Mapping heterogenous anisotropic tissue mechanical properties with transverse isotropic nonlinear inversion MR elastography
•A novel finite element based magnetic resonance elastography inversion for in vivo mechanical property imaging of heterogenous, anisotropic tissue is presented.•Imaged parameters include shear modulus, damping ratio, shear anisotropy and tensile anisotropy.•Good quantitative and spatial accuracy, a...
Saved in:
Published in | Medical image analysis Vol. 78; p. 102432 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2022.102432 |
Cover
Abstract | •A novel finite element based magnetic resonance elastography inversion for in vivo mechanical property imaging of heterogenous, anisotropic tissue is presented.•Imaged parameters include shear modulus, damping ratio, shear anisotropy and tensile anisotropy.•Good quantitative and spatial accuracy, as well as low noise sensitivity was demonstrated with simulated data.•In vivo brain imaging demonstrated bilateral symmetry and correspondence with anatomical structure for all parameters and good scan-to-scan repeatability.
The white matter tracts of brain tissue consist of highly-aligned, myelinated fibers; white matter is structurally anisotropic and is expected to exhibit anisotropic mechanical behavior. In vivo mechanical properties of tissue can be imaged using magnetic resonance elastography (MRE). MRE can detect and monitor natural and disease processes that affect tissue structure; however, most MRE inversion algorithms assume locally homogenous properties and/or isotropic behavior, which can cause artifacts in white matter regions. A heterogeneous, model-based transverse isotropic implementation of a subzone-based nonlinear inversion (TI-NLI) is demonstrated. TI-NLI reconstructs accurate maps of the shear modulus, damping ratio, shear anisotropy, and tensile anisotropy of in vivo brain tissue using standard MRE motion measurements and fiber directions estimated from diffusion tensor imaging (DTI). TI-NLI accuracy was investigated with using synthetic data in both controlled and realistic settings: excellent quantitative and spatial accuracy was observed and cross-talk between estimated parameters was minimal. Ten repeated, in vivo, MRE scans acquired from a healthy subject were co-registered to demonstrate repeatability of the technique. Good resolution of anatomical structures and bilateral symmetry were evident in MRE images of all mechanical property types. Repeatability was similar to isotropic MRE methods and well within the limits required for clinical success. TI-NLI MRE is a promising new technique for clinical research into anisotropic tissues such as the brain and muscle.
[Display omitted] |
---|---|
AbstractList | The white matter tracts of brain tissue consist of highly-aligned, myelinated fibers; white matter is structurally anisotropic and is expected to exhibit anisotropic mechanical behavior. In vivo mechanical properties of tissue can be imaged using magnetic resonance elastography (MRE). MRE can detect and monitor natural and disease processes that affect tissue structure; however, most MRE inversion algorithms assume locally homogenous properties and/or isotropic behavior, which can cause artifacts in white matter regions. A heterogeneous, model-based transverse isotropic implementation of a subzone-based nonlinear inversion (TI-NLI) is demonstrated. TI-NLI reconstructs accurate maps of the shear modulus, damping ratio, shear anisotropy, and tensile anisotropy of in vivo brain tissue using standard MRE motion measurements and fiber directions estimated from diffusion tensor imaging (DTI). TI-NLI accuracy was investigated with using synthetic data in both controlled and realistic settings: excellent quantitative and spatial accuracy was observed and cross-talk between estimated parameters was minimal. Ten repeated, in vivo, MRE scans acquired from a healthy subject were co-registered to demonstrate repeatability of the technique. Good resolution of anatomical structures and bilateral symmetry were evident in MRE images of all mechanical property types. Repeatability was similar to isotropic MRE methods and well within the limits required for clinical success. TI-NLI MRE is a promising new technique for clinical research into anisotropic tissues such as the brain and muscle. •A novel finite element based magnetic resonance elastography inversion for in vivo mechanical property imaging of heterogenous, anisotropic tissue is presented.•Imaged parameters include shear modulus, damping ratio, shear anisotropy and tensile anisotropy.•Good quantitative and spatial accuracy, as well as low noise sensitivity was demonstrated with simulated data.•In vivo brain imaging demonstrated bilateral symmetry and correspondence with anatomical structure for all parameters and good scan-to-scan repeatability. The white matter tracts of brain tissue consist of highly-aligned, myelinated fibers; white matter is structurally anisotropic and is expected to exhibit anisotropic mechanical behavior. In vivo mechanical properties of tissue can be imaged using magnetic resonance elastography (MRE). MRE can detect and monitor natural and disease processes that affect tissue structure; however, most MRE inversion algorithms assume locally homogenous properties and/or isotropic behavior, which can cause artifacts in white matter regions. A heterogeneous, model-based transverse isotropic implementation of a subzone-based nonlinear inversion (TI-NLI) is demonstrated. TI-NLI reconstructs accurate maps of the shear modulus, damping ratio, shear anisotropy, and tensile anisotropy of in vivo brain tissue using standard MRE motion measurements and fiber directions estimated from diffusion tensor imaging (DTI). TI-NLI accuracy was investigated with using synthetic data in both controlled and realistic settings: excellent quantitative and spatial accuracy was observed and cross-talk between estimated parameters was minimal. Ten repeated, in vivo, MRE scans acquired from a healthy subject were co-registered to demonstrate repeatability of the technique. Good resolution of anatomical structures and bilateral symmetry were evident in MRE images of all mechanical property types. Repeatability was similar to isotropic MRE methods and well within the limits required for clinical success. TI-NLI MRE is a promising new technique for clinical research into anisotropic tissues such as the brain and muscle. [Display omitted] The white matter tracts of brain tissue consist of highly-aligned, myelinated fibers; white matter is structurally anisotropic and is expected to exhibit anisotropic mechanical behavior. In vivo mechanical properties of tissue can be imaged using magnetic resonance elastography (MRE). MRE can detect and monitor natural and disease processes that affect tissue structure; however, most MRE inversion algorithms assume locally homogenous properties and/or isotropic behavior, which can cause artifacts in white matter regions. A heterogeneous, model-based transverse isotropic implementation of a subzone-based nonlinear inversion (TI-NLI) is demonstrated. TI-NLI reconstructs accurate maps of the shear modulus, damping ratio, shear anisotropy, and tensile anisotropy of in vivo brain tissue using standard MRE motion measurements and fiber directions estimated from diffusion tensor imaging (DTI). TI-NLI accuracy was investigated with using synthetic data in both controlled and realistic settings: excellent quantitative and spatial accuracy was observed and cross-talk between estimated parameters was minimal. Ten repeated, in vivo, MRE scans acquired from a healthy subject were co-registered to demonstrate repeatability of the technique. Good resolution of anatomical structures and bilateral symmetry were evident in MRE images of all mechanical property types. Repeatability was similar to isotropic MRE methods and well within the limits required for clinical success. TI-NLI MRE is a promising new technique for clinical research into anisotropic tissues such as the brain and muscle.The white matter tracts of brain tissue consist of highly-aligned, myelinated fibers; white matter is structurally anisotropic and is expected to exhibit anisotropic mechanical behavior. In vivo mechanical properties of tissue can be imaged using magnetic resonance elastography (MRE). MRE can detect and monitor natural and disease processes that affect tissue structure; however, most MRE inversion algorithms assume locally homogenous properties and/or isotropic behavior, which can cause artifacts in white matter regions. A heterogeneous, model-based transverse isotropic implementation of a subzone-based nonlinear inversion (TI-NLI) is demonstrated. TI-NLI reconstructs accurate maps of the shear modulus, damping ratio, shear anisotropy, and tensile anisotropy of in vivo brain tissue using standard MRE motion measurements and fiber directions estimated from diffusion tensor imaging (DTI). TI-NLI accuracy was investigated with using synthetic data in both controlled and realistic settings: excellent quantitative and spatial accuracy was observed and cross-talk between estimated parameters was minimal. Ten repeated, in vivo, MRE scans acquired from a healthy subject were co-registered to demonstrate repeatability of the technique. Good resolution of anatomical structures and bilateral symmetry were evident in MRE images of all mechanical property types. Repeatability was similar to isotropic MRE methods and well within the limits required for clinical success. TI-NLI MRE is a promising new technique for clinical research into anisotropic tissues such as the brain and muscle. |
ArticleNumber | 102432 |
Author | Jyoti, Dhrubo Bayly, Philip Sowinski, Damian Caban-Rivera, Diego A. McIlvain, Grace Van Houten, Elijah Smith, Daniel R. Paulsen, Keith McGarry, Matthew Johnson, Curtis L. Weaver, John |
AuthorAffiliation | 1 Thayer School of Engineering, Dartmouth College, Hanover NH 03755 5 Dartmouth-Hitchcock Medical Center, Lebanon NH 03756 4 University of Delaware, Newark, DE 19716 3 Washington University in St Louis, MO 63130 2 Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1 |
AuthorAffiliation_xml | – name: 1 Thayer School of Engineering, Dartmouth College, Hanover NH 03755 – name: 3 Washington University in St Louis, MO 63130 – name: 4 University of Delaware, Newark, DE 19716 – name: 5 Dartmouth-Hitchcock Medical Center, Lebanon NH 03756 – name: 2 Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1 |
Author_xml | – sequence: 1 givenname: Matthew orcidid: 0000-0001-8430-800X surname: McGarry fullname: McGarry, Matthew email: matthew.d.mcgarry@dartmouth.edu organization: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA – sequence: 2 givenname: Elijah orcidid: 0000-0001-6565-8469 surname: Van Houten fullname: Van Houten, Elijah organization: Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada – sequence: 3 givenname: Damian orcidid: 0000-0003-3136-7449 surname: Sowinski fullname: Sowinski, Damian organization: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA – sequence: 4 givenname: Dhrubo surname: Jyoti fullname: Jyoti, Dhrubo organization: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA – sequence: 5 givenname: Daniel R. surname: Smith fullname: Smith, Daniel R. organization: University of Delaware, Newark, DE 19716, USA – sequence: 6 givenname: Diego A. surname: Caban-Rivera fullname: Caban-Rivera, Diego A. organization: University of Delaware, Newark, DE 19716, USA – sequence: 7 givenname: Grace surname: McIlvain fullname: McIlvain, Grace organization: University of Delaware, Newark, DE 19716, USA – sequence: 8 givenname: Philip orcidid: 0000-0003-4303-0704 surname: Bayly fullname: Bayly, Philip organization: Washington University in St Louis, MO 63130, USA – sequence: 9 givenname: Curtis L. orcidid: 0000-0002-7760-131X surname: Johnson fullname: Johnson, Curtis L. organization: University of Delaware, Newark, DE 19716, USA – sequence: 10 givenname: John surname: Weaver fullname: Weaver, John organization: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA – sequence: 11 givenname: Keith surname: Paulsen fullname: Paulsen, Keith organization: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35358836$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk2LFDEQDbLifugvECTgxcuM-ehOug8KsqwfsIsgeg7pdM10DT1Jm6RHFv_8ZpzdVfewp4Sq9x6vqt4pOfLBAyEvOVtyxtXbzXILPdqlYEKUiqikeEJOuFR80VRCHt3_eX1MTlPaMMZ0VbFn5FjWsm4aqU7I7ys7TejXdIAMMazBhzlR6zGFHMOEjmZMaQa6BTeUsrMjnUoDYkZI9BfmgeZofdpBTED_0orZET3YSNHvexg8vfpGYbQph3W003D9nDxd2THBi9v3jPz4ePH9_PPi8uunL-cfLheuanReKA216qywvegV027VqVUZrLesq5xWtZRuPxnvZA1aARedAGkrVrVgQYOTZ-T9QXeau7IyB744Hs0UcWvjtQkWzf8dj4NZh51puRCM10Xgza1ADD9nSNlsMTkYR-uhrMsIVSktpJBtgb5-AN2EOfoyXkG1qmk5q3VBvfrX0b2Vu7sUQHsAuBhSirAyDrPNZYnFII6GM7PPgNmYPxkw-wyYQwYKVz7g3sk_znp3YEG5xA4hmuQQvCvACC6bPuCj_BvdNM_U |
CitedBy_id | crossref_primary_10_1002_mrm_30482 crossref_primary_10_1088_1478_3975_ad88e4 crossref_primary_10_1016_j_neuroimage_2023_120234 crossref_primary_10_1002_nbm_70007 crossref_primary_10_1038_s42254_022_00543_2 crossref_primary_10_1002_jmri_28747 crossref_primary_10_1016_j_jmps_2024_105746 crossref_primary_10_1016_j_brain_2024_100091 crossref_primary_10_1088_1361_6560_acb482 crossref_primary_10_3390_acoustics6020023 crossref_primary_10_1016_j_jmbbm_2023_106325 crossref_primary_10_1016_j_pnmrs_2024_05_002 crossref_primary_10_1227_ons_0000000000001523 crossref_primary_10_1088_1361_6560_ad7fc9 crossref_primary_10_1016_j_brain_2022_100051 crossref_primary_10_1109_TMI_2023_3261346 crossref_primary_10_1002_mrm_30394 crossref_primary_10_1016_j_advengsoft_2023_103476 crossref_primary_10_1002_advs_202402338 crossref_primary_10_1016_j_brain_2023_100082 crossref_primary_10_1016_j_jmbbm_2023_105744 crossref_primary_10_1016_j_media_2025_103457 crossref_primary_10_1073_pnas_2213836120 crossref_primary_10_1109_TBME_2023_3283185 crossref_primary_10_1364_BOE_516166 |
Cites_doi | 10.1145/279232.279236 10.1118/1.598861 10.1118/1.3557469 10.1016/j.jmbbm.2016.03.005 10.1016/j.neuroimage.2018.01.007 10.1002/cnm.2979 10.1002/mrm.21636 10.1016/j.acra.2020.03.009 10.1016/j.neurobiolaging.2018.01.010 10.1109/TMI.2019.2893369 10.1093/braincomms/fcz049 10.1126/science.7569924 10.1148/radiol.2018170601 10.1115/1.4046199 10.1118/1.4754649 10.1016/j.neuroimage.2011.09.015 10.1177/0883073820909274 10.1016/j.mri.2011.12.019 10.1109/TMI.2016.2604568 10.1016/j.nicl.2019.101750 10.1002/mrm.20355 10.1016/j.jmbbm.2013.04.007 10.2214/AJR.16.17455 10.1088/1361-6560/aacb08 10.1002/nbm.2964 10.1016/j.neuroimage.2009.06.018 10.1002/mrm.21286 10.1016/j.media.2021.102212 10.1109/TMI.2004.834624 10.1371/journal.pone.0029888 10.1177/1179069519840444 10.1121/1.5064372 10.1007/s11682-018-9988-8 10.1002/mrm.25067 10.1007/s00234-016-1767-x 10.1088/0031-9155/56/13/N02 10.1016/j.jmbbm.2017.11.045 10.1016/j.neuroimage.2009.02.040 10.1002/mrm.1111 10.1371/journal.pone.0081668 10.1162/jocn_a_01574 10.1186/1532-429X-17-S1-P35 10.1148/radiol.2452061673 10.1002/hbm.23314 10.1016/j.jbiomech.2016.02.018 10.1016/j.neuroimage.2016.02.059 10.1093/cercor/bhaa388 10.1016/j.jbiomech.2015.09.009 10.1016/j.neuroimage.2013.04.089 10.1002/jmri.22707 10.1137/0916069 10.1162/jocn_a_01454 10.1002/mrm.25881 10.1109/TMI.2013.2268978 10.1006/nimg.2002.1132 10.1002/nbm.3848 10.1016/S1361-8415(00)00039-6 10.1097/RMR.0000000000000177 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. Copyright Elsevier BV May 2022 |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV May 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 5PM |
DOI | 10.1016/j.media.2022.102432 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
EndPage | 102432 |
ExternalDocumentID | PMC9122015 35358836 10_1016_j_media_2022_102432 S1361841522000834 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB027577 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c487t-67e56ba2ad2d607cfb6f361da0b4c76533c00071b35e76e12b2e3a4049eae7ec3 |
IEDL.DBID | AIKHN |
ISSN | 1361-8415 1361-8423 |
IngestDate | Thu Aug 21 18:36:58 EDT 2025 Thu Sep 04 18:16:39 EDT 2025 Sat Jul 26 03:35:54 EDT 2025 Mon Jul 21 06:01:53 EDT 2025 Tue Jul 01 02:49:32 EDT 2025 Thu Apr 24 23:12:57 EDT 2025 Fri Feb 23 02:38:49 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MRE TI-NLI LR Anisotropic Brain mechanics NLI White matter AP NITI SPR DTI Transverse isotropic FA Elastography |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c487t-67e56ba2ad2d607cfb6f361da0b4c76533c00071b35e76e12b2e3a4049eae7ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3136-7449 0000-0001-6565-8469 0000-0003-4303-0704 0000-0001-8430-800X 0000-0002-7760-131X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9122015 |
PMID | 35358836 |
PQID | 2696891057 |
PQPubID | 2045428 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9122015 proquest_miscellaneous_2646723239 proquest_journals_2696891057 pubmed_primary_35358836 crossref_citationtrail_10_1016_j_media_2022_102432 crossref_primary_10_1016_j_media_2022_102432 elsevier_sciencedirect_doi_10_1016_j_media_2022_102432 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Romano, Guo, Prokscha, Meyer, Hirsch, Braun, Sack, Scheel (bib0046) 2014; 72 Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0024) 2012; 62 Miller, Kolipaka, Nash, Young (bib0039) 2018; 31 Smith, Guertler, Okamoto, Romano, Bayly, Johnson (bib0055) 2020; 142 Sinkus, Tanter, Catheline, Lorenzen, Kuhl, Sondermann, Fink (bib0054) 2005; 53 Hiscox, Johnson, McGarry, Marshall, Ritchie, van Beek, Roberts, Starr (bib0019) 2020; 2 Schwarb, Johnson, Dulas, McGarry, Holtrop, Watson, Wang, Voss, Sutton, Cohen (bib0052) 2019; 31 Daugherty, Schwarb, McGarry, Johnson, Cohen (bib0010) 2020; 32 Mazumder, Clymer, White, Romano, Kolipaka (bib0030) 2015; 17 (accessed 1.24.22). Streitberger, Sack, Krefting, Pfüller, Braun, Paul, Wuerfel (bib0058) 2012; 7 Johnson, Schwarb, Horecka, McGarry, Hillman, Kramer, Cohen, Barbey (bib0027) 2018; 171 Hiscox, Johnson, McGarry, Schwarb, van Beek, Roberts, Starr (bib0018) 2020; 14 Anderson, Johnson, McGarry, Paulsen, Sutton, Van Houten, Georgiadis (bib0001) 2017 Caban-Rivera, Smith, Kailash, Okamoto, McGarry, Williams, Guertler, McIlvain, Sowinski, Houten, Paulsen, Bayly, Johnson (bib0007) 2021 Miller, Jiang, Mazumder, Cowan, Nash, Kolipaka, Young (bib0037) 2015 Holzapfel, Ogden, Sherifova (bib0020) 2019 Hiscox, Johnson, McGarry, Perrins, Littlejohn, van Beek, Roberts, Starr (bib0017) 2018; 65 Hoodeshenas, Yin, Venkatesh (bib0021) 2018; 27 Okamoto, Romano, Johnson, Bayly (bib0044) 2019; 13 Streitberger, Wiener, Hoffmann, Baptist, Klatt, Lin, McLaughlin, Sprung, Klingebiel, Freimann, Klatt, Braun, Lin, McLaughlin, Sprung, Klingebiel, Sack (bib0059) 2010 Van Houten, Miga, Weaver, Kennedy, Paulsen (bib0062) 2001; 837 Barnhill, Nikolova, Ariyurek, Dittmann, Braun, Sack (bib0005) 2019; 38 Miller, Kolipaka, Nash, Young (bib0038) 2018; 34 Sack, Beierbach, Wuerfel, Klatt, Hamhaber, Papazoglou, Martus, Braun (bib0048) 2009; 46 McGrath, Ravikumar, Wilkinson, Frangi, Taylor (bib0035) 2016; 76 Qin, Sinkus, Geng, Cheng, Green, Rae, Bilston (bib0045) 2012; 000 Murphy, Huston, Jack, Glaser, Manduca, Felmlee, Ehman (bib0041) 2011; 498 Doyley, Van Houten, Weaver, Poplack, Duncan, Kennedy, Paulsen (bib0012) 2004; 23 Byrd, Lu, Nocedal, Zhu (bib0006) 1995; 16 Sandroff, Johnson, Motl (bib0049) 2017; 59 Schmidt, Tweten, Benegal, Walker, Portnoi, Okamoto, Garbow, Bayly (bib0051) 2016; 49 Feng, Okamoto, Namani, Genin, Bayly (bib0014) 2013; 23 Muthupillai, Lomas, Rossman, Greenleaf, Manduca, Ehman (bib0043) 1995; 269 Van Houten, Viviers, McGarry, Perriñez, Perreard, Weaver, Paulsen (bib0063) 2011; 38 Manduca, Oliphant, Dresner, Mahowald, Kruse, Amromin, Felmlee, Greenleaf, Ehman (bib0029) 2001; 5 Wuerfel, Paul, Beierbach, Hamhaber, Klatt, Papazoglou, Zipp, Martus, Braun, Sack (bib0065) 2010; 49 McGarry, Johnson, Sutton, Van Houten, Georgiadis, Weaver, Paulsen (bib0031) 2013; 32 Guidetti, Royston (bib0016) 2018; 144 Zhu, Byrd, Lu, Nocedal (bib0067) 1997; 23 Green, Geng, Qin, Sinkus, Gandevia, Bilston (bib0015) 2013; 26 Murphy, Curran, Glaser, Rossman, Huston, Poduslo, Jack, Felmlee, Ehman (bib0040) 2012; 30 Huwart, Sempoux, Salameh, Jamart, Annet, Sinkus, Peeters, ter Beek, Horsmans, Van Beers (bib0022) 2007; 245 ElSheikh, Arani, Perry, Boeve, Meyer, Savica, Ehman, Huston (bib0013) 2017; 209 Tan, Mcgarry, Van Houten, Ji, Solamen, Weaver, Paulsen (bib0060) 2017; 36 Delgorio, Hiscox, Daugherty, Sanjana, Pohlig, Ellison, Martens, Schwarb, McGarry, Johnson (bib0011) 2021; 31 Babaei, Fovargue, Lloyd, Miller, Jugé, Kaplan, Sinkus, Nordsletten, Bilston (bib0004) 2021; 74 Schmidt, Tweten, Badachhape, Reiter, Okamoto, Garbow, Bayly (bib0050) 2018; 79 Chaze, McIlvain, Smith, Villermaux, Delgorio, Wright, Rogers, Miller, Crenshaw, Johnson (bib0008) 2019; 22 Johnson, Schwarb, McGarry, Anderson, Huesmann, Sutton, Cohen (bib0026) 2016; 37 Kennedy, Wagner, Castéra, Hong, Johnson, Sirlin, Taouli (bib0028) 2018 Johnson, McGarry, Gharibans, Weaver, Paulsen, Wang, Olivero, Sutton, Georgiadis (bib0025) 2013; 79 Schwarb, Johnson, McGarry, Cohen (bib0053) 2016; 132 Solamen, McGarry, Fried, Weaver, Lollis, Paulsen (bib0057) 2021; 28 Anderson, Van Houten, McGarry, Paulsen, Holtrop, Sutton, Georgiadis, Johnson (bib0002) 2016; 59 Dartmouth R.C., 2022. Discovery overview – research computing [WWW Document]. URL Tweten, Okamoto, Schmidt, Garbow, Bayly (bib0061) 2015; 48 McGarry, Van Houten, Guertler, Okamoto, Smith, Sowinski, Johnson, Bayly, Weaver, Paulsen (bib0033) 2020 Yin, Woollard, Wang, Torres, Harris, Ward, Glaser, Manduca, Ehman (bib0066) 2007; 58 Jenkinson, Bannister, Brady, Smith (bib0023) 2002; 17 Asbach, Klatt, Hamhaber, Braun, Somasundaram, Hamm, Sack (bib0003) 2008; 60 Solamen, McGarry, Tan, Weaver, Paulsen (bib0056) 2018; 63 Romano, Scheel, Hirsch, Braun, Sack (bib0047) 2012; 000 McGarry, Van Houten, Perrĩez, Pattison, Weaver, Paulsen (bib0034) 2011; 56 McIlvain, Tracy, Chaze, Petersen, Villermaux, Wright, Miller, Crenshaw, Johnson (bib0036) 2020; 35 McGarry, Van Houten, Johnson, Georgiadis, Sutton, Weaver, Paulsen (bib0032) 2012; 39 Van Houten, Weaver, Miga, Kennedy, Paulsen (bib0064) 2000; 27 Murphy, Huston, Jack, Glaser, Senjem, Chen, Manduca, Felmlee, Ehman (bib0042) 2013; 8 Smith (10.1016/j.media.2022.102432_bib0055) 2020; 142 Babaei (10.1016/j.media.2022.102432_bib0004) 2021; 74 McIlvain (10.1016/j.media.2022.102432_bib0036) 2020; 35 Feng (10.1016/j.media.2022.102432_bib0014) 2013; 23 McGrath (10.1016/j.media.2022.102432_bib0035) 2016; 76 Asbach (10.1016/j.media.2022.102432_bib0003) 2008; 60 Van Houten (10.1016/j.media.2022.102432_bib0062) 2001; 837 Caban-Rivera (10.1016/j.media.2022.102432_bib0007) 2021 Streitberger (10.1016/j.media.2022.102432_bib0058) 2012; 7 Van Houten (10.1016/j.media.2022.102432_bib0064) 2000; 27 Johnson (10.1016/j.media.2022.102432_bib0027) 2018; 171 Schmidt (10.1016/j.media.2022.102432_bib0051) 2016; 49 Huwart (10.1016/j.media.2022.102432_bib0022) 2007; 245 Delgorio (10.1016/j.media.2022.102432_bib0011) 2021; 31 Miller (10.1016/j.media.2022.102432_bib0039) 2018; 31 Doyley (10.1016/j.media.2022.102432_bib0012) 2004; 23 ElSheikh (10.1016/j.media.2022.102432_bib0013) 2017; 209 Johnson (10.1016/j.media.2022.102432_bib0025) 2013; 79 Anderson (10.1016/j.media.2022.102432_bib0002) 2016; 59 Holzapfel (10.1016/j.media.2022.102432_bib0020) 2019 Romano (10.1016/j.media.2022.102432_bib0046) 2014; 72 Yin (10.1016/j.media.2022.102432_bib0066) 2007; 58 McGarry (10.1016/j.media.2022.102432_bib0031) 2013; 32 Hiscox (10.1016/j.media.2022.102432_bib0019) 2020; 2 Kennedy (10.1016/j.media.2022.102432_bib0028) 2018 Van Houten (10.1016/j.media.2022.102432_bib0063) 2011; 38 Mazumder (10.1016/j.media.2022.102432_bib0030) 2015; 17 Manduca (10.1016/j.media.2022.102432_bib0029) 2001; 5 Schmidt (10.1016/j.media.2022.102432_bib0050) 2018; 79 Barnhill (10.1016/j.media.2022.102432_bib0005) 2019; 38 Solamen (10.1016/j.media.2022.102432_bib0056) 2018; 63 Schwarb (10.1016/j.media.2022.102432_bib0053) 2016; 132 Hoodeshenas (10.1016/j.media.2022.102432_bib0021) 2018; 27 McGarry (10.1016/j.media.2022.102432_bib0032) 2012; 39 McGarry (10.1016/j.media.2022.102432_bib0034) 2011; 56 Anderson (10.1016/j.media.2022.102432_bib0001) 2017 Byrd (10.1016/j.media.2022.102432_bib0006) 1995; 16 Murphy (10.1016/j.media.2022.102432_bib0040) 2012; 30 Guidetti (10.1016/j.media.2022.102432_bib0016) 2018; 144 Solamen (10.1016/j.media.2022.102432_bib0057) 2021; 28 Johnson (10.1016/j.media.2022.102432_bib0026) 2016; 37 Miller (10.1016/j.media.2022.102432_bib0038) 2018; 34 Zhu (10.1016/j.media.2022.102432_bib0067) 1997; 23 Romano (10.1016/j.media.2022.102432_bib0047) 2012; 000 Murphy (10.1016/j.media.2022.102432_bib0042) 2013; 8 Tan (10.1016/j.media.2022.102432_bib0060) 2017; 36 Chaze (10.1016/j.media.2022.102432_bib0008) 2019; 22 Schwarb (10.1016/j.media.2022.102432_bib0052) 2019; 31 Hiscox (10.1016/j.media.2022.102432_bib0018) 2020; 14 Daugherty (10.1016/j.media.2022.102432_bib0010) 2020; 32 10.1016/j.media.2022.102432_bib0009 Muthupillai (10.1016/j.media.2022.102432_bib0043) 1995; 269 Murphy (10.1016/j.media.2022.102432_bib0041) 2011; 498 Jenkinson (10.1016/j.media.2022.102432_bib0024) 2012; 62 Okamoto (10.1016/j.media.2022.102432_bib0044) 2019; 13 Sack (10.1016/j.media.2022.102432_bib0048) 2009; 46 Sinkus (10.1016/j.media.2022.102432_bib0054) 2005; 53 Qin (10.1016/j.media.2022.102432_bib0045) 2012; 000 Streitberger (10.1016/j.media.2022.102432_bib0059) 2010 Wuerfel (10.1016/j.media.2022.102432_bib0065) 2010; 49 Green (10.1016/j.media.2022.102432_bib0015) 2013; 26 Sandroff (10.1016/j.media.2022.102432_bib0049) 2017; 59 McGarry (10.1016/j.media.2022.102432_bib0033) 2020 Miller (10.1016/j.media.2022.102432_bib0037) 2015 Tweten (10.1016/j.media.2022.102432_bib0061) 2015; 48 Hiscox (10.1016/j.media.2022.102432_bib0017) 2018; 65 Jenkinson (10.1016/j.media.2022.102432_bib0023) 2002; 17 |
References_xml | – volume: 46 start-page: 652 year: 2009 end-page: 657 ident: bib0048 article-title: The impact of aging and gender on brain viscoelasticity publication-title: Neuroimage – volume: 35 start-page: 463 year: 2020 end-page: 471 ident: bib0036 article-title: Brain stiffness relates to dynamic balance reactions in children with cerebral palsy publication-title: J. Child Neurol. – volume: 34 start-page: e2979 year: 2018 ident: bib0038 article-title: Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method publication-title: Int. J. Numer. Method Biomed. Eng. – volume: 72 start-page: 1755 year: 2014 end-page: 1761 ident: bib0046 article-title: waveguide elastography: effects of neurodegeneration in patients with amyotrophic lateral sclerosis publication-title: Magn. Reson. Med. – reference: Dartmouth R.C., 2022. Discovery overview – research computing [WWW Document]. URL – volume: 74 year: 2021 ident: bib0004 article-title: Magnetic resonance elastography reconstruction for anisotropic tissues publication-title: Med. Image Anal. – volume: 17 start-page: 4 year: 2015 end-page: 7 ident: bib0030 article-title: waveguide cardiac magnetic resonance elastography publication-title: J. Cardiovasc. Magn. Reson. – volume: 31 start-page: 2799 year: 2021 end-page: 2811 ident: bib0011 article-title: Effect of aging on the viscoelastic properties of hippocampal subfields assessed with high-resolution MR elastography publication-title: Cereb. Cortex – volume: 31 start-page: 1857 year: 2019 end-page: 1872 ident: bib0052 article-title: Structural and functional MRI evidence for distinct medial temporal and prefrontal roles in context-dependent relational memory publication-title: J. Cogn. Neurosci. – volume: 38 start-page: 1578 year: 2019 end-page: 1587 ident: bib0005 article-title: Fast robust dejitter and interslice discontinuity removal in MRI phase acquisitions: application to magnetic resonance elastography publication-title: IEEE Trans. Med. Imaging – year: 2019 ident: bib0020 article-title: On fibre dispersion modelling of soft biological tissues: a review publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – year: 2021 ident: bib0007 article-title: Multi-excitation actuator design for anisotropic brain MRE publication-title: Proceedings of the 29th Annual Meeting of the International Society for Magnetic Resonance in Medicine – volume: 14 start-page: 175 year: 2020 end-page: 185 ident: bib0018 article-title: Hippocampal viscoelasticity and episodic memory performance in healthy older adults examined with magnetic resonance elastography publication-title: Brain Imaging Behav. – volume: 132 start-page: 534 year: 2016 end-page: 541 ident: bib0053 article-title: Medial temporal lobe viscoelasticity and relational memory performance publication-title: Neuroimage – volume: 63 year: 2018 ident: bib0056 article-title: Phantom evaluations of nonlinear inversion MR elastography publication-title: Phys. Med. Biol. – year: 2020 ident: bib0033 article-title: A heterogenous, time harmonic, nearly incompressible transverse isotropic finite element brain simulation platform for MR elastography publication-title: Phys. Med. Biol. – volume: 209 start-page: 403 year: 2017 end-page: 408 ident: bib0013 article-title: MR elastography demonstrates unique regional brain stiffness patterns in dementias publication-title: Am. J. Roentgenol. – volume: 30 start-page: 535 year: 2012 end-page: 539 ident: bib0040 article-title: Magnetic resonance elastography of the brain in a mouse model of Alzheimer's disease: initial results publication-title: Magn. Reson. Imaging – volume: 16 start-page: 1190 year: 1995 end-page: 1208 ident: bib0006 article-title: A limited memory algorithm for bound constrained optimization publication-title: SIAM J. Sci. – volume: 23 start-page: 117 year: 2013 end-page: 132 ident: bib0014 article-title: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter publication-title: J. Mech. Behav. Biomed. Mater. – volume: 27 start-page: 101 year: 2000 end-page: 107 ident: bib0064 article-title: Elasticity reconstruction from experimental MR displacement data: initial experience with an overlapping subzone finite element inversion process publication-title: Med. Phys. – volume: 49 start-page: 2520 year: 2010 end-page: 2525 ident: bib0065 article-title: MR-elastography reveals degradation of tissue integrity in multiple sclerosis publication-title: Neuroimage – volume: 32 start-page: 1901 year: 2013 end-page: 1909 ident: bib0031 article-title: Including spatial information in nonlinear inversion MR elastography using soft prior regularization publication-title: IEEE Trans. Med. Imaging – volume: 498 start-page: 494 year: 2011 end-page: 498 ident: bib0041 article-title: Decreased brain stiffness in Alzheimer's disease determined by magnetic resonance elastography publication-title: J. Magn. Reson. Imaging – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: bib0024 article-title: FSL publication-title: Neuroimage – volume: 13 year: 2019 ident: bib0044 article-title: Insights into traumatic brain injury from MRI of harmonic brain motion publication-title: J. Exp. Neurosci. – volume: 53 start-page: 372 year: 2005 end-page: 387 ident: bib0054 article-title: Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography publication-title: Magn. Reson. Med. – year: 2018 ident: bib0028 article-title: Quantitative elastography methods in liver disease: current evidence and future directions publication-title: Radiology – volume: 39 start-page: 6388 year: 2012 end-page: 6396 ident: bib0032 article-title: Multiresolution MR elastography using nonlinear inversion publication-title: Med. Phys. – volume: 28 start-page: 457 year: 2021 end-page: 466 ident: bib0057 article-title: Poroelastic mechanical properties of the brain tissue of normal pressure hydrocephalus patients during lumbar drain treatment using intrinsic actuation MR elastography publication-title: Acad. Radiol. – reference: (accessed 1.24.22). – volume: 49 start-page: 1042 year: 2016 end-page: 1049 ident: bib0051 article-title: Magnetic resonance elastography of slow and fast shear waves illuminates differences in shear and tensile moduli in anisotropic tissue publication-title: J. Biomech. – volume: 5 start-page: 237 year: 2001 end-page: 254 ident: bib0029 article-title: Magnetic resonance elastography: non-invasive mapping of tissue elasticity publication-title: Med. Image Anal. – start-page: 346 year: 2015 end-page: 354 ident: bib0037 article-title: Determining anisotropic myocardial stiffness from magnetic resonance elastography: a simulation study publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 48 start-page: 4002 year: 2015 end-page: 4009 ident: bib0061 article-title: Estimation of material parameters from slow and fast shear waves in an incompressible, transversely isotropic material publication-title: J. Biomech. – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: bib0023 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage – volume: 7 start-page: e29888 year: 2012 ident: bib0058 article-title: Brain viscoelasticity alteration in chronic-progressive multiple sclerosis publication-title: PLoS One – volume: 2 year: 2020 ident: bib0019 article-title: Mechanical property alterations across the cerebral cortex due to Alzheimer's disease publication-title: Brain Commun. – volume: 144 start-page: 2312 year: 2018 end-page: 2323 ident: bib0016 article-title: Analytical solution for converging elliptic shear wave in a bounded transverse isotropic viscoelastic material with nonhomogeneous outer boundary publication-title: J. Acoust. Soc. Am. – volume: 22 year: 2019 ident: bib0008 article-title: Altered brain tissue viscoelasticity in pediatric cerebral palsy measured by magnetic resonance elastography publication-title: NeuroImage Clin. – volume: 26 start-page: 1387 year: 2013 end-page: 1394 ident: bib0015 article-title: Measuring anisotropic muscle stiffness properties using elastography publication-title: NMR Biomed. – volume: 171 start-page: 99 year: 2018 end-page: 106 ident: bib0027 article-title: Double dissociation of structure-function relationships in memory and fluid intelligence observed with magnetic resonance elastography publication-title: Neuroimage – volume: 245 start-page: 458 year: 2007 end-page: 466 ident: bib0022 article-title: Liver fibrosis: noninvasive assessment with MR elastography versus aspartate aminotransferase–to-platelet ratio index publication-title: Radiology – volume: 000 start-page: 1 year: 2012 end-page: 13 ident: bib0047 article-title: waveguide elastography of white matter tracts in the human brain publication-title: Magn. Reson. Med. – volume: 59 start-page: 61 year: 2017 end-page: 67 ident: bib0049 article-title: Exercise training effects on memory and hippocampal viscoelasticity in multiple sclerosis: a novel application of magnetic resonance elastography publication-title: Neuroradiology – volume: 79 start-page: 145 year: 2013 end-page: 152 ident: bib0025 article-title: Local mechanical properties of white matter structures in the human brain publication-title: Neuroimage – volume: 269 start-page: 1854 year: 1995 end-page: 1857 ident: bib0043 article-title: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves publication-title: Science – volume: 58 start-page: 346 year: 2007 end-page: 353 ident: bib0066 article-title: Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography publication-title: Magn. Reson. Med. – volume: 36 start-page: 236 year: 2017 end-page: 250 ident: bib0060 article-title: Gradient-based optimization for poroelastic and viscoelastic MR elastography publication-title: IEEE Trans. Med. Imaging – volume: 837 start-page: 827 year: 2001 end-page: 837 ident: bib0062 article-title: Three-dimensional subzone-based algorithm for MR elastography publication-title: Magn. Reson. Med. – volume: 79 start-page: 30 year: 2018 end-page: 37 ident: bib0050 article-title: Measurement of anisotropic mechanical properties in porcine brain white matter publication-title: J. Mech. Behav. Biomed. Mater. – volume: 31 start-page: e3848 year: 2018 ident: bib0039 article-title: Relative identifiability of anisotropic properties from magnetic resonance elastography publication-title: NMR Biomed. – volume: 32 start-page: 1704 year: 2020 end-page: 1713 ident: bib0010 article-title: Magnetic resonance elastography of human hippocampal subfields: Ca3-dentate gyrus viscoelasticity predicts relational memory accuracy publication-title: J. Cogn. Neurosci. – volume: 000 year: 2012 ident: bib0045 article-title: Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical properties: a phantom study publication-title: J. Magn. Reson. Imaging – volume: 65 start-page: 158 year: 2018 end-page: 167 ident: bib0017 article-title: High-resolution magnetic resonance elastography reveals differences in subcortical gray matter viscoelasticity between young and healthy older adults publication-title: Neurobiol. Aging – volume: 37 start-page: 4221 year: 2016 end-page: 4233 ident: bib0026 article-title: Viscoelasticity of subcortical gray matter structures. Hum publication-title: Brain Mapp. – year: 2017 ident: bib0001 article-title: Inversion parameters based on convergence and error metrics for nonlinear inversion MR elastography publication-title: Proceedings of the International Society for Magnetic Resonance in Medicine – start-page: 385 year: 2010 end-page: 392 ident: bib0059 article-title: viscoelastic properties of the brain in normal pressure hydrocephalus publication-title: NMR Biomed. – volume: 38 start-page: 1993 year: 2011 ident: bib0063 article-title: Subzone based magnetic resonance elastography using a Rayleigh damped material model publication-title: Med. Phys. – volume: 23 start-page: 550 year: 1997 end-page: 560 ident: bib0067 article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization publication-title: ACM Trans. Math. Softw. – volume: 23 start-page: 1404 year: 2004 end-page: 1416 ident: bib0012 article-title: Shear modulus estimation using parallelized partial volumetric reconstruction publication-title: IEEE Trans. Med. Imaging – volume: 8 start-page: 81668 year: 2013 ident: bib0042 article-title: Measuring the characteristic topography of brain stiffness with magnetic resonance elastography publication-title: PLoS One – volume: 142 year: 2020 ident: bib0055 article-title: Multi-excitation magnetic resonance elastography of the brain: wave propagation in anisotropic white matter publication-title: J. Biomech. Eng. – volume: 56 start-page: 153 year: 2011 end-page: 164 ident: bib0034 article-title: An octahedral shear strain-based measure of SNR for 3D MR elastography publication-title: Phys. Med. Biol. – volume: 60 start-page: 373 year: 2008 end-page: 379 ident: bib0003 article-title: Assessment of liver viscoelasticity using multifrequency MR elastography publication-title: Magn. Reson. Med. – volume: 27 start-page: 319 year: 2018 end-page: 333 ident: bib0021 article-title: Magnetic resonance elastography of liver-current update publication-title: Top. Magn. Reson. Imaging – volume: 59 start-page: 538 year: 2016 end-page: 546 ident: bib0002 article-title: Observation of direction-dependent mechanical properties in the human brain with multi-excitation MR elastography publication-title: J. Mech. Behav. Biomed. Mater. – volume: 76 start-page: 645 year: 2016 end-page: 662 ident: bib0035 article-title: Magnetic resonance elastography of the brain: an publication-title: Magn. Reson. Med. – volume: 23 start-page: 550 year: 1997 ident: 10.1016/j.media.2022.102432_bib0067 article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization publication-title: ACM Trans. Math. Softw. doi: 10.1145/279232.279236 – volume: 27 start-page: 101 year: 2000 ident: 10.1016/j.media.2022.102432_bib0064 article-title: Elasticity reconstruction from experimental MR displacement data: initial experience with an overlapping subzone finite element inversion process publication-title: Med. Phys. doi: 10.1118/1.598861 – volume: 38 start-page: 1993 year: 2011 ident: 10.1016/j.media.2022.102432_bib0063 article-title: Subzone based magnetic resonance elastography using a Rayleigh damped material model publication-title: Med. Phys. doi: 10.1118/1.3557469 – volume: 59 start-page: 538 year: 2016 ident: 10.1016/j.media.2022.102432_bib0002 article-title: Observation of direction-dependent mechanical properties in the human brain with multi-excitation MR elastography publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.03.005 – ident: 10.1016/j.media.2022.102432_bib0009 – volume: 171 start-page: 99 year: 2018 ident: 10.1016/j.media.2022.102432_bib0027 article-title: Double dissociation of structure-function relationships in memory and fluid intelligence observed with magnetic resonance elastography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.01.007 – year: 2017 ident: 10.1016/j.media.2022.102432_bib0001 article-title: Inversion parameters based on convergence and error metrics for nonlinear inversion MR elastography – volume: 34 start-page: e2979 year: 2018 ident: 10.1016/j.media.2022.102432_bib0038 article-title: Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method publication-title: Int. J. Numer. Method Biomed. Eng. doi: 10.1002/cnm.2979 – volume: 60 start-page: 373 year: 2008 ident: 10.1016/j.media.2022.102432_bib0003 article-title: Assessment of liver viscoelasticity using multifrequency MR elastography publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21636 – volume: 28 start-page: 457 year: 2021 ident: 10.1016/j.media.2022.102432_bib0057 article-title: Poroelastic mechanical properties of the brain tissue of normal pressure hydrocephalus patients during lumbar drain treatment using intrinsic actuation MR elastography publication-title: Acad. Radiol. doi: 10.1016/j.acra.2020.03.009 – volume: 65 start-page: 158 year: 2018 ident: 10.1016/j.media.2022.102432_bib0017 article-title: High-resolution magnetic resonance elastography reveals differences in subcortical gray matter viscoelasticity between young and healthy older adults publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2018.01.010 – volume: 38 start-page: 1578 year: 2019 ident: 10.1016/j.media.2022.102432_bib0005 article-title: Fast robust dejitter and interslice discontinuity removal in MRI phase acquisitions: application to magnetic resonance elastography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2893369 – volume: 2 year: 2020 ident: 10.1016/j.media.2022.102432_bib0019 article-title: Mechanical property alterations across the cerebral cortex due to Alzheimer's disease publication-title: Brain Commun. doi: 10.1093/braincomms/fcz049 – volume: 269 start-page: 1854 year: 1995 ident: 10.1016/j.media.2022.102432_bib0043 article-title: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves publication-title: Science doi: 10.1126/science.7569924 – year: 2018 ident: 10.1016/j.media.2022.102432_bib0028 article-title: Quantitative elastography methods in liver disease: current evidence and future directions publication-title: Radiology doi: 10.1148/radiol.2018170601 – volume: 142 year: 2020 ident: 10.1016/j.media.2022.102432_bib0055 article-title: Multi-excitation magnetic resonance elastography of the brain: wave propagation in anisotropic white matter publication-title: J. Biomech. Eng. doi: 10.1115/1.4046199 – volume: 39 start-page: 6388 year: 2012 ident: 10.1016/j.media.2022.102432_bib0032 article-title: Multiresolution MR elastography using nonlinear inversion publication-title: Med. Phys. doi: 10.1118/1.4754649 – volume: 62 start-page: 782 year: 2012 ident: 10.1016/j.media.2022.102432_bib0024 article-title: FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 35 start-page: 463 year: 2020 ident: 10.1016/j.media.2022.102432_bib0036 article-title: Brain stiffness relates to dynamic balance reactions in children with cerebral palsy publication-title: J. Child Neurol. doi: 10.1177/0883073820909274 – volume: 30 start-page: 535 year: 2012 ident: 10.1016/j.media.2022.102432_bib0040 article-title: Magnetic resonance elastography of the brain in a mouse model of Alzheimer's disease: initial results publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2011.12.019 – volume: 36 start-page: 236 year: 2017 ident: 10.1016/j.media.2022.102432_bib0060 article-title: Gradient-based optimization for poroelastic and viscoelastic MR elastography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2604568 – volume: 22 year: 2019 ident: 10.1016/j.media.2022.102432_bib0008 article-title: Altered brain tissue viscoelasticity in pediatric cerebral palsy measured by magnetic resonance elastography publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2019.101750 – volume: 53 start-page: 372 year: 2005 ident: 10.1016/j.media.2022.102432_bib0054 article-title: Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20355 – volume: 23 start-page: 117 year: 2013 ident: 10.1016/j.media.2022.102432_bib0014 article-title: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2013.04.007 – volume: 209 start-page: 403 year: 2017 ident: 10.1016/j.media.2022.102432_bib0013 article-title: MR elastography demonstrates unique regional brain stiffness patterns in dementias publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.16.17455 – start-page: 385 year: 2010 ident: 10.1016/j.media.2022.102432_bib0059 article-title: In vivo viscoelastic properties of the brain in normal pressure hydrocephalus publication-title: NMR Biomed. – year: 2020 ident: 10.1016/j.media.2022.102432_bib0033 article-title: A heterogenous, time harmonic, nearly incompressible transverse isotropic finite element brain simulation platform for MR elastography publication-title: Phys. Med. Biol. – volume: 000 start-page: 1 year: 2012 ident: 10.1016/j.media.2022.102432_bib0047 article-title: In vivo waveguide elastography of white matter tracts in the human brain publication-title: Magn. Reson. Med. – year: 2021 ident: 10.1016/j.media.2022.102432_bib0007 article-title: Multi-excitation actuator design for anisotropic brain MRE – volume: 63 year: 2018 ident: 10.1016/j.media.2022.102432_bib0056 article-title: Phantom evaluations of nonlinear inversion MR elastography publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aacb08 – volume: 26 start-page: 1387 year: 2013 ident: 10.1016/j.media.2022.102432_bib0015 article-title: Measuring anisotropic muscle stiffness properties using elastography publication-title: NMR Biomed. doi: 10.1002/nbm.2964 – volume: 49 start-page: 2520 year: 2010 ident: 10.1016/j.media.2022.102432_bib0065 article-title: MR-elastography reveals degradation of tissue integrity in multiple sclerosis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.06.018 – volume: 58 start-page: 346 year: 2007 ident: 10.1016/j.media.2022.102432_bib0066 article-title: Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21286 – volume: 74 year: 2021 ident: 10.1016/j.media.2022.102432_bib0004 article-title: Magnetic resonance elastography reconstruction for anisotropic tissues publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102212 – volume: 23 start-page: 1404 year: 2004 ident: 10.1016/j.media.2022.102432_bib0012 article-title: Shear modulus estimation using parallelized partial volumetric reconstruction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.834624 – volume: 7 start-page: e29888 year: 2012 ident: 10.1016/j.media.2022.102432_bib0058 article-title: Brain viscoelasticity alteration in chronic-progressive multiple sclerosis publication-title: PLoS One doi: 10.1371/journal.pone.0029888 – volume: 13 year: 2019 ident: 10.1016/j.media.2022.102432_bib0044 article-title: Insights into traumatic brain injury from MRI of harmonic brain motion publication-title: J. Exp. Neurosci. doi: 10.1177/1179069519840444 – volume: 144 start-page: 2312 year: 2018 ident: 10.1016/j.media.2022.102432_bib0016 article-title: Analytical solution for converging elliptic shear wave in a bounded transverse isotropic viscoelastic material with nonhomogeneous outer boundary publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.5064372 – volume: 14 start-page: 175 year: 2020 ident: 10.1016/j.media.2022.102432_bib0018 article-title: Hippocampal viscoelasticity and episodic memory performance in healthy older adults examined with magnetic resonance elastography publication-title: Brain Imaging Behav. doi: 10.1007/s11682-018-9988-8 – volume: 72 start-page: 1755 year: 2014 ident: 10.1016/j.media.2022.102432_bib0046 article-title: In vivo waveguide elastography: effects of neurodegeneration in patients with amyotrophic lateral sclerosis publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25067 – volume: 59 start-page: 61 year: 2017 ident: 10.1016/j.media.2022.102432_bib0049 article-title: Exercise training effects on memory and hippocampal viscoelasticity in multiple sclerosis: a novel application of magnetic resonance elastography publication-title: Neuroradiology doi: 10.1007/s00234-016-1767-x – volume: 56 start-page: 153 year: 2011 ident: 10.1016/j.media.2022.102432_bib0034 article-title: An octahedral shear strain-based measure of SNR for 3D MR elastography publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/56/13/N02 – volume: 79 start-page: 30 year: 2018 ident: 10.1016/j.media.2022.102432_bib0050 article-title: Measurement of anisotropic mechanical properties in porcine brain white matter ex vivo using magnetic resonance elastography publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2017.11.045 – volume: 46 start-page: 652 year: 2009 ident: 10.1016/j.media.2022.102432_bib0048 article-title: The impact of aging and gender on brain viscoelasticity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.02.040 – volume: 837 start-page: 827 year: 2001 ident: 10.1016/j.media.2022.102432_bib0062 article-title: Three-dimensional subzone-based algorithm for MR elastography publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1111 – volume: 8 start-page: 81668 year: 2013 ident: 10.1016/j.media.2022.102432_bib0042 article-title: Measuring the characteristic topography of brain stiffness with magnetic resonance elastography publication-title: PLoS One doi: 10.1371/journal.pone.0081668 – volume: 32 start-page: 1704 year: 2020 ident: 10.1016/j.media.2022.102432_bib0010 article-title: Magnetic resonance elastography of human hippocampal subfields: Ca3-dentate gyrus viscoelasticity predicts relational memory accuracy publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_01574 – volume: 17 start-page: 4 year: 2015 ident: 10.1016/j.media.2022.102432_bib0030 article-title: In-vivo waveguide cardiac magnetic resonance elastography publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1186/1532-429X-17-S1-P35 – volume: 245 start-page: 458 year: 2007 ident: 10.1016/j.media.2022.102432_bib0022 article-title: Liver fibrosis: noninvasive assessment with MR elastography versus aspartate aminotransferase–to-platelet ratio index publication-title: Radiology doi: 10.1148/radiol.2452061673 – volume: 000 year: 2012 ident: 10.1016/j.media.2022.102432_bib0045 article-title: Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical properties: a phantom study publication-title: J. Magn. Reson. Imaging – volume: 37 start-page: 4221 year: 2016 ident: 10.1016/j.media.2022.102432_bib0026 article-title: Viscoelasticity of subcortical gray matter structures. Hum publication-title: Brain Mapp. doi: 10.1002/hbm.23314 – volume: 49 start-page: 1042 year: 2016 ident: 10.1016/j.media.2022.102432_bib0051 article-title: Magnetic resonance elastography of slow and fast shear waves illuminates differences in shear and tensile moduli in anisotropic tissue publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.02.018 – volume: 132 start-page: 534 year: 2016 ident: 10.1016/j.media.2022.102432_bib0053 article-title: Medial temporal lobe viscoelasticity and relational memory performance publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.059 – volume: 31 start-page: 2799 year: 2021 ident: 10.1016/j.media.2022.102432_bib0011 article-title: Effect of aging on the viscoelastic properties of hippocampal subfields assessed with high-resolution MR elastography publication-title: Cereb. Cortex doi: 10.1093/cercor/bhaa388 – volume: 48 start-page: 4002 year: 2015 ident: 10.1016/j.media.2022.102432_bib0061 article-title: Estimation of material parameters from slow and fast shear waves in an incompressible, transversely isotropic material publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.09.009 – year: 2019 ident: 10.1016/j.media.2022.102432_bib0020 article-title: On fibre dispersion modelling of soft biological tissues: a review publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 79 start-page: 145 year: 2013 ident: 10.1016/j.media.2022.102432_bib0025 article-title: Local mechanical properties of white matter structures in the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.089 – volume: 498 start-page: 494 year: 2011 ident: 10.1016/j.media.2022.102432_bib0041 article-title: Decreased brain stiffness in Alzheimer's disease determined by magnetic resonance elastography publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.22707 – volume: 16 start-page: 1190 year: 1995 ident: 10.1016/j.media.2022.102432_bib0006 article-title: A limited memory algorithm for bound constrained optimization publication-title: SIAM J. Sci. doi: 10.1137/0916069 – start-page: 346 year: 2015 ident: 10.1016/j.media.2022.102432_bib0037 article-title: Determining anisotropic myocardial stiffness from magnetic resonance elastography: a simulation study – volume: 31 start-page: 1857 year: 2019 ident: 10.1016/j.media.2022.102432_bib0052 article-title: Structural and functional MRI evidence for distinct medial temporal and prefrontal roles in context-dependent relational memory publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_01454 – volume: 76 start-page: 645 year: 2016 ident: 10.1016/j.media.2022.102432_bib0035 article-title: Magnetic resonance elastography of the brain: an in silico study to determine the influence of cranial anatomy publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25881 – volume: 32 start-page: 1901 year: 2013 ident: 10.1016/j.media.2022.102432_bib0031 article-title: Including spatial information in nonlinear inversion MR elastography using soft prior regularization publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2268978 – volume: 17 start-page: 825 year: 2002 ident: 10.1016/j.media.2022.102432_bib0023 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage doi: 10.1006/nimg.2002.1132 – volume: 31 start-page: e3848 year: 2018 ident: 10.1016/j.media.2022.102432_bib0039 article-title: Relative identifiability of anisotropic properties from magnetic resonance elastography publication-title: NMR Biomed. doi: 10.1002/nbm.3848 – volume: 5 start-page: 237 year: 2001 ident: 10.1016/j.media.2022.102432_bib0029 article-title: Magnetic resonance elastography: non-invasive mapping of tissue elasticity publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(00)00039-6 – volume: 27 start-page: 319 year: 2018 ident: 10.1016/j.media.2022.102432_bib0021 article-title: Magnetic resonance elastography of liver-current update publication-title: Top. Magn. Reson. Imaging doi: 10.1097/RMR.0000000000000177 |
SSID | ssj0007440 |
Score | 2.4934895 |
Snippet | •A novel finite element based magnetic resonance elastography inversion for in vivo mechanical property imaging of heterogenous, anisotropic tissue is... The white matter tracts of brain tissue consist of highly-aligned, myelinated fibers; white matter is structurally anisotropic and is expected to exhibit... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102432 |
SubjectTerms | Algorithms Anisotropic Anisotropy Brain Brain - diagnostic imaging Brain - physiology Brain mechanics Crosstalk Damping ratio Diffusion Tensor Imaging Elasticity Imaging Techniques - methods Elastography Humans Inversion Magnetic properties Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Mechanical properties Muscles Neuroimaging Parameter estimation Reproducibility Shear modulus Substantia alba Tensors Tissues Transverse isotropic White matter White Matter - diagnostic imaging |
Title | Mapping heterogenous anisotropic tissue mechanical properties with transverse isotropic nonlinear inversion MR elastography |
URI | https://dx.doi.org/10.1016/j.media.2022.102432 https://www.ncbi.nlm.nih.gov/pubmed/35358836 https://www.proquest.com/docview/2696891057 https://www.proquest.com/docview/2646723239 https://pubmed.ncbi.nlm.nih.gov/PMC9122015 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WwnRQwXlFSiVkTgStrEdpzkuFWV5bA9AUW-W4zhtEM2utqGXSv3tzMRO6ILogVOUxKM4Hnvmsz3-BuAlL9FnGYPTkiKXsayEiPOSWzSG0iB-SG3eJe2bHanpsfxwkp6swUF_FobCKoPt9za9s9bhyTi05nhR1-MviaBkJeh_eAck5DpscJGrdAQbk_cfp0eDQSYOPH_8KolJoCcf6sK8ugMaOE_knFgMpOD_clB_A9A_4yhvOKbDe7AVECWb-ErfhzXXbMPmDZ7BbbgzCzvoD-BqZoiR4ZSdURzM3FO0MtPUF_N2OV_UlrWdKti5ozPBpEK2oAX7JTGvMlq2ZS35NwrncOy3WOM5N8yS1c2lX4Rjs8_MITpvAy32Qzg-fPv1YBqHBAyxxXlMG6vMpaow3JS8VHuZrQpVYSOWZq-QNlOIFG2HUQqRuky5hBfcCSNx0uGMy5wVj2CEX3dPgFW5chnCDaMqK52sCpQwuUiw7RS3ykXA-1bXNrCTU5KMH7oPQ_uuO1VpUpX2qorg1SC08OQctxdXvTr1Sh_T6D5uF9zpla_DEL_QnGiFckqTHMGL4TUOTtpxMY1D7WEZ9EOIWUUewWPfV4aKilSk-_tCRZCt9KKhABF_r75p6rOOADxPsM8n6dP__Z9ncJfufNzmDoza5U_3HLFVW-zC-uvrZDeMILy-e_Pp2-QXg0Aorg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIvFxqKB8BQoYiSNhG9txmiOqWi3Q9ACt1JvlOE4bBNnVNnCp1N_OjO1suyB64BrbSjJje57t5zcAb3mDMcsYXJbUpUxlK0RaNtziZCgN4ofclj5pX3Wopsfy00l-sga7410YolXGuT_M6X62jk8m0ZqTeddNvmaCkpVg_OEeSMhbcFvmoiBe3_vLK54HKeCFy1dZStVH6SFP8vLXM3CVyDlpGEjB_xWe_oaff7Ior4Wl_QewEfEk-xA--SGsuX4T7l9TGdyEO1U8P38EF5UhPYZTdkYsmFkQaGWm785nw2I27ywbvCPYD0c3gsmBbE7b9QvSXWW0acsGim5E5nDsqlkfFDfMgnX9r7AFx6ovzCE2H6Io9mM43t872p2mMf1CanEVM6SqcLmqDTcNb9R2YdtatWjExmzX0hYKcaL1CKUWuSuUy3jNnTASlxzOuMJZ8QTW8e3uGbC2VK5AsGFUa6WTbY0tTCkytJ3iVrkE-Gh1baM2OaXI-K5HEto37V2lyVU6uCqBd8tG8yDNcXN1NbpTr_QwjcHj5oZbo_N1HODnmpOoUElJkhN4syzGoUnnLaZ36D2sg1EIEasoE3ga-sryQ0Uu8p0doRIoVnrRsgLJfq-W9N2Zl_8uM-zxWf78f__nNdydHlUH-uDj4ecXcI9KAoNzC9aHxU_3ElHWUL_yo-g30mwn6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+heterogenous+anisotropic+tissue+mechanical+properties+with+transverse+isotropic+nonlinear+inversion+MR+elastography&rft.jtitle=Medical+image+analysis&rft.au=McGarry%2C+Matthew&rft.au=Van+Houten%2C+Elijah&rft.au=Sowinski%2C+Damian&rft.au=Jyoti%2C+Dhrubo&rft.date=2022-05-01&rft.eissn=1361-8423&rft.volume=78&rft.spage=102432&rft_id=info:doi/10.1016%2Fj.media.2022.102432&rft_id=info%3Apmid%2F35358836&rft.externalDocID=35358836 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |