.1126/science.aal4365 – ident: e_1_3_2_25_2 doi: 10.1093/cid/cix558 – ident: e_1_3_2_68_2 doi: 10.1126/science.aaf8505 – ident: e_1_3_2_58_2 – ident: e_1_3_2_27_2 doi: 10.1016/j.celrep.2020.107569 – ident: e_1_3_2_18_2 doi: 10.1146/annurev-immunol-042617-053142 – ident: e_1_3_2_80_2 doi: 10.4269/ajtmh.2005.73.1063 – ident: e_1_3_2_61_2 doi: 10.1128/JCM.36.9.2634-2639.1998 – ident: e_1_3_2_5_2 doi: 10.1146/annurev-med-040717-051127 – ident: e_1_3_2_13_2 doi: 10.1126/science.aan6836 – volume: 41 year: 2017 ident: e_1_3_2_70_2 article-title: Development of in-house serological methods for diagnosis and surveillance of chikungunya publication-title: Rev. Panam. Salud Publica – ident: e_1_3_2_17_2 doi: 10.1371/journal.ppat.1004386 – ident: e_1_3_2_40_2 doi: 10.1056/NEJMoa1503877 – ident: e_1_3_2_31_2 doi: 10.1038/s41467-017-01669-z – ident: e_1_3_2_77_2 doi: 10.1073/pnas.1804672115 – ident: e_1_3_2_4_2 – ident: e_1_3_2_57_2 doi: 10.1126/science.aai8128 – ident: e_1_3_2_79_2 doi: 10.1371/journal.pntd.0001397 – ident: e_1_3_2_81_2 doi: 10.4269/ajtmh.2009.81.287 – ident: e_1_3_2_12_2 doi: 10.4269/ajtmh.1989.40.444 – ident: e_1_3_2_54_2 doi: 10.1128/JVI. 01469-17 – ident: e_1_3_2_11_2 doi: 10.1093/infdis/140.4.527 – ident: e_1_3_2_35_2 doi: 10.1038/s41598-017-10901-1 – ident: e_1_3_2_50_2 doi: 10.1371/journal.pntd.0005554 – ident: e_1_3_2_51_2 doi: 10.1038/s41591-019-0746-2 – ident: e_1_3_2_21_2 doi: 10.1016/j.chom.2018.10.008 – ident: e_1_3_2_33_2 doi: 10.1016/j.chom.2018.09.015 – ident: e_1_3_2_49_2 doi: 10.1093/infdis/jix609 – ident: e_1_3_2_72_2 – ident: e_1_3_2_47_2 doi: 10.1086/382280 – ident: e_1_3_2_56_2 doi: 10.1073/pnas.1812055115 – ident: e_1_3_2_76_2 doi: 10.1098/rsif.2013.0414 – ident: e_1_3_2_44_2 doi: 10.1016/j.cell.2017.04.024 – ident: e_1_3_2_71_2 doi: 10.1371/journal.pntd.0002462 – ident: e_1_3_2_75_2 doi: 10.1371/journal.pntd.0002357 – ident: e_1_3_2_29_2 doi: 10.1371/journal.pmed.1002726 – ident: e_1_3_2_74_2 doi: 10.1093/infdis/jit436 – ident: e_1_3_2_78_2 doi: 10.18637/jss.v015.i02 – ident: e_1_3_2_19_2 doi: 10.1126/scitranslmed.aaa3787 – ident: e_1_3_2_73_2 doi: 10.1111/j.1467-9868.2010.00749.x – ident: e_1_3_2_36_2 doi: 10.1038/s41467-019-12295-2 – ident: e_1_3_2_43_2 doi: 10.1038/s41467-019-08845-3 – ident: e_1_3_2_7_2 doi: 10.1056/NEJMoa1800820 – ident: e_1_3_2_8_2 doi: 10.4269/ajtmh.15-0337 – ident: e_1_3_2_62_2 doi: 10.4269/ajtmh.1999.61.893 – ident: e_1_3_2_48_2 doi: 10.1371/journal.pntd.0003230 – reference: 32855325 - Science. 2020 Aug 28;369(6507):1055-1056. doi: 10.1126/science.abd5922 |
SSID | ssj0009593 |
Score | 2.6668746 |
Snippet | Dengue and Zika virus epidemics have been lapping each other around the globe. These are closely related mosquito-borne viruses with about 40% homology within... The Zika pandemic sparked intense interest in whether immune interactions among dengue virus serotypes 1 to 4 (DENV1 to -4) extend to the closely related Zika... Double whammyDengue and Zika virus epidemics have been lapping each other around the globe. These are closely related mosquito-borne viruses with about 40%... The Zika pandemic sparked intense interest in whether immune interactions among dengue viruses 1–4 (DENV1–4) extend to the closely related Zika virus (ZIKV).... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1123 |
SubjectTerms | Antibodies Antibodies, Viral - blood Dengue fever Dengue hemorrhagic fever Dengue Vaccines - immunology Dengue Virus - immunology Epidemics Homology Humans Immunity Immunogenicity, Vaccine Infections Nicaragua - epidemiology Pandemics Pediatrics Risk Serogroup Serotypes Severe Dengue - epidemiology Vaccines Vector-borne diseases Viral envelope proteins Viruses Zika virus Zika Virus - immunology Zika Virus Infection - epidemiology Zika Virus Infection - immunology |
Title | Zika virus infection enhances future risk of severe dengue disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32855339 https://www.proquest.com/docview/2438014580 https://www.proquest.com/docview/2438684104 https://pubmed.ncbi.nlm.nih.gov/PMC8274975 |
Volume | 369 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJtBeEBu3wkBG4mGoSpWLYyeP7WCagO2FTZp4iRzHoRUjrdIGif4B_jbH8aUJbBLwErWJ47T5Ph9_to_PQeh1QIKkSCj3Ik6oR_KQeElcpl4gCmh6IEFoofYOn53T00vy_iq-Ggx-dryWmnU-Fpsb95X8D6pwDnBVu2T_AVlXKZyAz4AvHAFhOP4Vxp_nX_no-7xutk5V1UhWM4XkaqTDhTjncegCZa12SVVfGtlbmDHa1DZz0JxuHaeDnnNInGi3AetFYG7rTCl84OuNvK5sjnbJZ9u52HOVi0jPWh_rRfoVr7esg59mFoM-gbFxXcbHxVJuRmeyFrxYaEpKO5dgpizC1mHObAGX2sz6KkNk6EddOxzpnC2GcKAcWcewgiyMbrb4nRyVcszzHPRGryRAtvzWEiAKkxjUbbrt-pxDor10B-2GMN4Ag7k7mb6dnvTiN5vIUJ09V_Z5e-ieraGvb_4YtPzue9sRMxcP0H0zCsETTal9NJDVAbqr85L-OED7BtMVPjJhyd88RFPFNtyyDTu2Ycs2rNmGFdvwosSabVizDRu2PUKXJ-8ujk89k4HDEzCQXSv5EifcF0UQCBn5vIgJjVPJWSCpz_I0L4sip_C34bsEpZ4nKpaPjEQeM5YWcfQY7VSLSj5FWPiMiagUaVqWhJZhCjWCNKVUMlL6TAzR2L63TJjw9CpLynXWDlNDmpl3npl3PkRH7oaljsxye9FDC0Rmmu8qC1WuhYDEiT9Er9xlMK5qxYxXctHoMjQhgU-G6InGzT3LAj5ErIeoK6ACt_evVPNZG8A9CRlJWfzs1jqfo71tuzlEO-u6kS9A_K7zl4aYvwAr_rNh |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zika+virus+infection+enhances+future+risk+of+severe+dengue+disease&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Katzelnick%2C+Leah+C&rft.au=Narvaez%2C+C%C3%A9sar&rft.au=Arguello%2C+Sonia&rft.au=Lopez+Mercado%2C+Brenda&rft.date=2020-08-28&rft.eissn=1095-9203&rft.volume=369&rft.issue=6507&rft.spage=1123&rft_id=info:doi/10.1126%2Fscience.abb6143&rft_id=info%3Apmid%2F32855339&rft.externalDocID=32855339 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |