A pH-stable positively charged composite nanofiltration membrane with excellent rejection performance
A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) a...
Saved in:
Published in | RSC advances Vol. 9; no. 64; pp. 37546 - 37555 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
18.11.2019
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed
via
interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) as the monomers of the aqueous phase, and cyanuric chloride (CC) as the monomer of the organic phase. The strong electron withdrawing and steric hindrance effects of the chloride group in the molecules of CC could protect the amido bond from the attack of hydrogen ions (H
+
) or hydroxyl ions (OH
−
) under acidic or alkaline conditions, thus the resultant polyamide composite membranes could be stable in acidic or alkali aqueous solution. A more compact PA active layer could be developed
via
mixing PIP into the PEI aqueous solution, where the PIP molecules could fill the pores of the polymer networks. There was no obvious change in the surface morphologies, the chemical structures, and the rejection performances after immersing the resultant polyamine composite NF membranes in the strong acidic solution (pH 1) and the strong alkaline solution (pH 13) for 30 days, respectively. The rejection performances of this kind of polyamine composite NF membranes could be adjusted through adjusting the mass ratio of PEI to PIP in the aqueous phase.
A pH-stable positively charged composite nanofiltration (NF) membrane was developed
via
the interfacial polymerization (IP) between polyethyleneimine (PEI), piperazine (PIP), and cyanuric chloride (CC). |
---|---|
AbstractList | A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) as the monomers of the aqueous phase, and cyanuric chloride (CC) as the monomer of the organic phase. The strong electron withdrawing and steric hindrance effects of the chloride group in the molecules of CC could protect the amido bond from the attack of hydrogen ions (H+) or hydroxyl ions (OH-) under acidic or alkaline conditions, thus the resultant polyamide composite membranes could be stable in acidic or alkali aqueous solution. A more compact PA active layer could be developed via mixing PIP into the PEI aqueous solution, where the PIP molecules could fill the pores of the polymer networks. There was no obvious change in the surface morphologies, the chemical structures, and the rejection performances after immersing the resultant polyamine composite NF membranes in the strong acidic solution (pH 1) and the strong alkaline solution (pH 13) for 30 days, respectively. The rejection performances of this kind of polyamine composite NF membranes could be adjusted through adjusting the mass ratio of PEI to PIP in the aqueous phase.A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) as the monomers of the aqueous phase, and cyanuric chloride (CC) as the monomer of the organic phase. The strong electron withdrawing and steric hindrance effects of the chloride group in the molecules of CC could protect the amido bond from the attack of hydrogen ions (H+) or hydroxyl ions (OH-) under acidic or alkaline conditions, thus the resultant polyamide composite membranes could be stable in acidic or alkali aqueous solution. A more compact PA active layer could be developed via mixing PIP into the PEI aqueous solution, where the PIP molecules could fill the pores of the polymer networks. There was no obvious change in the surface morphologies, the chemical structures, and the rejection performances after immersing the resultant polyamine composite NF membranes in the strong acidic solution (pH 1) and the strong alkaline solution (pH 13) for 30 days, respectively. The rejection performances of this kind of polyamine composite NF membranes could be adjusted through adjusting the mass ratio of PEI to PIP in the aqueous phase. A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) as the monomers of the aqueous phase, and cyanuric chloride (CC) as the monomer of the organic phase. The strong electron withdrawing and steric hindrance effects of the chloride group in the molecules of CC could protect the amido bond from the attack of hydrogen ions (H + ) or hydroxyl ions (OH − ) under acidic or alkaline conditions, thus the resultant polyamide composite membranes could be stable in acidic or alkali aqueous solution. A more compact PA active layer could be developed via mixing PIP into the PEI aqueous solution, where the PIP molecules could fill the pores of the polymer networks. There was no obvious change in the surface morphologies, the chemical structures, and the rejection performances after immersing the resultant polyamine composite NF membranes in the strong acidic solution (pH 1) and the strong alkaline solution (pH 13) for 30 days, respectively. The rejection performances of this kind of polyamine composite NF membranes could be adjusted through adjusting the mass ratio of PEI to PIP in the aqueous phase. A pH-stable positively charged composite nanofiltration (NF) membrane was developed via the interfacial polymerization (IP) between polyethyleneimine (PEI), piperazine (PIP), and cyanuric chloride (CC). A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) as the monomers of the aqueous phase, and cyanuric chloride (CC) as the monomer of the organic phase. The strong electron withdrawing and steric hindrance effects of the chloride group in the molecules of CC could protect the amido bond from the attack of hydrogen ions (H⁺) or hydroxyl ions (OH⁻) under acidic or alkaline conditions, thus the resultant polyamide composite membranes could be stable in acidic or alkali aqueous solution. A more compact PA active layer could be developed via mixing PIP into the PEI aqueous solution, where the PIP molecules could fill the pores of the polymer networks. There was no obvious change in the surface morphologies, the chemical structures, and the rejection performances after immersing the resultant polyamine composite NF membranes in the strong acidic solution (pH 1) and the strong alkaline solution (pH 13) for 30 days, respectively. The rejection performances of this kind of polyamine composite NF membranes could be adjusted through adjusting the mass ratio of PEI to PIP in the aqueous phase. A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) as the monomers of the aqueous phase, and cyanuric chloride (CC) as the monomer of the organic phase. The strong electron withdrawing and steric hindrance effects of the chloride group in the molecules of CC could protect the amido bond from the attack of hydrogen ions (H+) or hydroxyl ions (OH−) under acidic or alkaline conditions, thus the resultant polyamide composite membranes could be stable in acidic or alkali aqueous solution. A more compact PA active layer could be developed via mixing PIP into the PEI aqueous solution, where the PIP molecules could fill the pores of the polymer networks. There was no obvious change in the surface morphologies, the chemical structures, and the rejection performances after immersing the resultant polyamine composite NF membranes in the strong acidic solution (pH 1) and the strong alkaline solution (pH 13) for 30 days, respectively. The rejection performances of this kind of polyamine composite NF membranes could be adjusted through adjusting the mass ratio of PEI to PIP in the aqueous phase. A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) as the monomers of the aqueous phase, and cyanuric chloride (CC) as the monomer of the organic phase. The strong electron withdrawing and steric hindrance effects of the chloride group in the molecules of CC could protect the amido bond from the attack of hydrogen ions (H + ) or hydroxyl ions (OH − ) under acidic or alkaline conditions, thus the resultant polyamide composite membranes could be stable in acidic or alkali aqueous solution. A more compact PA active layer could be developed via mixing PIP into the PEI aqueous solution, where the PIP molecules could fill the pores of the polymer networks. There was no obvious change in the surface morphologies, the chemical structures, and the rejection performances after immersing the resultant polyamine composite NF membranes in the strong acidic solution (pH 1) and the strong alkaline solution (pH 13) for 30 days, respectively. The rejection performances of this kind of polyamine composite NF membranes could be adjusted through adjusting the mass ratio of PEI to PIP in the aqueous phase. A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) as the monomers of the aqueous phase, and cyanuric chloride (CC) as the monomer of the organic phase. The strong electron withdrawing and steric hindrance effects of the chloride group in the molecules of CC could protect the amido bond from the attack of hydrogen ions (H ) or hydroxyl ions (OH ) under acidic or alkaline conditions, thus the resultant polyamide composite membranes could be stable in acidic or alkali aqueous solution. A more compact PA active layer could be developed mixing PIP into the PEI aqueous solution, where the PIP molecules could fill the pores of the polymer networks. There was no obvious change in the surface morphologies, the chemical structures, and the rejection performances after immersing the resultant polyamine composite NF membranes in the strong acidic solution (pH 1) and the strong alkaline solution (pH 13) for 30 days, respectively. The rejection performances of this kind of polyamine composite NF membranes could be adjusted through adjusting the mass ratio of PEI to PIP in the aqueous phase. |
Author | Tu, Kai Hong, Xinjun Chen, Shunquan He, Yuantao Yang, Hao Zhang, Rui Zhang, Ling Jiang, Zhibin Miao, Jing Wang, Xi |
AuthorAffiliation | Guangzhou Institute of Advanced Technology Chinese Academy of Sciences School of Chemistry and Environment South China Normal University School of Resource and Environment R & D Center Wuhan Institute of Technology Key Laboratory for Green Chemical Process of Ministry of Education Sinochem Ningbo River Membrane Technology Corp. Ltd Guangdong Key Laboratory of Membrane Materials and Membrane Separation School of Environmental Ecology and Biological Engineering University of Jinan |
AuthorAffiliation_xml | – name: School of Resource and Environment – name: School of Chemistry and Environment – name: Chinese Academy of Sciences – name: Key Laboratory for Green Chemical Process of Ministry of Education – name: Guangzhou Institute of Advanced Technology – name: Wuhan Institute of Technology – name: School of Environmental Ecology and Biological Engineering – name: South China Normal University – name: Sinochem Ningbo River Membrane Technology Corp. Ltd – name: Guangdong Key Laboratory of Membrane Materials and Membrane Separation – name: University of Jinan – name: R & D Center |
Author_xml | – sequence: 1 givenname: Zhibin surname: Jiang fullname: Jiang, Zhibin – sequence: 2 givenname: Jing surname: Miao fullname: Miao, Jing – sequence: 3 givenname: Yuantao surname: He fullname: He, Yuantao – sequence: 4 givenname: Xinjun surname: Hong fullname: Hong, Xinjun – sequence: 5 givenname: Kai surname: Tu fullname: Tu, Kai – sequence: 6 givenname: Xi surname: Wang fullname: Wang, Xi – sequence: 7 givenname: Shunquan surname: Chen fullname: Chen, Shunquan – sequence: 8 givenname: Hao surname: Yang fullname: Yang, Hao – sequence: 9 givenname: Ling surname: Zhang fullname: Zhang, Ling – sequence: 10 givenname: Rui surname: Zhang fullname: Zhang, Rui |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35542300$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt9rFDEQx4NUbK198V2J-CLCan5sspuXwnGoJxQE0eeQzc72cuwma5Kr9r83vatnLaJ5SELmM1_mm5nH6MgHDwg9peQNJVy9tSoaIgVr1w_QCSO1rBiR6ujO_RidpbQhZUlBmaSP0DEXomackBMECzyvqpRNNwKeQ3LZXcF4je3axEvosQ3T7hWwNz4MbszRZBc8nmDqovGAv7u8xvDDwjiCzzjCBuyOmCEOIU7GW3iCHg5mTHB2e56ir-_ffVmuqotPHz4uFxeVrdsmV7WywKFXshuauiOm6aC1EiwbDFUdyLL1gsLQ9NAWJ4pQQmtFVd9yK1oF_BSd73XnbTdBb0tB0Yx6jm4y8VoH4_SfEe_W-jJcaUUaIXhdBF7dCsTwbQsp68mlG2vFadgmzVQrlOCc0_-jUjJRq4bygr68h27CNvryE5pxKhtBqJSFen63-EPVv5pVgNd7wMaQUoThgFCib4ZBL9XnxW4YVgUm92Dr8q51xbgb_57ybJ8Skz1I_56vEn_xr7ie-4H_BFydzUw |
CitedBy_id | crossref_primary_10_1002_smll_202202651 crossref_primary_10_1016_j_progpolymsci_2021_101450 crossref_primary_10_1002_elsc_202000100 crossref_primary_10_1016_j_cej_2020_127976 crossref_primary_10_1016_j_memlet_2021_100002 crossref_primary_10_1039_D1NJ01915E crossref_primary_10_1007_s11706_024_0706_8 crossref_primary_10_2139_ssrn_4002130 crossref_primary_10_1016_j_seppur_2024_130563 crossref_primary_10_1016_j_apsusc_2022_153914 crossref_primary_10_1038_s41545_022_00186_x crossref_primary_10_1039_D5TA00749F crossref_primary_10_1002_pol_20210342 crossref_primary_10_1016_j_seppur_2023_124108 crossref_primary_10_1016_j_cej_2021_129748 crossref_primary_10_1016_j_dwt_2024_100333 crossref_primary_10_1016_j_memsci_2021_119405 crossref_primary_10_1016_j_memsci_2020_118532 crossref_primary_10_1016_j_desal_2024_118395 crossref_primary_10_1021_acsanm_3c05867 crossref_primary_10_1016_j_polymdegradstab_2022_109941 crossref_primary_10_1016_j_memsci_2024_123502 crossref_primary_10_1016_j_seppur_2021_119725 crossref_primary_10_1016_j_memsci_2023_122286 crossref_primary_10_1016_j_seppur_2025_131613 crossref_primary_10_1016_j_seppur_2023_126011 crossref_primary_10_1016_j_memsci_2022_120381 crossref_primary_10_1016_j_memsci_2021_119551 crossref_primary_10_6023_A23080375 crossref_primary_10_1007_s42114_021_00253_w crossref_primary_10_1016_j_memsci_2021_119833 |
Cites_doi | 10.1016/j.memsci.2014.12.045 10.1021/j150579a011 10.1021/acsami.7b00829 10.1016/j.memsci.2014.08.055 10.1016/j.memsci.2015.05.041 10.1016/j.memsci.2013.03.029 10.1016/j.memsci.2006.01.034 10.1016/j.reactfunctpolym.2014.08.009 10.1016/j.memsci.2013.04.022 10.1039/C9RA00253G 10.1021/acssuschemeng.6b00336 10.1016/j.memsci.2012.12.011 10.1016/j.memsci.2015.02.021 10.1016/j.memsci.2016.05.056 10.1039/C4NR07554D 10.1016/j.memsci.2013.04.063 10.1016/j.desal.2014.07.012 10.1016/j.cej.2016.07.086 10.1016/j.memsci.2014.05.047 10.1016/j.memsci.2013.10.003 10.1016/j.memsci.2011.02.012 10.1016/0376-7388(96)00127-5 10.1016/j.memsci.2010.07.025 10.1016/j.memsci.2010.02.046 10.1016/j.memsci.2004.05.022 10.1016/j.memsci.2012.01.046 10.1016/j.apsusc.2016.01.099 10.1016/j.memsci.2011.07.018 10.1016/j.memsci.2016.07.038 10.1039/C4RA09090J 10.1016/j.seppur.2016.04.024 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2019 This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2019 – notice: This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 5PM |
DOI | 10.1039/c9ra06528h |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 37555 |
ExternalDocumentID | PMC9075534 35542300 10_1039_C9RA06528H c9ra06528h |
Genre | Journal Article |
GroupedDBID | 0-7 0R AAGNR AAIWI ABGFH ACGFS ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BCNDV BLAPV BSQNT C6K CKLOX EBS EE0 EF- EJD GROUPED_DOAJ HZ H~N J3I JG O9- OK1 R7C R7E R7G RCNCU ROYLF RPMJG RRC RSCEA RVUXY SLH SMJ ZCN 0R~ 53G AAFWJ AAHBH AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP CITATION H13 HZ~ M~E PGMZT RPM NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c487t-49ce3ed96bf74b0a7be8c6ec2fa19be619bd51ef7de8126901014919d83c589e3 |
ISSN | 2046-2069 |
IngestDate | Thu Aug 21 13:58:05 EDT 2025 Fri Jul 11 16:12:41 EDT 2025 Fri Jul 11 01:56:14 EDT 2025 Sun Jun 29 15:20:33 EDT 2025 Mon Jul 21 06:08:52 EDT 2025 Tue Jul 01 04:25:08 EDT 2025 Thu Apr 24 23:12:35 EDT 2025 Wed Nov 11 00:25:29 EST 2020 Sat Jan 08 04:36:49 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 64 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c487t-49ce3ed96bf74b0a7be8c6ec2fa19be619bd51ef7de8126901014919d83c589e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4436-2823 0000-0001-7289-2288 0000-0003-3325-1378 |
OpenAccessLink | http://dx.doi.org/10.1039/c9ra06528h |
PMID | 35542300 |
PQID | 2316750166 |
PQPubID | 2047525 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1039_C9RA06528H rsc_primary_c9ra06528h proquest_journals_2316750166 pubmed_primary_35542300 crossref_citationtrail_10_1039_C9RA06528H proquest_miscellaneous_2985953331 proquest_miscellaneous_2662549713 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9075534 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-18 |
PublicationDateYYYYMMDD | 2019-11-18 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Wu (C9RA06528H-(cit16)/*[position()=1]) 2015; 487 Heo (C9RA06528H-(cit29)/*[position()=1]) 2013; 443 Si (C9RA06528H-(cit22)/*[position()=1]) 2015; 7 Yang (C9RA06528H-(cit25)/*[position()=1]) 2016; 388 Feng (C9RA06528H-(cit27)/*[position()=1]) 2014; 451 Lee (C9RA06528H-(cit6)/*[position()=1]) 2015; 478 Song (C9RA06528H-(cit24)/*[position()=1]) 2016; 306 Zhao (C9RA06528H-(cit19)/*[position()=1]) 2015; 492 Jiang (C9RA06528H-(cit8)/*[position()=1]) 2019; 9 Bera (C9RA06528H-(cit11)/*[position()=1]) 2016; 519 Wu (C9RA06528H-(cit12)/*[position()=1]) 2014; 472 Mänttäri (C9RA06528H-(cit31)/*[position()=1]) 2006; 280 Dalwani (C9RA06528H-(cit2)/*[position()=1]) 2011; 372 Luo (C9RA06528H-(cit1)/*[position()=1]) 2013; 438 Bargeman (C9RA06528H-(cit32)/*[position()=1]) 2005; 247 Jiang (C9RA06528H-(cit23)/*[position()=1]) 2017; 9 Wu (C9RA06528H-(cit13)/*[position()=1]) 2015; 86 Fang (C9RA06528H-(cit10)/*[position()=1]) 2013; 430 Childress (C9RA06528H-(cit9)/*[position()=1]) 1996; 119 Sun (C9RA06528H-(cit14)/*[position()=1]) 2012; 401 Nightingale Jr (C9RA06528H-(cit30)/*[position()=1]) 1959; 63 Dalwani (C9RA06528H-(cit3)/*[position()=1]) 2011; 381 Li (C9RA06528H-(cit15)/*[position()=1]) 2016; 166 Fang (C9RA06528H-(cit21)/*[position()=1]) 2014; 468 Lee (C9RA06528H-(cit17)/*[position()=1]) 2015; 478 Wang (C9RA06528H-(cit7)/*[position()=1]) 2016; 4 Dalwani (C9RA06528H-(cit26)/*[position()=1]) 2010; 363 Wei (C9RA06528H-(cit18)/*[position()=1]) 2014; 350 Zhang (C9RA06528H-(cit4)/*[position()=1]) 2014; 4 Wu (C9RA06528H-(cit5)/*[position()=1]) 2016; 515 Vanherck (C9RA06528H-(cit20)/*[position()=1]) 2010; 353 Galama (C9RA06528H-(cit28)/*[position()=1]) 2013; 442 |
References_xml | – volume: 478 start-page: 75 year: 2015 ident: C9RA06528H-(cit6)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.12.045 – volume: 63 start-page: 1381 year: 1959 ident: C9RA06528H-(cit30)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j150579a011 – volume: 9 start-page: 9195 year: 2017 ident: C9RA06528H-(cit23)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00829 – volume: 472 start-page: 141 year: 2014 ident: C9RA06528H-(cit12)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.08.055 – volume: 492 start-page: 412 year: 2015 ident: C9RA06528H-(cit19)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.05.041 – volume: 438 start-page: 18 year: 2013 ident: C9RA06528H-(cit1)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.03.029 – volume: 280 start-page: 311 year: 2006 ident: C9RA06528H-(cit31)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.01.034 – volume: 86 start-page: 168 year: 2015 ident: C9RA06528H-(cit13)/*[position()=1] publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2014.08.009 – volume: 442 start-page: 131 year: 2013 ident: C9RA06528H-(cit28)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.04.022 – volume: 9 start-page: 10796 year: 2019 ident: C9RA06528H-(cit8)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C9RA00253G – volume: 4 start-page: 2830 year: 2016 ident: C9RA06528H-(cit7)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b00336 – volume: 430 start-page: 129 year: 2013 ident: C9RA06528H-(cit10)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.12.011 – volume: 487 start-page: 256 year: 2015 ident: C9RA06528H-(cit16)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.02.021 – volume: 515 start-page: 238 year: 2016 ident: C9RA06528H-(cit5)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.05.056 – volume: 7 start-page: 5922 year: 2015 ident: C9RA06528H-(cit22)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR07554D – volume: 443 start-page: 69 year: 2013 ident: C9RA06528H-(cit29)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.04.063 – volume: 350 start-page: 44 year: 2014 ident: C9RA06528H-(cit18)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2014.07.012 – volume: 306 start-page: 504 year: 2016 ident: C9RA06528H-(cit24)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.07.086 – volume: 468 start-page: 52 year: 2014 ident: C9RA06528H-(cit21)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.05.047 – volume: 451 start-page: 103 year: 2014 ident: C9RA06528H-(cit27)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.10.003 – volume: 372 start-page: 228 year: 2011 ident: C9RA06528H-(cit2)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.02.012 – volume: 119 start-page: 253 year: 1996 ident: C9RA06528H-(cit9)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(96)00127-5 – volume: 363 start-page: 188 year: 2010 ident: C9RA06528H-(cit26)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.07.025 – volume: 353 start-page: 135 year: 2010 ident: C9RA06528H-(cit20)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.02.046 – volume: 247 start-page: 11 year: 2005 ident: C9RA06528H-(cit32)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2004.05.022 – volume: 401 start-page: 152 year: 2012 ident: C9RA06528H-(cit14)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.01.046 – volume: 478 start-page: 75 year: 2015 ident: C9RA06528H-(cit17)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.12.045 – volume: 388 start-page: 268 year: 2016 ident: C9RA06528H-(cit25)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.01.099 – volume: 381 start-page: 81 year: 2011 ident: C9RA06528H-(cit3)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.07.018 – volume: 519 start-page: 64 year: 2016 ident: C9RA06528H-(cit11)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.07.038 – volume: 4 start-page: 57522 year: 2014 ident: C9RA06528H-(cit4)/*[position()=1] publication-title: Rsc Advances doi: 10.1039/C4RA09090J – volume: 166 start-page: 240 year: 2016 ident: C9RA06528H-(cit15)/*[position()=1] publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.04.024 |
SSID | ssj0000651261 |
Score | 2.435799 |
Snippet | A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed
via
interfacial... A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed interfacial... A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 37546 |
SubjectTerms | Aqueous solutions asymmetric membranes Chemical attack chemical structure Chemistry Chlorides cyanuric chloride Hydrogen ions Hydroxyl ions Membranes mixing Monomers Morphology Nanofiltration Organic chemistry piperazine Polyamide resins polyamides Polyamines Polyethyleneimine polymerization Polysulfone resins protons Rejection Steric hindrance Ultrafiltration |
Title | A pH-stable positively charged composite nanofiltration membrane with excellent rejection performance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35542300 https://www.proquest.com/docview/2316750166 https://www.proquest.com/docview/2662549713 https://www.proquest.com/docview/2985953331 https://pubmed.ncbi.nlm.nih.gov/PMC9075534 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYkGAviK9BxkBG8IKqsDpO7PixqkAVEjyMTap4ifJxUTOtaVVSBPz1nJ3YSbWCgJeosq9N5N8v9t31Pgh5XaqcFYUEbZtIP5Rp6ceRDHzGIQddok7lJkD2k5hdhh_m0bxvl2qyS5rsbf5zb17J_6CKY4irzpL9B2Tdj-IAfkZ88YoI4_WvMJ6M1jMf1Tud_dRGX32D6x8jU_0ITLqaGYVRnda6NXdXIne0hCUayaheGi8sfDfe-7oZbeAK2tbh6z6fYKi-nn-e2qiBPvSw6lzOXxZVVjmufazS9k8dezYah6vZ8beIZrpyg11Q8Lyqr7b10AvBlE7H6zZOMLtVgIY2gtP2XbFbqxowSISDfVI33hV7d_Ax1wVQc7VJUTkK4sVQCFd_vTRYai0Jjadxf4q52EI7dUBuB2g6BAMzuz2dUcURzFaq5eqsv9cRuWO_vaum3LA9bobQHmxsxxijmVzcJ_c6k4JOWn48ILegfkjuTm0nv0cEJtTxhPY8oR1PqOMJ3eUJtTyhmifU8YQ6ntABTx6Ty_fvLqYzv2uv4edopTZ-qHLgUCiRlTLMxqnMIM4F5EGZMpUBWtZZETEoZQGoBerGZdqcZqqIeR7FCvgxOaxXNTwllKUiFiUETGRFWDBIlYzkGGSJyqPKIuGRN3Y1k7yrPa9boFwnJgaCq2SqzicGhJlHXjnZdVtxZa_UqQUl6d7Ir0mgyzpEaMTgDV-6aVxsvTy4WqstygihfSKS8T_IKF31j3POPPKkxdk9iiWIR-QOA5yArte-O1NXC1O3XaF6HvHQI8fIFSff088jJ_snknVRnvz2SZ6Ro_6NPCWHzWYLz1FTbrIXhvq_AG1JwpI |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pH-stable+positively+charged+composite+nanofiltration+membrane+with+excellent+rejection+performance&rft.jtitle=RSC+advances&rft.au=Jiang%2C+Zhibin&rft.au=Miao%2C+Jing&rft.au=He%2C+Yuantao&rft.au=Hong%2C+Xinjun&rft.date=2019-11-18&rft.eissn=2046-2069&rft.volume=9&rft.issue=64&rft.spage=37546&rft_id=info:doi/10.1039%2Fc9ra06528h&rft_id=info%3Apmid%2F35542300&rft.externalDocID=35542300 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |