A pH-stable positively charged composite nanofiltration membrane with excellent rejection performance

A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) a...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 9; no. 64; pp. 37546 - 37555
Main Authors Jiang, Zhibin, Miao, Jing, He, Yuantao, Hong, Xinjun, Tu, Kai, Wang, Xi, Chen, Shunquan, Yang, Hao, Zhang, Ling, Zhang, Rui
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 18.11.2019
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) as the monomers of the aqueous phase, and cyanuric chloride (CC) as the monomer of the organic phase. The strong electron withdrawing and steric hindrance effects of the chloride group in the molecules of CC could protect the amido bond from the attack of hydrogen ions (H + ) or hydroxyl ions (OH − ) under acidic or alkaline conditions, thus the resultant polyamide composite membranes could be stable in acidic or alkali aqueous solution. A more compact PA active layer could be developed via mixing PIP into the PEI aqueous solution, where the PIP molecules could fill the pores of the polymer networks. There was no obvious change in the surface morphologies, the chemical structures, and the rejection performances after immersing the resultant polyamine composite NF membranes in the strong acidic solution (pH 1) and the strong alkaline solution (pH 13) for 30 days, respectively. The rejection performances of this kind of polyamine composite NF membranes could be adjusted through adjusting the mass ratio of PEI to PIP in the aqueous phase. A pH-stable positively charged composite nanofiltration (NF) membrane was developed via the interfacial polymerization (IP) between polyethyleneimine (PEI), piperazine (PIP), and cyanuric chloride (CC).
AbstractList A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) as the monomers of the aqueous phase, and cyanuric chloride (CC) as the monomer of the organic phase. The strong electron withdrawing and steric hindrance effects of the chloride group in the molecules of CC could protect the amido bond from the attack of hydrogen ions (H+) or hydroxyl ions (OH-) under acidic or alkaline conditions, thus the resultant polyamide composite membranes could be stable in acidic or alkali aqueous solution. A more compact PA active layer could be developed via mixing PIP into the PEI aqueous solution, where the PIP molecules could fill the pores of the polymer networks. There was no obvious change in the surface morphologies, the chemical structures, and the rejection performances after immersing the resultant polyamine composite NF membranes in the strong acidic solution (pH 1) and the strong alkaline solution (pH 13) for 30 days, respectively. The rejection performances of this kind of polyamine composite NF membranes could be adjusted through adjusting the mass ratio of PEI to PIP in the aqueous phase.A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) as the monomers of the aqueous phase, and cyanuric chloride (CC) as the monomer of the organic phase. The strong electron withdrawing and steric hindrance effects of the chloride group in the molecules of CC could protect the amido bond from the attack of hydrogen ions (H+) or hydroxyl ions (OH-) under acidic or alkaline conditions, thus the resultant polyamide composite membranes could be stable in acidic or alkali aqueous solution. A more compact PA active layer could be developed via mixing PIP into the PEI aqueous solution, where the PIP molecules could fill the pores of the polymer networks. There was no obvious change in the surface morphologies, the chemical structures, and the rejection performances after immersing the resultant polyamine composite NF membranes in the strong acidic solution (pH 1) and the strong alkaline solution (pH 13) for 30 days, respectively. The rejection performances of this kind of polyamine composite NF membranes could be adjusted through adjusting the mass ratio of PEI to PIP in the aqueous phase.
A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) as the monomers of the aqueous phase, and cyanuric chloride (CC) as the monomer of the organic phase. The strong electron withdrawing and steric hindrance effects of the chloride group in the molecules of CC could protect the amido bond from the attack of hydrogen ions (H + ) or hydroxyl ions (OH − ) under acidic or alkaline conditions, thus the resultant polyamide composite membranes could be stable in acidic or alkali aqueous solution. A more compact PA active layer could be developed via mixing PIP into the PEI aqueous solution, where the PIP molecules could fill the pores of the polymer networks. There was no obvious change in the surface morphologies, the chemical structures, and the rejection performances after immersing the resultant polyamine composite NF membranes in the strong acidic solution (pH 1) and the strong alkaline solution (pH 13) for 30 days, respectively. The rejection performances of this kind of polyamine composite NF membranes could be adjusted through adjusting the mass ratio of PEI to PIP in the aqueous phase. A pH-stable positively charged composite nanofiltration (NF) membrane was developed via the interfacial polymerization (IP) between polyethyleneimine (PEI), piperazine (PIP), and cyanuric chloride (CC).
A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) as the monomers of the aqueous phase, and cyanuric chloride (CC) as the monomer of the organic phase. The strong electron withdrawing and steric hindrance effects of the chloride group in the molecules of CC could protect the amido bond from the attack of hydrogen ions (H⁺) or hydroxyl ions (OH⁻) under acidic or alkaline conditions, thus the resultant polyamide composite membranes could be stable in acidic or alkali aqueous solution. A more compact PA active layer could be developed via mixing PIP into the PEI aqueous solution, where the PIP molecules could fill the pores of the polymer networks. There was no obvious change in the surface morphologies, the chemical structures, and the rejection performances after immersing the resultant polyamine composite NF membranes in the strong acidic solution (pH 1) and the strong alkaline solution (pH 13) for 30 days, respectively. The rejection performances of this kind of polyamine composite NF membranes could be adjusted through adjusting the mass ratio of PEI to PIP in the aqueous phase.
A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) as the monomers of the aqueous phase, and cyanuric chloride (CC) as the monomer of the organic phase. The strong electron withdrawing and steric hindrance effects of the chloride group in the molecules of CC could protect the amido bond from the attack of hydrogen ions (H+) or hydroxyl ions (OH−) under acidic or alkaline conditions, thus the resultant polyamide composite membranes could be stable in acidic or alkali aqueous solution. A more compact PA active layer could be developed via mixing PIP into the PEI aqueous solution, where the PIP molecules could fill the pores of the polymer networks. There was no obvious change in the surface morphologies, the chemical structures, and the rejection performances after immersing the resultant polyamine composite NF membranes in the strong acidic solution (pH 1) and the strong alkaline solution (pH 13) for 30 days, respectively. The rejection performances of this kind of polyamine composite NF membranes could be adjusted through adjusting the mass ratio of PEI to PIP in the aqueous phase.
A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) as the monomers of the aqueous phase, and cyanuric chloride (CC) as the monomer of the organic phase. The strong electron withdrawing and steric hindrance effects of the chloride group in the molecules of CC could protect the amido bond from the attack of hydrogen ions (H + ) or hydroxyl ions (OH − ) under acidic or alkaline conditions, thus the resultant polyamide composite membranes could be stable in acidic or alkali aqueous solution. A more compact PA active layer could be developed via mixing PIP into the PEI aqueous solution, where the PIP molecules could fill the pores of the polymer networks. There was no obvious change in the surface morphologies, the chemical structures, and the rejection performances after immersing the resultant polyamine composite NF membranes in the strong acidic solution (pH 1) and the strong alkaline solution (pH 13) for 30 days, respectively. The rejection performances of this kind of polyamine composite NF membranes could be adjusted through adjusting the mass ratio of PEI to PIP in the aqueous phase.
A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) as the monomers of the aqueous phase, and cyanuric chloride (CC) as the monomer of the organic phase. The strong electron withdrawing and steric hindrance effects of the chloride group in the molecules of CC could protect the amido bond from the attack of hydrogen ions (H ) or hydroxyl ions (OH ) under acidic or alkaline conditions, thus the resultant polyamide composite membranes could be stable in acidic or alkali aqueous solution. A more compact PA active layer could be developed mixing PIP into the PEI aqueous solution, where the PIP molecules could fill the pores of the polymer networks. There was no obvious change in the surface morphologies, the chemical structures, and the rejection performances after immersing the resultant polyamine composite NF membranes in the strong acidic solution (pH 1) and the strong alkaline solution (pH 13) for 30 days, respectively. The rejection performances of this kind of polyamine composite NF membranes could be adjusted through adjusting the mass ratio of PEI to PIP in the aqueous phase.
Author Tu, Kai
Hong, Xinjun
Chen, Shunquan
He, Yuantao
Yang, Hao
Zhang, Rui
Zhang, Ling
Jiang, Zhibin
Miao, Jing
Wang, Xi
AuthorAffiliation Guangzhou Institute of Advanced Technology
Chinese Academy of Sciences
School of Chemistry and Environment
South China Normal University
School of Resource and Environment
R & D Center
Wuhan Institute of Technology
Key Laboratory for Green Chemical Process of Ministry of Education
Sinochem Ningbo River Membrane Technology Corp. Ltd
Guangdong Key Laboratory of Membrane Materials and Membrane Separation
School of Environmental Ecology and Biological Engineering
University of Jinan
AuthorAffiliation_xml – name: School of Resource and Environment
– name: School of Chemistry and Environment
– name: Chinese Academy of Sciences
– name: Key Laboratory for Green Chemical Process of Ministry of Education
– name: Guangzhou Institute of Advanced Technology
– name: Wuhan Institute of Technology
– name: School of Environmental Ecology and Biological Engineering
– name: South China Normal University
– name: Sinochem Ningbo River Membrane Technology Corp. Ltd
– name: Guangdong Key Laboratory of Membrane Materials and Membrane Separation
– name: University of Jinan
– name: R & D Center
Author_xml – sequence: 1
  givenname: Zhibin
  surname: Jiang
  fullname: Jiang, Zhibin
– sequence: 2
  givenname: Jing
  surname: Miao
  fullname: Miao, Jing
– sequence: 3
  givenname: Yuantao
  surname: He
  fullname: He, Yuantao
– sequence: 4
  givenname: Xinjun
  surname: Hong
  fullname: Hong, Xinjun
– sequence: 5
  givenname: Kai
  surname: Tu
  fullname: Tu, Kai
– sequence: 6
  givenname: Xi
  surname: Wang
  fullname: Wang, Xi
– sequence: 7
  givenname: Shunquan
  surname: Chen
  fullname: Chen, Shunquan
– sequence: 8
  givenname: Hao
  surname: Yang
  fullname: Yang, Hao
– sequence: 9
  givenname: Ling
  surname: Zhang
  fullname: Zhang, Ling
– sequence: 10
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35542300$$D View this record in MEDLINE/PubMed
BookMark eNqFkt9rFDEQx4NUbK198V2J-CLCan5sspuXwnGoJxQE0eeQzc72cuwma5Kr9r83vatnLaJ5SELmM1_mm5nH6MgHDwg9peQNJVy9tSoaIgVr1w_QCSO1rBiR6ujO_RidpbQhZUlBmaSP0DEXomackBMECzyvqpRNNwKeQ3LZXcF4je3axEvosQ3T7hWwNz4MbszRZBc8nmDqovGAv7u8xvDDwjiCzzjCBuyOmCEOIU7GW3iCHg5mTHB2e56ir-_ffVmuqotPHz4uFxeVrdsmV7WywKFXshuauiOm6aC1EiwbDFUdyLL1gsLQ9NAWJ4pQQmtFVd9yK1oF_BSd73XnbTdBb0tB0Yx6jm4y8VoH4_SfEe_W-jJcaUUaIXhdBF7dCsTwbQsp68mlG2vFadgmzVQrlOCc0_-jUjJRq4bygr68h27CNvryE5pxKhtBqJSFen63-EPVv5pVgNd7wMaQUoThgFCib4ZBL9XnxW4YVgUm92Dr8q51xbgb_57ybJ8Skz1I_56vEn_xr7ie-4H_BFydzUw
CitedBy_id crossref_primary_10_1002_smll_202202651
crossref_primary_10_1016_j_progpolymsci_2021_101450
crossref_primary_10_1002_elsc_202000100
crossref_primary_10_1016_j_cej_2020_127976
crossref_primary_10_1016_j_memlet_2021_100002
crossref_primary_10_1039_D1NJ01915E
crossref_primary_10_1007_s11706_024_0706_8
crossref_primary_10_2139_ssrn_4002130
crossref_primary_10_1016_j_seppur_2024_130563
crossref_primary_10_1016_j_apsusc_2022_153914
crossref_primary_10_1038_s41545_022_00186_x
crossref_primary_10_1039_D5TA00749F
crossref_primary_10_1002_pol_20210342
crossref_primary_10_1016_j_seppur_2023_124108
crossref_primary_10_1016_j_cej_2021_129748
crossref_primary_10_1016_j_dwt_2024_100333
crossref_primary_10_1016_j_memsci_2021_119405
crossref_primary_10_1016_j_memsci_2020_118532
crossref_primary_10_1016_j_desal_2024_118395
crossref_primary_10_1021_acsanm_3c05867
crossref_primary_10_1016_j_polymdegradstab_2022_109941
crossref_primary_10_1016_j_memsci_2024_123502
crossref_primary_10_1016_j_seppur_2021_119725
crossref_primary_10_1016_j_memsci_2023_122286
crossref_primary_10_1016_j_seppur_2025_131613
crossref_primary_10_1016_j_seppur_2023_126011
crossref_primary_10_1016_j_memsci_2022_120381
crossref_primary_10_1016_j_memsci_2021_119551
crossref_primary_10_6023_A23080375
crossref_primary_10_1007_s42114_021_00253_w
crossref_primary_10_1016_j_memsci_2021_119833
Cites_doi 10.1016/j.memsci.2014.12.045
10.1021/j150579a011
10.1021/acsami.7b00829
10.1016/j.memsci.2014.08.055
10.1016/j.memsci.2015.05.041
10.1016/j.memsci.2013.03.029
10.1016/j.memsci.2006.01.034
10.1016/j.reactfunctpolym.2014.08.009
10.1016/j.memsci.2013.04.022
10.1039/C9RA00253G
10.1021/acssuschemeng.6b00336
10.1016/j.memsci.2012.12.011
10.1016/j.memsci.2015.02.021
10.1016/j.memsci.2016.05.056
10.1039/C4NR07554D
10.1016/j.memsci.2013.04.063
10.1016/j.desal.2014.07.012
10.1016/j.cej.2016.07.086
10.1016/j.memsci.2014.05.047
10.1016/j.memsci.2013.10.003
10.1016/j.memsci.2011.02.012
10.1016/0376-7388(96)00127-5
10.1016/j.memsci.2010.07.025
10.1016/j.memsci.2010.02.046
10.1016/j.memsci.2004.05.022
10.1016/j.memsci.2012.01.046
10.1016/j.apsusc.2016.01.099
10.1016/j.memsci.2011.07.018
10.1016/j.memsci.2016.07.038
10.1039/C4RA09090J
10.1016/j.seppur.2016.04.024
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2019
This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2019
– notice: This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
5PM
DOI 10.1039/c9ra06528h
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
Materials Research Database
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 37555
ExternalDocumentID PMC9075534
35542300
10_1039_C9RA06528H
c9ra06528h
Genre Journal Article
GroupedDBID 0-7
0R
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CKLOX
EBS
EE0
EF-
EJD
GROUPED_DOAJ
HZ
H~N
J3I
JG
O9-
OK1
R7C
R7E
R7G
RCNCU
ROYLF
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
0R~
53G
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
CITATION
H13
HZ~
M~E
PGMZT
RPM
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c487t-49ce3ed96bf74b0a7be8c6ec2fa19be619bd51ef7de8126901014919d83c589e3
ISSN 2046-2069
IngestDate Thu Aug 21 13:58:05 EDT 2025
Fri Jul 11 16:12:41 EDT 2025
Fri Jul 11 01:56:14 EDT 2025
Sun Jun 29 15:20:33 EDT 2025
Mon Jul 21 06:08:52 EDT 2025
Tue Jul 01 04:25:08 EDT 2025
Thu Apr 24 23:12:35 EDT 2025
Wed Nov 11 00:25:29 EST 2020
Sat Jan 08 04:36:49 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 64
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c487t-49ce3ed96bf74b0a7be8c6ec2fa19be619bd51ef7de8126901014919d83c589e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4436-2823
0000-0001-7289-2288
0000-0003-3325-1378
OpenAccessLink http://dx.doi.org/10.1039/c9ra06528h
PMID 35542300
PQID 2316750166
PQPubID 2047525
PageCount 1
ParticipantIDs crossref_primary_10_1039_C9RA06528H
rsc_primary_c9ra06528h
proquest_journals_2316750166
pubmed_primary_35542300
crossref_citationtrail_10_1039_C9RA06528H
proquest_miscellaneous_2985953331
proquest_miscellaneous_2662549713
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9075534
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-18
PublicationDateYYYYMMDD 2019-11-18
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-18
  day: 18
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2019
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Wu (C9RA06528H-(cit16)/*[position()=1]) 2015; 487
Heo (C9RA06528H-(cit29)/*[position()=1]) 2013; 443
Si (C9RA06528H-(cit22)/*[position()=1]) 2015; 7
Yang (C9RA06528H-(cit25)/*[position()=1]) 2016; 388
Feng (C9RA06528H-(cit27)/*[position()=1]) 2014; 451
Lee (C9RA06528H-(cit6)/*[position()=1]) 2015; 478
Song (C9RA06528H-(cit24)/*[position()=1]) 2016; 306
Zhao (C9RA06528H-(cit19)/*[position()=1]) 2015; 492
Jiang (C9RA06528H-(cit8)/*[position()=1]) 2019; 9
Bera (C9RA06528H-(cit11)/*[position()=1]) 2016; 519
Wu (C9RA06528H-(cit12)/*[position()=1]) 2014; 472
Mänttäri (C9RA06528H-(cit31)/*[position()=1]) 2006; 280
Dalwani (C9RA06528H-(cit2)/*[position()=1]) 2011; 372
Luo (C9RA06528H-(cit1)/*[position()=1]) 2013; 438
Bargeman (C9RA06528H-(cit32)/*[position()=1]) 2005; 247
Jiang (C9RA06528H-(cit23)/*[position()=1]) 2017; 9
Wu (C9RA06528H-(cit13)/*[position()=1]) 2015; 86
Fang (C9RA06528H-(cit10)/*[position()=1]) 2013; 430
Childress (C9RA06528H-(cit9)/*[position()=1]) 1996; 119
Sun (C9RA06528H-(cit14)/*[position()=1]) 2012; 401
Nightingale Jr (C9RA06528H-(cit30)/*[position()=1]) 1959; 63
Dalwani (C9RA06528H-(cit3)/*[position()=1]) 2011; 381
Li (C9RA06528H-(cit15)/*[position()=1]) 2016; 166
Fang (C9RA06528H-(cit21)/*[position()=1]) 2014; 468
Lee (C9RA06528H-(cit17)/*[position()=1]) 2015; 478
Wang (C9RA06528H-(cit7)/*[position()=1]) 2016; 4
Dalwani (C9RA06528H-(cit26)/*[position()=1]) 2010; 363
Wei (C9RA06528H-(cit18)/*[position()=1]) 2014; 350
Zhang (C9RA06528H-(cit4)/*[position()=1]) 2014; 4
Wu (C9RA06528H-(cit5)/*[position()=1]) 2016; 515
Vanherck (C9RA06528H-(cit20)/*[position()=1]) 2010; 353
Galama (C9RA06528H-(cit28)/*[position()=1]) 2013; 442
References_xml – volume: 478
  start-page: 75
  year: 2015
  ident: C9RA06528H-(cit6)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.12.045
– volume: 63
  start-page: 1381
  year: 1959
  ident: C9RA06528H-(cit30)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150579a011
– volume: 9
  start-page: 9195
  year: 2017
  ident: C9RA06528H-(cit23)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00829
– volume: 472
  start-page: 141
  year: 2014
  ident: C9RA06528H-(cit12)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.08.055
– volume: 492
  start-page: 412
  year: 2015
  ident: C9RA06528H-(cit19)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.05.041
– volume: 438
  start-page: 18
  year: 2013
  ident: C9RA06528H-(cit1)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.03.029
– volume: 280
  start-page: 311
  year: 2006
  ident: C9RA06528H-(cit31)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.01.034
– volume: 86
  start-page: 168
  year: 2015
  ident: C9RA06528H-(cit13)/*[position()=1]
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2014.08.009
– volume: 442
  start-page: 131
  year: 2013
  ident: C9RA06528H-(cit28)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.04.022
– volume: 9
  start-page: 10796
  year: 2019
  ident: C9RA06528H-(cit8)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C9RA00253G
– volume: 4
  start-page: 2830
  year: 2016
  ident: C9RA06528H-(cit7)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b00336
– volume: 430
  start-page: 129
  year: 2013
  ident: C9RA06528H-(cit10)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.12.011
– volume: 487
  start-page: 256
  year: 2015
  ident: C9RA06528H-(cit16)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.02.021
– volume: 515
  start-page: 238
  year: 2016
  ident: C9RA06528H-(cit5)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.05.056
– volume: 7
  start-page: 5922
  year: 2015
  ident: C9RA06528H-(cit22)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR07554D
– volume: 443
  start-page: 69
  year: 2013
  ident: C9RA06528H-(cit29)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.04.063
– volume: 350
  start-page: 44
  year: 2014
  ident: C9RA06528H-(cit18)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.07.012
– volume: 306
  start-page: 504
  year: 2016
  ident: C9RA06528H-(cit24)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.07.086
– volume: 468
  start-page: 52
  year: 2014
  ident: C9RA06528H-(cit21)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.05.047
– volume: 451
  start-page: 103
  year: 2014
  ident: C9RA06528H-(cit27)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.10.003
– volume: 372
  start-page: 228
  year: 2011
  ident: C9RA06528H-(cit2)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.02.012
– volume: 119
  start-page: 253
  year: 1996
  ident: C9RA06528H-(cit9)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(96)00127-5
– volume: 363
  start-page: 188
  year: 2010
  ident: C9RA06528H-(cit26)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.07.025
– volume: 353
  start-page: 135
  year: 2010
  ident: C9RA06528H-(cit20)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.02.046
– volume: 247
  start-page: 11
  year: 2005
  ident: C9RA06528H-(cit32)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2004.05.022
– volume: 401
  start-page: 152
  year: 2012
  ident: C9RA06528H-(cit14)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.01.046
– volume: 478
  start-page: 75
  year: 2015
  ident: C9RA06528H-(cit17)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.12.045
– volume: 388
  start-page: 268
  year: 2016
  ident: C9RA06528H-(cit25)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.01.099
– volume: 381
  start-page: 81
  year: 2011
  ident: C9RA06528H-(cit3)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.07.018
– volume: 519
  start-page: 64
  year: 2016
  ident: C9RA06528H-(cit11)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.07.038
– volume: 4
  start-page: 57522
  year: 2014
  ident: C9RA06528H-(cit4)/*[position()=1]
  publication-title: Rsc Advances
  doi: 10.1039/C4RA09090J
– volume: 166
  start-page: 240
  year: 2016
  ident: C9RA06528H-(cit15)/*[position()=1]
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.04.024
SSID ssj0000651261
Score 2.435799
Snippet A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial...
A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed interfacial...
A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 37546
SubjectTerms Aqueous solutions
asymmetric membranes
Chemical attack
chemical structure
Chemistry
Chlorides
cyanuric chloride
Hydrogen ions
Hydroxyl ions
Membranes
mixing
Monomers
Morphology
Nanofiltration
Organic chemistry
piperazine
Polyamide resins
polyamides
Polyamines
Polyethyleneimine
polymerization
Polysulfone resins
protons
Rejection
Steric hindrance
Ultrafiltration
Title A pH-stable positively charged composite nanofiltration membrane with excellent rejection performance
URI https://www.ncbi.nlm.nih.gov/pubmed/35542300
https://www.proquest.com/docview/2316750166
https://www.proquest.com/docview/2662549713
https://www.proquest.com/docview/2985953331
https://pubmed.ncbi.nlm.nih.gov/PMC9075534
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYkGAviK9BxkBG8IKqsDpO7PixqkAVEjyMTap4ifJxUTOtaVVSBPz1nJ3YSbWCgJeosq9N5N8v9t31Pgh5XaqcFYUEbZtIP5Rp6ceRDHzGIQddok7lJkD2k5hdhh_m0bxvl2qyS5rsbf5zb17J_6CKY4irzpL9B2Tdj-IAfkZ88YoI4_WvMJ6M1jMf1Tud_dRGX32D6x8jU_0ITLqaGYVRnda6NXdXIne0hCUayaheGi8sfDfe-7oZbeAK2tbh6z6fYKi-nn-e2qiBPvSw6lzOXxZVVjmufazS9k8dezYah6vZ8beIZrpyg11Q8Lyqr7b10AvBlE7H6zZOMLtVgIY2gtP2XbFbqxowSISDfVI33hV7d_Ax1wVQc7VJUTkK4sVQCFd_vTRYai0Jjadxf4q52EI7dUBuB2g6BAMzuz2dUcURzFaq5eqsv9cRuWO_vaum3LA9bobQHmxsxxijmVzcJ_c6k4JOWn48ILegfkjuTm0nv0cEJtTxhPY8oR1PqOMJ3eUJtTyhmifU8YQ6ntABTx6Ty_fvLqYzv2uv4edopTZ-qHLgUCiRlTLMxqnMIM4F5EGZMpUBWtZZETEoZQGoBerGZdqcZqqIeR7FCvgxOaxXNTwllKUiFiUETGRFWDBIlYzkGGSJyqPKIuGRN3Y1k7yrPa9boFwnJgaCq2SqzicGhJlHXjnZdVtxZa_UqQUl6d7Ir0mgyzpEaMTgDV-6aVxsvTy4WqstygihfSKS8T_IKF31j3POPPKkxdk9iiWIR-QOA5yArte-O1NXC1O3XaF6HvHQI8fIFSff088jJ_snknVRnvz2SZ6Ro_6NPCWHzWYLz1FTbrIXhvq_AG1JwpI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pH-stable+positively+charged+composite+nanofiltration+membrane+with+excellent+rejection+performance&rft.jtitle=RSC+advances&rft.au=Jiang%2C+Zhibin&rft.au=Miao%2C+Jing&rft.au=He%2C+Yuantao&rft.au=Hong%2C+Xinjun&rft.date=2019-11-18&rft.eissn=2046-2069&rft.volume=9&rft.issue=64&rft.spage=37546&rft_id=info:doi/10.1039%2Fc9ra06528h&rft_id=info%3Apmid%2F35542300&rft.externalDocID=35542300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon