Avian Influenza A Virus Pandemic Preparedness and Vaccine Development

Influenza A viruses can infect a wide range of hosts, creating opportunities for zoonotic transmission, i.e., transmission from animals to humans, and placing the human population at constant risk of potential pandemics. In the last hundred years, four influenza A virus pandemics have had a devastat...

Full description

Saved in:
Bibliographic Details
Published inVaccines (Basel) Vol. 6; no. 3; p. 46
Main Authors De Vries, Rory D., Herfst, Sander, Richard, Mathilde
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.07.2018
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Influenza A viruses can infect a wide range of hosts, creating opportunities for zoonotic transmission, i.e., transmission from animals to humans, and placing the human population at constant risk of potential pandemics. In the last hundred years, four influenza A virus pandemics have had a devastating effect, especially the 1918 influenza pandemic that took the lives of at least 40 million people. There is a constant risk that currently circulating avian influenza A viruses (e.g., H5N1, H7N9) will cause a new pandemic. Vaccines are the cornerstone in preparing for and combating potential pandemics. Despite exceptional advances in the design and development of (pre-)pandemic vaccines, there are still serious challenges to overcome, mainly caused by intrinsic characteristics of influenza A viruses: Rapid evolution and a broad host range combined with maintenance in animal reservoirs, making it near impossible to predict the nature and source of the next pandemic virus. Here, recent advances in the development of vaccination strategies to prepare against a pandemic virus coming from the avian reservoir will be discussed. Furthermore, remaining challenges will be addressed, setting the agenda for future research in the development of new vaccination strategies against potentially pandemic influenza A viruses.
AbstractList Influenza A viruses can infect a wide range of hosts, creating opportunities for zoonotic transmission, i.e., transmission from animals to humans, and placing the human population at constant risk of potential pandemics. In the last hundred years, four influenza A virus pandemics have had a devastating effect, especially the 1918 influenza pandemic that took the lives of at least 40 million people. There is a constant risk that currently circulating avian influenza A viruses (e.g., H5N1, H7N9) will cause a new pandemic. Vaccines are the cornerstone in preparing for and combating potential pandemics. Despite exceptional advances in the design and development of (pre-)pandemic vaccines, there are still serious challenges to overcome, mainly caused by intrinsic characteristics of influenza A viruses: Rapid evolution and a broad host range combined with maintenance in animal reservoirs, making it near impossible to predict the nature and source of the next pandemic virus. Here, recent advances in the development of vaccination strategies to prepare against a pandemic virus coming from the avian reservoir will be discussed. Furthermore, remaining challenges will be addressed, setting the agenda for future research in the development of new vaccination strategies against potentially pandemic influenza A viruses.Influenza A viruses can infect a wide range of hosts, creating opportunities for zoonotic transmission, i.e., transmission from animals to humans, and placing the human population at constant risk of potential pandemics. In the last hundred years, four influenza A virus pandemics have had a devastating effect, especially the 1918 influenza pandemic that took the lives of at least 40 million people. There is a constant risk that currently circulating avian influenza A viruses (e.g., H5N1, H7N9) will cause a new pandemic. Vaccines are the cornerstone in preparing for and combating potential pandemics. Despite exceptional advances in the design and development of (pre-)pandemic vaccines, there are still serious challenges to overcome, mainly caused by intrinsic characteristics of influenza A viruses: Rapid evolution and a broad host range combined with maintenance in animal reservoirs, making it near impossible to predict the nature and source of the next pandemic virus. Here, recent advances in the development of vaccination strategies to prepare against a pandemic virus coming from the avian reservoir will be discussed. Furthermore, remaining challenges will be addressed, setting the agenda for future research in the development of new vaccination strategies against potentially pandemic influenza A viruses.
Influenza A viruses can infect a wide range of hosts, creating opportunities for zoonotic transmission, i.e., transmission from animals to humans, and placing the human population at constant risk of potential pandemics. In the last hundred years, four influenza A virus pandemics have had a devastating effect, especially the 1918 influenza pandemic that took the lives of at least 40 million people. There is a constant risk that currently circulating avian influenza A viruses (e.g., H5N1, H7N9) will cause a new pandemic. Vaccines are the cornerstone in preparing for and combating potential pandemics. Despite exceptional advances in the design and development of (pre-)pandemic vaccines, there are still serious challenges to overcome, mainly caused by intrinsic characteristics of influenza A viruses: Rapid evolution and a broad host range combined with maintenance in animal reservoirs, making it near impossible to predict the nature and source of the next pandemic virus. Here, recent advances in the development of vaccination strategies to prepare against a pandemic virus coming from the avian reservoir will be discussed. Furthermore, remaining challenges will be addressed, setting the agenda for future research in the development of new vaccination strategies against potentially pandemic influenza A viruses.
Author Herfst, Sander
De Vries, Rory D.
Richard, Mathilde
AuthorAffiliation Department of Viroscience, Erasmus MC, P.O. Box 2040, 3000CA Rotterdam, The Netherlands; r.d.devries@erasmusmc.nl (R.D.d.V.); m.richard@erasmusmc.nl (M.R.)
AuthorAffiliation_xml – name: Department of Viroscience, Erasmus MC, P.O. Box 2040, 3000CA Rotterdam, The Netherlands; r.d.devries@erasmusmc.nl (R.D.d.V.); m.richard@erasmusmc.nl (M.R.)
Author_xml – sequence: 1
  givenname: Rory D.
  orcidid: 0000-0003-2817-0127
  surname: De Vries
  fullname: De Vries, Rory D.
– sequence: 2
  givenname: Sander
  orcidid: 0000-0001-9866-8903
  surname: Herfst
  fullname: Herfst, Sander
– sequence: 3
  givenname: Mathilde
  surname: Richard
  fullname: Richard, Mathilde
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30044370$$D View this record in MEDLINE/PubMed
BookMark eNp1ksFvFCEUxompsbX27M1M4sXLWmZgGLiYbNqqmzSxB228kQe8qWxmYIWZTfSvl3Vb024iF8jje7_3wXsvyVGIAQl5XdP3jCl6vgVrfcAsKKOUi2fkpKGdWDDFvh89Oh-Ts5zXtCxVMym6F-R4p-esoyfkarn1EKpV6IcZw2-oltWtT3OubiA4HL2tbhJuIKErhXJVgtXtvmx1iVsc4mbEML0iz3sYMp7d76fk28errxefF9dfPq0ultcLy2U3LXjjpFKCoxCtsT3W0vZAsbbCgmqpESAVdcIhk2hVzxUVpu9MLYCZrgXJTslqz3UR1nqT_Ajpl47g9d9ATHca0uTtgNqC5a43TjorOe8MoGxd2_TCoDBNowrrw561mc2IzpZnJBieQJ_eBP9D38WtFrWoKa0L4N09IMWfM-ZJjz5bHAYIGOesdw1oeMP4Tvr2QLqOcwrlq3RTN0xyxSUrqjePHf2z8tCtImj3Aptizgl7bf0Ek487g37QNdW7wdAHg1Hyzg_yHtD_y_gDOOK9Zw
CitedBy_id crossref_primary_10_1097_INF_0000000000003247
crossref_primary_10_3390_ani13071127
crossref_primary_10_1128_JVI_02154_20
crossref_primary_10_3390_v15010116
crossref_primary_10_1016_j_heliyon_2024_e40645
crossref_primary_10_3389_fimmu_2022_1063129
crossref_primary_10_3390_microorganisms8111745
crossref_primary_10_3390_vaccines9091032
crossref_primary_10_1016_j_psj_2024_103885
crossref_primary_10_1186_s12920_023_01693_7
crossref_primary_10_3390_molecules29091945
crossref_primary_10_3390_vaccines9070787
crossref_primary_10_1016_j_onehlt_2023_100644
crossref_primary_10_3390_vaccines11030593
crossref_primary_10_2478_jvetres_2021_0034
crossref_primary_10_3390_ani12091183
crossref_primary_10_3390_vaccines8040694
crossref_primary_10_1007_s40203_021_00095_w
crossref_primary_10_1038_s41598_023_51024_0
crossref_primary_10_1371_journal_pone_0275852
crossref_primary_10_3390_vaccines9050461
crossref_primary_10_1186_s12934_020_01316_1
crossref_primary_10_3390_v15040980
crossref_primary_10_1128_mbio_03721_24
crossref_primary_10_1111_tbed_13264
crossref_primary_10_1016_j_vaccine_2022_09_008
crossref_primary_10_1002_jmv_70090
crossref_primary_10_3390_vaccines10030478
crossref_primary_10_1186_s42826_020_00040_6
crossref_primary_10_1038_s41598_022_16378_x
crossref_primary_10_1051_e3sconf_202021803053
Cites_doi 10.1016/j.cell.2014.02.040
10.1371/journal.pone.0002517
10.1586/erv.09.6
10.1016/j.vaccine.2016.03.085
10.1016/j.vaccine.2014.11.054
10.1128/JVI.02843-13
10.3201/eid1209.05-0979
10.3389/fimmu.2015.00287
10.1016/j.onehlt.2015.03.001
10.1016/j.vaccine.2009.01.116
10.4049/jimmunol.0803467
10.1016/S1473-3099(14)70963-6
10.1086/428948
10.1007/PL00000657
10.1093/infdis/jix001
10.1371/journal.pmed.0030360
10.1016/j.virol.2017.05.010
10.1128/JVI.01460-06
10.1093/infdis/jiu528
10.1086/590916
10.1080/21645515.2016.1210729
10.1038/nature08157
10.1126/science.1213362
10.1371/annotation/b8b66a84-4919-4a3e-ba3e-bb11f3853755
10.1371/journal.pone.0140702
10.1073/pnas.1116200109
10.1093/infdis/jiu123
10.1073/pnas.1012457108
10.1128/mBio.01070-14
10.1586/14760584.2014.922416
10.1128/JVI.00891-10
10.1002/rmv.1713
10.1086/595984
10.1371/journal.pone.0092822
10.1016/j.vaccine.2007.01.063
10.1128/mBio.02556-14
10.1016/S0140-6736(00)05066-2
10.3390/v6072735
10.1128/JVI.02608-13
10.1038/nm.3443
10.2217/fvl.14.30
10.3201/eid1407.071681
10.1016/S0140-6736(03)15014-3
10.1371/journal.pone.0001401
10.1126/science.1256427
10.1016/j.coviro.2013.07.007
10.1016/0042-6822(78)90153-8
10.3201/eid2106.150021
10.1016/j.vaccine.2009.05.099
10.1371/journal.pone.0026335
10.1016/j.jinf.2017.04.001
10.1038/nature11414
10.1016/0091-7435(74)90066-8
10.1073/pnas.0903181106
10.1128/JVI.01532-14
10.1128/JVI.00301-18
10.1086/517614
10.1093/infdis/jiq093
10.1016/j.vaccine.2011.01.100
10.1128/JVI.02694-07
10.1073/pnas.0506416102
10.1371/journal.pone.0112302
10.4049/jimmunol.0902147
10.1371/journal.pone.0007790
10.1128/JVI.00221-10
10.1073/pnas.0909696106
10.1016/j.virol.2014.07.004
10.1016/S1473-3099(17)30240-2
10.1016/j.vaccine.2010.01.029
10.1093/oxfordjournals.bmb.a071545
10.1038/nature10831
10.3390/v6031294
10.1016/j.vaccine.2010.12.120
10.1016/j.vaccine.2009.03.082
10.1001/jama.2014.12854
10.1128/JVI.01219-14
10.1016/j.vaccine.2009.01.040
10.1016/j.vaccine.2009.04.050
10.1128/JVI.01277-17
10.1016/j.virol.2016.08.010
10.1371/journal.pone.0083274
10.1136/bmj.c7297
10.1080/21645515.2015.1012013
10.1371/journal.pone.0050830
10.1086/505225
10.1128/JVI.01084-12
10.1099/vir.0.048652-0
10.1038/nm.3350
10.1038/nrd4529
10.1111/j.1750-2659.2012.00423.x
10.1016/j.virol.2016.02.024
10.1128/JVI.02335-08
10.1128/JVI.00241-09
10.1172/JCI84428
10.4049/jimmunol.1201060
10.1016/j.virusres.2015.01.007
10.1371/journal.pone.0016247
10.1128/mBio.01487-15
10.1126/science.1244730
10.1371/journal.pone.0018577
10.1086/507709
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 by the authors. 2018
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
3V.
7T7
7XB
8FD
8FE
8FH
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
LK8
M2O
M7P
MBDVC
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/vaccines6030046
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
Research Library Prep
ProQuest SciTech Premium Collection
Biological Sciences
Research Library
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2076-393X
ExternalDocumentID oai_doaj_org_article_cac4dfbd8dc8447bae85d52f6be6b229
PMC6161001
30044370
10_3390_vaccines6030046
Genre Journal Article
Review
GeographicLocations Ankara Turkey
Turkey
GeographicLocations_xml – name: Ankara Turkey
– name: Turkey
GroupedDBID 53G
5VS
8FE
8FH
8G5
AADQD
AAHBH
AAYXX
ABUWG
ADBBV
ADRAZ
AEUYN
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IPNFZ
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RIG
RNS
RPM
NPM
3V.
7T7
7XB
8FD
8FK
C1K
FR3
MBDVC
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c487t-42d89964e665bcfe18cfa0e1c6ca950b6a890d6de38ec9f4906bf7b16a3b75a83
IEDL.DBID BENPR
ISSN 2076-393X
IngestDate Wed Aug 27 01:30:43 EDT 2025
Thu Aug 21 18:32:47 EDT 2025
Fri Jul 11 15:56:33 EDT 2025
Sun Jul 13 05:10:18 EDT 2025
Thu Apr 03 07:04:07 EDT 2025
Thu Apr 24 23:09:49 EDT 2025
Tue Jul 01 02:24:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords avian influenza A virus
pandemic
zoonosis
vaccination
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-42d89964e665bcfe18cfa0e1c6ca950b6a890d6de38ec9f4906bf7b16a3b75a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2817-0127
0000-0001-9866-8903
OpenAccessLink https://www.proquest.com/docview/2123849483?pq-origsite=%requestingapplication%
PMID 30044370
PQID 2123849483
PQPubID 2032320
ParticipantIDs doaj_primary_oai_doaj_org_article_cac4dfbd8dc8447bae85d52f6be6b229
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6161001
proquest_miscellaneous_2076242341
proquest_journals_2123849483
pubmed_primary_30044370
crossref_citationtrail_10_3390_vaccines6030046
crossref_primary_10_3390_vaccines6030046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180725
PublicationDateYYYYMMDD 2018-07-25
PublicationDate_xml – month: 7
  year: 2018
  text: 20180725
  day: 25
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Vaccines (Basel)
PublicationTitleAlternate Vaccines (Basel)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References DiLillo (ref_76) 2014; 20
ref_12
ref_11
Liu (ref_31) 2016; 492
ref_10
ref_98
ref_96
Potter (ref_107) 1979; 35
Skowronski (ref_23) 2011; 342
Belshe (ref_43) 2011; 203
ref_16
ref_15
Luke (ref_108) 2014; 13
Marcelin (ref_78) 2012; 22
Park (ref_36) 2016; 498
Goji (ref_47) 2008; 198
Subbarao (ref_6) 2000; 57
Kreijtz (ref_99) 2009; 199
Laddy (ref_51) 2009; 83
Wang (ref_59) 2009; 106
Cox (ref_24) 2009; 27
ref_21
ref_20
Ekiert (ref_62) 2012; 489
He (ref_84) 2006; 80
Kreijtz (ref_81) 2008; 82
Kreijtz (ref_101) 2014; 14
Crevar (ref_54) 2015; 11
Schotsaert (ref_71) 2009; 8
Kamlangdee (ref_106) 2014; 88
Nicholson (ref_28) 2001; 357
Hillaire (ref_80) 2013; 94
Hoffmann (ref_66) 2005; 102
Smith (ref_92) 2010; 28
ref_73
Lipatov (ref_35) 2006; 194
Ren (ref_91) 2015; 200
Stickl (ref_93) 1974; 3
Bestebroer (ref_102) 2015; 21
Wohlbold (ref_74) 2015; 6
Herfst (ref_17) 2012; 336
Talaat (ref_26) 2009; 27
Koel (ref_70) 2013; 342
Richard (ref_7) 2014; 9
Giles (ref_53) 2011; 29
Altenburg (ref_79) 2015; 33
Middleton (ref_45) 2009; 83
Short (ref_1) 2015; 1
Tong (ref_2) 2012; 109
Farnsworth (ref_69) 2011; 29
ref_88
Altenburg (ref_94) 2014; 6
Krammer (ref_72) 2013; 3
Scholtissek (ref_4) 1978; 87
Taubenberger (ref_3) 2006; 12
Ducatez (ref_49) 2011; 108
Rimmelzwaan (ref_95) 2016; 12
Quan (ref_13) 2018; 92
Hutter (ref_63) 2013; 190
Smit (ref_57) 2012; 86
DiLillo (ref_77) 2016; 126
Imai (ref_18) 2012; 486
Zhang (ref_14) 2017; 75
Karron (ref_85) 2009; 27
ref_55
Fonville (ref_48) 2014; 346
ref_52
Schwarz (ref_42) 2009; 27
Ducatez (ref_44) 2013; 7
Sun (ref_65) 2014; 464–465
Levine (ref_41) 2017; 216
ref_61
Koel (ref_56) 2014; 5
Galli (ref_46) 2009; 106
Poon (ref_105) 2009; 182
Govorkova (ref_34) 2006; 194
Mulligan (ref_25) 2014; 312
ref_68
ref_67
Sridhar (ref_83) 2013; 19
Laddy (ref_50) 2007; 25
Stephenson (ref_27) 2003; 362
Florek (ref_104) 2014; 88
Wang (ref_64) 2010; 84
Descamps (ref_75) 2011; 186
Kreijtz (ref_103) 2015; 211
Forrest (ref_37) 2009; 27
Prabakaran (ref_39) 2010; 84
Baz (ref_87) 2015; 6
Linster (ref_19) 2014; 157
ref_33
ref_30
Eggink (ref_60) 2014; 88
ref_38
Pitisuttithum (ref_86) 2017; 17
Neumann (ref_5) 2009; 459
Peng (ref_90) 2015; 6
Tsvetnitsky (ref_32) 2016; 34
Stephenson (ref_29) 2005; 191
ref_100
Kreijtz (ref_82) 2014; 88
Kreijtz (ref_97) 2007; 195
Krammer (ref_22) 2015; 14
Tate (ref_58) 2014; 6
ref_9
ref_8
Talaat (ref_89) 2014; 209
Sun (ref_40) 2017; 508
References_xml – volume: 157
  start-page: 329
  year: 2014
  ident: ref_19
  article-title: Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.040
– ident: ref_52
  doi: 10.1371/journal.pone.0002517
– volume: 8
  start-page: 499
  year: 2009
  ident: ref_71
  article-title: Universal M2 ectodomain-based influenza A vaccines: Preclinical and clinical developments
  publication-title: Expert Rev. Vaccines
  doi: 10.1586/erv.09.6
– volume: 34
  start-page: 2926
  year: 2016
  ident: ref_32
  article-title: Universal influenza vaccines: Shifting to better vaccines
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2016.03.085
– volume: 33
  start-page: 500
  year: 2015
  ident: ref_79
  article-title: Virus-specific T cells as correlate of (cross-)protective immunity against influenza
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2014.11.054
– volume: 88
  start-page: 1684
  year: 2014
  ident: ref_82
  article-title: Human cytotoxic T lymphocytes directed to seasonal influenza A viruses cross-react with the newly emerging H7N9 virus
  publication-title: J. Virol.
  doi: 10.1128/JVI.02843-13
– volume: 12
  start-page: 15
  year: 2006
  ident: ref_3
  article-title: 1918 influenza: The mother of all pandemics
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1209.05-0979
– volume: 6
  start-page: 287
  year: 2015
  ident: ref_90
  article-title: Boosted influenza-specific T cell responses after H5N1 pandemic live attenuated influenza virus vaccination
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2015.00287
– volume: 1
  start-page: 1
  year: 2015
  ident: ref_1
  article-title: One health, multiple challenges: The inter-species transmission of influenza a virus
  publication-title: One Health
  doi: 10.1016/j.onehlt.2015.03.001
– volume: 27
  start-page: 1889
  year: 2009
  ident: ref_24
  article-title: A phase I clinical trial of a PER.C6 cell grown influenza H7 virus vaccine
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2009.01.116
– ident: ref_10
– volume: 182
  start-page: 3063
  year: 2009
  ident: ref_105
  article-title: Vaccinia virus-based multivalent H5N1 avian influenza vaccines adjuvanted with IL-15 confer sterile cross-clade protection in mice
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0803467
– volume: 14
  start-page: 1196
  year: 2014
  ident: ref_101
  article-title: Safety and immunogenicity of a modified-vaccinia-virus-Ankara-based influenza A H5n1 vaccine: A randomised, double-blind phase 1/2a clinical trial
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(14)70963-6
– volume: 191
  start-page: 1210
  year: 2005
  ident: ref_29
  article-title: Cross-reactivity to highly pathogenic avian influenza H5N1 viruses after vaccination with nonadjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: A potential priming strategy
  publication-title: J. Infect. Dis.
  doi: 10.1086/428948
– volume: 57
  start-page: 1770
  year: 2000
  ident: ref_6
  article-title: Avian influenza viruses infecting humans
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/PL00000657
– volume: 216
  start-page: S555
  year: 2017
  ident: ref_41
  article-title: Cross-reactive antibody responses to novel H5Nx influenza viruses following homologous and heterologous prime-boost vaccination with a prepandemic stockpiled A(H5N1) vaccine in humans
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jix001
– ident: ref_88
  doi: 10.1371/journal.pmed.0030360
– volume: 508
  start-page: 164
  year: 2017
  ident: ref_40
  article-title: Stockpiled pre-pandemic H5N1 influenza virus vaccines with AS03 adjuvant provide cross-protection from H5N2 clade 2.3.4.4 virus challenge in ferrets
  publication-title: Virology
  doi: 10.1016/j.virol.2017.05.010
– volume: 80
  start-page: 11756
  year: 2006
  ident: ref_84
  article-title: Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines
  publication-title: J. Virol.
  doi: 10.1128/JVI.01460-06
– volume: 211
  start-page: 791
  year: 2015
  ident: ref_103
  article-title: A single immunization with modified vaccinia virus ankara-based influenza virus H7 vaccine affords protection in the influenza A(H7N9) pneumonia ferret model
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiu528
– volume: 198
  start-page: 635
  year: 2008
  ident: ref_47
  article-title: Immune responses of healthy subjects to a single dose of intramuscular inactivated influenza A/Vietnam/1203/2004 (H5N1) vaccine after priming with an antigenic variant
  publication-title: J. Infect. Dis.
  doi: 10.1086/590916
– volume: 12
  start-page: 2881
  year: 2016
  ident: ref_95
  article-title: Viral vector-based influenza vaccines
  publication-title: Hum. Vaccines Immunother.
  doi: 10.1080/21645515.2016.1210729
– volume: 459
  start-page: 931
  year: 2009
  ident: ref_5
  article-title: Emergence and pandemic potential of swine-origin H1N1 influenza virus
  publication-title: Nature
  doi: 10.1038/nature08157
– ident: ref_11
– volume: 336
  start-page: 1534
  year: 2012
  ident: ref_17
  article-title: Airborne transmission of influenza A/H5N1 virus between ferrets
  publication-title: Science
  doi: 10.1126/science.1213362
– ident: ref_38
  doi: 10.1371/annotation/b8b66a84-4919-4a3e-ba3e-bb11f3853755
– ident: ref_55
  doi: 10.1371/journal.pone.0140702
– volume: 109
  start-page: 4269
  year: 2012
  ident: ref_2
  article-title: A distinct lineage of influenza a virus from bats
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1116200109
– volume: 209
  start-page: 1860
  year: 2014
  ident: ref_89
  article-title: A live attenuated influenza A(H5N1) vaccine induces long-term immunity in the absence of a primary antibody response
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiu123
– volume: 108
  start-page: 349
  year: 2011
  ident: ref_49
  article-title: Feasibility of reconstructed ancestral H5N1 influenza viruses for cross-clade protective vaccine development
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1012457108
– volume: 5
  start-page: e01070-14
  year: 2014
  ident: ref_56
  article-title: Antigenic variation of clade 2.1 H5N1 virus is determined by a few amino acid substitutions immediately adjacent to the receptor binding site
  publication-title: MBio
  doi: 10.1128/mBio.01070-14
– volume: 13
  start-page: 873
  year: 2014
  ident: ref_108
  article-title: Improving pandemic H5N1 influenza vaccines by combining different vaccine platforms
  publication-title: Expert Rev. Vaccines
  doi: 10.1586/14760584.2014.922416
– volume: 84
  start-page: 11822
  year: 2010
  ident: ref_39
  article-title: Neutralizing epitopes of influenza virus hemagglutinin: Target for the development of a universal vaccine against H5N1 lineages
  publication-title: J. Virol.
  doi: 10.1128/JVI.00891-10
– volume: 22
  start-page: 267
  year: 2012
  ident: ref_78
  article-title: Contribution of antibody production against neuraminidase to the protection afforded by influenza vaccines
  publication-title: Rev. Med. Virol.
  doi: 10.1002/rmv.1713
– volume: 199
  start-page: 405
  year: 2009
  ident: ref_99
  article-title: Recombinant modified vaccinia virus Ankara expressing the hemagglutinin gene confers protection against homologous and heterologous H5N1 influenza virus infections in macaques
  publication-title: J. Infect. Dis.
  doi: 10.1086/595984
– ident: ref_61
  doi: 10.1371/journal.pone.0092822
– volume: 25
  start-page: 2984
  year: 2007
  ident: ref_50
  article-title: Immunogenicity of novel consensus-based DNA vaccines against avian influenza
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2007.01.063
– volume: 6
  start-page: e02556
  year: 2015
  ident: ref_74
  article-title: Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice
  publication-title: MBio
  doi: 10.1128/mBio.02556-14
– volume: 357
  start-page: 1937
  year: 2001
  ident: ref_28
  article-title: Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: A randomised trial of two potential vaccines against H5N1 influenza
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)05066-2
– volume: 6
  start-page: 2735
  year: 2014
  ident: ref_94
  article-title: Modified vaccinia virus ankara (MVA) as production platform for vaccines against influenza and other viral respiratory diseases
  publication-title: Viruses
  doi: 10.3390/v6072735
– volume: 88
  start-page: 699
  year: 2014
  ident: ref_60
  article-title: Guiding the immune response against influenza virus hemagglutinin toward the conserved stalk domain by hyperglycosylation of the globular head domain
  publication-title: J. Virol.
  doi: 10.1128/JVI.02608-13
– volume: 20
  start-page: 143
  year: 2014
  ident: ref_76
  article-title: Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo
  publication-title: Nat. Med.
  doi: 10.1038/nm.3443
– volume: 9
  start-page: 513
  year: 2014
  ident: ref_7
  article-title: Avian influenza a viruses: From zoonosis to pandemic
  publication-title: Future Virol.
  doi: 10.2217/fvl.14.30
– ident: ref_9
  doi: 10.3201/eid1407.071681
– volume: 362
  start-page: 1959
  year: 2003
  ident: ref_27
  article-title: Safety and antigenicity of whole virus and subunit influenza A/Hong Kong/1073/99 (H9N2) vaccine in healthy adults: Phase I randomised trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)15014-3
– ident: ref_33
  doi: 10.1371/journal.pone.0001401
– volume: 346
  start-page: 996
  year: 2014
  ident: ref_48
  article-title: Antibody landscapes after influenza virus infection or vaccination
  publication-title: Science
  doi: 10.1126/science.1256427
– volume: 3
  start-page: 521
  year: 2013
  ident: ref_72
  article-title: Influenza virus hemagglutinin stalk-based antibodies and vaccines
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2013.07.007
– volume: 87
  start-page: 13
  year: 1978
  ident: ref_4
  article-title: On the origin of the human influenza virus subtypes H2N2 and H3N2
  publication-title: Virology
  doi: 10.1016/0042-6822(78)90153-8
– volume: 21
  start-page: 1086
  year: 2015
  ident: ref_102
  article-title: Induction of influenza (H5N8) antibodies by modified vaccinia virus ankara H5N1 vaccine
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2106.150021
– volume: 27
  start-page: 4953
  year: 2009
  ident: ref_85
  article-title: Evaluation of two live attenuated cold-adapted H5N1 influenza virus vaccines in healthy adults
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2009.05.099
– ident: ref_73
  doi: 10.1371/journal.pone.0026335
– volume: 75
  start-page: 71
  year: 2017
  ident: ref_14
  article-title: Human infections with recently-emerging highly pathogenic h7n9 avian influenza virus in china
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2017.04.001
– volume: 489
  start-page: 526
  year: 2012
  ident: ref_62
  article-title: Cross-neutralization of influenza a viruses mediated by a single antibody loop
  publication-title: Nature
  doi: 10.1038/nature11414
– volume: 3
  start-page: 97
  year: 1974
  ident: ref_93
  article-title: Smallpox vaccination and its consequences: First experiences with the highly attenuated smallpox vaccine “MVA”
  publication-title: Prev. Med.
  doi: 10.1016/0091-7435(74)90066-8
– volume: 106
  start-page: 7962
  year: 2009
  ident: ref_46
  article-title: Fast rise of broadly cross-reactive antibodies after boosting long-lived human memory B cells primed by an MF59 adjuvanted prepandemic vaccine
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0903181106
– volume: 88
  start-page: 13300
  year: 2014
  ident: ref_106
  article-title: Broad protection against avian influenza virus by using a modified vaccinia ankara virus expressing a mosaic hemagglutinin gene
  publication-title: J. Virol.
  doi: 10.1128/JVI.01532-14
– volume: 92
  start-page: e00301-18
  year: 2018
  ident: ref_13
  article-title: New threats of H7N9 influenza virus: The spread and evolution of highly and low pathogenic variants with high genomic diversity in wave five
  publication-title: J. Virol.
  doi: 10.1128/JVI.00301-18
– volume: 195
  start-page: 1598
  year: 2007
  ident: ref_97
  article-title: Recombinant modified vaccinia virus ankara-based vaccine induces protective immunity in mice against infection with influenza virus H5N1
  publication-title: J. Infect. Dis.
  doi: 10.1086/517614
– volume: 203
  start-page: 666
  year: 2011
  ident: ref_43
  article-title: Safety and immunogenicity of influenza A H5 subunit vaccines: Effect of vaccine schedule and antigenic variant
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiq093
– volume: 29
  start-page: 3043
  year: 2011
  ident: ref_53
  article-title: A computationally optimized broadly reactive antigen (COBRA) based H5N1 VLP vaccine elicits broadly reactive antibodies in mice and ferrets
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2011.01.100
– volume: 82
  start-page: 5161
  year: 2008
  ident: ref_81
  article-title: Cross-recognition of avian H5N1 influenza virus by human cytotoxic T-lymphocyte populations directed to human influenza a virus
  publication-title: J. Virol.
  doi: 10.1128/JVI.02694-07
– volume: 102
  start-page: 12915
  year: 2005
  ident: ref_66
  article-title: Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0506416102
– ident: ref_67
  doi: 10.1371/journal.pone.0112302
– ident: ref_8
– volume: 186
  start-page: 1022
  year: 2011
  ident: ref_75
  article-title: Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0902147
– ident: ref_96
  doi: 10.1371/journal.pone.0007790
– volume: 84
  start-page: 6570
  year: 2010
  ident: ref_64
  article-title: Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets
  publication-title: J. Virol.
  doi: 10.1128/JVI.00221-10
– volume: 106
  start-page: 18137
  year: 2009
  ident: ref_59
  article-title: Glycans on influenza hemagglutinin affect receptor binding and immune response
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0909696106
– volume: 464–465
  start-page: 156
  year: 2014
  ident: ref_65
  article-title: Effect of receptor binding specificity on the immunogenicity and protective efficacy of influenza virus A H1 vaccines
  publication-title: Virology
  doi: 10.1016/j.virol.2014.07.004
– volume: 17
  start-page: 833
  year: 2017
  ident: ref_86
  article-title: Safety and immunogenicity of a live attenuated influenza H5 candidate vaccine strain A/17/turkey/Turkey/05/133 H5N2 and its priming effects for potential pre-pandemic use: A randomised, double-blind, placebo-controlled trial
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(17)30240-2
– volume: 28
  start-page: 2565
  year: 2010
  ident: ref_92
  article-title: Phase 1 clinical trials of the safety and immunogenicity of adjuvanted plasmid DNA vaccines encoding influenza A virus H5 hemagglutinin
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2010.01.029
– volume: 35
  start-page: 69
  year: 1979
  ident: ref_107
  article-title: Determinants of immunity to influenza infection in man
  publication-title: Br. Med. Bull.
  doi: 10.1093/oxfordjournals.bmb.a071545
– volume: 486
  start-page: 420
  year: 2012
  ident: ref_18
  article-title: Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets
  publication-title: Nature
  doi: 10.1038/nature10831
– volume: 6
  start-page: 1294
  year: 2014
  ident: ref_58
  article-title: Playing hide and seek: How glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection
  publication-title: Viruses
  doi: 10.3390/v6031294
– volume: 29
  start-page: 1529
  year: 2011
  ident: ref_69
  article-title: Antigenic stability of H1N1 pandemic vaccines correlates with vaccine strain
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2010.12.120
– volume: 27
  start-page: 3744
  year: 2009
  ident: ref_26
  article-title: A live attenuated H7N3 influenza virus vaccine is well tolerated and immunogenic in a phase I trial in healthy adults
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2009.03.082
– ident: ref_20
– volume: 312
  start-page: 1409
  year: 2014
  ident: ref_25
  article-title: Serological responses to an avian influenza A/H7N9 vaccine mixed at the point-of-use with MF59 adjuvant: A randomized clinical trial
  publication-title: JAMA
  doi: 10.1001/jama.2014.12854
– volume: 88
  start-page: 13418
  year: 2014
  ident: ref_104
  article-title: Modified vaccinia virus ankara encoding influenza virus hemagglutinin induces heterosubtypic immunity in macaques
  publication-title: J. Virol.
  doi: 10.1128/JVI.01219-14
– volume: 27
  start-page: 6284
  year: 2009
  ident: ref_42
  article-title: Single dose vaccination with AS03-adjuvanted H5N1 vaccines in a randomized trial induces strong and broad immune responsiveness to booster vaccination in adults
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2009.01.040
– volume: 27
  start-page: 4187
  year: 2009
  ident: ref_37
  article-title: Single- and multiple-clade influenza A H5n1 vaccines induce cross protection in ferrets
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2009.04.050
– ident: ref_16
  doi: 10.1128/JVI.01277-17
– volume: 498
  start-page: 36
  year: 2016
  ident: ref_36
  article-title: Cross-protective efficacies of highly-pathogenic avian influenza H5N1 vaccines against a recent H5N8 virus
  publication-title: Virology
  doi: 10.1016/j.virol.2016.08.010
– ident: ref_100
  doi: 10.1371/journal.pone.0083274
– volume: 342
  start-page: c7297
  year: 2011
  ident: ref_23
  article-title: Effectiveness of AS03 adjuvanted pandemic h1n1 vaccine: Case-control evaluation based on sentinel surveillance system in canada, autumn 2009
  publication-title: BMJ
  doi: 10.1136/bmj.c7297
– volume: 11
  start-page: 572
  year: 2015
  ident: ref_54
  article-title: Cocktail of H5N1 COBRA HA vaccines elicit protective antibodies against H5N1 viruses from multiple clades
  publication-title: Hum. Vaccin. Immunother.
  doi: 10.1080/21645515.2015.1012013
– ident: ref_30
  doi: 10.1371/journal.pone.0050830
– volume: 194
  start-page: 159
  year: 2006
  ident: ref_34
  article-title: Immunization with reverse-genetics-produced H5N1 influenza vaccine protects ferrets against homologous and heterologous challenge
  publication-title: J. Infect. Dis.
  doi: 10.1086/505225
– volume: 86
  start-page: 11735
  year: 2012
  ident: ref_57
  article-title: Glycan-dependent immunogenicity of recombinant soluble trimeric hemagglutinin
  publication-title: J. Virol.
  doi: 10.1128/JVI.01084-12
– volume: 94
  start-page: 583
  year: 2013
  ident: ref_80
  article-title: Human T-cells directed to seasonal influenza a virus cross-react with 2009 pandemic influenza a (H1N1) and swine-origin triple-reassortant H3N2 influenza viruses
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.048652-0
– ident: ref_21
– volume: 19
  start-page: 1305
  year: 2013
  ident: ref_83
  article-title: Cellular immune correlates of protection against symptomatic pandemic influenza
  publication-title: Nat. Med.
  doi: 10.1038/nm.3350
– volume: 14
  start-page: 167
  year: 2015
  ident: ref_22
  article-title: Advances in the development of influenza virus vaccines
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd4529
– volume: 7
  start-page: 506
  year: 2013
  ident: ref_44
  article-title: Long-term vaccine-induced heterologous protection against H5N1 influenza viruses in the ferret model
  publication-title: Influenza Other Respir. Viruses
  doi: 10.1111/j.1750-2659.2012.00423.x
– volume: 492
  start-page: 197
  year: 2016
  ident: ref_31
  article-title: A cationic liposome-DNA complexes adjuvant (JVRS-100) enhances the immunogenicity and cross-protective efficacy of pre-pandemic influenza A (H5N1) vaccine in ferrets
  publication-title: Virology
  doi: 10.1016/j.virol.2016.02.024
– volume: 83
  start-page: 4624
  year: 2009
  ident: ref_51
  article-title: Electroporation of synthetic DNA antigens offers protection in nonhuman primates challenged with highly pathogenic avian influenza virus
  publication-title: J. Virol.
  doi: 10.1128/JVI.02335-08
– volume: 83
  start-page: 7770
  year: 2009
  ident: ref_45
  article-title: Evaluation of vaccines for H5N1 influenza virus in ferrets reveals the potential for protective single-shot immunization
  publication-title: J. Virol.
  doi: 10.1128/JVI.00241-09
– volume: 126
  start-page: 605
  year: 2016
  ident: ref_77
  article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI84428
– volume: 190
  start-page: 220
  year: 2013
  ident: ref_63
  article-title: Toward animal cell culture-based influenza vaccine design: Viral hemagglutinin N-glycosylation markedly impacts immunogenicity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1201060
– ident: ref_12
– volume: 200
  start-page: 9
  year: 2015
  ident: ref_91
  article-title: H5N1 influenza virus-like particle vaccine protects mice from heterologous virus challenge better than whole inactivated virus
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2015.01.007
– ident: ref_15
– ident: ref_98
  doi: 10.1371/journal.pone.0016247
– volume: 6
  start-page: e01487-15
  year: 2015
  ident: ref_87
  article-title: Nonreplicating influenza a virus vaccines confer broad protection against lethal challenge
  publication-title: MBio
  doi: 10.1128/mBio.01487-15
– volume: 342
  start-page: 976
  year: 2013
  ident: ref_70
  article-title: Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution
  publication-title: Science
  doi: 10.1126/science.1244730
– ident: ref_68
  doi: 10.1371/journal.pone.0018577
– volume: 194
  start-page: 1040
  year: 2006
  ident: ref_35
  article-title: Cross-protectiveness and immunogenicity of influenza A/Duck/Singapore/3/97(H5) vaccines against infection with A/Vietnam/1203/04(H5N1) virus in ferrets
  publication-title: J. Infect. Dis.
  doi: 10.1086/507709
SSID ssj0000913867
Score 2.2377625
SecondaryResourceType review_article
Snippet Influenza A viruses can infect a wide range of hosts, creating opportunities for zoonotic transmission, i.e., transmission from animals to humans, and placing...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 46
SubjectTerms Avian flu
avian influenza A virus
Birds
Host range
Human populations
Influenza
Influenza A
pandemic
Pandemics
Review
vaccination
Vaccine development
Vaccines
Viruses
Zoonoses
zoonosis
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5QT1wQbwYKChKqOHRoZpJxMscFtSpIoD20VW-jPByxEp2ifVQqvx5nMt3uViAuXPOQHMeJ7cT-zNg7452wofYlSMBSVViVbYRQ2jrqGAQaEVOC89dvcHyqvpw35xulvlJMWIYHzow78NarEF0wwRultLNomtDUERyCq-shdY903oYzNdzBbSUN6IzlI8mvP7iyPv1UL0AkjCnYUkMDWv-fTMy7kZIbqufoIXsw2ox8kml9xO5h_5jtTTPo9PU-P7nNoVrs8z0-vYWjvn7CDidXJAL8c65G8svyCT-bzVcLPk3vxxczz6dzHOLQ063HqZGf5VXwjYiip-z06PDk03E5Fk8oPfkgy1LVgVwpUAjQOB-xMj5agZUHb9tGOLCmFQECSoO-jaoV4KJ2FVjpdGONfMZ2-sseXzDutHSNj2QrRKmMC7ZSkbymqkZU1mJbsA83vOz8iCyeClz86MjDSMzv7jC_YO_XE35mUI2_D_2YNmc9LKFhDw0kI90oI92_ZKRguzdb241HdNElnW0SOI4s2Nt1Nx2u9GNie7xc0RihU_4MafqCPc-SsKYkkaekFgXTWzKyRep2Tz_7PgB4A5nZZB68_B9re8Xukw1n0nNz3eyyneV8ha_JTlq6N8OR-A0dUheM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgvPCCxndgICOhiYdlOLFjOw8IFbRpIA31YZ32FvnjDJVGOtJ2ovz1nJO0XafCa2xLl_Od73f--B0hb7WzzPjcpZJLSEUGWVoG6VOTBxU8A81CfOB8-k2ejMTXi-JiXQ6oV-B0a2oX60mNmsvD378WH9HhP8SME1P299fGxUPoqWSRPkreJfcwLKnopac91m-X5TLjWqqO3mfbuI3I1BL4b0Odty9P3ohGx7vkQQ8j6aCb94fkDtSPyP6w46FeHNCz9bOq6QHdp8M1Q_XiMTkaXKNV0C9dgZI_hg7o-biZT-kwbin_HDs6bKC9mh4XQoof6Xn3F_TGJaMnZHR8dPb5JO3rKaQO05JZKnKP2ZUUIGVhXYBMu2AYZE46UxbMSqNL5qUHrsGVQZRM2qBsJg23qjCaPyU79aSG54RaxW3hAsKHwIW23mQiYCKV5QDCGCgTcrjUZeV6svFY8-KywqQjKr-6pfyEvFsNuOp4Nv7d9VOcnFW3SJDdfpg036ve3ypnnPDBeu2dFkJZA7rwRR6kBWnzHAXcW05ttTS6KoZxHflyeELerJrR3-IhiqlhMsc-TMUnNRj8E_Kss4SVJFE8wRVLiNqwkQ1RN1vq8Y-W01si8kbE8OL_Yr0k9xGw6bi3nBd7ZGfWzOEVgqKZfd0a-19osBEW
  priority: 102
  providerName: Scholars Portal
Title Avian Influenza A Virus Pandemic Preparedness and Vaccine Development
URI https://www.ncbi.nlm.nih.gov/pubmed/30044370
https://www.proquest.com/docview/2123849483
https://www.proquest.com/docview/2076242341
https://pubmed.ncbi.nlm.nih.gov/PMC6161001
https://doaj.org/article/cac4dfbd8dc8447bae85d52f6be6b229
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZauPRS9d20FLlShXogxUkcxzlVC1pEK4GiChC3yM92pTZLN7tI9Nd3JvFmWQRccogdaWKPx9-Mx98Q8kkazZRNTSwy4WKeuCQuvbCxSn3hLXOSebzgfHwijs7494v8IgTc2pBWubSJnaG2U4Mx8j00sRK5TLKvl39jrBqFp6uhhMZjsgntEpyvzf3xSfVjiLIg66UURc_pk4F_v3elDJ5Yt4Ih15RY24461v67oObtjMkbW9DhM_I0YEc66if7OXnkmhdkp-rJp6936enqLlW7S3dotaKlvn5JxqMrUAX6ra9K8k_RET2fzBYtrTCO_GdiaDVzXT46Wj8KL-l5_xf0RmbRK3J2OD49OIpDEYXYgC8yj3lqwaUS3AmRa-NdIo1XzCVGGFXmTAslS2aFdZl0pvS8ZEL7QidCZbrIlcxek41m2ri3hOoi07nxgBl8xqW2KuEevKckdY4r5cqIfFmOZW0CwzgWuvhdg6eBg1_fGvyIfB4-uOzJNe7vuo-TM3RDVuzuxXT2sw6LrDbKcOu1ldZIzgutnMxtnnqhndBpCgJuLae2Dku1rVeKFZGPQzMsMjw5UY2bLqAPK_AeDez4EXnTa8IgCYrHs4JFpFjTkTVR11uaya-OyFsA3AaY8O5hsd6TJ4DSJAaU03yLbMxnC_cBkNBcbwd13-4iCfA85vI_OQIQPg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAXxJtAASNBxaHbem2v13tAKIVUCW2jFUqr3hY_IRIkJY-i8KP4jdjZ3aSpgFuva-9qdjwefzO2vwF4JbTC0hAdccptxGIbR5njJpLEpc5gK7ALF5yPe7xzwj6eJWcb8Lu-CxOOVdY-ceGozUiHHPlecLEicJnQd-c_olA1Kuyu1iU0SrM4tPOfPmSbvO1-8OP7mpCDdv99J6qqCkTag_NpxIjxMQZnlvNEaWdjoZ3ENtZcyyzBikuRYcONpcLqzLEMc-VSFXNJVZpIQf13b8Amoz6UacDmfruXf1pmdQLLpuBpySFEaYb3LqQOO-QTjgO3FV9b_hZVAv4Gba-e0Ly05B3cgdsVVkWt0rjuwoYd3oPtvCS7nu-g_uru1mQHbaN8RYM9vw_t1oU3PdQtq6D8kqiFTgfj2QTlIW_9faBRPraL8-_B2yL_EJ2Wf4EunWR6ACfXot6H0BiOhvYxIJVSlWjnMYqjTCgjY-Z8tBYTa5mUNmvCbq3LQleM5qGwxrfCRzZB-cUV5TfhzfKF85LM499d98PgLLsFFu7Fg9H4S1FN6kJLzYxTRhgtGEuVtCIxCXFcWa4I8QJu1UNbVK5hUqwMuQkvl81-UoedGjm0o5nvg9Nwb8cjjCY8Ki1hKUkQj9EUNyFds5E1UddbhoOvC-Jw7uG9hyVP_i_WC7jZ6R8fFUfd3uFTuOURogjJbJJsQWM6ntlnHoVN1fPK9BF8vu7Z9gcurUxw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK8IL4JDDASTDws1Ekcx3lAqGOtVgZVhLZpb8GfWyVIR9MOlT-Nvw47H-06AW97jZ3ocj6ff2effwfwikmBuQqlTyOqfRLowE8NVT4PTWIU1gwbd8H584juH5GPJ_HJBvxu78K4tMrWJ1aOWk2k2yPvOhfLHJdJ1DVNWkS2N3h__sN3FaTcSWtbTqM2kQO9-GnDt_LdcM-O9eswHPQPP-z7TYUBX1qgPvNJqGy8QYmmNBbS6IBJw7EOJJU8jbGgnKVYUaUjpmVqSIqpMIkIKI9EEnMW2e_egM3ERkW4A5u7_VH2ZbnD4xg3GU1qPqEoSnH3gkt3Wl5S7Hiu6NpSWFUM-BvMvZqteWn5G9yB2w1uRb3a0O7Chi7uwXZWE18vdtDh6h5XuYO2UbaixF7ch37vwpohGtYVUX5x1EPH4-m8RJnbw_4-liib6ioX3nleZB-i4_ov0KWspgdwdC3qfQidYlLox4BEEolYGotXTESYUDwgxkZuQag14VynHrxtdZnLht3cFdn4ltsoxyk_v6J8D94sXziviT3-3XXXDc6ym2Pkrh5Mpqd5M8FzySVRRiimJCMkEVyzWMWhoUJTEYZWwK12aPPGTZT5yqg9eLlsthPcndrwQk_mtg9O3B0eizY8eFRbwlISJx6JEuxBsmYja6KutxTjs4pEnFqobyHKk_-L9QJu2lmWfxqODp7CLQsWmdvXDuMt6Mymc_3MArKZeN5YPoKv1z3Z_gBErVCl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Avian+Influenza+A+Virus+Pandemic+Preparedness+and+Vaccine+Development&rft.jtitle=Vaccines+%28Basel%29&rft.au=de+Vries%2C+Rory+D&rft.au=Herfst%2C+Sander&rft.au=Mathilde%2C+Richard&rft.date=2018-07-25&rft.pub=MDPI+AG&rft.eissn=2076-393X&rft.volume=6&rft.issue=3&rft_id=info:doi/10.3390%2Fvaccines6030046&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-393X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-393X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-393X&client=summon