Stability Criteria for Recurrent Neural Networks With Time-Varying Delay Based on Secondary Delay Partitioning Method
A secondary delay partitioning method is proposed to study the stability problem for a class of recurrent neural networks (RNNs) with time-varying delay. The total interval of the time-varying delay is first divided into two parts, and then each part is further divided into several subintervals. To...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 26; no. 10; pp. 2589 - 2595 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2014.2387434 |
Cover
Loading…
Abstract | A secondary delay partitioning method is proposed to study the stability problem for a class of recurrent neural networks (RNNs) with time-varying delay. The total interval of the time-varying delay is first divided into two parts, and then each part is further divided into several subintervals. To deal with the state variables associated with these subintervals, an extended reciprocal convex combination approach and a double integral term with variable upper and lower limits of integral as a Lyapunov functional are proposed, which help to obtain the stability criterion. The main feature of the proposed result is more effective for the RNNs with fast time-varying delay. A numerical example is used to show the effectiveness of the proposed stability result. |
---|---|
AbstractList | A secondary delay partitioning method is proposed to study the stability problem for a class of recurrent neural networks (RNNs) with time-varying delay. The total interval of the time-varying delay is first divided into two parts, and then each part is further divided into several subintervals. To deal with the state variables associated with these subintervals, an extended reciprocal convex combination approach and a double integral term with variable upper and lower limits of integral as a Lyapunov functional are proposed, which help to obtain the stability criterion. The main feature of the proposed result is more effective for the RNNs with fast time-varying delay. A numerical example is used to show the effectiveness of the proposed stability result.A secondary delay partitioning method is proposed to study the stability problem for a class of recurrent neural networks (RNNs) with time-varying delay. The total interval of the time-varying delay is first divided into two parts, and then each part is further divided into several subintervals. To deal with the state variables associated with these subintervals, an extended reciprocal convex combination approach and a double integral term with variable upper and lower limits of integral as a Lyapunov functional are proposed, which help to obtain the stability criterion. The main feature of the proposed result is more effective for the RNNs with fast time-varying delay. A numerical example is used to show the effectiveness of the proposed stability result. A secondary delay partitioning method is proposed to study the stability problem for a class of recurrent neural networks (RNNs) with time-varying delay. The total interval of the time-varying delay is first divided into two parts, and then each part is further divided into several subintervals. To deal with the state variables associated with these subintervals, an extended reciprocal convex combination approach and a double integral term with variable upper and lower limits of integral as a Lyapunov functional are proposed, which help to obtain the stability criterion. The main feature of the proposed result is more effective for the RNNs with fast time-varying delay. A numerical example is used to show the effectiveness of the proposed stability result. |
Author | Zhanshan Wang Lei Liu Huaguang Zhang Qi-He Shan |
Author_xml | – sequence: 1 givenname: Zhanshan surname: Wang fullname: Wang, Zhanshan – sequence: 2 givenname: Lei surname: Liu fullname: Liu, Lei – sequence: 3 givenname: Qi-He surname: Shan fullname: Shan, Qi-He – sequence: 4 givenname: Huaguang surname: Zhang fullname: Zhang, Huaguang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25608313$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi3UipbSPwASssSFSxZ_xU6OdPlopWVB7PJxixxnQl2ydrEdof33ON1lDz2g-jK25nnHmpn3CTpy3gFCzyiZUUrq1-vlcrGaMULFjPFKCS4eoVNGJSvyszo63NWPE3Qe4w3JR5JSivoxOmGlJBWn_BSNq6RbO9i0xfNgEwSrce8D_gJmDAFcwksYgx5ySH98-BXxd5uu8dpuoPimw9a6n_gtDHqLL3SEDnuHV2C863Jun_isQ7LJejexHyFd--4pOu71EOF8H8_Q1_fv1vPLYvHpw9X8zaIwolKpkG0JgspeAKOmZVLzUneyVl0HKvdcg-xrQns90cy0ui9Np5kiBFrNew38DL3a1b0N_vcIMTUbGw0Mg3bgx9hQpSoieFnRB6AlZZTkeT8AZUQIVQme0Zf30Bs_Bpd7nqiaUVGzqeCLPTW2G-ia22A3eX7NvzVlgO0AE3yMAfoDQkkz2aG5s0Mz2aHZ2yGLqnsiY5OeFpGCtsP_pc93UgsAh78Uybhg_C9vgsH2 |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1016_j_neunet_2016_08_008 crossref_primary_10_1016_j_neucom_2018_10_044 crossref_primary_10_1016_j_nahs_2017_12_006 crossref_primary_10_1016_j_neunet_2016_08_002 crossref_primary_10_1117_1_JEI_32_1_011202 crossref_primary_10_3934_math_2020439 crossref_primary_10_1109_TNNLS_2016_2608879 crossref_primary_10_1007_s00521_016_2291_y crossref_primary_10_1016_j_amc_2021_126041 crossref_primary_10_3934_math_2020279 crossref_primary_10_1109_TCYB_2022_3208156 crossref_primary_10_1016_j_neucom_2016_04_058 crossref_primary_10_1155_2023_5577859 crossref_primary_10_1007_s00521_016_2670_4 crossref_primary_10_1109_TNNLS_2018_2877195 crossref_primary_10_1016_j_neunet_2019_01_017 crossref_primary_10_1016_j_ins_2024_120249 crossref_primary_10_1109_TSMC_2018_2815560 crossref_primary_10_1016_j_matcom_2020_12_001 crossref_primary_10_1016_j_sysconle_2022_105436 crossref_primary_10_1016_j_neucom_2020_05_045 crossref_primary_10_1109_TCSII_2023_3298959 crossref_primary_10_1016_j_neucom_2019_06_077 crossref_primary_10_1109_TNNLS_2015_2485259 crossref_primary_10_1109_TSMC_2018_2793559 crossref_primary_10_1080_00207179_2016_1237047 crossref_primary_10_1109_TNNLS_2023_3241955 crossref_primary_10_1186_s13662_016_1044_7 crossref_primary_10_1016_j_amc_2016_08_043 crossref_primary_10_1016_j_jfranklin_2016_12_017 crossref_primary_10_1109_TNNLS_2019_2952410 crossref_primary_10_1016_j_jfranklin_2016_09_009 crossref_primary_10_1002_acs_2736 crossref_primary_10_1016_j_neucom_2020_01_110 crossref_primary_10_1016_j_amc_2018_04_037 crossref_primary_10_1155_2021_4713450 crossref_primary_10_1186_s40064_016_2632_4 crossref_primary_10_1016_j_renene_2018_12_098 crossref_primary_10_1109_ACCESS_2018_2854563 crossref_primary_10_3390_mca28060104 crossref_primary_10_1016_j_neucom_2017_05_070 crossref_primary_10_1109_TCYB_2017_2688395 crossref_primary_10_1016_j_physa_2019_03_103 crossref_primary_10_1016_j_jfranklin_2016_07_006 crossref_primary_10_1007_s12555_016_0285_2 crossref_primary_10_1155_2018_8524825 crossref_primary_10_1109_TCYB_2020_3031087 crossref_primary_10_1007_s11063_016_9562_6 crossref_primary_10_1002_rnc_5304 crossref_primary_10_1016_j_jfranklin_2017_08_046 crossref_primary_10_1109_TSMC_2023_3312068 crossref_primary_10_1109_TCYB_2017_2665683 crossref_primary_10_1109_TNNLS_2017_2674692 crossref_primary_10_1109_TCYB_2018_2874273 crossref_primary_10_1109_TNNLS_2018_2853650 crossref_primary_10_1016_j_neucom_2017_07_054 crossref_primary_10_1016_j_neucom_2016_07_061 crossref_primary_10_1049_iet_cta_2016_0634 crossref_primary_10_1109_TCYB_2018_2889653 crossref_primary_10_1007_s00034_016_0463_8 crossref_primary_10_1016_j_cnsns_2019_104905 crossref_primary_10_1109_TNNLS_2018_2843771 crossref_primary_10_1016_j_isatra_2016_04_005 crossref_primary_10_1007_s11063_024_11628_7 crossref_primary_10_1080_00207179_2016_1266516 crossref_primary_10_1007_s00034_015_0240_0 crossref_primary_10_1016_j_neucom_2018_03_046 crossref_primary_10_1016_j_jfranklin_2017_05_011 crossref_primary_10_1007_s11063_021_10601_y crossref_primary_10_1109_TNNLS_2016_2578309 crossref_primary_10_1109_TSMC_2016_2622363 crossref_primary_10_1109_TNNLS_2018_2885042 crossref_primary_10_1109_TNNLS_2020_3016421 crossref_primary_10_4236_jilsa_2021_131001 crossref_primary_10_1007_s11768_016_6084_8 crossref_primary_10_1016_j_cam_2018_04_018 crossref_primary_10_1109_TNNLS_2019_2927249 crossref_primary_10_1016_j_asoc_2019_02_005 crossref_primary_10_1007_s11063_024_11458_7 crossref_primary_10_1109_TNNLS_2018_2795546 crossref_primary_10_1016_j_jfranklin_2016_11_015 crossref_primary_10_1007_s11063_018_9801_0 crossref_primary_10_1098_rspa_2016_0934 crossref_primary_10_1109_TNNLS_2017_2716947 crossref_primary_10_31209_2018_100000021 crossref_primary_10_1016_j_camwa_2016_11_010 crossref_primary_10_1109_TNNLS_2019_2909747 crossref_primary_10_1007_s11063_016_9504_3 crossref_primary_10_1016_j_cnsns_2017_09_005 crossref_primary_10_1007_s13042_024_02195_3 crossref_primary_10_1109_TNNLS_2017_2760979 crossref_primary_10_1007_s12555_018_9728_2 crossref_primary_10_1007_s00521_019_04348_w crossref_primary_10_1142_S0218348X21500705 crossref_primary_10_1016_j_jfranklin_2019_01_058 crossref_primary_10_1109_TSMC_2016_2582543 crossref_primary_10_1007_s00521_015_2079_5 crossref_primary_10_1016_j_cnsns_2017_05_021 crossref_primary_10_1109_TNNLS_2016_2631624 crossref_primary_10_1109_TNNLS_2015_2449898 crossref_primary_10_1109_TNNLS_2017_2750708 crossref_primary_10_1109_TNNLS_2022_3188161 crossref_primary_10_1016_j_amc_2017_07_016 crossref_primary_10_1016_j_isatra_2018_02_004 crossref_primary_10_1109_TCYB_2020_2985837 crossref_primary_10_1016_j_neucom_2017_08_056 |
Cites_doi | 10.1016/j.amc.2012.03.082 10.1016/j.automatica.2010.10.014 10.1109/TNN.2011.2169425 10.1109/TNN.2007.914162 10.1109/TNNLS.2013.2285564 10.1016/j.neunet.2014.02.012 10.1109/TNN.2008.2002436 10.1109/TNNLS.2013.2256796 10.1109/TNNLS.2012.2236571 10.1109/TCYB.2013.2240451 10.1109/TNN.2011.2111383 10.1109/TNN.2009.2014160 10.1109/TNN.2006.888373 10.1109/TNN.2008.2001265 10.1109/TNN.2011.2131679 10.1109/TNN.2011.2147331 10.1109/TNN.2007.912593 10.1109/TNN.2009.2034742 10.1016/j.neunet.2005.03.015 10.1109/TNN.2007.903147 10.1016/j.cnsns.2014.02.024 10.1109/TSMCB.2007.913124 10.1109/TCSII.2008.2011594 10.1016/j.neucom.2012.12.016 10.1016/S1874-1029(14)60401-8 10.1109/TNNLS.2014.2317880 10.1109/TNNLS.2011.2178563 10.1109/TNNLS.2013.2284968 10.1016/S1874-1029(14)60403-1 10.1007/978-1-4614-1695-1_1 10.1109/TNNLS.2012.2224883 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2014.2387434 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Technology Research Database Materials Research Database Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 2595 |
ExternalDocumentID | 3855538081 25608313 10_1109_TNNLS_2014_2387434 7010942 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: China State Key Laboratory of Synthetical Automation for Process Industries grantid: 2013ZCX01 – fundername: National Natural Science Foundation of China grantid: 61473070; 61433004 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities of China grantid: N130504002; N130104001 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c487t-6b5e416f4e21cb26a35ad697dde73879e6f901fac4872cbaf5cda2700eba3fae3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 09:48:42 EDT 2025 Fri Jul 11 12:22:34 EDT 2025 Fri Jul 11 07:31:16 EDT 2025 Mon Jun 30 05:14:53 EDT 2025 Mon Jul 21 06:02:06 EDT 2025 Tue Jul 01 00:27:19 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Tue Aug 26 16:37:37 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 10 |
Keywords | time-varying delay recurrent neural networks (RNNs) Extended reciprocal convex combination (RCC) stability |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c487t-6b5e416f4e21cb26a35ad697dde73879e6f901fac4872cbaf5cda2700eba3fae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25608313 |
PQID | 1729214924 |
PQPubID | 85436 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1778043581 ieee_primary_7010942 proquest_journals_1729214924 crossref_primary_10_1109_TNNLS_2014_2387434 crossref_citationtrail_10_1109_TNNLS_2014_2387434 proquest_miscellaneous_1751210014 pubmed_primary_25608313 proquest_miscellaneous_1720447843 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-01 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 mou (ref11) 2008; 38 ref14 ref31 ref30 ge (ref2) 2014; 25 ref1 ref17 ref16 ref19 ref18 mou (ref10) 2008; 19 zhu (ref24) 2008; 19 ref23 ref26 ref20 ref22 ref21 park (ref12) 2011; 47 ref28 ref27 ref29 ref7 ref9 ref4 ref3 ref6 li (ref8) 2013; 24 ref5 li (ref25) 2011; 22 |
References_xml | – ident: ref31 doi: 10.1016/j.amc.2012.03.082 – volume: 47 start-page: 235 year: 2011 ident: ref12 article-title: Reciprocally convex approach to stability of systems with time-varying delays publication-title: Automatica doi: 10.1016/j.automatica.2010.10.014 – volume: 22 start-page: 2138 year: 2011 ident: ref25 article-title: Delay-slope-dependent stability results of recurrent neural networks publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2169425 – ident: ref7 doi: 10.1109/TNN.2007.914162 – volume: 25 start-page: 1378 year: 2014 ident: ref2 article-title: New delay-dependent stability criteria for neural networks with time-varying delay using delay-decomposition approach publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2285564 – ident: ref29 doi: 10.1016/j.neunet.2014.02.012 – volume: 19 start-page: 1783 year: 2008 ident: ref24 article-title: New delay-dependent stability results for neural networks with time-varying delay publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2002436 – volume: 24 start-page: 1459 year: 2013 ident: ref8 article-title: Combined convex technique on delay-dependent stability for delayed neural networks publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2256796 – ident: ref20 doi: 10.1109/TNNLS.2012.2236571 – ident: ref1 doi: 10.1109/TCYB.2013.2240451 – ident: ref15 doi: 10.1109/TNN.2011.2111383 – ident: ref17 doi: 10.1109/TNN.2009.2014160 – ident: ref4 doi: 10.1109/TNN.2006.888373 – ident: ref13 doi: 10.1109/TNN.2008.2001265 – ident: ref22 doi: 10.1109/TNN.2011.2131679 – ident: ref18 doi: 10.1109/TNN.2011.2147331 – volume: 19 start-page: 532 year: 2008 ident: ref10 article-title: A new criterion of delay-dependent asymptotic stability for Hopfield neural networks with time delay publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2007.912593 – ident: ref19 doi: 10.1109/TNN.2009.2034742 – ident: ref9 doi: 10.1016/j.neunet.2005.03.015 – ident: ref3 doi: 10.1109/TNN.2007.903147 – ident: ref30 doi: 10.1016/j.cnsns.2014.02.024 – volume: 38 start-page: 571 year: 2008 ident: ref11 article-title: New delay-dependent exponential stability for neural networks with time delay publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2007.913124 – ident: ref23 doi: 10.1109/TCSII.2008.2011594 – ident: ref6 doi: 10.1016/j.neucom.2012.12.016 – ident: ref26 doi: 10.1016/S1874-1029(14)60401-8 – ident: ref21 doi: 10.1109/TNNLS.2014.2317880 – ident: ref14 doi: 10.1109/TNNLS.2011.2178563 – ident: ref16 doi: 10.1109/TNNLS.2013.2284968 – ident: ref28 doi: 10.1016/S1874-1029(14)60403-1 – ident: ref27 doi: 10.1007/978-1-4614-1695-1_1 – ident: ref5 doi: 10.1109/TNNLS.2012.2224883 |
SSID | ssj0000605649 |
Score | 2.5133183 |
Snippet | A secondary delay partitioning method is proposed to study the stability problem for a class of recurrent neural networks (RNNs) with time-varying delay. The... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2589 |
SubjectTerms | Algorithms Computer Simulation Criteria Delay Delay effects Delays Extended reciprocal convex combination (RCC) Humans Integrals Learning systems Linear matrix inequalities Mathematical models Models, Theoretical Neural networks Neural Networks (Computer) Nonlinear Dynamics Numerical stability Partitioning Recurrent neural networks recurrent neural networks (RNNs) Stability Stability criteria Time Factors time-varying delay Upper bound |
Title | Stability Criteria for Recurrent Neural Networks With Time-Varying Delay Based on Secondary Delay Partitioning Method |
URI | https://ieeexplore.ieee.org/document/7010942 https://www.ncbi.nlm.nih.gov/pubmed/25608313 https://www.proquest.com/docview/1729214924 https://www.proquest.com/docview/1720447843 https://www.proquest.com/docview/1751210014 https://www.proquest.com/docview/1778043581 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnrjQQnksFGQkbpBtEjv25sirqhC7QrSFvUW2MxGIKlu1yaH8emYcJxIIVtwieRI5mXHm83jmG4AXKC2iKU3iyX4S1egyKQ0HcRZ1ozI0dRqKxJYrfXKuPqyL9Q68mmphEDEkn-GcL8NZfr3xPYfKjgyf4yj64d6ijdtQqzXFU1LC5Tqg3TzTeZJLsx5rZNLy6Gy1-njKiVxqTj6KvCb342Fvv5CZ_M0lhR4r_4abwe0c78FynPCQbfJj3ndu7n_-weX4v2-0D3ci_hSvB4O5CzvY3oO9sbeDiEv9AHpCoSFv9kZwNwS2U0H4Vnzm-DwzOgmm9aAnrYY88mvx9Xv3TXBFSfLFXnHxlHiHF_ZGvCE_WYtNK055713TWBz4xFYb48FiGTpZ34fz4_dnb0-S2KIh8bTT6RLtCiRI1yjMM-9ybWVha10a-mka-s4l6oYAR2NZOvfONoWvLZ91o7OysSgfwG67afERCCa2k043zqVWee2sstLUmcpsIL1TM8hGLVU-8pdzG42LKuxj0rIKSq5YyVVU8gxeTvdcDuwdW6UPWEOTZFTODA5HY6jiAr-uCPeVOe0uc7rr-TRMS5PPW2yLmz7IpEqZhZLbZAqmcKNZbJNhligmqpvBw8EYpzmONvz473N_ArfpDYsh-_AQdrurHp8Siurcs7B8fgHerBZo |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqcoALBQp0aQEjcYNsk9ixN0e-qgV2I0S3sLfIdiYCUWWrNjmUX8-M40QCwYpbJE8iJzPOPI9n3jD2HIQB0LmOHNpPJGuVR7mmIM6sqmUCuop9kdiyUPMz-WGdrXfYy7EWBgB88hlM6dKf5Vcb11Go7FjTOY7EH-6NjIpx-2qtMaISIzJXHu-miUqjVOj1UCUT58erolicUiqXnKKXQr9JHXnI389EIn5zSr7Lyr8Bp3c8J3tsOUy5zzf5Me1aO3U__2Bz_N93usNuBwTKX_Umc5ftQHOP7Q3dHXhY7PusQxzqM2evOfVDIEvliHD5Z4rQE6cTJ2IPfFLRZ5Jf8a_f22-cakqiL-aSyqf4Wzg31_w1esqKbxp-SrvvCsfCwCey2xAR5kvfy_o-Ozt5t3ozj0KThsjhXqeNlM0AQV0tIU2cTZURmalUrvG3qfE756BqhBy1IenUWVNnrjJ02g3WiNqAeMB2m00DB4wTtZ2wqrY2NtIpa6QRukpkYjztnZywZNBS6QKDOTXSOC_9TibOS6_kkpRcBiVP2Ivxnouev2Or9D5paJQMypmwo8EYyrDEr0pEfnmK-8sU73o2DuPipBMX08Cm8zKxlHomxTaZjEjccBbbZIgniqjqJuxhb4zjHAcbfvT3uT9lN-er5aJcvC8-HrJb-LZZn4t4xHbbyw4eI6Zq7RO_lH4BfboZsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+Criteria+for+Recurrent+Neural+Networks+With+Time-Varying+Delay+Based+on+Secondary+Delay+Partitioning+Method&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Zhanshan&rft.au=Liu%2C+Lei&rft.au=Shan%2C+Qi-He&rft.au=Zhang%2C+Huaguang&rft.date=2015-10-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=26&rft.issue=10&rft.spage=2589&rft.epage=2595&rft_id=info:doi/10.1109%2FTNNLS.2014.2387434&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2014_2387434 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |