Regulation of Tumor Immunity by Lysophosphatidic Acid
The tumor microenvironment (TME) may be best conceptualized as an ecosystem comprised of cancer cells interacting with a multitude of stromal components such as the extracellular matrix (ECM), blood and lymphatic networks, fibroblasts, adipocytes, and cells of the immune system. At the center of thi...
Saved in:
Published in | Cancers Vol. 12; no. 5; p. 1202 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
10.05.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The tumor microenvironment (TME) may be best conceptualized as an ecosystem comprised of cancer cells interacting with a multitude of stromal components such as the extracellular matrix (ECM), blood and lymphatic networks, fibroblasts, adipocytes, and cells of the immune system. At the center of this crosstalk between cancer cells and their TME is the bioactive lipid lysophosphatidic acid (LPA). High levels of LPA and the enzyme generating it, termed autotaxin (ATX), are present in many cancers. It is also well documented that LPA drives tumor progression by promoting angiogenesis, proliferation, survival, invasion and metastasis. One of the hallmarks of cancer is the ability to modulate and escape immune detection and eradication. Despite the profound role of LPA in regulating immune functions and inflammation, its role in the context of tumor immunity has not received much attention until recently where emerging studies highlight that this signaling axis may be a means that cancer cells adopt to evade immune detection and eradication. The present review aims to look at the immunomodulatory actions of LPA in baseline immunity to provide a broad understanding of the subject with a special emphasis on LPA and cancer immunity, highlighting the latest progress in this area of research. |
---|---|
AbstractList | The tumor microenvironment (TME) may be best conceptualized as an ecosystem comprised of cancer cells interacting with a multitude of stromal components such as the extracellular matrix (ECM), blood and lymphatic networks, fibroblasts, adipocytes, and cells of the immune system. At the center of this crosstalk between cancer cells and their TME is the bioactive lipid lysophosphatidic acid (LPA). High levels of LPA and the enzyme generating it, termed autotaxin (ATX), are present in many cancers. It is also well documented that LPA drives tumor progression by promoting angiogenesis, proliferation, survival, invasion and metastasis. One of the hallmarks of cancer is the ability to modulate and escape immune detection and eradication. Despite the profound role of LPA in regulating immune functions and inflammation, its role in the context of tumor immunity has not received much attention until recently where emerging studies highlight that this signaling axis may be a means that cancer cells adopt to evade immune detection and eradication. The present review aims to look at the immunomodulatory actions of LPA in baseline immunity to provide a broad understanding of the subject with a special emphasis on LPA and cancer immunity, highlighting the latest progress in this area of research. The tumor microenvironment (TME) may be best conceptualized as an ecosystem comprised of cancer cells interacting with a multitude of stromal components such as the extracellular matrix (ECM), blood and lymphatic networks, fibroblasts, adipocytes, and cells of the immune system. At the center of this crosstalk between cancer cells and their TME is the bioactive lipid lysophosphatidic acid (LPA). High levels of LPA and the enzyme generating it, termed autotaxin (ATX), are present in many cancers. It is also well documented that LPA drives tumor progression by promoting angiogenesis, proliferation, survival, invasion and metastasis. One of the hallmarks of cancer is the ability to modulate and escape immune detection and eradication. Despite the profound role of LPA in regulating immune functions and inflammation, its role in the context of tumor immunity has not received much attention until recently where emerging studies highlight that this signaling axis may be a means that cancer cells adopt to evade immune detection and eradication. The present review aims to look at the immunomodulatory actions of LPA in baseline immunity to provide a broad understanding of the subject with a special emphasis on LPA and cancer immunity, highlighting the latest progress in this area of research.The tumor microenvironment (TME) may be best conceptualized as an ecosystem comprised of cancer cells interacting with a multitude of stromal components such as the extracellular matrix (ECM), blood and lymphatic networks, fibroblasts, adipocytes, and cells of the immune system. At the center of this crosstalk between cancer cells and their TME is the bioactive lipid lysophosphatidic acid (LPA). High levels of LPA and the enzyme generating it, termed autotaxin (ATX), are present in many cancers. It is also well documented that LPA drives tumor progression by promoting angiogenesis, proliferation, survival, invasion and metastasis. One of the hallmarks of cancer is the ability to modulate and escape immune detection and eradication. Despite the profound role of LPA in regulating immune functions and inflammation, its role in the context of tumor immunity has not received much attention until recently where emerging studies highlight that this signaling axis may be a means that cancer cells adopt to evade immune detection and eradication. The present review aims to look at the immunomodulatory actions of LPA in baseline immunity to provide a broad understanding of the subject with a special emphasis on LPA and cancer immunity, highlighting the latest progress in this area of research. |
Author | Norman, Derek D. Dacheux, Mélanie A. Balázs, Louisa Augelli-Szafran, Corinne E. Tigyi, Gábor J. Torres, Raul M. Lee, Sue Chin |
AuthorAffiliation | 3 Department of Immunology & Microbiology, University of Colorado School of Medicine, Denver, CO 80045, USA; raul.torres@cuanschutz.edu 1 Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; slee84@uthsc.edu (S.C.L.); mdacheux@uthsc.edu (M.A.D.); dnorman7@uthsc.edu (D.D.N.) 4 Department of Chemistry, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA; caugelli-szafran@southernresearch.org 2 Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; cziczam@comcast.net |
AuthorAffiliation_xml | – name: 1 Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; slee84@uthsc.edu (S.C.L.); mdacheux@uthsc.edu (M.A.D.); dnorman7@uthsc.edu (D.D.N.) – name: 2 Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; cziczam@comcast.net – name: 3 Department of Immunology & Microbiology, University of Colorado School of Medicine, Denver, CO 80045, USA; raul.torres@cuanschutz.edu – name: 4 Department of Chemistry, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA; caugelli-szafran@southernresearch.org |
Author_xml | – sequence: 1 givenname: Sue Chin surname: Lee fullname: Lee, Sue Chin – sequence: 2 givenname: Mélanie A. surname: Dacheux fullname: Dacheux, Mélanie A. – sequence: 3 givenname: Derek D. surname: Norman fullname: Norman, Derek D. – sequence: 4 givenname: Louisa surname: Balázs fullname: Balázs, Louisa – sequence: 5 givenname: Raul M. surname: Torres fullname: Torres, Raul M. – sequence: 6 givenname: Corinne E. surname: Augelli-Szafran fullname: Augelli-Szafran, Corinne E. – sequence: 7 givenname: Gábor J. orcidid: 0000-0001-5371-171X surname: Tigyi fullname: Tigyi, Gábor J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32397679$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtLAzEUhYMoPmrX7mTAjZtq3pnZCCK-oCBIXYdMmrSRmaQmM0L_vWmrRQsGQi7c79xHzgnY98EbAM4QvCKkgtdaeW1iQhiyfPEeOMZQ4BHnFd3_FR-BYUrvMB9CkODiEBwRTKocVceAvZpZ36jOBV8EW0z6NsTiuW1777plUS-L8TKFxTykxTxDU6eLW-2mp-DAqiaZ4fc7AG8P95O7p9H45fH57nY80rQU3YgIUrNaC0YULgVmmPJao9y3pBRTyytEOESMTylFBNraWm6QwVZVHNmyZGQAbjZ1F33dmqk2vouqkYvoWhWXMign_2a8m8tZ-JQCl4jmfQfg8rtADB-9SZ1sXdKmaZQ3oU8SU4hzc0ZFRi920PfQR5_XW1GkRByuJzr_PdF2lJ8fzcD1BtAxpBSN3SIIypVtcse2rGA7Cu26tSN5Jdf8q_sCZHSbfg |
CitedBy_id | crossref_primary_10_1007_s11626_022_00660_3 crossref_primary_10_3390_cells11030349 crossref_primary_10_37349_ent_2024_00088 crossref_primary_10_1042_EBC20190088 crossref_primary_10_3389_fimmu_2022_768606 crossref_primary_10_1016_j_fsi_2024_109904 crossref_primary_10_1080_07853890_2022_2143554 crossref_primary_10_1158_2159_8290_CD_21_1181 crossref_primary_10_3390_ijms23084163 crossref_primary_10_1016_j_plipres_2021_101112 crossref_primary_10_3390_ijms21165938 crossref_primary_10_7759_cureus_23553 crossref_primary_10_1016_j_semcancer_2024_12_002 crossref_primary_10_4251_wjgo_v14_i8_1388 crossref_primary_10_3389_fimmu_2024_1327565 crossref_primary_10_58803_jlar_v2i5_26 crossref_primary_10_3389_fcimb_2021_725284 crossref_primary_10_1039_D2FO01221A crossref_primary_10_1038_s41401_024_01373_x crossref_primary_10_1002_bmc_5301 crossref_primary_10_3390_cancers12123791 crossref_primary_10_62347_KQNW1871 crossref_primary_10_1016_j_intimp_2024_112319 crossref_primary_10_1002_cam4_4699 crossref_primary_10_3389_fimmu_2021_687397 crossref_primary_10_3390_molecules27175487 crossref_primary_10_3389_fimmu_2020_606164 crossref_primary_10_1111_imr_13208 crossref_primary_10_1146_annurev_pathol_050420_025929 crossref_primary_10_1038_s41467_023_38933_4 crossref_primary_10_3389_fonc_2022_917471 crossref_primary_10_3390_cancers14061586 crossref_primary_10_1007_s12017_020_08630_2 |
Cites_doi | 10.3389/fimmu.2017.00424 10.1161/01.CIR.0000083715.37658.C4 10.1038/34178 10.1007/s00428-007-0425-4 10.1001/jamanetworkopen.2019.2535 10.1371/journal.pone.0029260 10.1016/S0021-9258(19)38335-8 10.1038/bjc.1982.35 10.1189/jlb.1205751 10.1111/bjd.13992 10.1089/scd.2006.15.797 10.1158/2326-6066.CIR-13-0043-T 10.1074/jbc.273.14.7906 10.1002/cbic.201500559 10.1038/ni1573 10.1111/j.1365-2141.2008.07325.x 10.1159/000085784 10.1073/pnas.0403259101 10.3389/fimmu.2019.02155 10.1189/jlb.0407221 10.1016/j.celrep.2021.110013 10.1084/jem.20031591 10.1093/intimm/dxv072 10.4049/jimmunol.1001323 10.1074/jbc.M504351200 10.4161/2162402X.2014.974374 10.1006/abio.2001.5063 10.1074/jbc.M404045200 10.1189/jlb.0103019 10.1007/s00262-003-0409-4 10.1016/j.neuropharm.2017.08.032 10.1016/j.canlet.2015.04.029 10.1002/hon.2900110404 10.3390/cancers10030073 10.1016/j.clinbiochem.2011.03.128 10.4161/onci.20492 10.1084/jem.20021515 10.1002/JLB.3MR0118-034R 10.1016/j.bmcl.2012.06.057 10.1158/1078-0432.CCR-14-1860 10.1182/blood-2004-03-1166 10.1016/S0002-9440(10)63629-2 10.1096/fj.201801415RR 10.1371/journal.pone.0161825 10.1038/s41392-020-0117-y 10.1186/1465-9921-10-114 10.1158/1541-7786.MCR-14-0263 10.1053/j.gastro.2009.01.002 10.1001/jama.280.8.719 10.1042/BJ20050791 10.1254/jphs.91.8 10.4161/onci.19787 10.1096/fj.13-248641 10.1111/j.1365-2222.2006.02626.x 10.1165/ajrcmb.21.2.3667 10.4049/jimmunol.1300429 10.1186/1476-4598-9-71 10.3390/cells9010046 10.1074/jbc.M109.003194 10.1254/jphs.FPJ05030X 10.1152/ajpcell.1998.274.4.C1065 10.1194/jlr.R046458 10.3390/cancers11101523 10.1016/j.leukres.2006.10.017 10.1016/j.bmcl.2007.12.024 10.1080/2162402X.2017.1393134 10.1016/j.molcel.2010.07.022 10.1016/j.chemphyslip.2004.03.001 10.1002/eji.200323711 10.1016/S0014-2999(01)01329-2 10.1016/j.bbrc.2008.05.004 10.1016/j.csbj.2019.04.004 10.3389/fimmu.2018.02629 10.1016/j.ygyno.2004.08.001 10.1038/ni1102-991 10.1371/journal.pone.0018192 10.1016/0005-2760(92)90244-P 10.1016/S0021-9258(18)45911-X 10.1016/j.jaci.2004.12.757 10.1016/S0304-3835(98)00379-6 10.1016/S1359-6101(01)00016-8 10.1006/abio.2001.5000 10.3389/fimmu.2019.01159 10.1371/journal.pone.0006412 10.1038/ni.1621 10.1165/rcmb.2005-0126OC 10.3389/fphys.2014.00146 10.1182/blood.V95.4.1207.004k34_1207_1213 10.1007/s10059-010-0020-4 10.1074/jbc.273.22.13461 10.1038/s41577-019-0127-6 10.1126/science.282.5388.480 10.1158/0008-5472.CAN-15-1801-T 10.3390/ijms12053237 10.1007/s10555-011-9319-7 10.1042/bj20020348 10.4049/jimmunol.169.8.4129 10.3390/ijms20092102 10.1002/jcp.1041630303 10.1001/jama.287.23.3081 10.1124/jpet.105.098848 10.1096/fj.00-0492fje 10.1111/j.1600-0609.2007.00849.x 10.1158/0008-5472.CAN-16-0993 10.1007/s11745-001-0737-1 10.1093/intimm/dxp035 10.1080/2162402X.2015.1008791 10.1016/j.hemonc.2014.11.006 10.1016/j.jbior.2018.09.008 10.1017/S1461145707007973 10.1016/S0046-8177(96)90216-6 10.1158/1940-6207.CAPR-15-0107 10.3389/fonc.2019.01146 10.1016/S1388-1981(99)00127-4 10.1111/j.1574-695X.1994.tb00452.x 10.4049/jimmunol.1102956 10.2147/OTT.S168317 10.4049/jimmunol.166.4.2317 10.1182/blood-2016-10-743757 10.1158/0008-5472.CAN-11-0431 10.1038/34184 10.1002/1878-0261.12396 10.4049/jimmunol.162.4.2049 10.1074/jbc.M510843200 10.1152/ajpcell.1998.274.6.C1573 10.1096/fj.201700159R 10.4049/jimmunol.164.10.4996 10.1096/fj.15-274480 10.1080/09537100802220468 10.4049/jimmunol.172.7.4480 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 3V. 7T5 7TO 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH H94 HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/cancers12051202 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Immunology Abstracts Oncogenes and Growth Factors Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Natural Science Collection (ProQuest) ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection Biological Sciences Research Library ProQuest Biological Science Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2072-6694 |
ExternalDocumentID | PMC7281403 32397679 10_3390_cancers12051202 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA092160 – fundername: Harriett Van Vleet Endowment for Basic Oncology Research grantid: NA – fundername: NCI NIH HHS grantid: CA-092160 |
GroupedDBID | --- 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO E3Z EBD ESX GNUQQ GUQSH GX1 HCIFZ HYE IAO IHR KQ8 LK8 M2O M48 M7P MODMG M~E OK1 P6G PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM TUS NPM 3V. 7T5 7TO 7XB 8FK H94 MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c487t-373b5bc753a28725246bc167984424f691360156d44130fbff6e1e2fa961f8853 |
IEDL.DBID | M48 |
ISSN | 2072-6694 |
IngestDate | Thu Aug 21 18:16:07 EDT 2025 Fri Jul 11 05:37:44 EDT 2025 Fri Jul 25 11:56:17 EDT 2025 Thu Apr 03 07:04:35 EDT 2025 Tue Jul 01 01:51:55 EDT 2025 Thu Apr 24 23:06:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | lysophosphatidic acid LPAR5 autotaxin immune checkpoint immune cells immunosuppression tumor microenvironment LPA cytotoxic T cells immunosurveillance immunoediting tumor-associated macrophages |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c487t-373b5bc753a28725246bc167984424f691360156d44130fbff6e1e2fa961f8853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5371-171X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cancers12051202 |
PMID | 32397679 |
PQID | 2403816085 |
PQPubID | 2032421 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7281403 proquest_miscellaneous_2402441547 proquest_journals_2403816085 pubmed_primary_32397679 crossref_primary_10_3390_cancers12051202 crossref_citationtrail_10_3390_cancers12051202 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200510 |
PublicationDateYYYYMMDD | 2020-05-10 |
PublicationDate_xml | – month: 5 year: 2020 text: 20200510 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Cancers |
PublicationTitleAlternate | Cancers (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kozian (ref_119) 2012; 22 Hashimoto (ref_75) 2015; 173 Hashimoto (ref_81) 2006; 100 ref_14 Goetzl (ref_103) 1999; 162 Chen (ref_87) 2006; 15 ref_99 Rother (ref_130) 2003; 108 Tokumura (ref_135) 2002; 365 Martino (ref_86) 2006; 91 Liliom (ref_23) 1998; 273 Martinet (ref_109) 2012; 1 Hogendoorn (ref_71) 1996; 27 Jin (ref_35) 2003; 33 Saatian (ref_57) 2006; 393 Brunetto (ref_78) 2016; 76 Xiao (ref_129) 2001; 290 Beck (ref_136) 2008; 18 Meng (ref_17) 2017; 31 Ray (ref_44) 2017; 129 Yang (ref_100) 1999; 21 Houben (ref_8) 2011; 30 ref_124 Nobs (ref_47) 2018; 104 Satoh (ref_26) 2007; 78 Hashimoto (ref_80) 2005; 75 DeNardo (ref_52) 2019; 19 Rosskopf (ref_25) 1998; 274 Liliom (ref_131) 1998; 274 Kotarsky (ref_126) 2006; 318 Rahaman (ref_61) 2006; 34 Murai (ref_121) 2017; 126 Zhang (ref_50) 2020; 5 Hata (ref_106) 2016; 28 Xie (ref_65) 2001; 12 Varricchi (ref_69) 2017; 7 Jo (ref_36) 2008; 372 Tsukahara (ref_128) 2006; 281 Randolph (ref_85) 1998; 282 An (ref_115) 1998; 273 ref_82 Ruscher (ref_88) 2006; 80 Xu (ref_9) 1995; 1 Chin (ref_96) 1992; 12 Idzko (ref_28) 2004; 172 Tigyi (ref_2) 2019; 71 Meshcheryakova (ref_40) 2019; 17 Sugiura (ref_132) 1992; 1126 Lee (ref_107) 2015; 13 Matthijsen (ref_60) 2003; 163 Ager (ref_111) 2015; 4 Costello (ref_66) 2011; 12 Masuda (ref_16) 2008; 143 Jantsch (ref_92) 2014; 5 Marsigliante (ref_97) 1999; 139 Lin (ref_101) 2019; 33 Argyle (ref_53) 2018; 9 So (ref_62) 2004; 95 Yung (ref_6) 2014; 55 Williams (ref_123) 2009; 284 Hornuss (ref_30) 2001; 429 Dunn (ref_38) 2002; 3 Baker (ref_11) 2002; 287 Nakai (ref_15) 2011; 44 Zheng (ref_104) 2001; 166 Seth (ref_73) 2000; 95 ref_51 Georas (ref_68) 2007; 37 Reinartz (ref_12) 2019; 13 Benesch (ref_20) 2015; 29 Llodra (ref_33) 2004; 101 Leslie (ref_90) 2002; 196 Bagga (ref_31) 2004; 104 Baker (ref_114) 2001; 292 Martinet (ref_110) 2012; 1 Nakane (ref_134) 2001; 36 Fujiwara (ref_125) 2005; 280 Chan (ref_32) 2007; 82 Stracke (ref_7) 1992; 267 Xu (ref_10) 1998; 280 Denzel (ref_91) 2008; 9 Lin (ref_49) 2009; 136 Maghazachi (ref_37) 2003; 74 Masucci (ref_64) 2019; 9 Lin (ref_79) 2005; 115 Nelson (ref_98) 2010; 185 Martinet (ref_108) 2011; 71 Cummings (ref_58) 2004; 279 Panther (ref_34) 2002; 169 Nam (ref_93) 2010; 29 Ahonen (ref_42) 2004; 199 Utsunomiya (ref_74) 2007; 31 Sektioglu (ref_77) 2017; 77 ref_117 Kanda (ref_105) 2008; 9 Anthony (ref_76) 1982; 45 Lecot (ref_63) 2019; 10 Goetzl (ref_24) 2000; 164 Mori (ref_83) 2007; 451 Lagadari (ref_56) 2009; 21 Chettibi (ref_29) 1994; 8 Zheng (ref_102) 2000; 14 Oda (ref_116) 2013; 1 Wu (ref_13) 2010; 9 Enblad (ref_72) 1993; 11 Emo (ref_89) 2012; 188 Bento (ref_112) 2015; 4 Li (ref_113) 2004; 130 Jiang (ref_45) 1998; 391 Varricchi (ref_84) 2017; 8 Sugiura (ref_133) 1999; 1440 Chen (ref_54) 2018; 11 Jalink (ref_21) 1990; 265 Kozian (ref_120) 2016; 17 (ref_3) 2017; 2017 Mandal (ref_55) 2015; 8 Khandoga (ref_122) 2008; 19 Tsujiuchi (ref_5) 2014; 29 Ricote (ref_46) 1998; 391 ref_43 Hersh (ref_95) 2003; 52 Volden (ref_18) 2016; 9 ref_41 Zhao (ref_67) 2009; 10 Xie (ref_70) 2015; 364 ref_1 Hu (ref_94) 2014; 193 Tsukahara (ref_127) 2010; 39 Hashimoto (ref_59) 2003; 91 Haslam (ref_118) 2019; 2 Benesch (ref_19) 2014; 28 Beatty (ref_39) 2015; 21 ref_48 Xu (ref_22) 1995; 163 Perova (ref_27) 2008; 11 ref_4 |
References_xml | – volume: 8 start-page: 424 year: 2017 ident: ref_84 article-title: Are mast cells MASTers in cancer? publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.00424 – ident: ref_117 – volume: 108 start-page: 741 year: 2003 ident: ref_130 article-title: Subtype-selective antagonists of lysophosphatidic Acid receptors inhibit platelet activation triggered by the lipid core of atherosclerotic plaques publication-title: Circulation doi: 10.1161/01.CIR.0000083715.37658.C4 – volume: 391 start-page: 79 year: 1998 ident: ref_46 article-title: The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation publication-title: Nature doi: 10.1038/34178 – volume: 451 start-page: 47 year: 2007 ident: ref_83 article-title: Submucosal connective tissue-type mast cells contribute to the production of lysophosphatidic acid (LPA) in the gastrointestinal tract through the secretion of autotaxin (ATX)/lysophospholipase D (lysoPLD) publication-title: Virchows Arch. doi: 10.1007/s00428-007-0425-4 – volume: 2 start-page: e192535 year: 2019 ident: ref_118 article-title: Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2019.2535 – ident: ref_124 doi: 10.1371/journal.pone.0029260 – volume: 265 start-page: 12232 year: 1990 ident: ref_21 article-title: Lysophosphatidic acid, but not phosphatidic acid, is a potent Ca2+-mobilizing stimulus for fibroblasts. Evidence for an extracellular site of action publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)38335-8 – volume: 45 start-page: 209 year: 1982 ident: ref_76 article-title: Blood basophils in lung cancer publication-title: Br. J. Cancer doi: 10.1038/bjc.1982.35 – volume: 80 start-page: 287 year: 2006 ident: ref_88 article-title: IL-6 and IL-8 release is mediated via multiple signaling pathways after stimulating dendritic cells with lysophospholipids publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.1205751 – volume: 173 start-page: 1334 year: 2015 ident: ref_75 article-title: Generalized pruritus in primary sclerosing cholangitis: Implications of histamine release by lysophosphatidic acid publication-title: Br. J. Derm. doi: 10.1111/bjd.13992 – volume: 15 start-page: 797 year: 2006 ident: ref_87 article-title: Lysophosphatidic acid modulates the activation of human monocyte-derived dendritic cells publication-title: Stem. Cells Dev. doi: 10.1089/scd.2006.15.797 – volume: 1 start-page: 245 year: 2013 ident: ref_116 article-title: Lysophosphatidic acid inhibits CD8 T cell activation and control of tumor progression publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-13-0043-T – volume: 273 start-page: 7906 year: 1998 ident: ref_115 article-title: Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.14.7906 – volume: 17 start-page: 861 year: 2016 ident: ref_120 article-title: Modulation of hexadecyl-LPA-mediated activation of mast cells and microglia by a chemical probe for LPA5 publication-title: ChemBioChem doi: 10.1002/cbic.201500559 – volume: 1 start-page: 1223 year: 1995 ident: ref_9 article-title: Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients publication-title: Clin. Cancer Res. – volume: 9 start-page: 415 year: 2008 ident: ref_105 article-title: Autotaxin, an ectoenzyme that produces lysophosphatidic acid, promotes the entry of lymphocytes into secondary lymphoid organs publication-title: Nat. Immunol. doi: 10.1038/ni1573 – volume: 143 start-page: 60 year: 2008 ident: ref_16 article-title: Serum autotaxin measurement in haematological malignancies: A promising marker for follicular lymphoma publication-title: Br. J. Haematol. doi: 10.1111/j.1365-2141.2008.07325.x – volume: 75 start-page: 13 year: 2005 ident: ref_80 article-title: Lysophosphatidic acid induces histamine release from mast cells and skin fragments publication-title: Pharmacology doi: 10.1159/000085784 – volume: 101 start-page: 11779 year: 2004 ident: ref_33 article-title: Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0403259101 – volume: 91 start-page: 1273 year: 2006 ident: ref_86 article-title: The influence of lysophosphatidic acid on the immunophenotypic differentiation of human monocytes into dendritic cells publication-title: Haematologica – volume: 10 start-page: 2155 year: 2019 ident: ref_63 article-title: Neutrophil heterogeneity in cancer: From biology to therapies publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.02155 – volume: 82 start-page: 1193 year: 2007 ident: ref_32 article-title: LPA3 receptor mediates chemotaxis of immature murine dendritic cells to unsaturated lysophosphatidic acid (LPA) publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0407221 – ident: ref_41 doi: 10.1016/j.celrep.2021.110013 – volume: 199 start-page: 775 year: 2004 ident: ref_42 article-title: Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN publication-title: J. Exp. Med. doi: 10.1084/jem.20031591 – volume: 28 start-page: 283 year: 2016 ident: ref_106 article-title: Lysophosphatidic acid receptors LPA4 and LPA6 differentially promote lymphocyte transmigration across high endothelial venules in lymph nodes publication-title: Int. Immunol. doi: 10.1093/intimm/dxv072 – volume: 185 start-page: 4977 year: 2010 ident: ref_98 article-title: CD20+ B cells: The other tumor-infiltrating lymphocytes publication-title: J. Immunol. doi: 10.4049/jimmunol.1001323 – volume: 280 start-page: 35038 year: 2005 ident: ref_125 article-title: Identification of residues responsible for ligand recognition and regioisomeric selectivity of lysophosphatidic acid receptors expressed in mammalian cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M504351200 – volume: 4 start-page: e974374 year: 2015 ident: ref_112 article-title: High endothelial venules are rare in colorectal cancers but accumulate in extra-tumoral areas with disease progression publication-title: Oncoimmunology doi: 10.4161/2162402X.2014.974374 – volume: 292 start-page: 287 year: 2001 ident: ref_114 article-title: Direct quantitative analysis of lysophosphatidic acid molecular species by stable isotope dilution electrospray ionization liquid chromatography-mass spectrometry publication-title: Anal. Biochem. doi: 10.1006/abio.2001.5063 – volume: 279 start-page: 41085 year: 2004 ident: ref_58 article-title: Protein kinase Cdelta mediates lysophosphatidic acid-induced NF-kappaB activation and interleukin-8 secretion in human bronchial epithelial cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M404045200 – volume: 74 start-page: 16 year: 2003 ident: ref_37 article-title: G protein-coupled receptors in natural killer cells publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0103019 – volume: 2017 start-page: 9173090 year: 2017 ident: ref_3 article-title: Autotaxin-lysophosphatidic acid: From inflammation to cancer development publication-title: Mediat. Inflamm. – volume: 52 start-page: 715 year: 2003 ident: ref_95 article-title: Naturally occurring B-cell responses to breast cancer publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-003-0409-4 – volume: 126 start-page: 97 year: 2017 ident: ref_121 article-title: Analgesic effects of novel lysophosphatidic acid receptor 5 antagonist AS2717638 in rodents publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2017.08.032 – volume: 364 start-page: 106 year: 2015 ident: ref_70 article-title: The infiltration and functional regulation of eosinophils induced by TSLP promote the proliferation of cervical cancer cell publication-title: Cancer Lett. doi: 10.1016/j.canlet.2015.04.029 – volume: 11 start-page: 187 year: 1993 ident: ref_72 article-title: Infiltration of eosinophils in Hodgkin’s disease involved lymph nodes predicts prognosis publication-title: Hematol. Oncol. doi: 10.1002/hon.2900110404 – ident: ref_4 doi: 10.3390/cancers10030073 – volume: 44 start-page: 576 year: 2011 ident: ref_15 article-title: Specific increase in serum autotaxin activity in patients with pancreatic cancer publication-title: Clin. Biochem. doi: 10.1016/j.clinbiochem.2011.03.128 – volume: 1 start-page: 829 year: 2012 ident: ref_110 article-title: High endothelial venules (HEVs) in human melanoma lesions: Major gateways for tumor-infiltrating lymphocytes publication-title: Oncoimmunology doi: 10.4161/onci.20492 – volume: 196 start-page: 1575 year: 2002 ident: ref_90 article-title: CD1-mediated gamma/delta T cell maturation of dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.20021515 – volume: 104 start-page: 737 year: 2018 ident: ref_47 article-title: PPAR-gamma in innate and adaptive lung immunity publication-title: J. Leukoc. Biol. doi: 10.1002/JLB.3MR0118-034R – volume: 22 start-page: 5239 year: 2012 ident: ref_119 article-title: Selective non-lipid modulator of LPA5 activity in human platelets publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2012.06.057 – volume: 21 start-page: 687 year: 2015 ident: ref_39 article-title: Immune escape mechanisms as a guide for cancer immunotherapy publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-1860 – volume: 104 start-page: 4080 year: 2004 ident: ref_31 article-title: Lysophosphatidic acid accelerates the development of human mast cells publication-title: Blood doi: 10.1182/blood-2004-03-1166 – volume: 163 start-page: 47 year: 2003 ident: ref_60 article-title: Lysophosphatidic acid prevents renal ischemia-reperfusion injury by inhibition of apoptosis and complement activation publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)63629-2 – volume: 33 start-page: 3623 year: 2019 ident: ref_101 article-title: Autotaxin determines colitis severity in mice and is secreted by B cells in the colon publication-title: FASEB J. doi: 10.1096/fj.201801415RR – ident: ref_14 doi: 10.1371/journal.pone.0161825 – volume: 5 start-page: 24 year: 2020 ident: ref_50 article-title: The Agpat4/LPA axis in colorectal cancer cells regulates antitumor responses via p38/p65 signaling in macrophages publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-020-0117-y – volume: 10 start-page: 114 year: 2009 ident: ref_67 article-title: Role of lysophosphatidic acid receptor LPA2 in the development of allergic airway inflammation in a murine model of asthma publication-title: Respir. Res. doi: 10.1186/1465-9921-10-114 – volume: 13 start-page: 174 year: 2015 ident: ref_107 article-title: Autotaxin and LPA1 and LPA5 receptors exert disparate functions in tumor cells versus the host tissue microenvironment in melanoma invasion and metastasis publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-14-0263 – volume: 136 start-page: 1711 year: 2009 ident: ref_49 article-title: The absence of LPA2 attenuates tumor formation in an experimental model of colitis-associated cancer publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.01.002 – volume: 280 start-page: 719 year: 1998 ident: ref_10 article-title: Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers publication-title: JAMA doi: 10.1001/jama.280.8.719 – volume: 393 start-page: 657 year: 2006 ident: ref_57 article-title: Transcriptional regulation of lysophosphatidic acid-induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial cells publication-title: Biochem. J. doi: 10.1042/BJ20050791 – volume: 91 start-page: 8 year: 2003 ident: ref_59 article-title: Lysophosphatidic acid enhances in vivo infiltration and activation of guinea pig eosinophils and neutrophils via a Rho/Rho-associated protein kinase-mediated pathway publication-title: J. Pharmacol. Sci. doi: 10.1254/jphs.91.8 – volume: 1 start-page: 789 year: 2012 ident: ref_109 article-title: Tumor high endothelial venules (HEVs) predict lymphocyte infiltration and favorable prognosis in breast cancer publication-title: Oncoimmunology doi: 10.4161/onci.19787 – volume: 28 start-page: 2655 year: 2014 ident: ref_19 article-title: Inhibition of autotaxin delays breast tumor growth and lung metastasis in mice publication-title: FASEB J. doi: 10.1096/fj.13-248641 – volume: 37 start-page: 311 year: 2007 ident: ref_68 article-title: Lysophosphatidic acid is detectable in human bronchoalveolar lavage fluids at baseline and increased after segmental allergen challenge publication-title: Clin. Exp. Allergy doi: 10.1111/j.1365-2222.2006.02626.x – volume: 21 start-page: 216 year: 1999 ident: ref_100 article-title: Autotaxin expression in non-small-cell lung cancer publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/ajrcmb.21.2.3667 – volume: 193 start-page: 85 year: 2014 ident: ref_94 article-title: Lysophosphatidic acid receptor 5 inhibits B cell antigen receptor signaling and antibody response publication-title: J. Immunol. doi: 10.4049/jimmunol.1300429 – volume: 9 start-page: 71 year: 2010 ident: ref_13 article-title: Autotaxin expression and its connection with the TNF-alpha-NF-kappaB axis in human hepatocellular carcinoma publication-title: Mol. Cancer doi: 10.1186/1476-4598-9-71 – ident: ref_51 doi: 10.3390/cells9010046 – volume: 284 start-page: 17304 year: 2009 ident: ref_123 article-title: Unique ligand selectivity of the GPR92/LPA5 lysophosphatidate receptor indicates role in human platelet activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.003194 – volume: 100 start-page: 82 year: 2006 ident: ref_81 article-title: Lysophosphatidic acid (LPA) induces plasma exudation and histamine release in mice via LPA receptors publication-title: J. Pharmacol. Sci. doi: 10.1254/jphs.FPJ05030X – volume: 274 start-page: C1065 year: 1998 ident: ref_131 article-title: Growth factor-like phospholipids generated after corneal injury publication-title: Am. J. Physiol. doi: 10.1152/ajpcell.1998.274.4.C1065 – volume: 55 start-page: 1192 year: 2014 ident: ref_6 article-title: LPA receptor signaling: Pharmacology, physiology, and pathophysiology publication-title: J. Lipid Res. doi: 10.1194/jlr.R046458 – ident: ref_1 doi: 10.3390/cancers11101523 – volume: 31 start-page: 915 year: 2007 ident: ref_74 article-title: Clinical significance of a blood eosinophilia in adult T-cell leukemia/lymphoma: A blood eosinophilia is a significant unfavorable prognostic factor publication-title: Leuk. Res. doi: 10.1016/j.leukres.2006.10.017 – volume: 18 start-page: 1037 year: 2008 ident: ref_136 article-title: Discovery of potent LPA2 (EDG4) antagonists as potential anticancer agents publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2007.12.024 – volume: 7 start-page: e1393134 year: 2017 ident: ref_69 article-title: Eosinophils: The unsung heroes in cancer? publication-title: Oncoimmunology doi: 10.1080/2162402X.2017.1393134 – volume: 39 start-page: 421 year: 2010 ident: ref_127 article-title: Phospholipase D2-dependent inhibition of the nuclear hormone receptor PPARγ by cyclic phosphatidic acid publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.07.022 – volume: 130 start-page: 197 year: 2004 ident: ref_113 article-title: The critical micelle concentrations of lysophosphatidic acid and sphingosylphosphorylcholine publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2004.03.001 – volume: 33 start-page: 2083 year: 2003 ident: ref_35 article-title: Lysophosphatidic acid induces human natural killer cell chemotaxis and intracellular calcium mobilization publication-title: Eur. J. Immunol. doi: 10.1002/eji.200323711 – volume: 429 start-page: 303 year: 2001 ident: ref_30 article-title: Human and rat alveolar macrophages express multiple EDG receptors publication-title: Eur. J. Pharm. doi: 10.1016/S0014-2999(01)01329-2 – volume: 372 start-page: 147 year: 2008 ident: ref_36 article-title: Lysophosphatidylglycerol stimulates chemotactic migration in human natural killer cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.05.004 – volume: 17 start-page: 537 year: 2019 ident: ref_40 article-title: Interrelations of sphingolipid and lysophosphatidate signaling with immune system in ovarian cancer publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2019.04.004 – volume: 9 start-page: 2629 year: 2018 ident: ref_53 article-title: Targeting macrophage-recruiting chemokines as a novel therapeutic strategy to prevent the progression of solid tumors publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.02629 – volume: 95 start-page: 314 year: 2004 ident: ref_62 article-title: Lysophosphatidic acid enhances epithelial ovarian carcinoma invasion through the increased expression of interleukin-8 publication-title: Gynecol. Oncol. doi: 10.1016/j.ygyno.2004.08.001 – volume: 3 start-page: 991 year: 2002 ident: ref_38 article-title: Cancer immunoediting: From immunosurveillance to tumor escape publication-title: Nat. Immunol. doi: 10.1038/ni1102-991 – ident: ref_82 doi: 10.1371/journal.pone.0018192 – volume: 1126 start-page: 298 year: 1992 ident: ref_132 article-title: Distribution of alkyl and alkenyl ether-linked phospholipids and platelet-activating factor-like lipid in various species of invertebrates publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2760(92)90244-P – volume: 267 start-page: 2524 year: 1992 ident: ref_7 article-title: Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)45911-X – volume: 115 start-page: S186 year: 2005 ident: ref_79 article-title: Lysophosphatidic acid induces human mast cell activation via an LPA2-mediated pathway publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2004.12.757 – volume: 139 start-page: 33 year: 1999 ident: ref_97 article-title: Computerised counting of tumour infiltrating lymphocytes in 90 breast cancer specimens publication-title: Cancer Lett. doi: 10.1016/S0304-3835(98)00379-6 – volume: 12 start-page: 375 year: 2001 ident: ref_65 article-title: Interleukin-8 and human cancer biology publication-title: Cytokine Growth Factor Rev. doi: 10.1016/S1359-6101(01)00016-8 – volume: 290 start-page: 302 year: 2001 ident: ref_129 article-title: Electrospray ionization mass spectrometry analysis of lysophospholipids in human ascitic fluids: Comparison of the lysophospholipid contents in malignant vs nonmalignant ascitic fluids publication-title: Anal. Biochem. doi: 10.1006/abio.2001.5000 – ident: ref_43 doi: 10.3389/fimmu.2019.01159 – ident: ref_99 doi: 10.1371/journal.pone.0006412 – volume: 9 start-page: 733 year: 2008 ident: ref_91 article-title: Basophils enhance immunological memory responses publication-title: Nat. Immunol. doi: 10.1038/ni.1621 – volume: 34 start-page: 233 year: 2006 ident: ref_61 article-title: Neutrophil sphingosine 1-phosphate and lysophosphatidic acid receptors in pneumonia publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2005-0126OC – volume: 5 start-page: 146 year: 2014 ident: ref_92 article-title: Macrophages in homeostatic immune function publication-title: Front. Physiol. doi: 10.3389/fphys.2014.00146 – volume: 95 start-page: 1207 year: 2000 ident: ref_73 article-title: Tissue eosinophilia correlates strongly with poor prognosis in nodular sclerosing Hodgkin’s disease, allowing for known prognostic factors publication-title: Blood doi: 10.1182/blood.V95.4.1207.004k34_1207_1213 – volume: 29 start-page: 85 year: 2010 ident: ref_93 article-title: Ca2+ signaling induced by sphingosine 1-phosphate and lysophosphatidic acid in mouse B cells publication-title: Mol. Cells doi: 10.1007/s10059-010-0020-4 – volume: 273 start-page: 13461 year: 1998 ident: ref_23 article-title: Identification of a novel growth factor-like lipid, 1-O-cis-alk-1′-enyl-2-lyso-sn-glycero-3-phosphate (alkenyl-GP) that is present in commercial sphingolipid preparations publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.22.13461 – volume: 19 start-page: 369 year: 2019 ident: ref_52 article-title: Macrophages as regulators of tumour immunity and immunotherapy publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-019-0127-6 – volume: 282 start-page: 480 year: 1998 ident: ref_85 article-title: Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking publication-title: Science doi: 10.1126/science.282.5388.480 – volume: 76 start-page: 1792 year: 2016 ident: ref_78 article-title: Basophil recruitment into tumor-draining lymph nodes correlates with Th2 inflammation and reduced survival in pancreatic cancer patients publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-1801-T – volume: 12 start-page: 3237 year: 2011 ident: ref_66 article-title: Mechanism of sphingosine 1-phosphate- and lysophosphatidic acid-induced up-regulation of adhesion molecules and eosinophil chemoattractant in nerve cells publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms12053237 – volume: 30 start-page: 557 year: 2011 ident: ref_8 article-title: Autotaxin and LPA receptor signaling in cancer publication-title: Cancer Metastasis Rev. doi: 10.1007/s10555-011-9319-7 – volume: 365 start-page: 617 year: 2002 ident: ref_135 article-title: Human platelets respond differentially to lysophosphatidic acids having a highly unsaturated fatty acyl group and alkyl ether-linked lysophosphatidic acids publication-title: Biochem. J. doi: 10.1042/bj20020348 – volume: 169 start-page: 4129 year: 2002 ident: ref_34 article-title: The influence of lysophosphatidic acid on the functions of human dendritic cells publication-title: J. Immunol. doi: 10.4049/jimmunol.169.8.4129 – ident: ref_48 doi: 10.3390/ijms20092102 – volume: 163 start-page: 441 year: 1995 ident: ref_22 article-title: Effect of lysophospholipids on signaling in the human Jurkat T cell line publication-title: J. Cell Physiol. doi: 10.1002/jcp.1041630303 – volume: 287 start-page: 3081 year: 2002 ident: ref_11 article-title: Plasma lysophosphatidic acid concentration and ovarian cancer publication-title: JAMA doi: 10.1001/jama.287.23.3081 – volume: 318 start-page: 619 year: 2006 ident: ref_126 article-title: Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.105.098848 – volume: 14 start-page: 2387 year: 2000 ident: ref_102 article-title: Altered expression and functional profile of lysophosphatidic acid receptors in mitogen-activated human blood T lymphocytes publication-title: FASEB J. doi: 10.1096/fj.00-0492fje – volume: 78 start-page: 510 year: 2007 ident: ref_26 article-title: Lysophosphatidic acid protection against apoptosis in the human pre-B-cell line Nalm-6 publication-title: Eur. J. Haematol. doi: 10.1111/j.1600-0609.2007.00849.x – volume: 77 start-page: 291 year: 2017 ident: ref_77 article-title: Basophils promote tumor rejection via chemotaxis and infiltration of CD8+ T cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-0993 – volume: 36 start-page: 413 year: 2001 ident: ref_134 article-title: Hen egg yolk and white contain high amounts of lysophosphatidic acids, growth factor-like lipids: Distinct molecular species compositions publication-title: Lipids doi: 10.1007/s11745-001-0737-1 – volume: 21 start-page: 667 year: 2009 ident: ref_56 article-title: Lysophosphatidic acid inhibits the cytotoxic activity of NK cells: Involvement of Gs protein-mediated signaling publication-title: Int. Immunol. doi: 10.1093/intimm/dxp035 – volume: 12 start-page: 1463 year: 1992 ident: ref_96 article-title: Phenotypic analysis of tumor-infiltrating lymphocytes from human breast cancer publication-title: Anticancer Res. – volume: 4 start-page: e1008791 year: 2015 ident: ref_111 article-title: Understanding high endothelial venules: Lessons for cancer immunology publication-title: Oncoimmunology doi: 10.1080/2162402X.2015.1008791 – volume: 8 start-page: 47 year: 2015 ident: ref_55 article-title: Natural killer cells: In health and disease publication-title: Hematol. Oncol. Stem Cell doi: 10.1016/j.hemonc.2014.11.006 – volume: 71 start-page: 183 year: 2019 ident: ref_2 article-title: Regulation of tumor cell—Microenvironment interaction by the autotaxin-lysophosphatidic acid receptor axis publication-title: Adv. Biol. Regul. doi: 10.1016/j.jbior.2018.09.008 – volume: 11 start-page: 185 year: 2008 ident: ref_27 article-title: Hyperactive intracellular calcium dynamics in B lymphoblasts from patients with bipolar I disorder publication-title: Int. J. Neuropsychopharmacol. doi: 10.1017/S1461145707007973 – volume: 27 start-page: 904 year: 1996 ident: ref_71 article-title: Tumor-associated eosinophilic infiltrate of cervical cancer is indicative for a less effective immune response publication-title: Hum. Pathol. doi: 10.1016/S0046-8177(96)90216-6 – volume: 9 start-page: 367 year: 2016 ident: ref_18 article-title: Mammary adipose tissue-derived lysophospholipids promote estrogen receptor-negative mammary epithelial cell proliferation publication-title: Cancer Prev. Res. doi: 10.1158/1940-6207.CAPR-15-0107 – volume: 9 start-page: 1146 year: 2019 ident: ref_64 article-title: Tumor associated neutrophils. Their role in tumorigenesis, metastasis, prognosis and therapy publication-title: Front. Oncol. doi: 10.3389/fonc.2019.01146 – volume: 1440 start-page: 194 year: 1999 ident: ref_133 article-title: Occurrence of lysophosphatidic acid and its alkyl ether-linked analog in rat brain and comparison of their biological activities toward cultured neural cells publication-title: Biochim. Biophys. Acta doi: 10.1016/S1388-1981(99)00127-4 – volume: 8 start-page: 271 year: 1994 ident: ref_29 article-title: Effect of lysophosphatidic acid on motility, polarisation and metabolic burst of human neutrophils publication-title: FEMS Immunol. Med. Microbiol. doi: 10.1111/j.1574-695X.1994.tb00452.x – volume: 188 start-page: 3784 year: 2012 ident: ref_89 article-title: Lpa2 is a negative regulator of both dendritic cell activation and murine models of allergic lung inflammation publication-title: J. Immunol. doi: 10.4049/jimmunol.1102956 – volume: 29 start-page: 313 year: 2014 ident: ref_5 article-title: Lysophosphatidic acid receptors in cancer pathobiology publication-title: Histol. Histopathol. – volume: 11 start-page: 3817 year: 2018 ident: ref_54 article-title: Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition publication-title: Onco Targets Ther. doi: 10.2147/OTT.S168317 – volume: 166 start-page: 2317 year: 2001 ident: ref_104 article-title: Lysophosphatidic acid receptor-selective effects on Jurkat T cell migration through a Matrigel model basement membrane publication-title: J. Immunol. doi: 10.4049/jimmunol.166.4.2317 – volume: 129 start-page: 1177 year: 2017 ident: ref_44 article-title: Lysophosphatidic acid converts monocytes into macrophages in both mice and humans publication-title: Blood doi: 10.1182/blood-2016-10-743757 – volume: 71 start-page: 5678 year: 2011 ident: ref_108 article-title: Human solid tumors contain high endothelial venules: Association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-0431 – volume: 391 start-page: 82 year: 1998 ident: ref_45 article-title: PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines publication-title: Nature doi: 10.1038/34184 – volume: 13 start-page: 185 year: 2019 ident: ref_12 article-title: Cell type-selective pathways and clinical associations of lysophosphatidic acid biosynthesis and signaling in the ovarian cancer microenvironment publication-title: Mol. Oncol. doi: 10.1002/1878-0261.12396 – volume: 162 start-page: 2049 year: 1999 ident: ref_103 article-title: Lysophosphatidic acid and sphingosine 1-phosphate protection of T cells from apoptosis in association with suppression of Bax publication-title: J. Immunol. doi: 10.4049/jimmunol.162.4.2049 – volume: 281 start-page: 3398 year: 2006 ident: ref_128 article-title: Different residues mediate recognition of 1-O-oleyllysophosphatidic acid and rosiglitazone in the ligand binding domain of peroxisome proliferator-activated receptor gamma publication-title: J. Biol. Chem. doi: 10.1074/jbc.M510843200 – volume: 274 start-page: C1573 year: 1998 ident: ref_25 article-title: Growth factor-like action of lysophosphatidic acid on human B lymphoblasts publication-title: Am. J. Physiol. doi: 10.1152/ajpcell.1998.274.6.C1573 – volume: 31 start-page: 4064 year: 2017 ident: ref_17 article-title: Implications for breast cancer treatment from increased autotaxin production in adipose tissue after radiotherapy publication-title: FASEB J. doi: 10.1096/fj.201700159R – volume: 164 start-page: 4996 year: 2000 ident: ref_24 article-title: Cutting edge: Differential constitutive expression of functional receptors for lysophosphatidic acid by human blood lymphocytes publication-title: J. Immunol. doi: 10.4049/jimmunol.164.10.4996 – volume: 29 start-page: 3990 year: 2015 ident: ref_20 article-title: Tumor-induced inflammation in mammary adipose tissue stimulates a vicious cycle of autotaxin expression and breast cancer progression publication-title: FASEB J. doi: 10.1096/fj.15-274480 – volume: 19 start-page: 415 year: 2008 ident: ref_122 article-title: Lysophosphatidic acid-induced platelet shape change revealed through LPA1–5 receptor-selective probes and albumin publication-title: Platelets doi: 10.1080/09537100802220468 – volume: 172 start-page: 4480 year: 2004 ident: ref_28 article-title: Lysophosphatidic acid induces chemotaxis, oxygen radical production, CD11b up-regulation, Ca2+ mobilization, and actin reorganization in human eosinophils via pertussis toxin-sensitive G proteins publication-title: J. Immunol. doi: 10.4049/jimmunol.172.7.4480 |
SSID | ssj0000331767 |
Score | 2.3858094 |
SecondaryResourceType | review_article |
Snippet | The tumor microenvironment (TME) may be best conceptualized as an ecosystem comprised of cancer cells interacting with a multitude of stromal components such... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1202 |
SubjectTerms | Adipocytes Angiogenesis Antigens Cancer Cytokines Cytotoxicity Enzymes Extracellular matrix Fibroblasts Granulocytes Immune system Immunomodulation Investigations Kinases Lymphocytes Lysophosphatidic acid Metastases Metastasis Neutrophils Ovarian cancer Peptides Proteins Review T cell receptors Tumors |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED50A_FF_G11SgUffKnaNE27J5miTHFDxga-lTZN2UDbuXUP---9a7PqJvqcS1vu0rv7csl3ABe27anY58oSSoXUwsyzQvR6lkD7Rw5TCFnoonCnK9oD_vzmvukNt6k-VrnwiYWjjjNJe-TXxBvn2wIzhNvxp0Vdo6i6qltorEMdXbDv16B-99B97VW7LDcOxkfhlZw-DuL7a0nKnExthquR6c2UKhz9yjFXj0r-iD2P27Clk0azVVp5B9ZUugsbHV0W3wO3V3aURx2bWWL2Zx_ZxHwqbn7kczOamy9z6laQTcdDFMJZZkuO4n0YPD7079uW7odgSYQVOfoCJ3IjiQAjRJzDXMZFJIsyCueMJ6JpO4JuRsecIlMSJYlQtmJJ2BR24mNcPoBamqXqCEwhm0p4sXQTKfDZ3HfRmIK4ziJlO5IZcLVQSyA1WTj1rHgPEDSQHoMVPRpwWU0YlzwZf4s2FnoO9A8zDb7Na8B5NYxLneoXYaqyWSHDCP5xz4DD0izVuxxGiZXXNMBbMlglQDTayyPpaFjQaXuMWL-c4_8_6wQ2GUHtgri1AbV8MlOnmI_k0ZledF927eBZ priority: 102 providerName: ProQuest |
Title | Regulation of Tumor Immunity by Lysophosphatidic Acid |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32397679 https://www.proquest.com/docview/2403816085 https://www.proquest.com/docview/2402441547 https://pubmed.ncbi.nlm.nih.gov/PMC7281403 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEB20gngRv43WEsGDlyi72ey2B5Eq1iq2iFjoLSTbDS3UpPYD7L93JkmrrR_nzCbhzWZnHpt9D-CMMWU6ZWEcaUxAFmbKCXDVcyTmP3S5QcpCB4UbTVlvice21_6yA8oBHP1K7chPqjXsX3y8T6_xg78ixomU_VITPsMR4zjBOAlLrmFZUmRn0Mh7_XRZdrFUSpXJ-_w2brEy_Wg3l_-a_FaGaluwmfePdjVL-DasmHgH1hv5DvkueC-ZuTzCbSeR_Tp5S4b2Q3oIZDy1w6n9NCXjgmQ06GIQjrKrutfZg1bt7vW27uTWCI5GhjHGZcENvVAj1wiQ8nCPCxnqdEdFCC4iWWGupEPSHUFFKgqjSBpmeBRUJIvKWKL3oRAnsTkEW-qKkaqjvUhLvLcoe5hXSbJnoWGu5hZczGDxda4bTvYVfR_5A-HoL-Fowfl8wCCTzPg7tDjD2Z-l3ieFwDKT2AtacDq_jLOetjKC2CSTNIYTExTKgoMsLfNnuZx6LFWxQC0kbB5AitqLV-JeN1XWVpwEwNyj_1_rGDY4se5Uw7UIhfFwYk6wNRmHJVi7uWs-v5Rg9b7NSukE_ATzUuVP |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6hRYJeEFAooVBcCSQuKcR2nORQVZSHdmF3hdAicUsTxxFIkGz3IbR_qr-xM3mVh-iNc8ZJNDMez3js7wPYdRzPJL40tjImIgozz44w6tkK7R8LbrBkoYvCvb5qX8vzG_dmDv7Ud2HoWGUdE4tAneSa9sgPCDfOdxRmCD-Gv21ijaLuak2hUbrFhZk9Ysk2_t45QfvucX52Ojhu2xWrgK0xOZ_gjBKxG2tM0yOsFrjLpYp10YyQkstUBY5QdL84kRTf0zhNlXEMT6NAOanvE0sEhvx5iVK8BfM_T_uXV82uzqHA9Vh5JYaQEMHhgSbjjcYOR-_n1eZNs_y9ymlfHs18stadLcNSlaSyo9KrVmDOZKuw0Kva8B_BvSoZ7NGmLE_ZYPqQj1inuGkymbF4xrozYkfIx8NbFMJR7EjfJWtw_S6aWodWlmdmA5jSgVFeot1UK3y39F10HkXYarFxhOYWfKvVEuoKnJw4Mu5DLFJIj-ELPVqw3wwYlrgcb4tu1XoOqwk6Dv-5kwVfm8c4tahfEmUmnxYynMpN6VnwqTRL8y3BKZHzAgu8ZwZrBAi2-_mT7O62gO_2OKGMic3__9YOLLYHvW7Y7fQvPsMHTmV-ARq7Ba3JaGq2MReaxF8qB2Tw6719_i_d9RqV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9wwEB6hRUJ9qegdjuJKrdSXdInt2MkDqrhWbIEVQiDxliaOLZAg2e6hav9af11nclGo2jeeM06iuTzj8XwD8DEItM0jaX1lbUojzLSfotfzFco_E9xiykKNwqcjdXQpv12FV0vwq-2FoWuVrU-sHHVeGjoj7xNuXBQojBD6rrkWcXYw-Dr-4dMEKaq0tuM0ahU5toufmL5Nd4YHKOtPnA8OL_aP_GbCgG8wUJ-hdYkszAyG7ClmDjzkUmWmKkxIyaVTcSAU9Rrnkny9y5xTNrDcpbEKXBTRxAh0_8uasqIeLO8djs7OuxOebYF7s9I1npAQ8XbfkCAn04CjJfDmIKfbCv-Kbx9f0_xj3xuswvMmYGW7tYa9gCVbvISV06Yk_wrC83qaPcqXlY5dzO_KCRtWXSezBcsW7GRBkxLK6fgaiXAV2zU3-Wu4fBJOvYFeURb2HTBlYqt0bkJnFL5bRiEqkiKctcwGwnAPvrRsSUwDVE7zMm4TTFiIj8kjPnrwuVswrjE6_k260fI5aYx1mtyrlgcfusdoZlQ7SQtbzisaTqmn1B68rcXSfUtwCup07IF-ILCOgCC8Hz4pbq4rKG_NCXFMrP3_t7ZgBXU9ORmOjtfhGaeMv8KP3YDebDK3mxgWzbL3jf4x-P7UKv8b6Qceyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Tumor+Immunity+by+Lysophosphatidic+Acid&rft.jtitle=Cancers&rft.au=Sue+Chin+Lee&rft.au=Dacheux%2C+M%C3%A9lanie+A&rft.au=Norman%2C+Derek+D&rft.au=Bal%C3%A1zs%2C+Louisa&rft.date=2020-05-10&rft.pub=MDPI+AG&rft.eissn=2072-6694&rft.volume=12&rft.issue=5&rft.spage=1202&rft_id=info:doi/10.3390%2Fcancers12051202&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon |