Regulation of Tumor Immunity by Lysophosphatidic Acid

The tumor microenvironment (TME) may be best conceptualized as an ecosystem comprised of cancer cells interacting with a multitude of stromal components such as the extracellular matrix (ECM), blood and lymphatic networks, fibroblasts, adipocytes, and cells of the immune system. At the center of thi...

Full description

Saved in:
Bibliographic Details
Published inCancers Vol. 12; no. 5; p. 1202
Main Authors Lee, Sue Chin, Dacheux, Mélanie A., Norman, Derek D., Balázs, Louisa, Torres, Raul M., Augelli-Szafran, Corinne E., Tigyi, Gábor J.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.05.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The tumor microenvironment (TME) may be best conceptualized as an ecosystem comprised of cancer cells interacting with a multitude of stromal components such as the extracellular matrix (ECM), blood and lymphatic networks, fibroblasts, adipocytes, and cells of the immune system. At the center of this crosstalk between cancer cells and their TME is the bioactive lipid lysophosphatidic acid (LPA). High levels of LPA and the enzyme generating it, termed autotaxin (ATX), are present in many cancers. It is also well documented that LPA drives tumor progression by promoting angiogenesis, proliferation, survival, invasion and metastasis. One of the hallmarks of cancer is the ability to modulate and escape immune detection and eradication. Despite the profound role of LPA in regulating immune functions and inflammation, its role in the context of tumor immunity has not received much attention until recently where emerging studies highlight that this signaling axis may be a means that cancer cells adopt to evade immune detection and eradication. The present review aims to look at the immunomodulatory actions of LPA in baseline immunity to provide a broad understanding of the subject with a special emphasis on LPA and cancer immunity, highlighting the latest progress in this area of research.
AbstractList The tumor microenvironment (TME) may be best conceptualized as an ecosystem comprised of cancer cells interacting with a multitude of stromal components such as the extracellular matrix (ECM), blood and lymphatic networks, fibroblasts, adipocytes, and cells of the immune system. At the center of this crosstalk between cancer cells and their TME is the bioactive lipid lysophosphatidic acid (LPA). High levels of LPA and the enzyme generating it, termed autotaxin (ATX), are present in many cancers. It is also well documented that LPA drives tumor progression by promoting angiogenesis, proliferation, survival, invasion and metastasis. One of the hallmarks of cancer is the ability to modulate and escape immune detection and eradication. Despite the profound role of LPA in regulating immune functions and inflammation, its role in the context of tumor immunity has not received much attention until recently where emerging studies highlight that this signaling axis may be a means that cancer cells adopt to evade immune detection and eradication. The present review aims to look at the immunomodulatory actions of LPA in baseline immunity to provide a broad understanding of the subject with a special emphasis on LPA and cancer immunity, highlighting the latest progress in this area of research.
The tumor microenvironment (TME) may be best conceptualized as an ecosystem comprised of cancer cells interacting with a multitude of stromal components such as the extracellular matrix (ECM), blood and lymphatic networks, fibroblasts, adipocytes, and cells of the immune system. At the center of this crosstalk between cancer cells and their TME is the bioactive lipid lysophosphatidic acid (LPA). High levels of LPA and the enzyme generating it, termed autotaxin (ATX), are present in many cancers. It is also well documented that LPA drives tumor progression by promoting angiogenesis, proliferation, survival, invasion and metastasis. One of the hallmarks of cancer is the ability to modulate and escape immune detection and eradication. Despite the profound role of LPA in regulating immune functions and inflammation, its role in the context of tumor immunity has not received much attention until recently where emerging studies highlight that this signaling axis may be a means that cancer cells adopt to evade immune detection and eradication. The present review aims to look at the immunomodulatory actions of LPA in baseline immunity to provide a broad understanding of the subject with a special emphasis on LPA and cancer immunity, highlighting the latest progress in this area of research.The tumor microenvironment (TME) may be best conceptualized as an ecosystem comprised of cancer cells interacting with a multitude of stromal components such as the extracellular matrix (ECM), blood and lymphatic networks, fibroblasts, adipocytes, and cells of the immune system. At the center of this crosstalk between cancer cells and their TME is the bioactive lipid lysophosphatidic acid (LPA). High levels of LPA and the enzyme generating it, termed autotaxin (ATX), are present in many cancers. It is also well documented that LPA drives tumor progression by promoting angiogenesis, proliferation, survival, invasion and metastasis. One of the hallmarks of cancer is the ability to modulate and escape immune detection and eradication. Despite the profound role of LPA in regulating immune functions and inflammation, its role in the context of tumor immunity has not received much attention until recently where emerging studies highlight that this signaling axis may be a means that cancer cells adopt to evade immune detection and eradication. The present review aims to look at the immunomodulatory actions of LPA in baseline immunity to provide a broad understanding of the subject with a special emphasis on LPA and cancer immunity, highlighting the latest progress in this area of research.
Author Norman, Derek D.
Dacheux, Mélanie A.
Balázs, Louisa
Augelli-Szafran, Corinne E.
Tigyi, Gábor J.
Torres, Raul M.
Lee, Sue Chin
AuthorAffiliation 3 Department of Immunology & Microbiology, University of Colorado School of Medicine, Denver, CO 80045, USA; raul.torres@cuanschutz.edu
1 Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; slee84@uthsc.edu (S.C.L.); mdacheux@uthsc.edu (M.A.D.); dnorman7@uthsc.edu (D.D.N.)
4 Department of Chemistry, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA; caugelli-szafran@southernresearch.org
2 Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; cziczam@comcast.net
AuthorAffiliation_xml – name: 1 Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; slee84@uthsc.edu (S.C.L.); mdacheux@uthsc.edu (M.A.D.); dnorman7@uthsc.edu (D.D.N.)
– name: 2 Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; cziczam@comcast.net
– name: 3 Department of Immunology & Microbiology, University of Colorado School of Medicine, Denver, CO 80045, USA; raul.torres@cuanschutz.edu
– name: 4 Department of Chemistry, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA; caugelli-szafran@southernresearch.org
Author_xml – sequence: 1
  givenname: Sue Chin
  surname: Lee
  fullname: Lee, Sue Chin
– sequence: 2
  givenname: Mélanie A.
  surname: Dacheux
  fullname: Dacheux, Mélanie A.
– sequence: 3
  givenname: Derek D.
  surname: Norman
  fullname: Norman, Derek D.
– sequence: 4
  givenname: Louisa
  surname: Balázs
  fullname: Balázs, Louisa
– sequence: 5
  givenname: Raul M.
  surname: Torres
  fullname: Torres, Raul M.
– sequence: 6
  givenname: Corinne E.
  surname: Augelli-Szafran
  fullname: Augelli-Szafran, Corinne E.
– sequence: 7
  givenname: Gábor J.
  orcidid: 0000-0001-5371-171X
  surname: Tigyi
  fullname: Tigyi, Gábor J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32397679$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLAzEUhYMoPmrX7mTAjZtq3pnZCCK-oCBIXYdMmrSRmaQmM0L_vWmrRQsGQi7c79xHzgnY98EbAM4QvCKkgtdaeW1iQhiyfPEeOMZQ4BHnFd3_FR-BYUrvMB9CkODiEBwRTKocVceAvZpZ36jOBV8EW0z6NsTiuW1777plUS-L8TKFxTykxTxDU6eLW-2mp-DAqiaZ4fc7AG8P95O7p9H45fH57nY80rQU3YgIUrNaC0YULgVmmPJao9y3pBRTyytEOESMTylFBNraWm6QwVZVHNmyZGQAbjZ1F33dmqk2vouqkYvoWhWXMign_2a8m8tZ-JQCl4jmfQfg8rtADB-9SZ1sXdKmaZQ3oU8SU4hzc0ZFRi920PfQR5_XW1GkRByuJzr_PdF2lJ8fzcD1BtAxpBSN3SIIypVtcse2rGA7Cu26tSN5Jdf8q_sCZHSbfg
CitedBy_id crossref_primary_10_1007_s11626_022_00660_3
crossref_primary_10_3390_cells11030349
crossref_primary_10_37349_ent_2024_00088
crossref_primary_10_1042_EBC20190088
crossref_primary_10_3389_fimmu_2022_768606
crossref_primary_10_1016_j_fsi_2024_109904
crossref_primary_10_1080_07853890_2022_2143554
crossref_primary_10_1158_2159_8290_CD_21_1181
crossref_primary_10_3390_ijms23084163
crossref_primary_10_1016_j_plipres_2021_101112
crossref_primary_10_3390_ijms21165938
crossref_primary_10_7759_cureus_23553
crossref_primary_10_1016_j_semcancer_2024_12_002
crossref_primary_10_4251_wjgo_v14_i8_1388
crossref_primary_10_3389_fimmu_2024_1327565
crossref_primary_10_58803_jlar_v2i5_26
crossref_primary_10_3389_fcimb_2021_725284
crossref_primary_10_1039_D2FO01221A
crossref_primary_10_1038_s41401_024_01373_x
crossref_primary_10_1002_bmc_5301
crossref_primary_10_3390_cancers12123791
crossref_primary_10_62347_KQNW1871
crossref_primary_10_1016_j_intimp_2024_112319
crossref_primary_10_1002_cam4_4699
crossref_primary_10_3389_fimmu_2021_687397
crossref_primary_10_3390_molecules27175487
crossref_primary_10_3389_fimmu_2020_606164
crossref_primary_10_1111_imr_13208
crossref_primary_10_1146_annurev_pathol_050420_025929
crossref_primary_10_1038_s41467_023_38933_4
crossref_primary_10_3389_fonc_2022_917471
crossref_primary_10_3390_cancers14061586
crossref_primary_10_1007_s12017_020_08630_2
Cites_doi 10.3389/fimmu.2017.00424
10.1161/01.CIR.0000083715.37658.C4
10.1038/34178
10.1007/s00428-007-0425-4
10.1001/jamanetworkopen.2019.2535
10.1371/journal.pone.0029260
10.1016/S0021-9258(19)38335-8
10.1038/bjc.1982.35
10.1189/jlb.1205751
10.1111/bjd.13992
10.1089/scd.2006.15.797
10.1158/2326-6066.CIR-13-0043-T
10.1074/jbc.273.14.7906
10.1002/cbic.201500559
10.1038/ni1573
10.1111/j.1365-2141.2008.07325.x
10.1159/000085784
10.1073/pnas.0403259101
10.3389/fimmu.2019.02155
10.1189/jlb.0407221
10.1016/j.celrep.2021.110013
10.1084/jem.20031591
10.1093/intimm/dxv072
10.4049/jimmunol.1001323
10.1074/jbc.M504351200
10.4161/2162402X.2014.974374
10.1006/abio.2001.5063
10.1074/jbc.M404045200
10.1189/jlb.0103019
10.1007/s00262-003-0409-4
10.1016/j.neuropharm.2017.08.032
10.1016/j.canlet.2015.04.029
10.1002/hon.2900110404
10.3390/cancers10030073
10.1016/j.clinbiochem.2011.03.128
10.4161/onci.20492
10.1084/jem.20021515
10.1002/JLB.3MR0118-034R
10.1016/j.bmcl.2012.06.057
10.1158/1078-0432.CCR-14-1860
10.1182/blood-2004-03-1166
10.1016/S0002-9440(10)63629-2
10.1096/fj.201801415RR
10.1371/journal.pone.0161825
10.1038/s41392-020-0117-y
10.1186/1465-9921-10-114
10.1158/1541-7786.MCR-14-0263
10.1053/j.gastro.2009.01.002
10.1001/jama.280.8.719
10.1042/BJ20050791
10.1254/jphs.91.8
10.4161/onci.19787
10.1096/fj.13-248641
10.1111/j.1365-2222.2006.02626.x
10.1165/ajrcmb.21.2.3667
10.4049/jimmunol.1300429
10.1186/1476-4598-9-71
10.3390/cells9010046
10.1074/jbc.M109.003194
10.1254/jphs.FPJ05030X
10.1152/ajpcell.1998.274.4.C1065
10.1194/jlr.R046458
10.3390/cancers11101523
10.1016/j.leukres.2006.10.017
10.1016/j.bmcl.2007.12.024
10.1080/2162402X.2017.1393134
10.1016/j.molcel.2010.07.022
10.1016/j.chemphyslip.2004.03.001
10.1002/eji.200323711
10.1016/S0014-2999(01)01329-2
10.1016/j.bbrc.2008.05.004
10.1016/j.csbj.2019.04.004
10.3389/fimmu.2018.02629
10.1016/j.ygyno.2004.08.001
10.1038/ni1102-991
10.1371/journal.pone.0018192
10.1016/0005-2760(92)90244-P
10.1016/S0021-9258(18)45911-X
10.1016/j.jaci.2004.12.757
10.1016/S0304-3835(98)00379-6
10.1016/S1359-6101(01)00016-8
10.1006/abio.2001.5000
10.3389/fimmu.2019.01159
10.1371/journal.pone.0006412
10.1038/ni.1621
10.1165/rcmb.2005-0126OC
10.3389/fphys.2014.00146
10.1182/blood.V95.4.1207.004k34_1207_1213
10.1007/s10059-010-0020-4
10.1074/jbc.273.22.13461
10.1038/s41577-019-0127-6
10.1126/science.282.5388.480
10.1158/0008-5472.CAN-15-1801-T
10.3390/ijms12053237
10.1007/s10555-011-9319-7
10.1042/bj20020348
10.4049/jimmunol.169.8.4129
10.3390/ijms20092102
10.1002/jcp.1041630303
10.1001/jama.287.23.3081
10.1124/jpet.105.098848
10.1096/fj.00-0492fje
10.1111/j.1600-0609.2007.00849.x
10.1158/0008-5472.CAN-16-0993
10.1007/s11745-001-0737-1
10.1093/intimm/dxp035
10.1080/2162402X.2015.1008791
10.1016/j.hemonc.2014.11.006
10.1016/j.jbior.2018.09.008
10.1017/S1461145707007973
10.1016/S0046-8177(96)90216-6
10.1158/1940-6207.CAPR-15-0107
10.3389/fonc.2019.01146
10.1016/S1388-1981(99)00127-4
10.1111/j.1574-695X.1994.tb00452.x
10.4049/jimmunol.1102956
10.2147/OTT.S168317
10.4049/jimmunol.166.4.2317
10.1182/blood-2016-10-743757
10.1158/0008-5472.CAN-11-0431
10.1038/34184
10.1002/1878-0261.12396
10.4049/jimmunol.162.4.2049
10.1074/jbc.M510843200
10.1152/ajpcell.1998.274.6.C1573
10.1096/fj.201700159R
10.4049/jimmunol.164.10.4996
10.1096/fj.15-274480
10.1080/09537100802220468
10.4049/jimmunol.172.7.4480
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
3V.
7T5
7TO
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
H94
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/cancers12051202
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection (ProQuest)
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
Biological Sciences
Research Library
ProQuest Biological Science
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2072-6694
ExternalDocumentID PMC7281403
32397679
10_3390_cancers12051202
Genre Journal Article
Review
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA092160
– fundername: Harriett Van Vleet Endowment for Basic Oncology Research
  grantid: NA
– fundername: NCI NIH HHS
  grantid: CA-092160
GroupedDBID ---
53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
ESX
GNUQQ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
TUS
NPM
3V.
7T5
7TO
7XB
8FK
H94
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c487t-373b5bc753a28725246bc167984424f691360156d44130fbff6e1e2fa961f8853
IEDL.DBID M48
ISSN 2072-6694
IngestDate Thu Aug 21 18:16:07 EDT 2025
Fri Jul 11 05:37:44 EDT 2025
Fri Jul 25 11:56:17 EDT 2025
Thu Apr 03 07:04:35 EDT 2025
Tue Jul 01 01:51:55 EDT 2025
Thu Apr 24 23:06:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords lysophosphatidic acid
LPAR5
autotaxin
immune checkpoint
immune cells
immunosuppression
tumor microenvironment
LPA
cytotoxic T cells
immunosurveillance
immunoediting
tumor-associated macrophages
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-373b5bc753a28725246bc167984424f691360156d44130fbff6e1e2fa961f8853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5371-171X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cancers12051202
PMID 32397679
PQID 2403816085
PQPubID 2032421
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7281403
proquest_miscellaneous_2402441547
proquest_journals_2403816085
pubmed_primary_32397679
crossref_primary_10_3390_cancers12051202
crossref_citationtrail_10_3390_cancers12051202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200510
PublicationDateYYYYMMDD 2020-05-10
PublicationDate_xml – month: 5
  year: 2020
  text: 20200510
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Cancers
PublicationTitleAlternate Cancers (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kozian (ref_119) 2012; 22
Hashimoto (ref_75) 2015; 173
Hashimoto (ref_81) 2006; 100
ref_14
Goetzl (ref_103) 1999; 162
Chen (ref_87) 2006; 15
ref_99
Rother (ref_130) 2003; 108
Tokumura (ref_135) 2002; 365
Martino (ref_86) 2006; 91
Liliom (ref_23) 1998; 273
Martinet (ref_109) 2012; 1
Hogendoorn (ref_71) 1996; 27
Jin (ref_35) 2003; 33
Saatian (ref_57) 2006; 393
Brunetto (ref_78) 2016; 76
Xiao (ref_129) 2001; 290
Beck (ref_136) 2008; 18
Meng (ref_17) 2017; 31
Ray (ref_44) 2017; 129
Yang (ref_100) 1999; 21
Houben (ref_8) 2011; 30
ref_124
Nobs (ref_47) 2018; 104
Satoh (ref_26) 2007; 78
Hashimoto (ref_80) 2005; 75
DeNardo (ref_52) 2019; 19
Rosskopf (ref_25) 1998; 274
Liliom (ref_131) 1998; 274
Kotarsky (ref_126) 2006; 318
Rahaman (ref_61) 2006; 34
Murai (ref_121) 2017; 126
Zhang (ref_50) 2020; 5
Hata (ref_106) 2016; 28
Xie (ref_65) 2001; 12
Varricchi (ref_69) 2017; 7
Jo (ref_36) 2008; 372
Tsukahara (ref_128) 2006; 281
Randolph (ref_85) 1998; 282
An (ref_115) 1998; 273
ref_82
Ruscher (ref_88) 2006; 80
Xu (ref_9) 1995; 1
Chin (ref_96) 1992; 12
Idzko (ref_28) 2004; 172
Tigyi (ref_2) 2019; 71
Meshcheryakova (ref_40) 2019; 17
Sugiura (ref_132) 1992; 1126
Lee (ref_107) 2015; 13
Matthijsen (ref_60) 2003; 163
Ager (ref_111) 2015; 4
Costello (ref_66) 2011; 12
Masuda (ref_16) 2008; 143
Jantsch (ref_92) 2014; 5
Marsigliante (ref_97) 1999; 139
Lin (ref_101) 2019; 33
Argyle (ref_53) 2018; 9
So (ref_62) 2004; 95
Yung (ref_6) 2014; 55
Williams (ref_123) 2009; 284
Hornuss (ref_30) 2001; 429
Dunn (ref_38) 2002; 3
Baker (ref_11) 2002; 287
Nakai (ref_15) 2011; 44
Zheng (ref_104) 2001; 166
Seth (ref_73) 2000; 95
ref_51
Georas (ref_68) 2007; 37
Reinartz (ref_12) 2019; 13
Benesch (ref_20) 2015; 29
Llodra (ref_33) 2004; 101
Leslie (ref_90) 2002; 196
Bagga (ref_31) 2004; 104
Baker (ref_114) 2001; 292
Martinet (ref_110) 2012; 1
Nakane (ref_134) 2001; 36
Fujiwara (ref_125) 2005; 280
Chan (ref_32) 2007; 82
Stracke (ref_7) 1992; 267
Xu (ref_10) 1998; 280
Denzel (ref_91) 2008; 9
Lin (ref_49) 2009; 136
Maghazachi (ref_37) 2003; 74
Masucci (ref_64) 2019; 9
Lin (ref_79) 2005; 115
Nelson (ref_98) 2010; 185
Martinet (ref_108) 2011; 71
Cummings (ref_58) 2004; 279
Panther (ref_34) 2002; 169
Nam (ref_93) 2010; 29
Ahonen (ref_42) 2004; 199
Utsunomiya (ref_74) 2007; 31
Sektioglu (ref_77) 2017; 77
ref_117
Kanda (ref_105) 2008; 9
Anthony (ref_76) 1982; 45
Lecot (ref_63) 2019; 10
Goetzl (ref_24) 2000; 164
Mori (ref_83) 2007; 451
Lagadari (ref_56) 2009; 21
Chettibi (ref_29) 1994; 8
Zheng (ref_102) 2000; 14
Oda (ref_116) 2013; 1
Wu (ref_13) 2010; 9
Enblad (ref_72) 1993; 11
Emo (ref_89) 2012; 188
Bento (ref_112) 2015; 4
Li (ref_113) 2004; 130
Jiang (ref_45) 1998; 391
Varricchi (ref_84) 2017; 8
Sugiura (ref_133) 1999; 1440
Chen (ref_54) 2018; 11
Jalink (ref_21) 1990; 265
Kozian (ref_120) 2016; 17
(ref_3) 2017; 2017
Mandal (ref_55) 2015; 8
Khandoga (ref_122) 2008; 19
Tsujiuchi (ref_5) 2014; 29
Ricote (ref_46) 1998; 391
ref_43
Hersh (ref_95) 2003; 52
Volden (ref_18) 2016; 9
ref_41
Zhao (ref_67) 2009; 10
Xie (ref_70) 2015; 364
ref_1
Hu (ref_94) 2014; 193
Tsukahara (ref_127) 2010; 39
Hashimoto (ref_59) 2003; 91
Haslam (ref_118) 2019; 2
Benesch (ref_19) 2014; 28
Beatty (ref_39) 2015; 21
ref_48
Xu (ref_22) 1995; 163
Perova (ref_27) 2008; 11
ref_4
References_xml – volume: 8
  start-page: 424
  year: 2017
  ident: ref_84
  article-title: Are mast cells MASTers in cancer?
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.00424
– ident: ref_117
– volume: 108
  start-page: 741
  year: 2003
  ident: ref_130
  article-title: Subtype-selective antagonists of lysophosphatidic Acid receptors inhibit platelet activation triggered by the lipid core of atherosclerotic plaques
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000083715.37658.C4
– volume: 391
  start-page: 79
  year: 1998
  ident: ref_46
  article-title: The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation
  publication-title: Nature
  doi: 10.1038/34178
– volume: 451
  start-page: 47
  year: 2007
  ident: ref_83
  article-title: Submucosal connective tissue-type mast cells contribute to the production of lysophosphatidic acid (LPA) in the gastrointestinal tract through the secretion of autotaxin (ATX)/lysophospholipase D (lysoPLD)
  publication-title: Virchows Arch.
  doi: 10.1007/s00428-007-0425-4
– volume: 2
  start-page: e192535
  year: 2019
  ident: ref_118
  article-title: Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2019.2535
– ident: ref_124
  doi: 10.1371/journal.pone.0029260
– volume: 265
  start-page: 12232
  year: 1990
  ident: ref_21
  article-title: Lysophosphatidic acid, but not phosphatidic acid, is a potent Ca2+-mobilizing stimulus for fibroblasts. Evidence for an extracellular site of action
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)38335-8
– volume: 45
  start-page: 209
  year: 1982
  ident: ref_76
  article-title: Blood basophils in lung cancer
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.1982.35
– volume: 80
  start-page: 287
  year: 2006
  ident: ref_88
  article-title: IL-6 and IL-8 release is mediated via multiple signaling pathways after stimulating dendritic cells with lysophospholipids
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.1205751
– volume: 173
  start-page: 1334
  year: 2015
  ident: ref_75
  article-title: Generalized pruritus in primary sclerosing cholangitis: Implications of histamine release by lysophosphatidic acid
  publication-title: Br. J. Derm.
  doi: 10.1111/bjd.13992
– volume: 15
  start-page: 797
  year: 2006
  ident: ref_87
  article-title: Lysophosphatidic acid modulates the activation of human monocyte-derived dendritic cells
  publication-title: Stem. Cells Dev.
  doi: 10.1089/scd.2006.15.797
– volume: 1
  start-page: 245
  year: 2013
  ident: ref_116
  article-title: Lysophosphatidic acid inhibits CD8 T cell activation and control of tumor progression
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-13-0043-T
– volume: 273
  start-page: 7906
  year: 1998
  ident: ref_115
  article-title: Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.14.7906
– volume: 17
  start-page: 861
  year: 2016
  ident: ref_120
  article-title: Modulation of hexadecyl-LPA-mediated activation of mast cells and microglia by a chemical probe for LPA5
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201500559
– volume: 1
  start-page: 1223
  year: 1995
  ident: ref_9
  article-title: Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients
  publication-title: Clin. Cancer Res.
– volume: 9
  start-page: 415
  year: 2008
  ident: ref_105
  article-title: Autotaxin, an ectoenzyme that produces lysophosphatidic acid, promotes the entry of lymphocytes into secondary lymphoid organs
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1573
– volume: 143
  start-page: 60
  year: 2008
  ident: ref_16
  article-title: Serum autotaxin measurement in haematological malignancies: A promising marker for follicular lymphoma
  publication-title: Br. J. Haematol.
  doi: 10.1111/j.1365-2141.2008.07325.x
– volume: 75
  start-page: 13
  year: 2005
  ident: ref_80
  article-title: Lysophosphatidic acid induces histamine release from mast cells and skin fragments
  publication-title: Pharmacology
  doi: 10.1159/000085784
– volume: 101
  start-page: 11779
  year: 2004
  ident: ref_33
  article-title: Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0403259101
– volume: 91
  start-page: 1273
  year: 2006
  ident: ref_86
  article-title: The influence of lysophosphatidic acid on the immunophenotypic differentiation of human monocytes into dendritic cells
  publication-title: Haematologica
– volume: 10
  start-page: 2155
  year: 2019
  ident: ref_63
  article-title: Neutrophil heterogeneity in cancer: From biology to therapies
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.02155
– volume: 82
  start-page: 1193
  year: 2007
  ident: ref_32
  article-title: LPA3 receptor mediates chemotaxis of immature murine dendritic cells to unsaturated lysophosphatidic acid (LPA)
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0407221
– ident: ref_41
  doi: 10.1016/j.celrep.2021.110013
– volume: 199
  start-page: 775
  year: 2004
  ident: ref_42
  article-title: Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20031591
– volume: 28
  start-page: 283
  year: 2016
  ident: ref_106
  article-title: Lysophosphatidic acid receptors LPA4 and LPA6 differentially promote lymphocyte transmigration across high endothelial venules in lymph nodes
  publication-title: Int. Immunol.
  doi: 10.1093/intimm/dxv072
– volume: 185
  start-page: 4977
  year: 2010
  ident: ref_98
  article-title: CD20+ B cells: The other tumor-infiltrating lymphocytes
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1001323
– volume: 280
  start-page: 35038
  year: 2005
  ident: ref_125
  article-title: Identification of residues responsible for ligand recognition and regioisomeric selectivity of lysophosphatidic acid receptors expressed in mammalian cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M504351200
– volume: 4
  start-page: e974374
  year: 2015
  ident: ref_112
  article-title: High endothelial venules are rare in colorectal cancers but accumulate in extra-tumoral areas with disease progression
  publication-title: Oncoimmunology
  doi: 10.4161/2162402X.2014.974374
– volume: 292
  start-page: 287
  year: 2001
  ident: ref_114
  article-title: Direct quantitative analysis of lysophosphatidic acid molecular species by stable isotope dilution electrospray ionization liquid chromatography-mass spectrometry
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2001.5063
– volume: 279
  start-page: 41085
  year: 2004
  ident: ref_58
  article-title: Protein kinase Cdelta mediates lysophosphatidic acid-induced NF-kappaB activation and interleukin-8 secretion in human bronchial epithelial cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M404045200
– volume: 74
  start-page: 16
  year: 2003
  ident: ref_37
  article-title: G protein-coupled receptors in natural killer cells
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0103019
– volume: 2017
  start-page: 9173090
  year: 2017
  ident: ref_3
  article-title: Autotaxin-lysophosphatidic acid: From inflammation to cancer development
  publication-title: Mediat. Inflamm.
– volume: 52
  start-page: 715
  year: 2003
  ident: ref_95
  article-title: Naturally occurring B-cell responses to breast cancer
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-003-0409-4
– volume: 126
  start-page: 97
  year: 2017
  ident: ref_121
  article-title: Analgesic effects of novel lysophosphatidic acid receptor 5 antagonist AS2717638 in rodents
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2017.08.032
– volume: 364
  start-page: 106
  year: 2015
  ident: ref_70
  article-title: The infiltration and functional regulation of eosinophils induced by TSLP promote the proliferation of cervical cancer cell
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2015.04.029
– volume: 11
  start-page: 187
  year: 1993
  ident: ref_72
  article-title: Infiltration of eosinophils in Hodgkin’s disease involved lymph nodes predicts prognosis
  publication-title: Hematol. Oncol.
  doi: 10.1002/hon.2900110404
– ident: ref_4
  doi: 10.3390/cancers10030073
– volume: 44
  start-page: 576
  year: 2011
  ident: ref_15
  article-title: Specific increase in serum autotaxin activity in patients with pancreatic cancer
  publication-title: Clin. Biochem.
  doi: 10.1016/j.clinbiochem.2011.03.128
– volume: 1
  start-page: 829
  year: 2012
  ident: ref_110
  article-title: High endothelial venules (HEVs) in human melanoma lesions: Major gateways for tumor-infiltrating lymphocytes
  publication-title: Oncoimmunology
  doi: 10.4161/onci.20492
– volume: 196
  start-page: 1575
  year: 2002
  ident: ref_90
  article-title: CD1-mediated gamma/delta T cell maturation of dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20021515
– volume: 104
  start-page: 737
  year: 2018
  ident: ref_47
  article-title: PPAR-gamma in innate and adaptive lung immunity
  publication-title: J. Leukoc. Biol.
  doi: 10.1002/JLB.3MR0118-034R
– volume: 22
  start-page: 5239
  year: 2012
  ident: ref_119
  article-title: Selective non-lipid modulator of LPA5 activity in human platelets
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2012.06.057
– volume: 21
  start-page: 687
  year: 2015
  ident: ref_39
  article-title: Immune escape mechanisms as a guide for cancer immunotherapy
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-14-1860
– volume: 104
  start-page: 4080
  year: 2004
  ident: ref_31
  article-title: Lysophosphatidic acid accelerates the development of human mast cells
  publication-title: Blood
  doi: 10.1182/blood-2004-03-1166
– volume: 163
  start-page: 47
  year: 2003
  ident: ref_60
  article-title: Lysophosphatidic acid prevents renal ischemia-reperfusion injury by inhibition of apoptosis and complement activation
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)63629-2
– volume: 33
  start-page: 3623
  year: 2019
  ident: ref_101
  article-title: Autotaxin determines colitis severity in mice and is secreted by B cells in the colon
  publication-title: FASEB J.
  doi: 10.1096/fj.201801415RR
– ident: ref_14
  doi: 10.1371/journal.pone.0161825
– volume: 5
  start-page: 24
  year: 2020
  ident: ref_50
  article-title: The Agpat4/LPA axis in colorectal cancer cells regulates antitumor responses via p38/p65 signaling in macrophages
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-020-0117-y
– volume: 10
  start-page: 114
  year: 2009
  ident: ref_67
  article-title: Role of lysophosphatidic acid receptor LPA2 in the development of allergic airway inflammation in a murine model of asthma
  publication-title: Respir. Res.
  doi: 10.1186/1465-9921-10-114
– volume: 13
  start-page: 174
  year: 2015
  ident: ref_107
  article-title: Autotaxin and LPA1 and LPA5 receptors exert disparate functions in tumor cells versus the host tissue microenvironment in melanoma invasion and metastasis
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-14-0263
– volume: 136
  start-page: 1711
  year: 2009
  ident: ref_49
  article-title: The absence of LPA2 attenuates tumor formation in an experimental model of colitis-associated cancer
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2009.01.002
– volume: 280
  start-page: 719
  year: 1998
  ident: ref_10
  article-title: Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers
  publication-title: JAMA
  doi: 10.1001/jama.280.8.719
– volume: 393
  start-page: 657
  year: 2006
  ident: ref_57
  article-title: Transcriptional regulation of lysophosphatidic acid-induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial cells
  publication-title: Biochem. J.
  doi: 10.1042/BJ20050791
– volume: 91
  start-page: 8
  year: 2003
  ident: ref_59
  article-title: Lysophosphatidic acid enhances in vivo infiltration and activation of guinea pig eosinophils and neutrophils via a Rho/Rho-associated protein kinase-mediated pathway
  publication-title: J. Pharmacol. Sci.
  doi: 10.1254/jphs.91.8
– volume: 1
  start-page: 789
  year: 2012
  ident: ref_109
  article-title: Tumor high endothelial venules (HEVs) predict lymphocyte infiltration and favorable prognosis in breast cancer
  publication-title: Oncoimmunology
  doi: 10.4161/onci.19787
– volume: 28
  start-page: 2655
  year: 2014
  ident: ref_19
  article-title: Inhibition of autotaxin delays breast tumor growth and lung metastasis in mice
  publication-title: FASEB J.
  doi: 10.1096/fj.13-248641
– volume: 37
  start-page: 311
  year: 2007
  ident: ref_68
  article-title: Lysophosphatidic acid is detectable in human bronchoalveolar lavage fluids at baseline and increased after segmental allergen challenge
  publication-title: Clin. Exp. Allergy
  doi: 10.1111/j.1365-2222.2006.02626.x
– volume: 21
  start-page: 216
  year: 1999
  ident: ref_100
  article-title: Autotaxin expression in non-small-cell lung cancer
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/ajrcmb.21.2.3667
– volume: 193
  start-page: 85
  year: 2014
  ident: ref_94
  article-title: Lysophosphatidic acid receptor 5 inhibits B cell antigen receptor signaling and antibody response
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1300429
– volume: 9
  start-page: 71
  year: 2010
  ident: ref_13
  article-title: Autotaxin expression and its connection with the TNF-alpha-NF-kappaB axis in human hepatocellular carcinoma
  publication-title: Mol. Cancer
  doi: 10.1186/1476-4598-9-71
– ident: ref_51
  doi: 10.3390/cells9010046
– volume: 284
  start-page: 17304
  year: 2009
  ident: ref_123
  article-title: Unique ligand selectivity of the GPR92/LPA5 lysophosphatidate receptor indicates role in human platelet activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.003194
– volume: 100
  start-page: 82
  year: 2006
  ident: ref_81
  article-title: Lysophosphatidic acid (LPA) induces plasma exudation and histamine release in mice via LPA receptors
  publication-title: J. Pharmacol. Sci.
  doi: 10.1254/jphs.FPJ05030X
– volume: 274
  start-page: C1065
  year: 1998
  ident: ref_131
  article-title: Growth factor-like phospholipids generated after corneal injury
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajpcell.1998.274.4.C1065
– volume: 55
  start-page: 1192
  year: 2014
  ident: ref_6
  article-title: LPA receptor signaling: Pharmacology, physiology, and pathophysiology
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R046458
– ident: ref_1
  doi: 10.3390/cancers11101523
– volume: 31
  start-page: 915
  year: 2007
  ident: ref_74
  article-title: Clinical significance of a blood eosinophilia in adult T-cell leukemia/lymphoma: A blood eosinophilia is a significant unfavorable prognostic factor
  publication-title: Leuk. Res.
  doi: 10.1016/j.leukres.2006.10.017
– volume: 18
  start-page: 1037
  year: 2008
  ident: ref_136
  article-title: Discovery of potent LPA2 (EDG4) antagonists as potential anticancer agents
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2007.12.024
– volume: 7
  start-page: e1393134
  year: 2017
  ident: ref_69
  article-title: Eosinophils: The unsung heroes in cancer?
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2017.1393134
– volume: 39
  start-page: 421
  year: 2010
  ident: ref_127
  article-title: Phospholipase D2-dependent inhibition of the nuclear hormone receptor PPARγ by cyclic phosphatidic acid
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.07.022
– volume: 130
  start-page: 197
  year: 2004
  ident: ref_113
  article-title: The critical micelle concentrations of lysophosphatidic acid and sphingosylphosphorylcholine
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2004.03.001
– volume: 33
  start-page: 2083
  year: 2003
  ident: ref_35
  article-title: Lysophosphatidic acid induces human natural killer cell chemotaxis and intracellular calcium mobilization
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200323711
– volume: 429
  start-page: 303
  year: 2001
  ident: ref_30
  article-title: Human and rat alveolar macrophages express multiple EDG receptors
  publication-title: Eur. J. Pharm.
  doi: 10.1016/S0014-2999(01)01329-2
– volume: 372
  start-page: 147
  year: 2008
  ident: ref_36
  article-title: Lysophosphatidylglycerol stimulates chemotactic migration in human natural killer cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2008.05.004
– volume: 17
  start-page: 537
  year: 2019
  ident: ref_40
  article-title: Interrelations of sphingolipid and lysophosphatidate signaling with immune system in ovarian cancer
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2019.04.004
– volume: 9
  start-page: 2629
  year: 2018
  ident: ref_53
  article-title: Targeting macrophage-recruiting chemokines as a novel therapeutic strategy to prevent the progression of solid tumors
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.02629
– volume: 95
  start-page: 314
  year: 2004
  ident: ref_62
  article-title: Lysophosphatidic acid enhances epithelial ovarian carcinoma invasion through the increased expression of interleukin-8
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2004.08.001
– volume: 3
  start-page: 991
  year: 2002
  ident: ref_38
  article-title: Cancer immunoediting: From immunosurveillance to tumor escape
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1102-991
– ident: ref_82
  doi: 10.1371/journal.pone.0018192
– volume: 1126
  start-page: 298
  year: 1992
  ident: ref_132
  article-title: Distribution of alkyl and alkenyl ether-linked phospholipids and platelet-activating factor-like lipid in various species of invertebrates
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2760(92)90244-P
– volume: 267
  start-page: 2524
  year: 1992
  ident: ref_7
  article-title: Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)45911-X
– volume: 115
  start-page: S186
  year: 2005
  ident: ref_79
  article-title: Lysophosphatidic acid induces human mast cell activation via an LPA2-mediated pathway
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2004.12.757
– volume: 139
  start-page: 33
  year: 1999
  ident: ref_97
  article-title: Computerised counting of tumour infiltrating lymphocytes in 90 breast cancer specimens
  publication-title: Cancer Lett.
  doi: 10.1016/S0304-3835(98)00379-6
– volume: 12
  start-page: 375
  year: 2001
  ident: ref_65
  article-title: Interleukin-8 and human cancer biology
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/S1359-6101(01)00016-8
– volume: 290
  start-page: 302
  year: 2001
  ident: ref_129
  article-title: Electrospray ionization mass spectrometry analysis of lysophospholipids in human ascitic fluids: Comparison of the lysophospholipid contents in malignant vs nonmalignant ascitic fluids
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2001.5000
– ident: ref_43
  doi: 10.3389/fimmu.2019.01159
– ident: ref_99
  doi: 10.1371/journal.pone.0006412
– volume: 9
  start-page: 733
  year: 2008
  ident: ref_91
  article-title: Basophils enhance immunological memory responses
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1621
– volume: 34
  start-page: 233
  year: 2006
  ident: ref_61
  article-title: Neutrophil sphingosine 1-phosphate and lysophosphatidic acid receptors in pneumonia
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/rcmb.2005-0126OC
– volume: 5
  start-page: 146
  year: 2014
  ident: ref_92
  article-title: Macrophages in homeostatic immune function
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2014.00146
– volume: 95
  start-page: 1207
  year: 2000
  ident: ref_73
  article-title: Tissue eosinophilia correlates strongly with poor prognosis in nodular sclerosing Hodgkin’s disease, allowing for known prognostic factors
  publication-title: Blood
  doi: 10.1182/blood.V95.4.1207.004k34_1207_1213
– volume: 29
  start-page: 85
  year: 2010
  ident: ref_93
  article-title: Ca2+ signaling induced by sphingosine 1-phosphate and lysophosphatidic acid in mouse B cells
  publication-title: Mol. Cells
  doi: 10.1007/s10059-010-0020-4
– volume: 273
  start-page: 13461
  year: 1998
  ident: ref_23
  article-title: Identification of a novel growth factor-like lipid, 1-O-cis-alk-1′-enyl-2-lyso-sn-glycero-3-phosphate (alkenyl-GP) that is present in commercial sphingolipid preparations
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.22.13461
– volume: 19
  start-page: 369
  year: 2019
  ident: ref_52
  article-title: Macrophages as regulators of tumour immunity and immunotherapy
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-019-0127-6
– volume: 282
  start-page: 480
  year: 1998
  ident: ref_85
  article-title: Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking
  publication-title: Science
  doi: 10.1126/science.282.5388.480
– volume: 76
  start-page: 1792
  year: 2016
  ident: ref_78
  article-title: Basophil recruitment into tumor-draining lymph nodes correlates with Th2 inflammation and reduced survival in pancreatic cancer patients
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-1801-T
– volume: 12
  start-page: 3237
  year: 2011
  ident: ref_66
  article-title: Mechanism of sphingosine 1-phosphate- and lysophosphatidic acid-induced up-regulation of adhesion molecules and eosinophil chemoattractant in nerve cells
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms12053237
– volume: 30
  start-page: 557
  year: 2011
  ident: ref_8
  article-title: Autotaxin and LPA receptor signaling in cancer
  publication-title: Cancer Metastasis Rev.
  doi: 10.1007/s10555-011-9319-7
– volume: 365
  start-page: 617
  year: 2002
  ident: ref_135
  article-title: Human platelets respond differentially to lysophosphatidic acids having a highly unsaturated fatty acyl group and alkyl ether-linked lysophosphatidic acids
  publication-title: Biochem. J.
  doi: 10.1042/bj20020348
– volume: 169
  start-page: 4129
  year: 2002
  ident: ref_34
  article-title: The influence of lysophosphatidic acid on the functions of human dendritic cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.169.8.4129
– ident: ref_48
  doi: 10.3390/ijms20092102
– volume: 163
  start-page: 441
  year: 1995
  ident: ref_22
  article-title: Effect of lysophospholipids on signaling in the human Jurkat T cell line
  publication-title: J. Cell Physiol.
  doi: 10.1002/jcp.1041630303
– volume: 287
  start-page: 3081
  year: 2002
  ident: ref_11
  article-title: Plasma lysophosphatidic acid concentration and ovarian cancer
  publication-title: JAMA
  doi: 10.1001/jama.287.23.3081
– volume: 318
  start-page: 619
  year: 2006
  ident: ref_126
  article-title: Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.105.098848
– volume: 14
  start-page: 2387
  year: 2000
  ident: ref_102
  article-title: Altered expression and functional profile of lysophosphatidic acid receptors in mitogen-activated human blood T lymphocytes
  publication-title: FASEB J.
  doi: 10.1096/fj.00-0492fje
– volume: 78
  start-page: 510
  year: 2007
  ident: ref_26
  article-title: Lysophosphatidic acid protection against apoptosis in the human pre-B-cell line Nalm-6
  publication-title: Eur. J. Haematol.
  doi: 10.1111/j.1600-0609.2007.00849.x
– volume: 77
  start-page: 291
  year: 2017
  ident: ref_77
  article-title: Basophils promote tumor rejection via chemotaxis and infiltration of CD8+ T cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-0993
– volume: 36
  start-page: 413
  year: 2001
  ident: ref_134
  article-title: Hen egg yolk and white contain high amounts of lysophosphatidic acids, growth factor-like lipids: Distinct molecular species compositions
  publication-title: Lipids
  doi: 10.1007/s11745-001-0737-1
– volume: 21
  start-page: 667
  year: 2009
  ident: ref_56
  article-title: Lysophosphatidic acid inhibits the cytotoxic activity of NK cells: Involvement of Gs protein-mediated signaling
  publication-title: Int. Immunol.
  doi: 10.1093/intimm/dxp035
– volume: 12
  start-page: 1463
  year: 1992
  ident: ref_96
  article-title: Phenotypic analysis of tumor-infiltrating lymphocytes from human breast cancer
  publication-title: Anticancer Res.
– volume: 4
  start-page: e1008791
  year: 2015
  ident: ref_111
  article-title: Understanding high endothelial venules: Lessons for cancer immunology
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2015.1008791
– volume: 8
  start-page: 47
  year: 2015
  ident: ref_55
  article-title: Natural killer cells: In health and disease
  publication-title: Hematol. Oncol. Stem Cell
  doi: 10.1016/j.hemonc.2014.11.006
– volume: 71
  start-page: 183
  year: 2019
  ident: ref_2
  article-title: Regulation of tumor cell—Microenvironment interaction by the autotaxin-lysophosphatidic acid receptor axis
  publication-title: Adv. Biol. Regul.
  doi: 10.1016/j.jbior.2018.09.008
– volume: 11
  start-page: 185
  year: 2008
  ident: ref_27
  article-title: Hyperactive intracellular calcium dynamics in B lymphoblasts from patients with bipolar I disorder
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1017/S1461145707007973
– volume: 27
  start-page: 904
  year: 1996
  ident: ref_71
  article-title: Tumor-associated eosinophilic infiltrate of cervical cancer is indicative for a less effective immune response
  publication-title: Hum. Pathol.
  doi: 10.1016/S0046-8177(96)90216-6
– volume: 9
  start-page: 367
  year: 2016
  ident: ref_18
  article-title: Mammary adipose tissue-derived lysophospholipids promote estrogen receptor-negative mammary epithelial cell proliferation
  publication-title: Cancer Prev. Res.
  doi: 10.1158/1940-6207.CAPR-15-0107
– volume: 9
  start-page: 1146
  year: 2019
  ident: ref_64
  article-title: Tumor associated neutrophils. Their role in tumorigenesis, metastasis, prognosis and therapy
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.01146
– volume: 1440
  start-page: 194
  year: 1999
  ident: ref_133
  article-title: Occurrence of lysophosphatidic acid and its alkyl ether-linked analog in rat brain and comparison of their biological activities toward cultured neural cells
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S1388-1981(99)00127-4
– volume: 8
  start-page: 271
  year: 1994
  ident: ref_29
  article-title: Effect of lysophosphatidic acid on motility, polarisation and metabolic burst of human neutrophils
  publication-title: FEMS Immunol. Med. Microbiol.
  doi: 10.1111/j.1574-695X.1994.tb00452.x
– volume: 188
  start-page: 3784
  year: 2012
  ident: ref_89
  article-title: Lpa2 is a negative regulator of both dendritic cell activation and murine models of allergic lung inflammation
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1102956
– volume: 29
  start-page: 313
  year: 2014
  ident: ref_5
  article-title: Lysophosphatidic acid receptors in cancer pathobiology
  publication-title: Histol. Histopathol.
– volume: 11
  start-page: 3817
  year: 2018
  ident: ref_54
  article-title: Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition
  publication-title: Onco Targets Ther.
  doi: 10.2147/OTT.S168317
– volume: 166
  start-page: 2317
  year: 2001
  ident: ref_104
  article-title: Lysophosphatidic acid receptor-selective effects on Jurkat T cell migration through a Matrigel model basement membrane
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.166.4.2317
– volume: 129
  start-page: 1177
  year: 2017
  ident: ref_44
  article-title: Lysophosphatidic acid converts monocytes into macrophages in both mice and humans
  publication-title: Blood
  doi: 10.1182/blood-2016-10-743757
– volume: 71
  start-page: 5678
  year: 2011
  ident: ref_108
  article-title: Human solid tumors contain high endothelial venules: Association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-0431
– volume: 391
  start-page: 82
  year: 1998
  ident: ref_45
  article-title: PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines
  publication-title: Nature
  doi: 10.1038/34184
– volume: 13
  start-page: 185
  year: 2019
  ident: ref_12
  article-title: Cell type-selective pathways and clinical associations of lysophosphatidic acid biosynthesis and signaling in the ovarian cancer microenvironment
  publication-title: Mol. Oncol.
  doi: 10.1002/1878-0261.12396
– volume: 162
  start-page: 2049
  year: 1999
  ident: ref_103
  article-title: Lysophosphatidic acid and sphingosine 1-phosphate protection of T cells from apoptosis in association with suppression of Bax
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.162.4.2049
– volume: 281
  start-page: 3398
  year: 2006
  ident: ref_128
  article-title: Different residues mediate recognition of 1-O-oleyllysophosphatidic acid and rosiglitazone in the ligand binding domain of peroxisome proliferator-activated receptor gamma
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M510843200
– volume: 274
  start-page: C1573
  year: 1998
  ident: ref_25
  article-title: Growth factor-like action of lysophosphatidic acid on human B lymphoblasts
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajpcell.1998.274.6.C1573
– volume: 31
  start-page: 4064
  year: 2017
  ident: ref_17
  article-title: Implications for breast cancer treatment from increased autotaxin production in adipose tissue after radiotherapy
  publication-title: FASEB J.
  doi: 10.1096/fj.201700159R
– volume: 164
  start-page: 4996
  year: 2000
  ident: ref_24
  article-title: Cutting edge: Differential constitutive expression of functional receptors for lysophosphatidic acid by human blood lymphocytes
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.164.10.4996
– volume: 29
  start-page: 3990
  year: 2015
  ident: ref_20
  article-title: Tumor-induced inflammation in mammary adipose tissue stimulates a vicious cycle of autotaxin expression and breast cancer progression
  publication-title: FASEB J.
  doi: 10.1096/fj.15-274480
– volume: 19
  start-page: 415
  year: 2008
  ident: ref_122
  article-title: Lysophosphatidic acid-induced platelet shape change revealed through LPA1–5 receptor-selective probes and albumin
  publication-title: Platelets
  doi: 10.1080/09537100802220468
– volume: 172
  start-page: 4480
  year: 2004
  ident: ref_28
  article-title: Lysophosphatidic acid induces chemotaxis, oxygen radical production, CD11b up-regulation, Ca2+ mobilization, and actin reorganization in human eosinophils via pertussis toxin-sensitive G proteins
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.172.7.4480
SSID ssj0000331767
Score 2.3858094
SecondaryResourceType review_article
Snippet The tumor microenvironment (TME) may be best conceptualized as an ecosystem comprised of cancer cells interacting with a multitude of stromal components such...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1202
SubjectTerms Adipocytes
Angiogenesis
Antigens
Cancer
Cytokines
Cytotoxicity
Enzymes
Extracellular matrix
Fibroblasts
Granulocytes
Immune system
Immunomodulation
Investigations
Kinases
Lymphocytes
Lysophosphatidic acid
Metastases
Metastasis
Neutrophils
Ovarian cancer
Peptides
Proteins
Review
T cell receptors
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED50A_FF_G11SgUffKnaNE27J5miTHFDxga-lTZN2UDbuXUP---9a7PqJvqcS1vu0rv7csl3ABe27anY58oSSoXUwsyzQvR6lkD7Rw5TCFnoonCnK9oD_vzmvukNt6k-VrnwiYWjjjNJe-TXxBvn2wIzhNvxp0Vdo6i6qltorEMdXbDv16B-99B97VW7LDcOxkfhlZw-DuL7a0nKnExthquR6c2UKhz9yjFXj0r-iD2P27Clk0azVVp5B9ZUugsbHV0W3wO3V3aURx2bWWL2Zx_ZxHwqbn7kczOamy9z6laQTcdDFMJZZkuO4n0YPD7079uW7odgSYQVOfoCJ3IjiQAjRJzDXMZFJIsyCueMJ6JpO4JuRsecIlMSJYlQtmJJ2BR24mNcPoBamqXqCEwhm0p4sXQTKfDZ3HfRmIK4ziJlO5IZcLVQSyA1WTj1rHgPEDSQHoMVPRpwWU0YlzwZf4s2FnoO9A8zDb7Na8B5NYxLneoXYaqyWSHDCP5xz4DD0izVuxxGiZXXNMBbMlglQDTayyPpaFjQaXuMWL-c4_8_6wQ2GUHtgri1AbV8MlOnmI_k0ZledF927eBZ
  priority: 102
  providerName: ProQuest
Title Regulation of Tumor Immunity by Lysophosphatidic Acid
URI https://www.ncbi.nlm.nih.gov/pubmed/32397679
https://www.proquest.com/docview/2403816085
https://www.proquest.com/docview/2402441547
https://pubmed.ncbi.nlm.nih.gov/PMC7281403
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEB20gngRv43WEsGDlyi72ey2B5Eq1iq2iFjoLSTbDS3UpPYD7L93JkmrrR_nzCbhzWZnHpt9D-CMMWU6ZWEcaUxAFmbKCXDVcyTmP3S5QcpCB4UbTVlvice21_6yA8oBHP1K7chPqjXsX3y8T6_xg78ixomU_VITPsMR4zjBOAlLrmFZUmRn0Mh7_XRZdrFUSpXJ-_w2brEy_Wg3l_-a_FaGaluwmfePdjVL-DasmHgH1hv5DvkueC-ZuTzCbSeR_Tp5S4b2Q3oIZDy1w6n9NCXjgmQ06GIQjrKrutfZg1bt7vW27uTWCI5GhjHGZcENvVAj1wiQ8nCPCxnqdEdFCC4iWWGupEPSHUFFKgqjSBpmeBRUJIvKWKL3oRAnsTkEW-qKkaqjvUhLvLcoe5hXSbJnoWGu5hZczGDxda4bTvYVfR_5A-HoL-Fowfl8wCCTzPg7tDjD2Z-l3ieFwDKT2AtacDq_jLOetjKC2CSTNIYTExTKgoMsLfNnuZx6LFWxQC0kbB5AitqLV-JeN1XWVpwEwNyj_1_rGDY4se5Uw7UIhfFwYk6wNRmHJVi7uWs-v5Rg9b7NSukE_ATzUuVP
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6hRYJeEFAooVBcCSQuKcR2nORQVZSHdmF3hdAicUsTxxFIkGz3IbR_qr-xM3mVh-iNc8ZJNDMez3js7wPYdRzPJL40tjImIgozz44w6tkK7R8LbrBkoYvCvb5qX8vzG_dmDv7Ud2HoWGUdE4tAneSa9sgPCDfOdxRmCD-Gv21ijaLuak2hUbrFhZk9Ysk2_t45QfvucX52Ojhu2xWrgK0xOZ_gjBKxG2tM0yOsFrjLpYp10YyQkstUBY5QdL84kRTf0zhNlXEMT6NAOanvE0sEhvx5iVK8BfM_T_uXV82uzqHA9Vh5JYaQEMHhgSbjjcYOR-_n1eZNs_y9ymlfHs18stadLcNSlaSyo9KrVmDOZKuw0Kva8B_BvSoZ7NGmLE_ZYPqQj1inuGkymbF4xrozYkfIx8NbFMJR7EjfJWtw_S6aWodWlmdmA5jSgVFeot1UK3y39F10HkXYarFxhOYWfKvVEuoKnJw4Mu5DLFJIj-ELPVqw3wwYlrgcb4tu1XoOqwk6Dv-5kwVfm8c4tahfEmUmnxYynMpN6VnwqTRL8y3BKZHzAgu8ZwZrBAi2-_mT7O62gO_2OKGMic3__9YOLLYHvW7Y7fQvPsMHTmV-ARq7Ba3JaGq2MReaxF8qB2Tw6719_i_d9RqV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9wwEB6hRUJ9qegdjuJKrdSXdInt2MkDqrhWbIEVQiDxliaOLZAg2e6hav9af11nclGo2jeeM06iuTzj8XwD8DEItM0jaX1lbUojzLSfotfzFco_E9xiykKNwqcjdXQpv12FV0vwq-2FoWuVrU-sHHVeGjoj7xNuXBQojBD6rrkWcXYw-Dr-4dMEKaq0tuM0ahU5toufmL5Nd4YHKOtPnA8OL_aP_GbCgG8wUJ-hdYkszAyG7ClmDjzkUmWmKkxIyaVTcSAU9Rrnkny9y5xTNrDcpbEKXBTRxAh0_8uasqIeLO8djs7OuxOebYF7s9I1npAQ8XbfkCAn04CjJfDmIKfbCv-Kbx9f0_xj3xuswvMmYGW7tYa9gCVbvISV06Yk_wrC83qaPcqXlY5dzO_KCRtWXSezBcsW7GRBkxLK6fgaiXAV2zU3-Wu4fBJOvYFeURb2HTBlYqt0bkJnFL5bRiEqkiKctcwGwnAPvrRsSUwDVE7zMm4TTFiIj8kjPnrwuVswrjE6_k260fI5aYx1mtyrlgcfusdoZlQ7SQtbzisaTqmn1B68rcXSfUtwCup07IF-ILCOgCC8Hz4pbq4rKG_NCXFMrP3_t7ZgBXU9ORmOjtfhGaeMv8KP3YDebDK3mxgWzbL3jf4x-P7UKv8b6Qceyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Tumor+Immunity+by+Lysophosphatidic+Acid&rft.jtitle=Cancers&rft.au=Sue+Chin+Lee&rft.au=Dacheux%2C+M%C3%A9lanie+A&rft.au=Norman%2C+Derek+D&rft.au=Bal%C3%A1zs%2C+Louisa&rft.date=2020-05-10&rft.pub=MDPI+AG&rft.eissn=2072-6694&rft.volume=12&rft.issue=5&rft.spage=1202&rft_id=info:doi/10.3390%2Fcancers12051202&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon