Mapping heterogenous anisotropic tissue mechanical properties with transverse isotropic nonlinear inversion MR elastography

•A novel finite element based magnetic resonance elastography inversion for in vivo mechanical property imaging of heterogenous, anisotropic tissue is presented.•Imaged parameters include shear modulus, damping ratio, shear anisotropy and tensile anisotropy.•Good quantitative and spatial accuracy, a...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 78; p. 102432
Main Authors McGarry, Matthew, Van Houten, Elijah, Sowinski, Damian, Jyoti, Dhrubo, Smith, Daniel R., Caban-Rivera, Diego A., McIlvain, Grace, Bayly, Philip, Johnson, Curtis L., Weaver, John, Paulsen, Keith
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2022.102432

Cover

Abstract •A novel finite element based magnetic resonance elastography inversion for in vivo mechanical property imaging of heterogenous, anisotropic tissue is presented.•Imaged parameters include shear modulus, damping ratio, shear anisotropy and tensile anisotropy.•Good quantitative and spatial accuracy, as well as low noise sensitivity was demonstrated with simulated data.•In vivo brain imaging demonstrated bilateral symmetry and correspondence with anatomical structure for all parameters and good scan-to-scan repeatability. The white matter tracts of brain tissue consist of highly-aligned, myelinated fibers; white matter is structurally anisotropic and is expected to exhibit anisotropic mechanical behavior. In vivo mechanical properties of tissue can be imaged using magnetic resonance elastography (MRE). MRE can detect and monitor natural and disease processes that affect tissue structure; however, most MRE inversion algorithms assume locally homogenous properties and/or isotropic behavior, which can cause artifacts in white matter regions. A heterogeneous, model-based transverse isotropic implementation of a subzone-based nonlinear inversion (TI-NLI) is demonstrated. TI-NLI reconstructs accurate maps of the shear modulus, damping ratio, shear anisotropy, and tensile anisotropy of in vivo brain tissue using standard MRE motion measurements and fiber directions estimated from diffusion tensor imaging (DTI). TI-NLI accuracy was investigated with using synthetic data in both controlled and realistic settings: excellent quantitative and spatial accuracy was observed and cross-talk between estimated parameters was minimal. Ten repeated, in vivo, MRE scans acquired from a healthy subject were co-registered to demonstrate repeatability of the technique. Good resolution of anatomical structures and bilateral symmetry were evident in MRE images of all mechanical property types. Repeatability was similar to isotropic MRE methods and well within the limits required for clinical success. TI-NLI MRE is a promising new technique for clinical research into anisotropic tissues such as the brain and muscle. [Display omitted]
AbstractList The white matter tracts of brain tissue consist of highly-aligned, myelinated fibers; white matter is structurally anisotropic and is expected to exhibit anisotropic mechanical behavior. In vivo mechanical properties of tissue can be imaged using magnetic resonance elastography (MRE). MRE can detect and monitor natural and disease processes that affect tissue structure; however, most MRE inversion algorithms assume locally homogenous properties and/or isotropic behavior, which can cause artifacts in white matter regions. A heterogeneous, model-based transverse isotropic implementation of a subzone-based nonlinear inversion (TI-NLI) is demonstrated. TI-NLI reconstructs accurate maps of the shear modulus, damping ratio, shear anisotropy, and tensile anisotropy of in vivo brain tissue using standard MRE motion measurements and fiber directions estimated from diffusion tensor imaging (DTI). TI-NLI accuracy was investigated with using synthetic data in both controlled and realistic settings: excellent quantitative and spatial accuracy was observed and cross-talk between estimated parameters was minimal. Ten repeated, in vivo, MRE scans acquired from a healthy subject were co-registered to demonstrate repeatability of the technique. Good resolution of anatomical structures and bilateral symmetry were evident in MRE images of all mechanical property types. Repeatability was similar to isotropic MRE methods and well within the limits required for clinical success. TI-NLI MRE is a promising new technique for clinical research into anisotropic tissues such as the brain and muscle.
•A novel finite element based magnetic resonance elastography inversion for in vivo mechanical property imaging of heterogenous, anisotropic tissue is presented.•Imaged parameters include shear modulus, damping ratio, shear anisotropy and tensile anisotropy.•Good quantitative and spatial accuracy, as well as low noise sensitivity was demonstrated with simulated data.•In vivo brain imaging demonstrated bilateral symmetry and correspondence with anatomical structure for all parameters and good scan-to-scan repeatability. The white matter tracts of brain tissue consist of highly-aligned, myelinated fibers; white matter is structurally anisotropic and is expected to exhibit anisotropic mechanical behavior. In vivo mechanical properties of tissue can be imaged using magnetic resonance elastography (MRE). MRE can detect and monitor natural and disease processes that affect tissue structure; however, most MRE inversion algorithms assume locally homogenous properties and/or isotropic behavior, which can cause artifacts in white matter regions. A heterogeneous, model-based transverse isotropic implementation of a subzone-based nonlinear inversion (TI-NLI) is demonstrated. TI-NLI reconstructs accurate maps of the shear modulus, damping ratio, shear anisotropy, and tensile anisotropy of in vivo brain tissue using standard MRE motion measurements and fiber directions estimated from diffusion tensor imaging (DTI). TI-NLI accuracy was investigated with using synthetic data in both controlled and realistic settings: excellent quantitative and spatial accuracy was observed and cross-talk between estimated parameters was minimal. Ten repeated, in vivo, MRE scans acquired from a healthy subject were co-registered to demonstrate repeatability of the technique. Good resolution of anatomical structures and bilateral symmetry were evident in MRE images of all mechanical property types. Repeatability was similar to isotropic MRE methods and well within the limits required for clinical success. TI-NLI MRE is a promising new technique for clinical research into anisotropic tissues such as the brain and muscle. [Display omitted]
The white matter tracts of brain tissue consist of highly-aligned, myelinated fibers; white matter is structurally anisotropic and is expected to exhibit anisotropic mechanical behavior. In vivo mechanical properties of tissue can be imaged using magnetic resonance elastography (MRE). MRE can detect and monitor natural and disease processes that affect tissue structure; however, most MRE inversion algorithms assume locally homogenous properties and/or isotropic behavior, which can cause artifacts in white matter regions. A heterogeneous, model-based transverse isotropic implementation of a subzone-based nonlinear inversion (TI-NLI) is demonstrated. TI-NLI reconstructs accurate maps of the shear modulus, damping ratio, shear anisotropy, and tensile anisotropy of in vivo brain tissue using standard MRE motion measurements and fiber directions estimated from diffusion tensor imaging (DTI). TI-NLI accuracy was investigated with using synthetic data in both controlled and realistic settings: excellent quantitative and spatial accuracy was observed and cross-talk between estimated parameters was minimal. Ten repeated, in vivo, MRE scans acquired from a healthy subject were co-registered to demonstrate repeatability of the technique. Good resolution of anatomical structures and bilateral symmetry were evident in MRE images of all mechanical property types. Repeatability was similar to isotropic MRE methods and well within the limits required for clinical success. TI-NLI MRE is a promising new technique for clinical research into anisotropic tissues such as the brain and muscle.The white matter tracts of brain tissue consist of highly-aligned, myelinated fibers; white matter is structurally anisotropic and is expected to exhibit anisotropic mechanical behavior. In vivo mechanical properties of tissue can be imaged using magnetic resonance elastography (MRE). MRE can detect and monitor natural and disease processes that affect tissue structure; however, most MRE inversion algorithms assume locally homogenous properties and/or isotropic behavior, which can cause artifacts in white matter regions. A heterogeneous, model-based transverse isotropic implementation of a subzone-based nonlinear inversion (TI-NLI) is demonstrated. TI-NLI reconstructs accurate maps of the shear modulus, damping ratio, shear anisotropy, and tensile anisotropy of in vivo brain tissue using standard MRE motion measurements and fiber directions estimated from diffusion tensor imaging (DTI). TI-NLI accuracy was investigated with using synthetic data in both controlled and realistic settings: excellent quantitative and spatial accuracy was observed and cross-talk between estimated parameters was minimal. Ten repeated, in vivo, MRE scans acquired from a healthy subject were co-registered to demonstrate repeatability of the technique. Good resolution of anatomical structures and bilateral symmetry were evident in MRE images of all mechanical property types. Repeatability was similar to isotropic MRE methods and well within the limits required for clinical success. TI-NLI MRE is a promising new technique for clinical research into anisotropic tissues such as the brain and muscle.
ArticleNumber 102432
Author Jyoti, Dhrubo
Bayly, Philip
Sowinski, Damian
Caban-Rivera, Diego A.
McIlvain, Grace
Van Houten, Elijah
Smith, Daniel R.
Paulsen, Keith
McGarry, Matthew
Johnson, Curtis L.
Weaver, John
AuthorAffiliation 1 Thayer School of Engineering, Dartmouth College, Hanover NH 03755
5 Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
4 University of Delaware, Newark, DE 19716
3 Washington University in St Louis, MO 63130
2 Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
AuthorAffiliation_xml – name: 1 Thayer School of Engineering, Dartmouth College, Hanover NH 03755
– name: 3 Washington University in St Louis, MO 63130
– name: 4 University of Delaware, Newark, DE 19716
– name: 5 Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
– name: 2 Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
Author_xml – sequence: 1
  givenname: Matthew
  orcidid: 0000-0001-8430-800X
  surname: McGarry
  fullname: McGarry, Matthew
  email: matthew.d.mcgarry@dartmouth.edu
  organization: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
– sequence: 2
  givenname: Elijah
  orcidid: 0000-0001-6565-8469
  surname: Van Houten
  fullname: Van Houten, Elijah
  organization: Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
– sequence: 3
  givenname: Damian
  orcidid: 0000-0003-3136-7449
  surname: Sowinski
  fullname: Sowinski, Damian
  organization: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
– sequence: 4
  givenname: Dhrubo
  surname: Jyoti
  fullname: Jyoti, Dhrubo
  organization: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
– sequence: 5
  givenname: Daniel R.
  surname: Smith
  fullname: Smith, Daniel R.
  organization: University of Delaware, Newark, DE 19716, USA
– sequence: 6
  givenname: Diego A.
  surname: Caban-Rivera
  fullname: Caban-Rivera, Diego A.
  organization: University of Delaware, Newark, DE 19716, USA
– sequence: 7
  givenname: Grace
  surname: McIlvain
  fullname: McIlvain, Grace
  organization: University of Delaware, Newark, DE 19716, USA
– sequence: 8
  givenname: Philip
  orcidid: 0000-0003-4303-0704
  surname: Bayly
  fullname: Bayly, Philip
  organization: Washington University in St Louis, MO 63130, USA
– sequence: 9
  givenname: Curtis L.
  orcidid: 0000-0002-7760-131X
  surname: Johnson
  fullname: Johnson, Curtis L.
  organization: University of Delaware, Newark, DE 19716, USA
– sequence: 10
  givenname: John
  surname: Weaver
  fullname: Weaver, John
  organization: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
– sequence: 11
  givenname: Keith
  surname: Paulsen
  fullname: Paulsen, Keith
  organization: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35358836$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk2LFDEQDbLifugvECTgxcuM-ehOug8KsqwfsIsgeg7pdM10DT1Jm6RHFv_8ZpzdVfewp4Sq9x6vqt4pOfLBAyEvOVtyxtXbzXILPdqlYEKUiqikeEJOuFR80VRCHt3_eX1MTlPaMMZ0VbFn5FjWsm4aqU7I7ys7TejXdIAMMazBhzlR6zGFHMOEjmZMaQa6BTeUsrMjnUoDYkZI9BfmgeZofdpBTED_0orZET3YSNHvexg8vfpGYbQph3W003D9nDxd2THBi9v3jPz4ePH9_PPi8uunL-cfLheuanReKA216qywvegV027VqVUZrLesq5xWtZRuPxnvZA1aARedAGkrVrVgQYOTZ-T9QXeau7IyB744Hs0UcWvjtQkWzf8dj4NZh51puRCM10Xgza1ADD9nSNlsMTkYR-uhrMsIVSktpJBtgb5-AN2EOfoyXkG1qmk5q3VBvfrX0b2Vu7sUQHsAuBhSirAyDrPNZYnFII6GM7PPgNmYPxkw-wyYQwYKVz7g3sk_znp3YEG5xA4hmuQQvCvACC6bPuCj_BvdNM_U
CitedBy_id crossref_primary_10_1002_mrm_30482
crossref_primary_10_1088_1478_3975_ad88e4
crossref_primary_10_1016_j_neuroimage_2023_120234
crossref_primary_10_1002_nbm_70007
crossref_primary_10_1038_s42254_022_00543_2
crossref_primary_10_1002_jmri_28747
crossref_primary_10_1016_j_jmps_2024_105746
crossref_primary_10_1016_j_brain_2024_100091
crossref_primary_10_1088_1361_6560_acb482
crossref_primary_10_3390_acoustics6020023
crossref_primary_10_1016_j_jmbbm_2023_106325
crossref_primary_10_1016_j_pnmrs_2024_05_002
crossref_primary_10_1227_ons_0000000000001523
crossref_primary_10_1088_1361_6560_ad7fc9
crossref_primary_10_1016_j_brain_2022_100051
crossref_primary_10_1109_TMI_2023_3261346
crossref_primary_10_1002_mrm_30394
crossref_primary_10_1016_j_advengsoft_2023_103476
crossref_primary_10_1002_advs_202402338
crossref_primary_10_1016_j_brain_2023_100082
crossref_primary_10_1016_j_jmbbm_2023_105744
crossref_primary_10_1016_j_media_2025_103457
crossref_primary_10_1073_pnas_2213836120
crossref_primary_10_1109_TBME_2023_3283185
crossref_primary_10_1364_BOE_516166
Cites_doi 10.1145/279232.279236
10.1118/1.598861
10.1118/1.3557469
10.1016/j.jmbbm.2016.03.005
10.1016/j.neuroimage.2018.01.007
10.1002/cnm.2979
10.1002/mrm.21636
10.1016/j.acra.2020.03.009
10.1016/j.neurobiolaging.2018.01.010
10.1109/TMI.2019.2893369
10.1093/braincomms/fcz049
10.1126/science.7569924
10.1148/radiol.2018170601
10.1115/1.4046199
10.1118/1.4754649
10.1016/j.neuroimage.2011.09.015
10.1177/0883073820909274
10.1016/j.mri.2011.12.019
10.1109/TMI.2016.2604568
10.1016/j.nicl.2019.101750
10.1002/mrm.20355
10.1016/j.jmbbm.2013.04.007
10.2214/AJR.16.17455
10.1088/1361-6560/aacb08
10.1002/nbm.2964
10.1016/j.neuroimage.2009.06.018
10.1002/mrm.21286
10.1016/j.media.2021.102212
10.1109/TMI.2004.834624
10.1371/journal.pone.0029888
10.1177/1179069519840444
10.1121/1.5064372
10.1007/s11682-018-9988-8
10.1002/mrm.25067
10.1007/s00234-016-1767-x
10.1088/0031-9155/56/13/N02
10.1016/j.jmbbm.2017.11.045
10.1016/j.neuroimage.2009.02.040
10.1002/mrm.1111
10.1371/journal.pone.0081668
10.1162/jocn_a_01574
10.1186/1532-429X-17-S1-P35
10.1148/radiol.2452061673
10.1002/hbm.23314
10.1016/j.jbiomech.2016.02.018
10.1016/j.neuroimage.2016.02.059
10.1093/cercor/bhaa388
10.1016/j.jbiomech.2015.09.009
10.1016/j.neuroimage.2013.04.089
10.1002/jmri.22707
10.1137/0916069
10.1162/jocn_a_01454
10.1002/mrm.25881
10.1109/TMI.2013.2268978
10.1006/nimg.2002.1132
10.1002/nbm.3848
10.1016/S1361-8415(00)00039-6
10.1097/RMR.0000000000000177
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright Elsevier BV May 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV May 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
DOI 10.1016/j.media.2022.102432
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 102432
ExternalDocumentID PMC9122015
35358836
10_1016_j_media_2022_102432
S1361841522000834
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB027577
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c487t-67e56ba2ad2d607cfb6f361da0b4c76533c00071b35e76e12b2e3a4049eae7ec3
IEDL.DBID AIKHN
ISSN 1361-8415
1361-8423
IngestDate Thu Aug 21 18:36:58 EDT 2025
Thu Sep 04 18:16:39 EDT 2025
Sat Jul 26 03:35:54 EDT 2025
Mon Jul 21 06:01:53 EDT 2025
Tue Jul 01 02:49:32 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
Fri Feb 23 02:38:49 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MRE
TI-NLI
LR
Anisotropic
Brain mechanics
NLI
White matter
AP
NITI
SPR
DTI
Transverse isotropic
FA
Elastography
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-67e56ba2ad2d607cfb6f361da0b4c76533c00071b35e76e12b2e3a4049eae7ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3136-7449
0000-0001-6565-8469
0000-0003-4303-0704
0000-0001-8430-800X
0000-0002-7760-131X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9122015
PMID 35358836
PQID 2696891057
PQPubID 2045428
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9122015
proquest_miscellaneous_2646723239
proquest_journals_2696891057
pubmed_primary_35358836
crossref_citationtrail_10_1016_j_media_2022_102432
crossref_primary_10_1016_j_media_2022_102432
elsevier_sciencedirect_doi_10_1016_j_media_2022_102432
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Romano, Guo, Prokscha, Meyer, Hirsch, Braun, Sack, Scheel (bib0046) 2014; 72
Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0024) 2012; 62
Miller, Kolipaka, Nash, Young (bib0039) 2018; 31
Smith, Guertler, Okamoto, Romano, Bayly, Johnson (bib0055) 2020; 142
Sinkus, Tanter, Catheline, Lorenzen, Kuhl, Sondermann, Fink (bib0054) 2005; 53
Hiscox, Johnson, McGarry, Marshall, Ritchie, van Beek, Roberts, Starr (bib0019) 2020; 2
Schwarb, Johnson, Dulas, McGarry, Holtrop, Watson, Wang, Voss, Sutton, Cohen (bib0052) 2019; 31
Daugherty, Schwarb, McGarry, Johnson, Cohen (bib0010) 2020; 32
Mazumder, Clymer, White, Romano, Kolipaka (bib0030) 2015; 17
(accessed 1.24.22).
Streitberger, Sack, Krefting, Pfüller, Braun, Paul, Wuerfel (bib0058) 2012; 7
Johnson, Schwarb, Horecka, McGarry, Hillman, Kramer, Cohen, Barbey (bib0027) 2018; 171
Hiscox, Johnson, McGarry, Schwarb, van Beek, Roberts, Starr (bib0018) 2020; 14
Anderson, Johnson, McGarry, Paulsen, Sutton, Van Houten, Georgiadis (bib0001) 2017
Caban-Rivera, Smith, Kailash, Okamoto, McGarry, Williams, Guertler, McIlvain, Sowinski, Houten, Paulsen, Bayly, Johnson (bib0007) 2021
Miller, Jiang, Mazumder, Cowan, Nash, Kolipaka, Young (bib0037) 2015
Holzapfel, Ogden, Sherifova (bib0020) 2019
Hiscox, Johnson, McGarry, Perrins, Littlejohn, van Beek, Roberts, Starr (bib0017) 2018; 65
Hoodeshenas, Yin, Venkatesh (bib0021) 2018; 27
Okamoto, Romano, Johnson, Bayly (bib0044) 2019; 13
Streitberger, Wiener, Hoffmann, Baptist, Klatt, Lin, McLaughlin, Sprung, Klingebiel, Freimann, Klatt, Braun, Lin, McLaughlin, Sprung, Klingebiel, Sack (bib0059) 2010
Van Houten, Miga, Weaver, Kennedy, Paulsen (bib0062) 2001; 837
Barnhill, Nikolova, Ariyurek, Dittmann, Braun, Sack (bib0005) 2019; 38
Miller, Kolipaka, Nash, Young (bib0038) 2018; 34
Sack, Beierbach, Wuerfel, Klatt, Hamhaber, Papazoglou, Martus, Braun (bib0048) 2009; 46
McGrath, Ravikumar, Wilkinson, Frangi, Taylor (bib0035) 2016; 76
Qin, Sinkus, Geng, Cheng, Green, Rae, Bilston (bib0045) 2012; 000
Murphy, Huston, Jack, Glaser, Manduca, Felmlee, Ehman (bib0041) 2011; 498
Doyley, Van Houten, Weaver, Poplack, Duncan, Kennedy, Paulsen (bib0012) 2004; 23
Byrd, Lu, Nocedal, Zhu (bib0006) 1995; 16
Sandroff, Johnson, Motl (bib0049) 2017; 59
Schmidt, Tweten, Benegal, Walker, Portnoi, Okamoto, Garbow, Bayly (bib0051) 2016; 49
Feng, Okamoto, Namani, Genin, Bayly (bib0014) 2013; 23
Muthupillai, Lomas, Rossman, Greenleaf, Manduca, Ehman (bib0043) 1995; 269
Van Houten, Viviers, McGarry, Perriñez, Perreard, Weaver, Paulsen (bib0063) 2011; 38
Manduca, Oliphant, Dresner, Mahowald, Kruse, Amromin, Felmlee, Greenleaf, Ehman (bib0029) 2001; 5
Wuerfel, Paul, Beierbach, Hamhaber, Klatt, Papazoglou, Zipp, Martus, Braun, Sack (bib0065) 2010; 49
McGarry, Johnson, Sutton, Van Houten, Georgiadis, Weaver, Paulsen (bib0031) 2013; 32
Guidetti, Royston (bib0016) 2018; 144
Zhu, Byrd, Lu, Nocedal (bib0067) 1997; 23
Green, Geng, Qin, Sinkus, Gandevia, Bilston (bib0015) 2013; 26
Murphy, Curran, Glaser, Rossman, Huston, Poduslo, Jack, Felmlee, Ehman (bib0040) 2012; 30
Huwart, Sempoux, Salameh, Jamart, Annet, Sinkus, Peeters, ter Beek, Horsmans, Van Beers (bib0022) 2007; 245
ElSheikh, Arani, Perry, Boeve, Meyer, Savica, Ehman, Huston (bib0013) 2017; 209
Tan, Mcgarry, Van Houten, Ji, Solamen, Weaver, Paulsen (bib0060) 2017; 36
Delgorio, Hiscox, Daugherty, Sanjana, Pohlig, Ellison, Martens, Schwarb, McGarry, Johnson (bib0011) 2021; 31
Babaei, Fovargue, Lloyd, Miller, Jugé, Kaplan, Sinkus, Nordsletten, Bilston (bib0004) 2021; 74
Schmidt, Tweten, Badachhape, Reiter, Okamoto, Garbow, Bayly (bib0050) 2018; 79
Chaze, McIlvain, Smith, Villermaux, Delgorio, Wright, Rogers, Miller, Crenshaw, Johnson (bib0008) 2019; 22
Johnson, Schwarb, McGarry, Anderson, Huesmann, Sutton, Cohen (bib0026) 2016; 37
Kennedy, Wagner, Castéra, Hong, Johnson, Sirlin, Taouli (bib0028) 2018
Johnson, McGarry, Gharibans, Weaver, Paulsen, Wang, Olivero, Sutton, Georgiadis (bib0025) 2013; 79
Schwarb, Johnson, McGarry, Cohen (bib0053) 2016; 132
Solamen, McGarry, Fried, Weaver, Lollis, Paulsen (bib0057) 2021; 28
Anderson, Van Houten, McGarry, Paulsen, Holtrop, Sutton, Georgiadis, Johnson (bib0002) 2016; 59
Dartmouth R.C., 2022. Discovery overview – research computing [WWW Document]. URL
Tweten, Okamoto, Schmidt, Garbow, Bayly (bib0061) 2015; 48
McGarry, Van Houten, Guertler, Okamoto, Smith, Sowinski, Johnson, Bayly, Weaver, Paulsen (bib0033) 2020
Yin, Woollard, Wang, Torres, Harris, Ward, Glaser, Manduca, Ehman (bib0066) 2007; 58
Jenkinson, Bannister, Brady, Smith (bib0023) 2002; 17
Asbach, Klatt, Hamhaber, Braun, Somasundaram, Hamm, Sack (bib0003) 2008; 60
Solamen, McGarry, Tan, Weaver, Paulsen (bib0056) 2018; 63
Romano, Scheel, Hirsch, Braun, Sack (bib0047) 2012; 000
McGarry, Van Houten, Perrĩez, Pattison, Weaver, Paulsen (bib0034) 2011; 56
McIlvain, Tracy, Chaze, Petersen, Villermaux, Wright, Miller, Crenshaw, Johnson (bib0036) 2020; 35
McGarry, Van Houten, Johnson, Georgiadis, Sutton, Weaver, Paulsen (bib0032) 2012; 39
Van Houten, Weaver, Miga, Kennedy, Paulsen (bib0064) 2000; 27
Murphy, Huston, Jack, Glaser, Senjem, Chen, Manduca, Felmlee, Ehman (bib0042) 2013; 8
Smith (10.1016/j.media.2022.102432_bib0055) 2020; 142
Babaei (10.1016/j.media.2022.102432_bib0004) 2021; 74
McIlvain (10.1016/j.media.2022.102432_bib0036) 2020; 35
Feng (10.1016/j.media.2022.102432_bib0014) 2013; 23
McGrath (10.1016/j.media.2022.102432_bib0035) 2016; 76
Asbach (10.1016/j.media.2022.102432_bib0003) 2008; 60
Van Houten (10.1016/j.media.2022.102432_bib0062) 2001; 837
Caban-Rivera (10.1016/j.media.2022.102432_bib0007) 2021
Streitberger (10.1016/j.media.2022.102432_bib0058) 2012; 7
Van Houten (10.1016/j.media.2022.102432_bib0064) 2000; 27
Johnson (10.1016/j.media.2022.102432_bib0027) 2018; 171
Schmidt (10.1016/j.media.2022.102432_bib0051) 2016; 49
Huwart (10.1016/j.media.2022.102432_bib0022) 2007; 245
Delgorio (10.1016/j.media.2022.102432_bib0011) 2021; 31
Miller (10.1016/j.media.2022.102432_bib0039) 2018; 31
Doyley (10.1016/j.media.2022.102432_bib0012) 2004; 23
ElSheikh (10.1016/j.media.2022.102432_bib0013) 2017; 209
Johnson (10.1016/j.media.2022.102432_bib0025) 2013; 79
Anderson (10.1016/j.media.2022.102432_bib0002) 2016; 59
Holzapfel (10.1016/j.media.2022.102432_bib0020) 2019
Romano (10.1016/j.media.2022.102432_bib0046) 2014; 72
Yin (10.1016/j.media.2022.102432_bib0066) 2007; 58
McGarry (10.1016/j.media.2022.102432_bib0031) 2013; 32
Hiscox (10.1016/j.media.2022.102432_bib0019) 2020; 2
Kennedy (10.1016/j.media.2022.102432_bib0028) 2018
Van Houten (10.1016/j.media.2022.102432_bib0063) 2011; 38
Mazumder (10.1016/j.media.2022.102432_bib0030) 2015; 17
Manduca (10.1016/j.media.2022.102432_bib0029) 2001; 5
Schmidt (10.1016/j.media.2022.102432_bib0050) 2018; 79
Barnhill (10.1016/j.media.2022.102432_bib0005) 2019; 38
Solamen (10.1016/j.media.2022.102432_bib0056) 2018; 63
Schwarb (10.1016/j.media.2022.102432_bib0053) 2016; 132
Hoodeshenas (10.1016/j.media.2022.102432_bib0021) 2018; 27
McGarry (10.1016/j.media.2022.102432_bib0032) 2012; 39
McGarry (10.1016/j.media.2022.102432_bib0034) 2011; 56
Anderson (10.1016/j.media.2022.102432_bib0001) 2017
Byrd (10.1016/j.media.2022.102432_bib0006) 1995; 16
Murphy (10.1016/j.media.2022.102432_bib0040) 2012; 30
Guidetti (10.1016/j.media.2022.102432_bib0016) 2018; 144
Solamen (10.1016/j.media.2022.102432_bib0057) 2021; 28
Johnson (10.1016/j.media.2022.102432_bib0026) 2016; 37
Miller (10.1016/j.media.2022.102432_bib0038) 2018; 34
Zhu (10.1016/j.media.2022.102432_bib0067) 1997; 23
Romano (10.1016/j.media.2022.102432_bib0047) 2012; 000
Murphy (10.1016/j.media.2022.102432_bib0042) 2013; 8
Tan (10.1016/j.media.2022.102432_bib0060) 2017; 36
Chaze (10.1016/j.media.2022.102432_bib0008) 2019; 22
Schwarb (10.1016/j.media.2022.102432_bib0052) 2019; 31
Hiscox (10.1016/j.media.2022.102432_bib0018) 2020; 14
Daugherty (10.1016/j.media.2022.102432_bib0010) 2020; 32
10.1016/j.media.2022.102432_bib0009
Muthupillai (10.1016/j.media.2022.102432_bib0043) 1995; 269
Murphy (10.1016/j.media.2022.102432_bib0041) 2011; 498
Jenkinson (10.1016/j.media.2022.102432_bib0024) 2012; 62
Okamoto (10.1016/j.media.2022.102432_bib0044) 2019; 13
Sack (10.1016/j.media.2022.102432_bib0048) 2009; 46
Sinkus (10.1016/j.media.2022.102432_bib0054) 2005; 53
Qin (10.1016/j.media.2022.102432_bib0045) 2012; 000
Streitberger (10.1016/j.media.2022.102432_bib0059) 2010
Wuerfel (10.1016/j.media.2022.102432_bib0065) 2010; 49
Green (10.1016/j.media.2022.102432_bib0015) 2013; 26
Sandroff (10.1016/j.media.2022.102432_bib0049) 2017; 59
McGarry (10.1016/j.media.2022.102432_bib0033) 2020
Miller (10.1016/j.media.2022.102432_bib0037) 2015
Tweten (10.1016/j.media.2022.102432_bib0061) 2015; 48
Hiscox (10.1016/j.media.2022.102432_bib0017) 2018; 65
Jenkinson (10.1016/j.media.2022.102432_bib0023) 2002; 17
References_xml – volume: 46
  start-page: 652
  year: 2009
  end-page: 657
  ident: bib0048
  article-title: The impact of aging and gender on brain viscoelasticity
  publication-title: Neuroimage
– volume: 35
  start-page: 463
  year: 2020
  end-page: 471
  ident: bib0036
  article-title: Brain stiffness relates to dynamic balance reactions in children with cerebral palsy
  publication-title: J. Child Neurol.
– volume: 34
  start-page: e2979
  year: 2018
  ident: bib0038
  article-title: Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method
  publication-title: Int. J. Numer. Method Biomed. Eng.
– volume: 72
  start-page: 1755
  year: 2014
  end-page: 1761
  ident: bib0046
  article-title: waveguide elastography: effects of neurodegeneration in patients with amyotrophic lateral sclerosis
  publication-title: Magn. Reson. Med.
– reference: Dartmouth R.C., 2022. Discovery overview – research computing [WWW Document]. URL
– volume: 74
  year: 2021
  ident: bib0004
  article-title: Magnetic resonance elastography reconstruction for anisotropic tissues
  publication-title: Med. Image Anal.
– volume: 17
  start-page: 4
  year: 2015
  end-page: 7
  ident: bib0030
  article-title: waveguide cardiac magnetic resonance elastography
  publication-title: J. Cardiovasc. Magn. Reson.
– volume: 31
  start-page: 2799
  year: 2021
  end-page: 2811
  ident: bib0011
  article-title: Effect of aging on the viscoelastic properties of hippocampal subfields assessed with high-resolution MR elastography
  publication-title: Cereb. Cortex
– volume: 31
  start-page: 1857
  year: 2019
  end-page: 1872
  ident: bib0052
  article-title: Structural and functional MRI evidence for distinct medial temporal and prefrontal roles in context-dependent relational memory
  publication-title: J. Cogn. Neurosci.
– volume: 38
  start-page: 1578
  year: 2019
  end-page: 1587
  ident: bib0005
  article-title: Fast robust dejitter and interslice discontinuity removal in MRI phase acquisitions: application to magnetic resonance elastography
  publication-title: IEEE Trans. Med. Imaging
– year: 2019
  ident: bib0020
  article-title: On fibre dispersion modelling of soft biological tissues: a review
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– year: 2021
  ident: bib0007
  article-title: Multi-excitation actuator design for anisotropic brain MRE
  publication-title: Proceedings of the 29th Annual Meeting of the International Society for Magnetic Resonance in Medicine
– volume: 14
  start-page: 175
  year: 2020
  end-page: 185
  ident: bib0018
  article-title: Hippocampal viscoelasticity and episodic memory performance in healthy older adults examined with magnetic resonance elastography
  publication-title: Brain Imaging Behav.
– volume: 132
  start-page: 534
  year: 2016
  end-page: 541
  ident: bib0053
  article-title: Medial temporal lobe viscoelasticity and relational memory performance
  publication-title: Neuroimage
– volume: 63
  year: 2018
  ident: bib0056
  article-title: Phantom evaluations of nonlinear inversion MR elastography
  publication-title: Phys. Med. Biol.
– year: 2020
  ident: bib0033
  article-title: A heterogenous, time harmonic, nearly incompressible transverse isotropic finite element brain simulation platform for MR elastography
  publication-title: Phys. Med. Biol.
– volume: 209
  start-page: 403
  year: 2017
  end-page: 408
  ident: bib0013
  article-title: MR elastography demonstrates unique regional brain stiffness patterns in dementias
  publication-title: Am. J. Roentgenol.
– volume: 30
  start-page: 535
  year: 2012
  end-page: 539
  ident: bib0040
  article-title: Magnetic resonance elastography of the brain in a mouse model of Alzheimer's disease: initial results
  publication-title: Magn. Reson. Imaging
– volume: 16
  start-page: 1190
  year: 1995
  end-page: 1208
  ident: bib0006
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM J. Sci.
– volume: 23
  start-page: 117
  year: 2013
  end-page: 132
  ident: bib0014
  article-title: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 27
  start-page: 101
  year: 2000
  end-page: 107
  ident: bib0064
  article-title: Elasticity reconstruction from experimental MR displacement data: initial experience with an overlapping subzone finite element inversion process
  publication-title: Med. Phys.
– volume: 49
  start-page: 2520
  year: 2010
  end-page: 2525
  ident: bib0065
  article-title: MR-elastography reveals degradation of tissue integrity in multiple sclerosis
  publication-title: Neuroimage
– volume: 32
  start-page: 1901
  year: 2013
  end-page: 1909
  ident: bib0031
  article-title: Including spatial information in nonlinear inversion MR elastography using soft prior regularization
  publication-title: IEEE Trans. Med. Imaging
– volume: 498
  start-page: 494
  year: 2011
  end-page: 498
  ident: bib0041
  article-title: Decreased brain stiffness in Alzheimer's disease determined by magnetic resonance elastography
  publication-title: J. Magn. Reson. Imaging
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: bib0024
  article-title: FSL
  publication-title: Neuroimage
– volume: 13
  year: 2019
  ident: bib0044
  article-title: Insights into traumatic brain injury from MRI of harmonic brain motion
  publication-title: J. Exp. Neurosci.
– volume: 53
  start-page: 372
  year: 2005
  end-page: 387
  ident: bib0054
  article-title: Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography
  publication-title: Magn. Reson. Med.
– year: 2018
  ident: bib0028
  article-title: Quantitative elastography methods in liver disease: current evidence and future directions
  publication-title: Radiology
– volume: 39
  start-page: 6388
  year: 2012
  end-page: 6396
  ident: bib0032
  article-title: Multiresolution MR elastography using nonlinear inversion
  publication-title: Med. Phys.
– volume: 28
  start-page: 457
  year: 2021
  end-page: 466
  ident: bib0057
  article-title: Poroelastic mechanical properties of the brain tissue of normal pressure hydrocephalus patients during lumbar drain treatment using intrinsic actuation MR elastography
  publication-title: Acad. Radiol.
– reference: (accessed 1.24.22).
– volume: 49
  start-page: 1042
  year: 2016
  end-page: 1049
  ident: bib0051
  article-title: Magnetic resonance elastography of slow and fast shear waves illuminates differences in shear and tensile moduli in anisotropic tissue
  publication-title: J. Biomech.
– volume: 5
  start-page: 237
  year: 2001
  end-page: 254
  ident: bib0029
  article-title: Magnetic resonance elastography: non-invasive mapping of tissue elasticity
  publication-title: Med. Image Anal.
– start-page: 346
  year: 2015
  end-page: 354
  ident: bib0037
  article-title: Determining anisotropic myocardial stiffness from magnetic resonance elastography: a simulation study
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 48
  start-page: 4002
  year: 2015
  end-page: 4009
  ident: bib0061
  article-title: Estimation of material parameters from slow and fast shear waves in an incompressible, transversely isotropic material
  publication-title: J. Biomech.
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bib0023
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 7
  start-page: e29888
  year: 2012
  ident: bib0058
  article-title: Brain viscoelasticity alteration in chronic-progressive multiple sclerosis
  publication-title: PLoS One
– volume: 2
  year: 2020
  ident: bib0019
  article-title: Mechanical property alterations across the cerebral cortex due to Alzheimer's disease
  publication-title: Brain Commun.
– volume: 144
  start-page: 2312
  year: 2018
  end-page: 2323
  ident: bib0016
  article-title: Analytical solution for converging elliptic shear wave in a bounded transverse isotropic viscoelastic material with nonhomogeneous outer boundary
  publication-title: J. Acoust. Soc. Am.
– volume: 22
  year: 2019
  ident: bib0008
  article-title: Altered brain tissue viscoelasticity in pediatric cerebral palsy measured by magnetic resonance elastography
  publication-title: NeuroImage Clin.
– volume: 26
  start-page: 1387
  year: 2013
  end-page: 1394
  ident: bib0015
  article-title: Measuring anisotropic muscle stiffness properties using elastography
  publication-title: NMR Biomed.
– volume: 171
  start-page: 99
  year: 2018
  end-page: 106
  ident: bib0027
  article-title: Double dissociation of structure-function relationships in memory and fluid intelligence observed with magnetic resonance elastography
  publication-title: Neuroimage
– volume: 245
  start-page: 458
  year: 2007
  end-page: 466
  ident: bib0022
  article-title: Liver fibrosis: noninvasive assessment with MR elastography versus aspartate aminotransferase–to-platelet ratio index
  publication-title: Radiology
– volume: 000
  start-page: 1
  year: 2012
  end-page: 13
  ident: bib0047
  article-title: waveguide elastography of white matter tracts in the human brain
  publication-title: Magn. Reson. Med.
– volume: 59
  start-page: 61
  year: 2017
  end-page: 67
  ident: bib0049
  article-title: Exercise training effects on memory and hippocampal viscoelasticity in multiple sclerosis: a novel application of magnetic resonance elastography
  publication-title: Neuroradiology
– volume: 79
  start-page: 145
  year: 2013
  end-page: 152
  ident: bib0025
  article-title: Local mechanical properties of white matter structures in the human brain
  publication-title: Neuroimage
– volume: 269
  start-page: 1854
  year: 1995
  end-page: 1857
  ident: bib0043
  article-title: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves
  publication-title: Science
– volume: 58
  start-page: 346
  year: 2007
  end-page: 353
  ident: bib0066
  article-title: Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography
  publication-title: Magn. Reson. Med.
– volume: 36
  start-page: 236
  year: 2017
  end-page: 250
  ident: bib0060
  article-title: Gradient-based optimization for poroelastic and viscoelastic MR elastography
  publication-title: IEEE Trans. Med. Imaging
– volume: 837
  start-page: 827
  year: 2001
  end-page: 837
  ident: bib0062
  article-title: Three-dimensional subzone-based algorithm for MR elastography
  publication-title: Magn. Reson. Med.
– volume: 79
  start-page: 30
  year: 2018
  end-page: 37
  ident: bib0050
  article-title: Measurement of anisotropic mechanical properties in porcine brain white matter
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 31
  start-page: e3848
  year: 2018
  ident: bib0039
  article-title: Relative identifiability of anisotropic properties from magnetic resonance elastography
  publication-title: NMR Biomed.
– volume: 32
  start-page: 1704
  year: 2020
  end-page: 1713
  ident: bib0010
  article-title: Magnetic resonance elastography of human hippocampal subfields: Ca3-dentate gyrus viscoelasticity predicts relational memory accuracy
  publication-title: J. Cogn. Neurosci.
– volume: 000
  year: 2012
  ident: bib0045
  article-title: Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical properties: a phantom study
  publication-title: J. Magn. Reson. Imaging
– volume: 65
  start-page: 158
  year: 2018
  end-page: 167
  ident: bib0017
  article-title: High-resolution magnetic resonance elastography reveals differences in subcortical gray matter viscoelasticity between young and healthy older adults
  publication-title: Neurobiol. Aging
– volume: 37
  start-page: 4221
  year: 2016
  end-page: 4233
  ident: bib0026
  article-title: Viscoelasticity of subcortical gray matter structures. Hum
  publication-title: Brain Mapp.
– year: 2017
  ident: bib0001
  article-title: Inversion parameters based on convergence and error metrics for nonlinear inversion MR elastography
  publication-title: Proceedings of the International Society for Magnetic Resonance in Medicine
– start-page: 385
  year: 2010
  end-page: 392
  ident: bib0059
  article-title: viscoelastic properties of the brain in normal pressure hydrocephalus
  publication-title: NMR Biomed.
– volume: 38
  start-page: 1993
  year: 2011
  ident: bib0063
  article-title: Subzone based magnetic resonance elastography using a Rayleigh damped material model
  publication-title: Med. Phys.
– volume: 23
  start-page: 550
  year: 1997
  end-page: 560
  ident: bib0067
  article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization
  publication-title: ACM Trans. Math. Softw.
– volume: 23
  start-page: 1404
  year: 2004
  end-page: 1416
  ident: bib0012
  article-title: Shear modulus estimation using parallelized partial volumetric reconstruction
  publication-title: IEEE Trans. Med. Imaging
– volume: 8
  start-page: 81668
  year: 2013
  ident: bib0042
  article-title: Measuring the characteristic topography of brain stiffness with magnetic resonance elastography
  publication-title: PLoS One
– volume: 142
  year: 2020
  ident: bib0055
  article-title: Multi-excitation magnetic resonance elastography of the brain: wave propagation in anisotropic white matter
  publication-title: J. Biomech. Eng.
– volume: 56
  start-page: 153
  year: 2011
  end-page: 164
  ident: bib0034
  article-title: An octahedral shear strain-based measure of SNR for 3D MR elastography
  publication-title: Phys. Med. Biol.
– volume: 60
  start-page: 373
  year: 2008
  end-page: 379
  ident: bib0003
  article-title: Assessment of liver viscoelasticity using multifrequency MR elastography
  publication-title: Magn. Reson. Med.
– volume: 27
  start-page: 319
  year: 2018
  end-page: 333
  ident: bib0021
  article-title: Magnetic resonance elastography of liver-current update
  publication-title: Top. Magn. Reson. Imaging
– volume: 59
  start-page: 538
  year: 2016
  end-page: 546
  ident: bib0002
  article-title: Observation of direction-dependent mechanical properties in the human brain with multi-excitation MR elastography
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 76
  start-page: 645
  year: 2016
  end-page: 662
  ident: bib0035
  article-title: Magnetic resonance elastography of the brain: an
  publication-title: Magn. Reson. Med.
– volume: 23
  start-page: 550
  year: 1997
  ident: 10.1016/j.media.2022.102432_bib0067
  article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/279232.279236
– volume: 27
  start-page: 101
  year: 2000
  ident: 10.1016/j.media.2022.102432_bib0064
  article-title: Elasticity reconstruction from experimental MR displacement data: initial experience with an overlapping subzone finite element inversion process
  publication-title: Med. Phys.
  doi: 10.1118/1.598861
– volume: 38
  start-page: 1993
  year: 2011
  ident: 10.1016/j.media.2022.102432_bib0063
  article-title: Subzone based magnetic resonance elastography using a Rayleigh damped material model
  publication-title: Med. Phys.
  doi: 10.1118/1.3557469
– volume: 59
  start-page: 538
  year: 2016
  ident: 10.1016/j.media.2022.102432_bib0002
  article-title: Observation of direction-dependent mechanical properties in the human brain with multi-excitation MR elastography
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.03.005
– ident: 10.1016/j.media.2022.102432_bib0009
– volume: 171
  start-page: 99
  year: 2018
  ident: 10.1016/j.media.2022.102432_bib0027
  article-title: Double dissociation of structure-function relationships in memory and fluid intelligence observed with magnetic resonance elastography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.01.007
– year: 2017
  ident: 10.1016/j.media.2022.102432_bib0001
  article-title: Inversion parameters based on convergence and error metrics for nonlinear inversion MR elastography
– volume: 34
  start-page: e2979
  year: 2018
  ident: 10.1016/j.media.2022.102432_bib0038
  article-title: Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method
  publication-title: Int. J. Numer. Method Biomed. Eng.
  doi: 10.1002/cnm.2979
– volume: 60
  start-page: 373
  year: 2008
  ident: 10.1016/j.media.2022.102432_bib0003
  article-title: Assessment of liver viscoelasticity using multifrequency MR elastography
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21636
– volume: 28
  start-page: 457
  year: 2021
  ident: 10.1016/j.media.2022.102432_bib0057
  article-title: Poroelastic mechanical properties of the brain tissue of normal pressure hydrocephalus patients during lumbar drain treatment using intrinsic actuation MR elastography
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2020.03.009
– volume: 65
  start-page: 158
  year: 2018
  ident: 10.1016/j.media.2022.102432_bib0017
  article-title: High-resolution magnetic resonance elastography reveals differences in subcortical gray matter viscoelasticity between young and healthy older adults
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2018.01.010
– volume: 38
  start-page: 1578
  year: 2019
  ident: 10.1016/j.media.2022.102432_bib0005
  article-title: Fast robust dejitter and interslice discontinuity removal in MRI phase acquisitions: application to magnetic resonance elastography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2893369
– volume: 2
  year: 2020
  ident: 10.1016/j.media.2022.102432_bib0019
  article-title: Mechanical property alterations across the cerebral cortex due to Alzheimer's disease
  publication-title: Brain Commun.
  doi: 10.1093/braincomms/fcz049
– volume: 269
  start-page: 1854
  year: 1995
  ident: 10.1016/j.media.2022.102432_bib0043
  article-title: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves
  publication-title: Science
  doi: 10.1126/science.7569924
– year: 2018
  ident: 10.1016/j.media.2022.102432_bib0028
  article-title: Quantitative elastography methods in liver disease: current evidence and future directions
  publication-title: Radiology
  doi: 10.1148/radiol.2018170601
– volume: 142
  year: 2020
  ident: 10.1016/j.media.2022.102432_bib0055
  article-title: Multi-excitation magnetic resonance elastography of the brain: wave propagation in anisotropic white matter
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4046199
– volume: 39
  start-page: 6388
  year: 2012
  ident: 10.1016/j.media.2022.102432_bib0032
  article-title: Multiresolution MR elastography using nonlinear inversion
  publication-title: Med. Phys.
  doi: 10.1118/1.4754649
– volume: 62
  start-page: 782
  year: 2012
  ident: 10.1016/j.media.2022.102432_bib0024
  article-title: FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 35
  start-page: 463
  year: 2020
  ident: 10.1016/j.media.2022.102432_bib0036
  article-title: Brain stiffness relates to dynamic balance reactions in children with cerebral palsy
  publication-title: J. Child Neurol.
  doi: 10.1177/0883073820909274
– volume: 30
  start-page: 535
  year: 2012
  ident: 10.1016/j.media.2022.102432_bib0040
  article-title: Magnetic resonance elastography of the brain in a mouse model of Alzheimer's disease: initial results
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2011.12.019
– volume: 36
  start-page: 236
  year: 2017
  ident: 10.1016/j.media.2022.102432_bib0060
  article-title: Gradient-based optimization for poroelastic and viscoelastic MR elastography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2604568
– volume: 22
  year: 2019
  ident: 10.1016/j.media.2022.102432_bib0008
  article-title: Altered brain tissue viscoelasticity in pediatric cerebral palsy measured by magnetic resonance elastography
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2019.101750
– volume: 53
  start-page: 372
  year: 2005
  ident: 10.1016/j.media.2022.102432_bib0054
  article-title: Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20355
– volume: 23
  start-page: 117
  year: 2013
  ident: 10.1016/j.media.2022.102432_bib0014
  article-title: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2013.04.007
– volume: 209
  start-page: 403
  year: 2017
  ident: 10.1016/j.media.2022.102432_bib0013
  article-title: MR elastography demonstrates unique regional brain stiffness patterns in dementias
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.16.17455
– start-page: 385
  year: 2010
  ident: 10.1016/j.media.2022.102432_bib0059
  article-title: In vivo viscoelastic properties of the brain in normal pressure hydrocephalus
  publication-title: NMR Biomed.
– year: 2020
  ident: 10.1016/j.media.2022.102432_bib0033
  article-title: A heterogenous, time harmonic, nearly incompressible transverse isotropic finite element brain simulation platform for MR elastography
  publication-title: Phys. Med. Biol.
– volume: 000
  start-page: 1
  year: 2012
  ident: 10.1016/j.media.2022.102432_bib0047
  article-title: In vivo waveguide elastography of white matter tracts in the human brain
  publication-title: Magn. Reson. Med.
– year: 2021
  ident: 10.1016/j.media.2022.102432_bib0007
  article-title: Multi-excitation actuator design for anisotropic brain MRE
– volume: 63
  year: 2018
  ident: 10.1016/j.media.2022.102432_bib0056
  article-title: Phantom evaluations of nonlinear inversion MR elastography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aacb08
– volume: 26
  start-page: 1387
  year: 2013
  ident: 10.1016/j.media.2022.102432_bib0015
  article-title: Measuring anisotropic muscle stiffness properties using elastography
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.2964
– volume: 49
  start-page: 2520
  year: 2010
  ident: 10.1016/j.media.2022.102432_bib0065
  article-title: MR-elastography reveals degradation of tissue integrity in multiple sclerosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.06.018
– volume: 58
  start-page: 346
  year: 2007
  ident: 10.1016/j.media.2022.102432_bib0066
  article-title: Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21286
– volume: 74
  year: 2021
  ident: 10.1016/j.media.2022.102432_bib0004
  article-title: Magnetic resonance elastography reconstruction for anisotropic tissues
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102212
– volume: 23
  start-page: 1404
  year: 2004
  ident: 10.1016/j.media.2022.102432_bib0012
  article-title: Shear modulus estimation using parallelized partial volumetric reconstruction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.834624
– volume: 7
  start-page: e29888
  year: 2012
  ident: 10.1016/j.media.2022.102432_bib0058
  article-title: Brain viscoelasticity alteration in chronic-progressive multiple sclerosis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0029888
– volume: 13
  year: 2019
  ident: 10.1016/j.media.2022.102432_bib0044
  article-title: Insights into traumatic brain injury from MRI of harmonic brain motion
  publication-title: J. Exp. Neurosci.
  doi: 10.1177/1179069519840444
– volume: 144
  start-page: 2312
  year: 2018
  ident: 10.1016/j.media.2022.102432_bib0016
  article-title: Analytical solution for converging elliptic shear wave in a bounded transverse isotropic viscoelastic material with nonhomogeneous outer boundary
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5064372
– volume: 14
  start-page: 175
  year: 2020
  ident: 10.1016/j.media.2022.102432_bib0018
  article-title: Hippocampal viscoelasticity and episodic memory performance in healthy older adults examined with magnetic resonance elastography
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-018-9988-8
– volume: 72
  start-page: 1755
  year: 2014
  ident: 10.1016/j.media.2022.102432_bib0046
  article-title: In vivo waveguide elastography: effects of neurodegeneration in patients with amyotrophic lateral sclerosis
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25067
– volume: 59
  start-page: 61
  year: 2017
  ident: 10.1016/j.media.2022.102432_bib0049
  article-title: Exercise training effects on memory and hippocampal viscoelasticity in multiple sclerosis: a novel application of magnetic resonance elastography
  publication-title: Neuroradiology
  doi: 10.1007/s00234-016-1767-x
– volume: 56
  start-page: 153
  year: 2011
  ident: 10.1016/j.media.2022.102432_bib0034
  article-title: An octahedral shear strain-based measure of SNR for 3D MR elastography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/13/N02
– volume: 79
  start-page: 30
  year: 2018
  ident: 10.1016/j.media.2022.102432_bib0050
  article-title: Measurement of anisotropic mechanical properties in porcine brain white matter ex vivo using magnetic resonance elastography
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2017.11.045
– volume: 46
  start-page: 652
  year: 2009
  ident: 10.1016/j.media.2022.102432_bib0048
  article-title: The impact of aging and gender on brain viscoelasticity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.02.040
– volume: 837
  start-page: 827
  year: 2001
  ident: 10.1016/j.media.2022.102432_bib0062
  article-title: Three-dimensional subzone-based algorithm for MR elastography
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1111
– volume: 8
  start-page: 81668
  year: 2013
  ident: 10.1016/j.media.2022.102432_bib0042
  article-title: Measuring the characteristic topography of brain stiffness with magnetic resonance elastography
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0081668
– volume: 32
  start-page: 1704
  year: 2020
  ident: 10.1016/j.media.2022.102432_bib0010
  article-title: Magnetic resonance elastography of human hippocampal subfields: Ca3-dentate gyrus viscoelasticity predicts relational memory accuracy
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_01574
– volume: 17
  start-page: 4
  year: 2015
  ident: 10.1016/j.media.2022.102432_bib0030
  article-title: In-vivo waveguide cardiac magnetic resonance elastography
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/1532-429X-17-S1-P35
– volume: 245
  start-page: 458
  year: 2007
  ident: 10.1016/j.media.2022.102432_bib0022
  article-title: Liver fibrosis: noninvasive assessment with MR elastography versus aspartate aminotransferase–to-platelet ratio index
  publication-title: Radiology
  doi: 10.1148/radiol.2452061673
– volume: 000
  year: 2012
  ident: 10.1016/j.media.2022.102432_bib0045
  article-title: Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical properties: a phantom study
  publication-title: J. Magn. Reson. Imaging
– volume: 37
  start-page: 4221
  year: 2016
  ident: 10.1016/j.media.2022.102432_bib0026
  article-title: Viscoelasticity of subcortical gray matter structures. Hum
  publication-title: Brain Mapp.
  doi: 10.1002/hbm.23314
– volume: 49
  start-page: 1042
  year: 2016
  ident: 10.1016/j.media.2022.102432_bib0051
  article-title: Magnetic resonance elastography of slow and fast shear waves illuminates differences in shear and tensile moduli in anisotropic tissue
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.02.018
– volume: 132
  start-page: 534
  year: 2016
  ident: 10.1016/j.media.2022.102432_bib0053
  article-title: Medial temporal lobe viscoelasticity and relational memory performance
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.059
– volume: 31
  start-page: 2799
  year: 2021
  ident: 10.1016/j.media.2022.102432_bib0011
  article-title: Effect of aging on the viscoelastic properties of hippocampal subfields assessed with high-resolution MR elastography
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhaa388
– volume: 48
  start-page: 4002
  year: 2015
  ident: 10.1016/j.media.2022.102432_bib0061
  article-title: Estimation of material parameters from slow and fast shear waves in an incompressible, transversely isotropic material
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.09.009
– year: 2019
  ident: 10.1016/j.media.2022.102432_bib0020
  article-title: On fibre dispersion modelling of soft biological tissues: a review
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 79
  start-page: 145
  year: 2013
  ident: 10.1016/j.media.2022.102432_bib0025
  article-title: Local mechanical properties of white matter structures in the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.089
– volume: 498
  start-page: 494
  year: 2011
  ident: 10.1016/j.media.2022.102432_bib0041
  article-title: Decreased brain stiffness in Alzheimer's disease determined by magnetic resonance elastography
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22707
– volume: 16
  start-page: 1190
  year: 1995
  ident: 10.1016/j.media.2022.102432_bib0006
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM J. Sci.
  doi: 10.1137/0916069
– start-page: 346
  year: 2015
  ident: 10.1016/j.media.2022.102432_bib0037
  article-title: Determining anisotropic myocardial stiffness from magnetic resonance elastography: a simulation study
– volume: 31
  start-page: 1857
  year: 2019
  ident: 10.1016/j.media.2022.102432_bib0052
  article-title: Structural and functional MRI evidence for distinct medial temporal and prefrontal roles in context-dependent relational memory
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_01454
– volume: 76
  start-page: 645
  year: 2016
  ident: 10.1016/j.media.2022.102432_bib0035
  article-title: Magnetic resonance elastography of the brain: an in silico study to determine the influence of cranial anatomy
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25881
– volume: 32
  start-page: 1901
  year: 2013
  ident: 10.1016/j.media.2022.102432_bib0031
  article-title: Including spatial information in nonlinear inversion MR elastography using soft prior regularization
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2268978
– volume: 17
  start-page: 825
  year: 2002
  ident: 10.1016/j.media.2022.102432_bib0023
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 31
  start-page: e3848
  year: 2018
  ident: 10.1016/j.media.2022.102432_bib0039
  article-title: Relative identifiability of anisotropic properties from magnetic resonance elastography
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3848
– volume: 5
  start-page: 237
  year: 2001
  ident: 10.1016/j.media.2022.102432_bib0029
  article-title: Magnetic resonance elastography: non-invasive mapping of tissue elasticity
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(00)00039-6
– volume: 27
  start-page: 319
  year: 2018
  ident: 10.1016/j.media.2022.102432_bib0021
  article-title: Magnetic resonance elastography of liver-current update
  publication-title: Top. Magn. Reson. Imaging
  doi: 10.1097/RMR.0000000000000177
SSID ssj0007440
Score 2.4934895
Snippet •A novel finite element based magnetic resonance elastography inversion for in vivo mechanical property imaging of heterogenous, anisotropic tissue is...
The white matter tracts of brain tissue consist of highly-aligned, myelinated fibers; white matter is structurally anisotropic and is expected to exhibit...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102432
SubjectTerms Algorithms
Anisotropic
Anisotropy
Brain
Brain - diagnostic imaging
Brain - physiology
Brain mechanics
Crosstalk
Damping ratio
Diffusion Tensor Imaging
Elasticity Imaging Techniques - methods
Elastography
Humans
Inversion
Magnetic properties
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mechanical properties
Muscles
Neuroimaging
Parameter estimation
Reproducibility
Shear modulus
Substantia alba
Tensors
Tissues
Transverse isotropic
White matter
White Matter - diagnostic imaging
Title Mapping heterogenous anisotropic tissue mechanical properties with transverse isotropic nonlinear inversion MR elastography
URI https://dx.doi.org/10.1016/j.media.2022.102432
https://www.ncbi.nlm.nih.gov/pubmed/35358836
https://www.proquest.com/docview/2696891057
https://www.proquest.com/docview/2646723239
https://pubmed.ncbi.nlm.nih.gov/PMC9122015
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WwnRQwXlFSiVkTgStrEdpzkuFWV5bA9AUW-W4zhtEM2utqGXSv3tzMRO6ILogVOUxKM4Hnvmsz3-BuAlL9FnGYPTkiKXsayEiPOSWzSG0iB-SG3eJe2bHanpsfxwkp6swUF_FobCKoPt9za9s9bhyTi05nhR1-MviaBkJeh_eAck5DpscJGrdAQbk_cfp0eDQSYOPH_8KolJoCcf6sK8ugMaOE_knFgMpOD_clB_A9A_4yhvOKbDe7AVECWb-ErfhzXXbMPmDZ7BbbgzCzvoD-BqZoiR4ZSdURzM3FO0MtPUF_N2OV_UlrWdKti5ozPBpEK2oAX7JTGvMlq2ZS35NwrncOy3WOM5N8yS1c2lX4Rjs8_MITpvAy32Qzg-fPv1YBqHBAyxxXlMG6vMpaow3JS8VHuZrQpVYSOWZq-QNlOIFG2HUQqRuky5hBfcCSNx0uGMy5wVj2CEX3dPgFW5chnCDaMqK52sCpQwuUiw7RS3ykXA-1bXNrCTU5KMH7oPQ_uuO1VpUpX2qorg1SC08OQctxdXvTr1Sh_T6D5uF9zpla_DEL_QnGiFckqTHMGL4TUOTtpxMY1D7WEZ9EOIWUUewWPfV4aKilSk-_tCRZCt9KKhABF_r75p6rOOADxPsM8n6dP__Z9ncJfufNzmDoza5U_3HLFVW-zC-uvrZDeMILy-e_Pp2-QXg0Aorg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIvFxqKB8BQoYiSNhG9txmiOqWi3Q9ACt1JvlOE4bBNnVNnCp1N_OjO1suyB64BrbSjJje57t5zcAb3mDMcsYXJbUpUxlK0RaNtziZCgN4ofclj5pX3Wopsfy00l-sga7410YolXGuT_M6X62jk8m0ZqTeddNvmaCkpVg_OEeSMhbcFvmoiBe3_vLK54HKeCFy1dZStVH6SFP8vLXM3CVyDlpGEjB_xWe_oaff7Ior4Wl_QewEfEk-xA--SGsuX4T7l9TGdyEO1U8P38EF5UhPYZTdkYsmFkQaGWm785nw2I27ywbvCPYD0c3gsmBbE7b9QvSXWW0acsGim5E5nDsqlkfFDfMgnX9r7AFx6ovzCE2H6Io9mM43t872p2mMf1CanEVM6SqcLmqDTcNb9R2YdtatWjExmzX0hYKcaL1CKUWuSuUy3jNnTASlxzOuMJZ8QTW8e3uGbC2VK5AsGFUa6WTbY0tTCkytJ3iVrkE-Gh1baM2OaXI-K5HEto37V2lyVU6uCqBd8tG8yDNcXN1NbpTr_QwjcHj5oZbo_N1HODnmpOoUElJkhN4syzGoUnnLaZ36D2sg1EIEasoE3ga-sryQ0Uu8p0doRIoVnrRsgLJfq-W9N2Zl_8uM-zxWf78f__nNdydHlUH-uDj4ecXcI9KAoNzC9aHxU_3ElHWUL_yo-g30mwn6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+heterogenous+anisotropic+tissue+mechanical+properties+with+transverse+isotropic+nonlinear+inversion+MR+elastography&rft.jtitle=Medical+image+analysis&rft.au=McGarry%2C+Matthew&rft.au=Van+Houten%2C+Elijah&rft.au=Sowinski%2C+Damian&rft.au=Jyoti%2C+Dhrubo&rft.date=2022-05-01&rft.eissn=1361-8423&rft.volume=78&rft.spage=102432&rft_id=info:doi/10.1016%2Fj.media.2022.102432&rft_id=info%3Apmid%2F35358836&rft.externalDocID=35358836
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon