Stability Criteria for Recurrent Neural Networks With Time-Varying Delay Based on Secondary Delay Partitioning Method

A secondary delay partitioning method is proposed to study the stability problem for a class of recurrent neural networks (RNNs) with time-varying delay. The total interval of the time-varying delay is first divided into two parts, and then each part is further divided into several subintervals. To...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 26; no. 10; pp. 2589 - 2595
Main Authors Wang, Zhanshan, Liu, Lei, Shan, Qi-He, Zhang, Huaguang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2014.2387434

Cover

Loading…
Abstract A secondary delay partitioning method is proposed to study the stability problem for a class of recurrent neural networks (RNNs) with time-varying delay. The total interval of the time-varying delay is first divided into two parts, and then each part is further divided into several subintervals. To deal with the state variables associated with these subintervals, an extended reciprocal convex combination approach and a double integral term with variable upper and lower limits of integral as a Lyapunov functional are proposed, which help to obtain the stability criterion. The main feature of the proposed result is more effective for the RNNs with fast time-varying delay. A numerical example is used to show the effectiveness of the proposed stability result.
AbstractList A secondary delay partitioning method is proposed to study the stability problem for a class of recurrent neural networks (RNNs) with time-varying delay. The total interval of the time-varying delay is first divided into two parts, and then each part is further divided into several subintervals. To deal with the state variables associated with these subintervals, an extended reciprocal convex combination approach and a double integral term with variable upper and lower limits of integral as a Lyapunov functional are proposed, which help to obtain the stability criterion. The main feature of the proposed result is more effective for the RNNs with fast time-varying delay. A numerical example is used to show the effectiveness of the proposed stability result.A secondary delay partitioning method is proposed to study the stability problem for a class of recurrent neural networks (RNNs) with time-varying delay. The total interval of the time-varying delay is first divided into two parts, and then each part is further divided into several subintervals. To deal with the state variables associated with these subintervals, an extended reciprocal convex combination approach and a double integral term with variable upper and lower limits of integral as a Lyapunov functional are proposed, which help to obtain the stability criterion. The main feature of the proposed result is more effective for the RNNs with fast time-varying delay. A numerical example is used to show the effectiveness of the proposed stability result.
A secondary delay partitioning method is proposed to study the stability problem for a class of recurrent neural networks (RNNs) with time-varying delay. The total interval of the time-varying delay is first divided into two parts, and then each part is further divided into several subintervals. To deal with the state variables associated with these subintervals, an extended reciprocal convex combination approach and a double integral term with variable upper and lower limits of integral as a Lyapunov functional are proposed, which help to obtain the stability criterion. The main feature of the proposed result is more effective for the RNNs with fast time-varying delay. A numerical example is used to show the effectiveness of the proposed stability result.
Author Zhanshan Wang
Lei Liu
Huaguang Zhang
Qi-He Shan
Author_xml – sequence: 1
  givenname: Zhanshan
  surname: Wang
  fullname: Wang, Zhanshan
– sequence: 2
  givenname: Lei
  surname: Liu
  fullname: Liu, Lei
– sequence: 3
  givenname: Qi-He
  surname: Shan
  fullname: Shan, Qi-He
– sequence: 4
  givenname: Huaguang
  surname: Zhang
  fullname: Zhang, Huaguang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25608313$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi3UipbSPwASssSFSxZ_xU6OdPlopWVB7PJxixxnQl2ydrEdof33ON1lDz2g-jK25nnHmpn3CTpy3gFCzyiZUUrq1-vlcrGaMULFjPFKCS4eoVNGJSvyszo63NWPE3Qe4w3JR5JSivoxOmGlJBWn_BSNq6RbO9i0xfNgEwSrce8D_gJmDAFcwksYgx5ySH98-BXxd5uu8dpuoPimw9a6n_gtDHqLL3SEDnuHV2C863Jun_isQ7LJejexHyFd--4pOu71EOF8H8_Q1_fv1vPLYvHpw9X8zaIwolKpkG0JgspeAKOmZVLzUneyVl0HKvdcg-xrQns90cy0ui9Np5kiBFrNew38DL3a1b0N_vcIMTUbGw0Mg3bgx9hQpSoieFnRB6AlZZTkeT8AZUQIVQme0Zf30Bs_Bpd7nqiaUVGzqeCLPTW2G-ia22A3eX7NvzVlgO0AE3yMAfoDQkkz2aG5s0Mz2aHZ2yGLqnsiY5OeFpGCtsP_pc93UgsAh78Uybhg_C9vgsH2
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_neunet_2016_08_008
crossref_primary_10_1016_j_neucom_2018_10_044
crossref_primary_10_1016_j_nahs_2017_12_006
crossref_primary_10_1016_j_neunet_2016_08_002
crossref_primary_10_1117_1_JEI_32_1_011202
crossref_primary_10_3934_math_2020439
crossref_primary_10_1109_TNNLS_2016_2608879
crossref_primary_10_1007_s00521_016_2291_y
crossref_primary_10_1016_j_amc_2021_126041
crossref_primary_10_3934_math_2020279
crossref_primary_10_1109_TCYB_2022_3208156
crossref_primary_10_1016_j_neucom_2016_04_058
crossref_primary_10_1155_2023_5577859
crossref_primary_10_1007_s00521_016_2670_4
crossref_primary_10_1109_TNNLS_2018_2877195
crossref_primary_10_1016_j_neunet_2019_01_017
crossref_primary_10_1016_j_ins_2024_120249
crossref_primary_10_1109_TSMC_2018_2815560
crossref_primary_10_1016_j_matcom_2020_12_001
crossref_primary_10_1016_j_sysconle_2022_105436
crossref_primary_10_1016_j_neucom_2020_05_045
crossref_primary_10_1109_TCSII_2023_3298959
crossref_primary_10_1016_j_neucom_2019_06_077
crossref_primary_10_1109_TNNLS_2015_2485259
crossref_primary_10_1109_TSMC_2018_2793559
crossref_primary_10_1080_00207179_2016_1237047
crossref_primary_10_1109_TNNLS_2023_3241955
crossref_primary_10_1186_s13662_016_1044_7
crossref_primary_10_1016_j_amc_2016_08_043
crossref_primary_10_1016_j_jfranklin_2016_12_017
crossref_primary_10_1109_TNNLS_2019_2952410
crossref_primary_10_1016_j_jfranklin_2016_09_009
crossref_primary_10_1002_acs_2736
crossref_primary_10_1016_j_neucom_2020_01_110
crossref_primary_10_1016_j_amc_2018_04_037
crossref_primary_10_1155_2021_4713450
crossref_primary_10_1186_s40064_016_2632_4
crossref_primary_10_1016_j_renene_2018_12_098
crossref_primary_10_1109_ACCESS_2018_2854563
crossref_primary_10_3390_mca28060104
crossref_primary_10_1016_j_neucom_2017_05_070
crossref_primary_10_1109_TCYB_2017_2688395
crossref_primary_10_1016_j_physa_2019_03_103
crossref_primary_10_1016_j_jfranklin_2016_07_006
crossref_primary_10_1007_s12555_016_0285_2
crossref_primary_10_1155_2018_8524825
crossref_primary_10_1109_TCYB_2020_3031087
crossref_primary_10_1007_s11063_016_9562_6
crossref_primary_10_1002_rnc_5304
crossref_primary_10_1016_j_jfranklin_2017_08_046
crossref_primary_10_1109_TSMC_2023_3312068
crossref_primary_10_1109_TCYB_2017_2665683
crossref_primary_10_1109_TNNLS_2017_2674692
crossref_primary_10_1109_TCYB_2018_2874273
crossref_primary_10_1109_TNNLS_2018_2853650
crossref_primary_10_1016_j_neucom_2017_07_054
crossref_primary_10_1016_j_neucom_2016_07_061
crossref_primary_10_1049_iet_cta_2016_0634
crossref_primary_10_1109_TCYB_2018_2889653
crossref_primary_10_1007_s00034_016_0463_8
crossref_primary_10_1016_j_cnsns_2019_104905
crossref_primary_10_1109_TNNLS_2018_2843771
crossref_primary_10_1016_j_isatra_2016_04_005
crossref_primary_10_1007_s11063_024_11628_7
crossref_primary_10_1080_00207179_2016_1266516
crossref_primary_10_1007_s00034_015_0240_0
crossref_primary_10_1016_j_neucom_2018_03_046
crossref_primary_10_1016_j_jfranklin_2017_05_011
crossref_primary_10_1007_s11063_021_10601_y
crossref_primary_10_1109_TNNLS_2016_2578309
crossref_primary_10_1109_TSMC_2016_2622363
crossref_primary_10_1109_TNNLS_2018_2885042
crossref_primary_10_1109_TNNLS_2020_3016421
crossref_primary_10_4236_jilsa_2021_131001
crossref_primary_10_1007_s11768_016_6084_8
crossref_primary_10_1016_j_cam_2018_04_018
crossref_primary_10_1109_TNNLS_2019_2927249
crossref_primary_10_1016_j_asoc_2019_02_005
crossref_primary_10_1007_s11063_024_11458_7
crossref_primary_10_1109_TNNLS_2018_2795546
crossref_primary_10_1016_j_jfranklin_2016_11_015
crossref_primary_10_1007_s11063_018_9801_0
crossref_primary_10_1098_rspa_2016_0934
crossref_primary_10_1109_TNNLS_2017_2716947
crossref_primary_10_31209_2018_100000021
crossref_primary_10_1016_j_camwa_2016_11_010
crossref_primary_10_1109_TNNLS_2019_2909747
crossref_primary_10_1007_s11063_016_9504_3
crossref_primary_10_1016_j_cnsns_2017_09_005
crossref_primary_10_1007_s13042_024_02195_3
crossref_primary_10_1109_TNNLS_2017_2760979
crossref_primary_10_1007_s12555_018_9728_2
crossref_primary_10_1007_s00521_019_04348_w
crossref_primary_10_1142_S0218348X21500705
crossref_primary_10_1016_j_jfranklin_2019_01_058
crossref_primary_10_1109_TSMC_2016_2582543
crossref_primary_10_1007_s00521_015_2079_5
crossref_primary_10_1016_j_cnsns_2017_05_021
crossref_primary_10_1109_TNNLS_2016_2631624
crossref_primary_10_1109_TNNLS_2015_2449898
crossref_primary_10_1109_TNNLS_2017_2750708
crossref_primary_10_1109_TNNLS_2022_3188161
crossref_primary_10_1016_j_amc_2017_07_016
crossref_primary_10_1016_j_isatra_2018_02_004
crossref_primary_10_1109_TCYB_2020_2985837
crossref_primary_10_1016_j_neucom_2017_08_056
Cites_doi 10.1016/j.amc.2012.03.082
10.1016/j.automatica.2010.10.014
10.1109/TNN.2011.2169425
10.1109/TNN.2007.914162
10.1109/TNNLS.2013.2285564
10.1016/j.neunet.2014.02.012
10.1109/TNN.2008.2002436
10.1109/TNNLS.2013.2256796
10.1109/TNNLS.2012.2236571
10.1109/TCYB.2013.2240451
10.1109/TNN.2011.2111383
10.1109/TNN.2009.2014160
10.1109/TNN.2006.888373
10.1109/TNN.2008.2001265
10.1109/TNN.2011.2131679
10.1109/TNN.2011.2147331
10.1109/TNN.2007.912593
10.1109/TNN.2009.2034742
10.1016/j.neunet.2005.03.015
10.1109/TNN.2007.903147
10.1016/j.cnsns.2014.02.024
10.1109/TSMCB.2007.913124
10.1109/TCSII.2008.2011594
10.1016/j.neucom.2012.12.016
10.1016/S1874-1029(14)60401-8
10.1109/TNNLS.2014.2317880
10.1109/TNNLS.2011.2178563
10.1109/TNNLS.2013.2284968
10.1016/S1874-1029(14)60403-1
10.1007/978-1-4614-1695-1_1
10.1109/TNNLS.2012.2224883
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2014.2387434
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Technology Research Database
Materials Research Database
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2595
ExternalDocumentID 3855538081
25608313
10_1109_TNNLS_2014_2387434
7010942
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: China State Key Laboratory of Synthetical Automation for Process Industries
  grantid: 2013ZCX01
– fundername: National Natural Science Foundation of China
  grantid: 61473070; 61433004
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities of China
  grantid: N130504002; N130104001
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c487t-6b5e416f4e21cb26a35ad697dde73879e6f901fac4872cbaf5cda2700eba3fae3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 09:48:42 EDT 2025
Fri Jul 11 12:22:34 EDT 2025
Fri Jul 11 07:31:16 EDT 2025
Mon Jun 30 05:14:53 EDT 2025
Mon Jul 21 06:02:06 EDT 2025
Tue Jul 01 00:27:19 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Tue Aug 26 16:37:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Keywords time-varying delay
recurrent neural networks (RNNs)
Extended reciprocal convex combination (RCC)
stability
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-6b5e416f4e21cb26a35ad697dde73879e6f901fac4872cbaf5cda2700eba3fae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25608313
PQID 1729214924
PQPubID 85436
PageCount 7
ParticipantIDs proquest_miscellaneous_1778043581
ieee_primary_7010942
proquest_journals_1729214924
crossref_primary_10_1109_TNNLS_2014_2387434
crossref_citationtrail_10_1109_TNNLS_2014_2387434
proquest_miscellaneous_1751210014
pubmed_primary_25608313
proquest_miscellaneous_1720447843
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
mou (ref11) 2008; 38
ref14
ref31
ref30
ge (ref2) 2014; 25
ref1
ref17
ref16
ref19
ref18
mou (ref10) 2008; 19
zhu (ref24) 2008; 19
ref23
ref26
ref20
ref22
ref21
park (ref12) 2011; 47
ref28
ref27
ref29
ref7
ref9
ref4
ref3
ref6
li (ref8) 2013; 24
ref5
li (ref25) 2011; 22
References_xml – ident: ref31
  doi: 10.1016/j.amc.2012.03.082
– volume: 47
  start-page: 235
  year: 2011
  ident: ref12
  article-title: Reciprocally convex approach to stability of systems with time-varying delays
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.10.014
– volume: 22
  start-page: 2138
  year: 2011
  ident: ref25
  article-title: Delay-slope-dependent stability results of recurrent neural networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2169425
– ident: ref7
  doi: 10.1109/TNN.2007.914162
– volume: 25
  start-page: 1378
  year: 2014
  ident: ref2
  article-title: New delay-dependent stability criteria for neural networks with time-varying delay using delay-decomposition approach
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2285564
– ident: ref29
  doi: 10.1016/j.neunet.2014.02.012
– volume: 19
  start-page: 1783
  year: 2008
  ident: ref24
  article-title: New delay-dependent stability results for neural networks with time-varying delay
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2002436
– volume: 24
  start-page: 1459
  year: 2013
  ident: ref8
  article-title: Combined convex technique on delay-dependent stability for delayed neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2256796
– ident: ref20
  doi: 10.1109/TNNLS.2012.2236571
– ident: ref1
  doi: 10.1109/TCYB.2013.2240451
– ident: ref15
  doi: 10.1109/TNN.2011.2111383
– ident: ref17
  doi: 10.1109/TNN.2009.2014160
– ident: ref4
  doi: 10.1109/TNN.2006.888373
– ident: ref13
  doi: 10.1109/TNN.2008.2001265
– ident: ref22
  doi: 10.1109/TNN.2011.2131679
– ident: ref18
  doi: 10.1109/TNN.2011.2147331
– volume: 19
  start-page: 532
  year: 2008
  ident: ref10
  article-title: A new criterion of delay-dependent asymptotic stability for Hopfield neural networks with time delay
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2007.912593
– ident: ref19
  doi: 10.1109/TNN.2009.2034742
– ident: ref9
  doi: 10.1016/j.neunet.2005.03.015
– ident: ref3
  doi: 10.1109/TNN.2007.903147
– ident: ref30
  doi: 10.1016/j.cnsns.2014.02.024
– volume: 38
  start-page: 571
  year: 2008
  ident: ref11
  article-title: New delay-dependent exponential stability for neural networks with time delay
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2007.913124
– ident: ref23
  doi: 10.1109/TCSII.2008.2011594
– ident: ref6
  doi: 10.1016/j.neucom.2012.12.016
– ident: ref26
  doi: 10.1016/S1874-1029(14)60401-8
– ident: ref21
  doi: 10.1109/TNNLS.2014.2317880
– ident: ref14
  doi: 10.1109/TNNLS.2011.2178563
– ident: ref16
  doi: 10.1109/TNNLS.2013.2284968
– ident: ref28
  doi: 10.1016/S1874-1029(14)60403-1
– ident: ref27
  doi: 10.1007/978-1-4614-1695-1_1
– ident: ref5
  doi: 10.1109/TNNLS.2012.2224883
SSID ssj0000605649
Score 2.5133183
Snippet A secondary delay partitioning method is proposed to study the stability problem for a class of recurrent neural networks (RNNs) with time-varying delay. The...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2589
SubjectTerms Algorithms
Computer Simulation
Criteria
Delay
Delay effects
Delays
Extended reciprocal convex combination (RCC)
Humans
Integrals
Learning systems
Linear matrix inequalities
Mathematical models
Models, Theoretical
Neural networks
Neural Networks (Computer)
Nonlinear Dynamics
Numerical stability
Partitioning
Recurrent neural networks
recurrent neural networks (RNNs)
Stability
Stability criteria
Time Factors
time-varying delay
Upper bound
Title Stability Criteria for Recurrent Neural Networks With Time-Varying Delay Based on Secondary Delay Partitioning Method
URI https://ieeexplore.ieee.org/document/7010942
https://www.ncbi.nlm.nih.gov/pubmed/25608313
https://www.proquest.com/docview/1729214924
https://www.proquest.com/docview/1720447843
https://www.proquest.com/docview/1751210014
https://www.proquest.com/docview/1778043581
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnrjQQnksFGQkbpBtEjv25sirqhC7QrSFvUW2MxGIKlu1yaH8emYcJxIIVtwieRI5mXHm83jmG4AXKC2iKU3iyX4S1egyKQ0HcRZ1ozI0dRqKxJYrfXKuPqyL9Q68mmphEDEkn-GcL8NZfr3xPYfKjgyf4yj64d6ijdtQqzXFU1LC5Tqg3TzTeZJLsx5rZNLy6Gy1-njKiVxqTj6KvCb342Fvv5CZ_M0lhR4r_4abwe0c78FynPCQbfJj3ndu7n_-weX4v2-0D3ci_hSvB4O5CzvY3oO9sbeDiEv9AHpCoSFv9kZwNwS2U0H4Vnzm-DwzOgmm9aAnrYY88mvx9Xv3TXBFSfLFXnHxlHiHF_ZGvCE_WYtNK055713TWBz4xFYb48FiGTpZ34fz4_dnb0-S2KIh8bTT6RLtCiRI1yjMM-9ybWVha10a-mka-s4l6oYAR2NZOvfONoWvLZ91o7OysSgfwG67afERCCa2k043zqVWee2sstLUmcpsIL1TM8hGLVU-8pdzG42LKuxj0rIKSq5YyVVU8gxeTvdcDuwdW6UPWEOTZFTODA5HY6jiAr-uCPeVOe0uc7rr-TRMS5PPW2yLmz7IpEqZhZLbZAqmcKNZbJNhligmqpvBw8EYpzmONvz473N_ArfpDYsh-_AQdrurHp8Siurcs7B8fgHerBZo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqcoALBQp0aQEjcYNsk9ixN0e-qgV2I0S3sLfIdiYCUWWrNjmUX8-M40QCwYpbJE8iJzPOPI9n3jD2HIQB0LmOHNpPJGuVR7mmIM6sqmUCuop9kdiyUPMz-WGdrXfYy7EWBgB88hlM6dKf5Vcb11Go7FjTOY7EH-6NjIpx-2qtMaISIzJXHu-miUqjVOj1UCUT58erolicUiqXnKKXQr9JHXnI389EIn5zSr7Lyr8Bp3c8J3tsOUy5zzf5Me1aO3U__2Bz_N93usNuBwTKX_Umc5ftQHOP7Q3dHXhY7PusQxzqM2evOfVDIEvliHD5Z4rQE6cTJ2IPfFLRZ5Jf8a_f22-cakqiL-aSyqf4Wzg31_w1esqKbxp-SrvvCsfCwCey2xAR5kvfy_o-Ozt5t3ozj0KThsjhXqeNlM0AQV0tIU2cTZURmalUrvG3qfE756BqhBy1IenUWVNnrjJ02g3WiNqAeMB2m00DB4wTtZ2wqrY2NtIpa6QRukpkYjztnZywZNBS6QKDOTXSOC_9TibOS6_kkpRcBiVP2Ivxnouev2Or9D5paJQMypmwo8EYyrDEr0pEfnmK-8sU73o2DuPipBMX08Cm8zKxlHomxTaZjEjccBbbZIgniqjqJuxhb4zjHAcbfvT3uT9lN-er5aJcvC8-HrJb-LZZn4t4xHbbyw4eI6Zq7RO_lH4BfboZsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+Criteria+for+Recurrent+Neural+Networks+With+Time-Varying+Delay+Based+on+Secondary+Delay+Partitioning+Method&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Zhanshan&rft.au=Liu%2C+Lei&rft.au=Shan%2C+Qi-He&rft.au=Zhang%2C+Huaguang&rft.date=2015-10-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=26&rft.issue=10&rft.spage=2589&rft.epage=2595&rft_id=info:doi/10.1109%2FTNNLS.2014.2387434&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2014_2387434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon