Genetic Mutations of Pancreatic Cancer and Genetically Engineered Mouse Models
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, and the seventh leading cause of cancer-related deaths worldwide. An improved understanding of tumor biology and novel therapeutic discoveries are needed to improve overall survival. Recent multi-gene analysis approaches such...
Saved in:
Published in | Cancers Vol. 14; no. 1; p. 71 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
24.12.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, and the seventh leading cause of cancer-related deaths worldwide. An improved understanding of tumor biology and novel therapeutic discoveries are needed to improve overall survival. Recent multi-gene analysis approaches such as next-generation sequencing have provided useful information on the molecular characterization of pancreatic tumors. Different types of pancreatic cancer and precursor lesions are characterized by specific molecular alterations. Genetically engineered mouse models (GEMMs) of PDAC are useful to understand the roles of altered genes. Most GEMMs are driven by oncogenic Kras, and can recapitulate the histological and molecular hallmarks of human PDAC and comparable precursor lesions. Advanced GEMMs permit the temporally and spatially controlled manipulation of multiple target genes using a dual-recombinase system or CRISPR/Cas9 gene editing. GEMMs that express fluorescent proteins allow cell lineage tracing to follow tumor growth and metastasis to understand the contribution of different cell types in cancer progression. GEMMs are widely used for therapeutic optimization. In this review, we summarize the main molecular alterations found in pancreatic neoplasms, developed GEMMs, and the contribution of GEMMs to the current understanding of PDAC pathobiology. Furthermore, we attempted to modify the categorization of altered driver genes according to the most updated findings. |
---|---|
AbstractList | Simple SummaryPancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy. Recent multi-gene analysis approaches such as next-generation sequencing have provided useful information on the molecular characterization of pancreatic tumors. Different types of pancreatic cancer and precursor lesions are characterized by specific molecular alterations. Genetically engineered mouse models (GEMMs) of PDAC are useful tools to understand the roles of altered genes. Most GEMMs are driven by oncogenic Kras, and can recapitulate the histological and molecular hallmarks of human PDAC and comparable precursor lesions. In this review, we summarize the main molecular alterations found in pancreatic neoplasms and GEMMs developed based on these alterations.AbstractPancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, and the seventh leading cause of cancer-related deaths worldwide. An improved understanding of tumor biology and novel therapeutic discoveries are needed to improve overall survival. Recent multi-gene analysis approaches such as next-generation sequencing have provided useful information on the molecular characterization of pancreatic tumors. Different types of pancreatic cancer and precursor lesions are characterized by specific molecular alterations. Genetically engineered mouse models (GEMMs) of PDAC are useful to understand the roles of altered genes. Most GEMMs are driven by oncogenic Kras, and can recapitulate the histological and molecular hallmarks of human PDAC and comparable precursor lesions. Advanced GEMMs permit the temporally and spatially controlled manipulation of multiple target genes using a dual-recombinase system or CRISPR/Cas9 gene editing. GEMMs that express fluorescent proteins allow cell lineage tracing to follow tumor growth and metastasis to understand the contribution of different cell types in cancer progression. GEMMs are widely used for therapeutic optimization. In this review, we summarize the main molecular alterations found in pancreatic neoplasms, developed GEMMs, and the contribution of GEMMs to the current understanding of PDAC pathobiology. Furthermore, we attempted to modify the categorization of altered driver genes according to the most updated findings. Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, and the seventh leading cause of cancer-related deaths worldwide. An improved understanding of tumor biology and novel therapeutic discoveries are needed to improve overall survival. Recent multi-gene analysis approaches such as next-generation sequencing have provided useful information on the molecular characterization of pancreatic tumors. Different types of pancreatic cancer and precursor lesions are characterized by specific molecular alterations. Genetically engineered mouse models (GEMMs) of PDAC are useful to understand the roles of altered genes. Most GEMMs are driven by oncogenic Kras, and can recapitulate the histological and molecular hallmarks of human PDAC and comparable precursor lesions. Advanced GEMMs permit the temporally and spatially controlled manipulation of multiple target genes using a dual-recombinase system or CRISPR/Cas9 gene editing. GEMMs that express fluorescent proteins allow cell lineage tracing to follow tumor growth and metastasis to understand the contribution of different cell types in cancer progression. GEMMs are widely used for therapeutic optimization. In this review, we summarize the main molecular alterations found in pancreatic neoplasms, developed GEMMs, and the contribution of GEMMs to the current understanding of PDAC pathobiology. Furthermore, we attempted to modify the categorization of altered driver genes according to the most updated findings. Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, and the seventh leading cause of cancer-related deaths worldwide. An improved understanding of tumor biology and novel therapeutic discoveries are needed to improve overall survival. Recent multi-gene analysis approaches such as next-generation sequencing have provided useful information on the molecular characterization of pancreatic tumors. Different types of pancreatic cancer and precursor lesions are characterized by specific molecular alterations. Genetically engineered mouse models (GEMMs) of PDAC are useful to understand the roles of altered genes. Most GEMMs are driven by oncogenic Kras, and can recapitulate the histological and molecular hallmarks of human PDAC and comparable precursor lesions. Advanced GEMMs permit the temporally and spatially controlled manipulation of multiple target genes using a dual-recombinase system or CRISPR/Cas9 gene editing. GEMMs that express fluorescent proteins allow cell lineage tracing to follow tumor growth and metastasis to understand the contribution of different cell types in cancer progression. GEMMs are widely used for therapeutic optimization. In this review, we summarize the main molecular alterations found in pancreatic neoplasms, developed GEMMs, and the contribution of GEMMs to the current understanding of PDAC pathobiology. Furthermore, we attempted to modify the categorization of altered driver genes according to the most updated findings.Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, and the seventh leading cause of cancer-related deaths worldwide. An improved understanding of tumor biology and novel therapeutic discoveries are needed to improve overall survival. Recent multi-gene analysis approaches such as next-generation sequencing have provided useful information on the molecular characterization of pancreatic tumors. Different types of pancreatic cancer and precursor lesions are characterized by specific molecular alterations. Genetically engineered mouse models (GEMMs) of PDAC are useful to understand the roles of altered genes. Most GEMMs are driven by oncogenic Kras, and can recapitulate the histological and molecular hallmarks of human PDAC and comparable precursor lesions. Advanced GEMMs permit the temporally and spatially controlled manipulation of multiple target genes using a dual-recombinase system or CRISPR/Cas9 gene editing. GEMMs that express fluorescent proteins allow cell lineage tracing to follow tumor growth and metastasis to understand the contribution of different cell types in cancer progression. GEMMs are widely used for therapeutic optimization. In this review, we summarize the main molecular alterations found in pancreatic neoplasms, developed GEMMs, and the contribution of GEMMs to the current understanding of PDAC pathobiology. Furthermore, we attempted to modify the categorization of altered driver genes according to the most updated findings. |
Author | Ohmuraya, Masaki Saiki, Yuriko Jiang, Can Furukawa, Toru |
AuthorAffiliation | 2 Department of Genetics, Hyogo College of Medicine, Hyogo 663-8501, Japan; ohmuraya@hyo-med.ac.jp 1 Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; ysaiki@med.tohoku.ac.jp (Y.S.); can.jiang.t3@dc.tohoku.ac.jp (C.J.) |
AuthorAffiliation_xml | – name: 1 Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; ysaiki@med.tohoku.ac.jp (Y.S.); can.jiang.t3@dc.tohoku.ac.jp (C.J.) – name: 2 Department of Genetics, Hyogo College of Medicine, Hyogo 663-8501, Japan; ohmuraya@hyo-med.ac.jp |
Author_xml | – sequence: 1 givenname: Yuriko surname: Saiki fullname: Saiki, Yuriko – sequence: 2 givenname: Can surname: Jiang fullname: Jiang, Can – sequence: 3 givenname: Masaki surname: Ohmuraya fullname: Ohmuraya, Masaki – sequence: 4 givenname: Toru orcidid: 0000-0002-1083-2324 surname: Furukawa fullname: Furukawa, Toru |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35008235$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctPAyEQxomp0Vo9ezObePFSy2NZ2IuJaXwlvg56Jiw7WzFbUNg18b-X2mpqE0lgCPzmYz5mDw2cd4DQIcGnjJV4YrQzECLJMcFYkC00pFjQcVGU-WBtv4sOYnzFaTBGRCF20C7jGEvK-BDdX4GDzprsru90Z72LmW-yx6QcQC_Op9-PZNrV2QrVbfuZXbiZdQAB6uzO9xHSWkMb99F2o9sIB6s4Qs-XF0_T6_Htw9XN9Px2bHIpujHjjJqCmjLP06yM1FzzxmApKpwzBtqwpiSVobgWvBF1yXNGWWlILYuK5w0bobOl7ltfzaE24LqgW_UW7FyHT-W1VX9vnH1RM_-hpEjWeZEETlYCwb_3EDs1t9FA22oHyY-iBZGylILihB5voK--Dy7Z-6Yo5oQsqKP1in5L-fnqBEyWgAk-xgDNL0KwWvRTbfQzZfCNDGOXTUqWbPtv3hf-waVD |
CitedBy_id | crossref_primary_10_1016_j_drudis_2025_104320 crossref_primary_10_1016_j_prp_2024_155632 crossref_primary_10_3390_cells13110948 crossref_primary_10_3390_cells11030426 crossref_primary_10_5306_wjco_v15_i12_1459 crossref_primary_10_3390_biomedicines12091979 crossref_primary_10_3390_cancers15030761 crossref_primary_10_5348_100106Z04ES2025RA crossref_primary_10_3390_biomedicines10040926 crossref_primary_10_3390_cancers16112101 crossref_primary_10_1186_s13024_023_00619_2 crossref_primary_10_1158_1078_0432_CCR_24_0468 crossref_primary_10_3390_synbio3010001 crossref_primary_10_1186_s12935_025_03673_6 crossref_primary_10_1016_j_compmedimag_2025_102526 crossref_primary_10_1016_j_heliyon_2023_e13456 crossref_primary_10_3390_cimb46040177 crossref_primary_10_1016_j_pan_2022_12_003 crossref_primary_10_1080_17474124_2023_2295498 crossref_primary_10_2967_jnumed_124_267736 crossref_primary_10_1016_j_pan_2023_03_007 crossref_primary_10_3389_fgene_2023_1218774 crossref_primary_10_3390_diseases12070149 crossref_primary_10_1002_open_202400232 |
Cites_doi | 10.1126/stke.2502004re13 10.1007/s00018-006-6005-y 10.1038/ng.3127 10.1038/nature14169 10.1038/modpathol.3880547 10.1126/scitranslmed.3002543 10.1038/s41598-017-11661-8 10.1158/0008-5472.CAN-18-1968 10.1038/onc.2015.294 10.1146/annurev-cancerbio-030617-050407 10.1016/j.yexcr.2008.01.013 10.1158/2159-8290.CD-19-1508 10.1038/oncsis.2015.28 10.1210/me.2007-0513 10.1101/gad.232082.113 10.1136/gutjnl-2017-314426 10.1038/s41598-018-26526-x 10.1007/s00534-006-1168-3 10.1073/pnas.1202490109 10.18632/oncotarget.12490 10.6004/jnccn.2020.0017 10.1038/s41588-019-0566-9 10.1371/journal.pone.0022129 10.1016/S1535-6108(03)00309-X 10.1042/BJ20040524 10.1073/pnas.1114817109 10.1016/S0002-9440(10)61104-2 10.1007/s11914-015-0268-x 10.1016/S0002-9440(10)63053-2 10.1038/srep00161 10.1073/pnas.1118046108 10.1101/gad.1158703 10.1016/j.tcb.2008.01.008 10.1097/01.pas.0000126675.59108.80 10.1158/2159-8290.CD-11-0347 10.1016/j.ccell.2019.01.001 10.3390/biom10030487 10.1038/nrc3521 10.1016/j.celrep.2017.02.013 10.1126/science.1096502 10.1038/300762a0 10.1093/carcin/bgz108 10.1038/nrc1926 10.1242/dev.056499 10.1038/modpathol.2017.60 10.1016/S0002-9440(10)65440-5 10.1093/emboj/17.17.5001 10.1038/35042675 10.3322/caac.21660 10.1016/j.humpath.2011.06.009 10.1038/modpathol.2014.98 10.1158/0008-5472.CAN-14-0155 10.1146/annurev.genom.4.070802.110341 10.1126/science.1164368 10.1053/j.gastro.2018.03.039 10.1002/path.4344 10.1016/j.ejmech.2020.113137 10.1158/2159-8290.CD-15-0120 10.1002/gcc.1147 10.1016/S1535-6108(03)00337-4 10.1158/0008-5472.CAN-12-2067 10.1097/MPA.0000000000000253 10.1158/1078-0432.CCR-06-0083 10.1200/JCO.2017.72.3502 10.1136/gutjnl-2017-315541 10.1080/0284186X.2016.1197419 10.1016/j.cell.2012.01.058 10.1038/ncomms7744 10.1038/bjc.2013.47 10.1242/dmm.020933 10.1016/j.jamcollsurg.2014.11.029 10.1136/gutjnl-2018-318059 10.1016/j.tig.2020.07.011 10.1038/sj.onc.1208927 10.1038/s41556-018-0122-3 10.1371/journal.pone.0184984 10.1097/PAS.0b013e3181a162e5 10.1016/j.ccr.2007.01.012 10.1136/gutjnl-2014-308042 10.1038/ncb2916 10.1038/s41374-020-00490-5 10.1016/j.ccr.2005.04.023 10.3390/cancers12061524 10.1016/j.tibs.2014.02.006 10.1158/1078-0432.CCR-19-3724 10.1097/SLA.0000000000004213 10.1111/his.13975 10.1038/nm.3646 10.1007/s00428-005-0039-7 10.1101/gad.943001 10.1002/humu.21633 10.1097/00000478-200011000-00011 10.1016/j.ccell.2016.08.006 10.1097/00000478-199608000-00007 10.12703/r/9-31 10.1200/JCO.1998.16.3.1197 10.1016/j.cell.2011.11.025 10.1101/gad.1478706 10.1097/00000478-200105000-00003 10.1002/path.4242 10.4161/cc.9.3.10599 10.1007/s00428-014-1657-8 10.1002/path.2875 10.1073/pnas.88.1.93 10.1038/ajg.2009.725 10.1038/nature00766 10.1053/j.gastro.2017.12.007 10.1007/s00432-020-03321-8 10.1038/s41575-021-00463-z |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 3V. 7T5 7TO 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH H94 HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/cancers14010071 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Immunology Abstracts Oncogenes and Growth Factors Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection Biological Sciences Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2072-6694 |
ExternalDocumentID | PMC8750056 35008235 10_3390_cancers14010071 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 20K07386 |
GroupedDBID | --- 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO E3Z EBD ESX GNUQQ GUQSH GX1 HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 P6G PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM TUS 3V. GROUPED_DOAJ NPM 7T5 7TO 7XB 8FK H94 MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c487t-3532c62c944c94bc8a5a5fc087b0433eac3f91bc20d75f7d9543239c1d86b54f3 |
IEDL.DBID | M48 |
ISSN | 2072-6694 |
IngestDate | Thu Aug 21 18:39:36 EDT 2025 Fri Jul 11 07:07:00 EDT 2025 Fri Jul 25 11:50:24 EDT 2025 Thu Jan 02 22:57:04 EST 2025 Tue Jul 01 01:28:17 EDT 2025 Thu Apr 24 22:54:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | KRAS PDAC GEMM |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c487t-3532c62c944c94bc8a5a5fc087b0433eac3f91bc20d75f7d9543239c1d86b54f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1083-2324 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cancers14010071 |
PMID | 35008235 |
PQID | 2618205110 |
PQPubID | 2032421 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8750056 proquest_miscellaneous_2618898720 proquest_journals_2618205110 pubmed_primary_35008235 crossref_primary_10_3390_cancers14010071 crossref_citationtrail_10_3390_cancers14010071 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211224 |
PublicationDateYYYYMMDD | 2021-12-24 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211224 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Cancers |
PublicationTitleAlternate | Cancers (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Wu (ref_65) 2011; 3 Sung (ref_2) 2021; 71 Shain (ref_107) 2012; 109 Jones (ref_6) 2008; 321 Leach (ref_110) 2004; 5 Hruban (ref_15) 2000; 6 Yamaguchi (ref_12) 2009; 33 ref_95 Maddipati (ref_121) 2015; 5 Xiao (ref_16) 2011; 224 Sakamoto (ref_115) 2020; 10 Hopkins (ref_55) 2014; 39 Lin (ref_29) 2013; 73 Liggett (ref_86) 1998; 16 Schutte (ref_88) 1997; 57 Zavadil (ref_80) 2005; 24 ref_24 Hearle (ref_71) 2006; 12 Takai (ref_96) 2016; 7 Jackson (ref_43) 2001; 15 Kopp (ref_44) 2011; 138 Lin (ref_69) 2020; 146 Mann (ref_109) 2012; 109 Kim (ref_8) 2020; 52 Taki (ref_32) 2016; 35 Sandgren (ref_28) 1991; 88 Kopp (ref_27) 2018; 154 Aguirre (ref_35) 2003; 17 Adsay (ref_11) 1996; 20 Sugiura (ref_98) 2008; 314 ref_78 Wu (ref_102) 2011; 108 Hingorani (ref_36) 2005; 7 Ying (ref_59) 2012; 149 ref_75 Kufareva (ref_61) 2013; 13 Sharpless (ref_91) 2001; 413 Furukawa (ref_64) 2011; 1 Bardeesy (ref_34) 2006; 20 Zhao (ref_52) 2010; 9 Giannakis (ref_100) 2014; 46 Martinelli (ref_114) 2016; 65 Grippo (ref_19) 2003; 63 Kuboki (ref_66) 2015; 44 Singh (ref_22) 2021; 101 Hruban (ref_10) 2004; 28 Mishra (ref_39) 2020; 41 Seidler (ref_23) 2014; 20 Rahib (ref_4) 2014; 74 Lee (ref_18) 2019; 68 Zebisch (ref_50) 2006; 63 Wang (ref_105) 2004; 383 Basturk (ref_53) 2017; 30 Wang (ref_41) 2019; 68 Bergmann (ref_57) 2014; 465 Furukawa (ref_67) 2005; 447 Fukushima (ref_13) 2007; 14 Koo (ref_99) 2012; 488 Viger (ref_111) 2008; 22 Guerra (ref_21) 2007; 11 Taparowsky (ref_46) 1982; 300 Bierie (ref_79) 2006; 6 Inoue (ref_83) 2001; 31 Nagtegaal (ref_14) 2020; 76 Rhim (ref_120) 2012; 148 Hayashi (ref_7) 2021; 18 Murphy (ref_94) 2002; 62 Su (ref_77) 1999; 154 Wilentz (ref_84) 2000; 60 Yanagisawa (ref_48) 1993; 53 Schleger (ref_58) 2002; 15 Takeuchi (ref_92) 2018; 8 Collisson (ref_25) 2012; 2 Vogelstein (ref_81) 2000; 408 Wilentz (ref_90) 1998; 58 Tan (ref_73) 2015; 220 Jang (ref_113) 2020; 26 Shindo (ref_93) 2017; 35 Samuels (ref_51) 2004; 304 Davies (ref_49) 2002; 417 Hingorani (ref_20) 2003; 4 Hruban (ref_9) 2001; 25 ref_63 Kimura (ref_40) 2018; 155 Daly (ref_97) 2020; 18 Liang (ref_60) 2019; 79 Colicelli (ref_45) 2004; 2004 Knorr (ref_116) 2019; 3 Sato (ref_76) 2001; 159 Sakamoto (ref_101) 2015; 28 Ocal (ref_119) 2015; 8 Chow (ref_54) 2020; 9 Witkiewicz (ref_47) 2015; 6 Yamaguchi (ref_17) 2013; 231 ref_31 ref_112 Payne (ref_26) 2015; 4 Rajbhandari (ref_30) 2017; 18 Collet (ref_33) 2020; 69 Waddell (ref_82) 2015; 518 Saborowski (ref_118) 2014; 28 Amato (ref_74) 2014; 233 Williams (ref_70) 2008; 18 Obeng (ref_117) 2016; 30 Ferlay (ref_3) 2016; 55 Ross (ref_56) 2021; 213 Centore (ref_103) 2020; 36 Fukushima (ref_89) 2002; 160 Drosos (ref_38) 2017; 7 Fukuda (ref_42) 2014; 16 Wang (ref_104) 2019; 35 Wilentz (ref_85) 2000; 24 Jones (ref_106) 2012; 33 Wagner (ref_72) 2010; 105 ref_1 Hansel (ref_5) 2003; 4 Patra (ref_37) 2018; 20 Nishikawa (ref_68) 2013; 108 Turan (ref_62) 2015; 13 Hong (ref_108) 2012; 43 Stott (ref_87) 1998; 17 |
References_xml | – volume: 2004 start-page: re13 year: 2004 ident: ref_45 article-title: Human RAS Superfamily Proteins and Related GTPases publication-title: Sci. Stke doi: 10.1126/stke.2502004re13 – volume: 63 start-page: 1314 year: 2006 ident: ref_50 article-title: Back to the roots: The remarkable RAF oncogene story publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-006-6005-y – volume: 46 start-page: 1264 year: 2014 ident: ref_100 article-title: RNF43 is frequently mutated in colorectal and endometrial cancers publication-title: Nat. Genet. doi: 10.1038/ng.3127 – volume: 518 start-page: 495 year: 2015 ident: ref_82 article-title: Whole genomes redefine the mutational landscape of pancreatic cancer publication-title: Nature doi: 10.1038/nature14169 – volume: 15 start-page: 462 year: 2002 ident: ref_58 article-title: c-MYC Activation in Primary and Metastatic Ductal Adenocarcinoma of the Pancreas: Incidence, Mechanisms, and Clinical Significance publication-title: Mod. Pathol. doi: 10.1038/modpathol.3880547 – volume: 3 start-page: 92ra66 year: 2011 ident: ref_65 article-title: Recurrent GNAS Mutations Define an Unexpected Pathway for Pancreatic Cyst Development publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3002543 – volume: 7 start-page: 1 year: 2017 ident: ref_38 article-title: ATM-deficiency increases genomic instability and metastatic potential in a mouse model of pancreatic cancer publication-title: Sci. Rep. doi: 10.1038/s41598-017-11661-8 – volume: 79 start-page: 133 year: 2019 ident: ref_60 article-title: PIN1 Maintains Redox Balance via the c-Myc/NRF2 Axis to Counteract Kras-Induced Mitochondrial Respiratory Injury in Pancreatic Cancer Cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-1968 – volume: 62 start-page: 3789 year: 2002 ident: ref_94 article-title: Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: Deleterious BRCA2 mutations in 17% publication-title: Cancer Res. – volume: 35 start-page: 2407 year: 2016 ident: ref_32 article-title: GNASR201H and KrasG12D cooperate to promote murine pancreatic tumorigenesis recapitulating human intraductal papillary mucinous neoplasm publication-title: Oncogene doi: 10.1038/onc.2015.294 – volume: 3 start-page: 167 year: 2019 ident: ref_116 article-title: Aberrant RNA Splicing in Cancer publication-title: Annu. Rev. Cancer Biol. doi: 10.1146/annurev-cancerbio-030617-050407 – volume: 314 start-page: 1519 year: 2008 ident: ref_98 article-title: A cancer-associated RING finger protein, RNF43, is a ubiquitin ligase that interacts with a nuclear protein, Hapexp publication-title: Cell Res. doi: 10.1016/j.yexcr.2008.01.013 – volume: 10 start-page: 792 year: 2020 ident: ref_115 article-title: The Evolutionary Origins of Recurrent Pancreatic Cancer publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-19-1508 – volume: 4 start-page: e169 year: 2015 ident: ref_26 article-title: PIK3CA mutations can initiate pancreatic tumorigenesis and are targetable with PI3K inhibitors publication-title: Oncogenesis doi: 10.1038/oncsis.2015.28 – volume: 22 start-page: 781 year: 2008 ident: ref_111 article-title: Role of the GATA Family of Transcription Factors in Endocrine Development, Function, and Disease publication-title: Mol. Endocrinol. doi: 10.1210/me.2007-0513 – ident: ref_1 – volume: 28 start-page: 85 year: 2014 ident: ref_118 article-title: A modular and flexible ESC-based mouse model of pancreatic cancer publication-title: Genes Dev. doi: 10.1101/gad.232082.113 – volume: 68 start-page: 487 year: 2019 ident: ref_18 article-title: Cell of origin affects tumour development and phenotype in pancreatic ductal adenocarcinoma publication-title: Gut doi: 10.1136/gutjnl-2017-314426 – volume: 53 start-page: 953 year: 1993 ident: ref_48 article-title: Frequent c-Ki-ras oncogene activation in mucous cell hyperplasias of pancreas suffering from chronic inflammation publication-title: Cancer Res. – volume: 8 start-page: 1 year: 2018 ident: ref_92 article-title: Mutations in BRCA1, BRCA2, and PALB2, and a panel of 50 cancer-associated genes in pancreatic ductal adenocarcinoma publication-title: Sci. Rep. doi: 10.1038/s41598-018-26526-x – volume: 14 start-page: 238 year: 2007 ident: ref_13 article-title: Mucinous cystic neoplasms of the pancreas: Pathology and molecular genetics publication-title: J. Hepato-Biliary-Pancreat. Surg. doi: 10.1007/s00534-006-1168-3 – volume: 109 start-page: 5934 year: 2012 ident: ref_109 article-title: Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1202490109 – volume: 7 start-page: 74227 year: 2016 ident: ref_96 article-title: Germline mutations in Japanese familial pancreatic cancer patients publication-title: Oncotarget doi: 10.18632/oncotarget.12490 – ident: ref_31 – volume: 18 start-page: 380 year: 2020 ident: ref_97 article-title: NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 1 publication-title: J. Natl. Compr. Cancer Netw. doi: 10.6004/jnccn.2020.0017 – volume: 52 start-page: 231 year: 2020 ident: ref_8 article-title: Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution publication-title: Nat. Genet. doi: 10.1038/s41588-019-0566-9 – ident: ref_112 doi: 10.1371/journal.pone.0022129 – volume: 4 start-page: 437 year: 2003 ident: ref_20 article-title: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00309-X – volume: 383 start-page: 319 year: 2004 ident: ref_105 article-title: Two related ARID family proteins are alternative subunits of human SWI/SNF complexes publication-title: Biochem. J. doi: 10.1042/BJ20040524 – volume: 109 start-page: E252 year: 2012 ident: ref_107 article-title: Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1114817109 – volume: 160 start-page: 1573 year: 2002 ident: ref_89 article-title: Aberrant Methylation of Preproenkephalin and p16 Genes in Pancreatic Intraepithelial Neoplasia and Pancreatic Ductal Adenocarcinoma publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)61104-2 – volume: 13 start-page: 146 year: 2015 ident: ref_62 article-title: GNAS Spectrum of Disorders publication-title: Curr. Osteoporos. Rep. doi: 10.1007/s11914-015-0268-x – volume: 159 start-page: 2017 year: 2001 ident: ref_76 article-title: STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)63053-2 – volume: 1 start-page: 161 year: 2011 ident: ref_64 article-title: Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas publication-title: Sci. Rep. doi: 10.1038/srep00161 – volume: 60 start-page: 2002 year: 2000 ident: ref_84 article-title: Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: Evidence that DPC4 inactivation occurs late in neoplastic progression publication-title: Cancer Res. – volume: 108 start-page: 21188 year: 2011 ident: ref_102 article-title: Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1118046108 – volume: 17 start-page: 3112 year: 2003 ident: ref_35 article-title: Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma publication-title: Genes Dev. doi: 10.1101/gad.1158703 – volume: 18 start-page: 193 year: 2008 ident: ref_70 article-title: LKB1 and AMPK in cell polarity and division publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2008.01.008 – volume: 28 start-page: 977 year: 2004 ident: ref_10 article-title: An Illustrated Consensus on the Classification of Pancreatic Intraepithelial Neoplasia and Intraductal Papillary Mucinous Neoplasms publication-title: Am. J. Surg. Pathol. doi: 10.1097/01.pas.0000126675.59108.80 – volume: 2 start-page: 685 year: 2012 ident: ref_25 article-title: A Central Role for RAF→MEK→ERK Signaling in the Genesis of Pancreatic Ductal Adenocarcinoma publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-11-0347 – volume: 35 start-page: 168 year: 2019 ident: ref_104 article-title: UTX Mutations in Human Cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.01.001 – ident: ref_78 doi: 10.3390/biom10030487 – volume: 13 start-page: 412 year: 2013 ident: ref_61 article-title: The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3521 – volume: 18 start-page: 2243 year: 2017 ident: ref_30 article-title: Autocrine IGF1 Signaling Mediates Pancreatic Tumor Cell Dormancy in the Absence of Oncogenic Drivers publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.02.013 – volume: 304 start-page: 554 year: 2004 ident: ref_51 article-title: High Frequency of Mutations of the PIK3CA Gene in Human Cancers publication-title: Science doi: 10.1126/science.1096502 – volume: 300 start-page: 762 year: 1982 ident: ref_46 article-title: Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change publication-title: Nature doi: 10.1038/300762a0 – volume: 41 start-page: 334 year: 2020 ident: ref_39 article-title: Generation of focal mutations and large genomic deletions in the pancreas using inducible in vivo genome editing publication-title: Carcinogenesis doi: 10.1093/carcin/bgz108 – ident: ref_75 – volume: 6 start-page: 506 year: 2006 ident: ref_79 article-title: TGFβ: The molecular Jekyll and Hyde of cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1926 – volume: 6 start-page: 2969 year: 2000 ident: ref_15 article-title: Progression model for pancreatic cancer publication-title: Clin. Cancer Res. – volume: 138 start-page: 653 year: 2011 ident: ref_44 article-title: Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas publication-title: Development doi: 10.1242/dev.056499 – volume: 30 start-page: 1760 year: 2017 ident: ref_53 article-title: Pancreatic intraductal tubulopapillary neoplasm is genetically distinct from intraductal papillary mucinous neoplasm and ductal adenocarcinoma publication-title: Mod. Pathol. doi: 10.1038/modpathol.2017.60 – volume: 154 start-page: 1835 year: 1999 ident: ref_77 article-title: Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic and biliary cancers publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)65440-5 – volume: 17 start-page: 5001 year: 1998 ident: ref_87 article-title: The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and Mdm publication-title: EMBO J. doi: 10.1093/emboj/17.17.5001 – volume: 408 start-page: 307 year: 2000 ident: ref_81 article-title: Surfing the p53 network publication-title: Nature doi: 10.1038/35042675 – volume: 71 start-page: 209 year: 2021 ident: ref_2 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21660 – volume: 43 start-page: 585 year: 2012 ident: ref_108 article-title: Loss of expression of the SWI/SNF chromatin remodeling subunit BRG1/SMARCA4 is frequently observed in intraductal papillary mucinous neoplasms of the pancreas publication-title: Hum. Pathol. doi: 10.1016/j.humpath.2011.06.009 – volume: 28 start-page: 261 year: 2015 ident: ref_101 article-title: Clinicopathological significance of somatic RNF43 mutation and aberrant expression of ring finger protein 43 in intraductal papillary mucinous neoplasms of the pancreas publication-title: Mod. Pathol. doi: 10.1038/modpathol.2014.98 – volume: 74 start-page: 2913 year: 2014 ident: ref_4 article-title: Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-0155 – volume: 4 start-page: 237 year: 2003 ident: ref_5 article-title: Molecular Pathogenesis of Pancreatic Cancer publication-title: Annu. Rev. Genom. Hum. Genet. doi: 10.1146/annurev.genom.4.070802.110341 – volume: 321 start-page: 1801 year: 2008 ident: ref_6 article-title: Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses publication-title: Science doi: 10.1126/science.1164368 – volume: 155 start-page: 194 year: 2018 ident: ref_40 article-title: ARID1A Maintains Differentiation of Pancreatic Ductal Cells and Inhibits Development of Pancreatic Ductal Adenocarcinoma in Mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2018.03.039 – volume: 233 start-page: 217 year: 2014 ident: ref_74 article-title: Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas publication-title: J. Pathol. doi: 10.1002/path.4344 – volume: 488 start-page: 665 year: 2012 ident: ref_99 article-title: Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors publication-title: Nat. Cell Biol. – volume: 213 start-page: 113137 year: 2021 ident: ref_56 article-title: Targeting MYC: From understanding its biology to drug discovery publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2020.113137 – volume: 63 start-page: 2016 year: 2003 ident: ref_19 article-title: Preinvasive pancreatic neoplasia of ductal phenotype induced by acinar cell targeting of mutant Kras in transgenic mice publication-title: Cancer Res. – volume: 5 start-page: 1086 year: 2015 ident: ref_121 article-title: Pancreatic Cancer Metastases Harbor Evidence of Polyclonality publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-15-0120 – volume: 31 start-page: 295 year: 2001 ident: ref_83 article-title: Exclusion ofSMAD4 mutation as an early genetic change in human pancreatic ductal tumorigenesis publication-title: GenesChromosom. Cancer doi: 10.1002/gcc.1147 – volume: 5 start-page: 7 year: 2004 ident: ref_110 article-title: Mouse models of pancreatic cancer: The fur is finally flying! publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00337-4 – volume: 73 start-page: 1821 year: 2013 ident: ref_29 article-title: Dormant Cancer Cells Contribute to Residual Disease in a Model of Reversible Pancreatic Cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-2067 – volume: 58 start-page: 4740 year: 1998 ident: ref_90 article-title: Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: Loss of intranuclear expression publication-title: Cancer Res. – volume: 44 start-page: 227 year: 2015 ident: ref_66 article-title: Molecular Biomarkers for Progression of Intraductal Papillary Mucinous Neoplasm of the Pancreas publication-title: Pancreas doi: 10.1097/MPA.0000000000000253 – volume: 12 start-page: 3209 year: 2006 ident: ref_71 article-title: Frequency and Spectrum of Cancers in the Peutz-Jeghers Syndrome publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-06-0083 – volume: 35 start-page: 3382 year: 2017 ident: ref_93 article-title: Deleterious Germline Mutations in Patients with Apparently Sporadic Pancreatic Adenocarcinoma publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2017.72.3502 – volume: 68 start-page: 1245 year: 2019 ident: ref_41 article-title: ARID1A, a SWI/SNF subunit, is critical to acinar cell homeostasis and regeneration and is a barrier to transformation and epithelial-mesenchymal transition in the pancreas publication-title: Gut doi: 10.1136/gutjnl-2017-315541 – volume: 55 start-page: 1158 year: 2016 ident: ref_3 article-title: More deaths from pancreatic cancer than breast cancer in the EU by 2017 publication-title: Acta Oncol. Stock. Swed. doi: 10.1080/0284186X.2016.1197419 – volume: 149 start-page: 656 year: 2012 ident: ref_59 article-title: Oncogenic Kras Maintains Pancreatic Tumors through Regulation of Anabolic Glucose Metabolism publication-title: Cell doi: 10.1016/j.cell.2012.01.058 – volume: 6 start-page: 6744 year: 2015 ident: ref_47 article-title: Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets publication-title: Nat. Commun. doi: 10.1038/ncomms7744 – volume: 108 start-page: 951 year: 2013 ident: ref_68 article-title: Frequent GNAS mutations in low-grade appendiceal mucinous neoplasms publication-title: Br. J. Cancer doi: 10.1038/bjc.2013.47 – volume: 8 start-page: 1201 year: 2015 ident: ref_119 article-title: A rapid in vivo screen for pancreatic ductal adenocarcinoma therapeutics publication-title: Dis. Model. Mech. doi: 10.1242/dmm.020933 – volume: 220 start-page: 845 year: 2015 ident: ref_73 article-title: GNAS and KRAS Mutations Define Separate Progression Pathways in Intraductal Papillary Mucinous Neoplasm-Associated Carcinoma publication-title: J. Am. Coll. Surg. doi: 10.1016/j.jamcollsurg.2014.11.029 – volume: 69 start-page: 704 year: 2020 ident: ref_33 article-title: Kras and Lkb1 mutations synergistically induce intraductal papillary mucinous neoplasm derived from pancreatic duct cells publication-title: Gut doi: 10.1136/gutjnl-2018-318059 – volume: 36 start-page: 936 year: 2020 ident: ref_103 article-title: Mammalian SWI/SNF Chromatin Remodeling Complexes: Emerging Mechanisms and Therapeutic Strategies publication-title: Trends Genet. doi: 10.1016/j.tig.2020.07.011 – volume: 24 start-page: 5764 year: 2005 ident: ref_80 article-title: TGF-β and epithelial-to-mesenchymal transitions publication-title: Oncogene doi: 10.1038/sj.onc.1208927 – volume: 20 start-page: 811 year: 2018 ident: ref_37 article-title: Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0122-3 – ident: ref_24 doi: 10.1371/journal.pone.0184984 – volume: 33 start-page: 1164 year: 2009 ident: ref_12 article-title: Intraductal Tubulopapillary Neoplasms of the Pancreas Distinct from Pancreatic Intraepithelial Neoplasia and Intraductal Papillary Mucinous Neoplasms publication-title: Am. J. Surg. Pathol. doi: 10.1097/PAS.0b013e3181a162e5 – volume: 11 start-page: 291 year: 2007 ident: ref_21 article-title: Chronic Pancreatitis Is Essential for Induction of Pancreatic Ductal Adenocarcinoma by K-Ras Oncogenes in Adult Mice publication-title: Cancer Cell doi: 10.1016/j.ccr.2007.01.012 – volume: 65 start-page: 476 year: 2016 ident: ref_114 article-title: The acinar regulator Gata6 suppressesKrasG12V-driven pancreatic tumorigenesis in mice publication-title: Gut doi: 10.1136/gutjnl-2014-308042 – volume: 16 start-page: 255 year: 2014 ident: ref_42 article-title: The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma publication-title: Nat. Cell Biol. doi: 10.1038/ncb2916 – volume: 101 start-page: 177 year: 2021 ident: ref_22 article-title: Kras mutation rate precisely orchestrates ductal derived pancreatic intraepithelial neoplasia and pancreatic cancer publication-title: Lab. Investig. doi: 10.1038/s41374-020-00490-5 – volume: 7 start-page: 469 year: 2005 ident: ref_36 article-title: Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice publication-title: Cancer Cell doi: 10.1016/j.ccr.2005.04.023 – ident: ref_63 doi: 10.3390/cancers12061524 – volume: 39 start-page: 183 year: 2014 ident: ref_55 article-title: PTEN function: The long and the short of it publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2014.02.006 – volume: 26 start-page: 4901 year: 2020 ident: ref_113 article-title: GATA6 Expression Distinguishes Classical and Basal-like Subtypes in Advanced Pancreatic Cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-19-3724 – ident: ref_95 doi: 10.1097/SLA.0000000000004213 – volume: 76 start-page: 182 year: 2020 ident: ref_14 article-title: The 2019 WHO classification of tumours of the digestive system publication-title: Histopathology doi: 10.1111/his.13975 – volume: 20 start-page: 1340 year: 2014 ident: ref_23 article-title: A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer publication-title: Nat. Med. doi: 10.1038/nm.3646 – volume: 447 start-page: 794 year: 2005 ident: ref_67 article-title: Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: A consensus study publication-title: Virchows Arch. Int. J. Pathol. doi: 10.1007/s00428-005-0039-7 – volume: 15 start-page: 3243 year: 2001 ident: ref_43 article-title: Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras publication-title: Genes Dev. doi: 10.1101/gad.943001 – volume: 33 start-page: 100 year: 2012 ident: ref_106 article-title: Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types publication-title: Hum. Mutat. doi: 10.1002/humu.21633 – volume: 24 start-page: 1544 year: 2000 ident: ref_85 article-title: Dpc4 protein in mucinous cystic neoplasms of the pancreas: Frequent loss of expression in invasive carcinomas suggests a role in genetic progression publication-title: Am. J. Surg. Pathol. doi: 10.1097/00000478-200011000-00011 – volume: 30 start-page: 404 year: 2016 ident: ref_117 article-title: Physiologic Expression of Sf3b1 K700E Causes Impaired Erythropoiesis, Aberrant Splicing, and Sensitivity to Therapeutic Spliceosome Modulation publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.08.006 – volume: 20 start-page: 980 year: 1996 ident: ref_11 article-title: Intraductal Oncocytic Papillary Neoplasms of the Pancreas publication-title: Am. J. Surg. Pathol. doi: 10.1097/00000478-199608000-00007 – volume: 9 start-page: 31 year: 2020 ident: ref_54 article-title: Recent advances in PTEN signalling axes in cancer publication-title: Fac. Rev. doi: 10.12703/r/9-31 – volume: 16 start-page: 1197 year: 1998 ident: ref_86 article-title: Role of the p16 tumor suppressor gene in cancer publication-title: J. Clin. Oncol. doi: 10.1200/JCO.1998.16.3.1197 – volume: 413 start-page: 86 year: 2001 ident: ref_91 article-title: Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis publication-title: Nat. Cell Biol. – volume: 148 start-page: 349 year: 2012 ident: ref_120 article-title: EMT and Dissemination Precede Pancreatic Tumor Formation publication-title: Cell doi: 10.1016/j.cell.2011.11.025 – volume: 20 start-page: 3130 year: 2006 ident: ref_34 article-title: Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer publication-title: Genes Dev. doi: 10.1101/gad.1478706 – volume: 25 start-page: 579 year: 2001 ident: ref_9 article-title: Pancreatic Intraepithelial Neoplasia publication-title: Am. J. Surg. Pathol. doi: 10.1097/00000478-200105000-00003 – volume: 231 start-page: 335 year: 2013 ident: ref_17 article-title: The discrete nature and distinguishing molecular features of pancreatic intraductal tubulopapillary neoplasms and intraductal papillary mucinous neoplasms of the gastric type, pyloric gland variant publication-title: J. Pathol. doi: 10.1002/path.4242 – volume: 9 start-page: 596 year: 2010 ident: ref_52 article-title: Hot-spot mutations in p110α of phosphatidylinositol 3-kinase (PI3K): Differential interactions with the regulatory subunit p85 and with RAS publication-title: Cell Cycle doi: 10.4161/cc.9.3.10599 – volume: 465 start-page: 661 year: 2014 ident: ref_57 article-title: Acinar cell carcinomas of the pancreas: A molecular analysis in a series of 57 cases publication-title: Virchows Arch. doi: 10.1007/s00428-014-1657-8 – volume: 224 start-page: 508 year: 2011 ident: ref_16 article-title: Molecular characteristics and biological behaviours of the oncocytic and pancreatobiliary subtypes of intraductal papillary mucinous neoplasms publication-title: J. Pathol. doi: 10.1002/path.2875 – volume: 88 start-page: 93 year: 1991 ident: ref_28 article-title: Pancreatic tumor pathogenesis reflects the causative genetic lesion publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.88.1.93 – volume: 105 start-page: 1258 year: 2010 ident: ref_72 article-title: High Cancer Risk in Peutz–Jeghers Syndrome: A Systematic Review and Surveillance Recommendations publication-title: Am. J. Gastroenterol. doi: 10.1038/ajg.2009.725 – volume: 417 start-page: 949 year: 2002 ident: ref_49 article-title: Mutations of the BRAF gene in human cancer publication-title: Nature doi: 10.1038/nature00766 – volume: 154 start-page: 1509 year: 2018 ident: ref_27 article-title: Loss of Pten and Activation of Kras Synergistically Induce Formation of Intraductal Papillary Mucinous Neoplasia from Pancreatic Ductal Cells in Mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2017.12.007 – volume: 57 start-page: 3126 year: 1997 ident: ref_88 article-title: Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas publication-title: Cancer Res. – volume: 146 start-page: 2179 year: 2020 ident: ref_69 article-title: The biological basis and function of GNAS mutation in pseudomyxoma peritonei: A review publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-020-03321-8 – volume: 18 start-page: 469 year: 2021 ident: ref_7 article-title: The pancreatic cancer genome revisited publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-021-00463-z |
SSID | ssj0000331767 |
Score | 2.3985384 |
SecondaryResourceType | review_article |
Snippet | Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, and the seventh leading cause of cancer-related deaths worldwide. An improved... Simple SummaryPancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy. Recent multi-gene analysis approaches such as next-generation... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 71 |
SubjectTerms | Adenocarcinoma Animal models Cell lineage CRISPR DNA damage Genes Genetic engineering Genomes Inflammation Kinases Lesions Malignancy Medical prognosis Metastases Mutation Neoplasia Next-generation sequencing Pancreatic cancer Pancreatitis Phase transitions Proteins Recombinase Review Transcription factors Tumorigenesis Tumors |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF58gHgR39YXK3jwEpvsI4-TaLEUoUXEQm9hHwkKJa2mPfjvnUm20Sp6yGlnk2Um89oZviHkUidSxRzL6irQngitApXKBCJh5krnNjG66vIdhL2heBjJkbtwK11b5cImVobaTgzekbch0gdnBeGBfzN983BqFFZX3QiNVbIOJjiG5Gv97n7w-NTcsvgc_GMY1Zg-HPL7tkFmvpeYV6B7XXZHv2LMn62S33xPd5tsuaCR3tZS3iErWbFLNvquLL5HBggeDWu0P68r6yWd5PQRzlCFhIZ2quNQVVjqSNV4_EEXYISZpf3JvMwoTkYbl_tk2L1_7vQ8NyjBM5BvzDwuOTMhM4kQ8GgTK6lkbvw40ohPBraV50mgDfNtJPPIJlJwxhMT2DjUUuT8gKwVkyI7IjSwoVJKRL5RDPwWhI_aTyJQVQNvELFokesFv1LjUMRxmMU4hWwCGZz-YHCLXDUbpjWAxt-kpwsBpE6TyvRL7i1y0SyDDmBhQxUZcKeiiZM4YkBzWMur-RaXVTFRtki0JMmGAPG1l1eK15cKZxtSOURKPf7_WCdkk2GfS8A8Jk7J2ux9np1BoDLT5-5v_AS9Guop priority: 102 providerName: ProQuest |
Title | Genetic Mutations of Pancreatic Cancer and Genetically Engineered Mouse Models |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35008235 https://www.proquest.com/docview/2618205110 https://www.proquest.com/docview/2618898720 https://pubmed.ncbi.nlm.nih.gov/PMC8750056 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1La9wwEB6aBEIupekrm6aLCj304tTWw7IOpbQhaSjsEkoX9mYk2aYF403Xu5D8-87I9rabx8EnjWUz0mi-jxHfALx3RtlMUFndJi6SaWExpEpJSpiVdVVhvAu3fKfp5Ux-n6v5v3ZAvQPbB6kd9ZOaLevTmz-3nzHgPxHjRMr-0ZN_li1RBcqYO7CHaUlTlE56rB-OZYGpMnSU5bHmUZoa2Un9PDTHAewLFapQajth3UOhdy9T_pedLp7B0x5Wsi_dPjiEJ2XzHPYnfeH8BUxJXhrH2GTd1d5btqjYFf5OAI2enYU_Y7YpWG9q6_qWDXKFZcEmi3VbMuqdVrcvYXZx_vPsMupbKUQeGckqEkpwn3JvpMTH-cwqqyofZ9qRghmevqIyifM8LrSqdGGUFFwYnxRZ6pSsxCvYbRZNeQQsKVJrrdSxtxwzGwJMFxuNwexxBpnJEZwO_sp9rzNO7S7qHPkG-Tq_4-sRfNi8cN1JbDxuejIsQD5slRw5IMIYBI7xCN5thjFKqPRhmxK9E2wyk2mONq-79dp8a1joEeitldwYkAL39kjz-1dQ4kayR1qqx4_O-QYOOF2CSXjE5Qnsrpbr8i2imJUbw97X8-nVjzHsfJsn47BX_wJ2U_Di |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEOW50BYjgcQlNPEjiQ8VKn1oS7urCrVSb8GPRCCtsqXZFeqf4jd2Ji-6RXDrISdPHGvG8_I43wC8s1qZVFBZ3UQ2kLE3qFK5JCTMwtjCa2frW76TeHQmv5yr8xX43f0LQ9cqO5tYG2o_c3RGvoWRPjorDA_CTxc_A-oaRdXVroVGsy2O8qtfmLJV24d7KN_3nB_sn-6OgrarQOAwOJ8HQgnuYu60lPhYlxplVOHCNLEE5oWGSBQ6so6HPlFF4rWSggvtIp_GVslC4Lz3YFUKTGUGsPp5f3LytT_VCQX64zhpMISE0OGWI-FdVpTHkDtfdn9_xbS3r2be8HUHj-FRG6SynWZXrcFKXj6B--O2DP8UJgRWjWNsvGgq-RWbFewE11CHoI7t1sthpvSsJTXT6RXrwA9zz8azRZUz6sQ2rZ7B2Z2w8DkMylmZvwQW-dgYI5PQGY5-EsNVG-oETYPDGWQqh_Cx41fmWtRyap4xzTB7IQZntxg8hA_9CxcNYMe_Sdc7AWSt5lbZn302hLf9MOocFVJMmSN3appUpwlHmheNvPpvCVUXL9UQkiVJ9gSE5708Uv74XuN6Y-pIyKyv_r-sN_BgdDo-zo4PJ0ev4SGnOzYRD7hch8H8cpFvYJA0t5vtzmTw7a6V4RpejyaN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbKVqq4IMqrCy0MEkhcwibzyCSHqoK2q5ayqxWiUm9hHolAWmVLsyvUv8avw84LtghuPeQ0zmRkj8f22PkM8MqmyiSC0uomsoGMvUGVyiUhYRbGFj51tq7yncYn5_LDhbrYgJ_dvzBUVtmdifVB7ReO7shH6OmjsUL3IBwVbVnE7Gh8cPk9oA5SlGnt2mk0W-Qsv_6B4Vu1f3qEsn7N-fj48-FJ0HYYCBw66stAKMFdzF0qJT7WJUYZVbgw0ZaAvfBQEkUaWcdDr1Whfaqk4CJ1kU9iq2QhcN47sKkxKgoHsPn-eDr71N_whAJtc6wbPCEh0nDkSJBXFcU0ZNrXTeFf_u3NMs0_7N74PtxrHVb2rtlh27CRlw9ga9Km5B_ClICrcYxNVk1Wv2KLgs1wDbU76thhvRxmSs9aUjOfX7MOCDH3bLJYVTmjrmzz6hGc3woLH8OgXJT5DrDIx8YYqUNnONpMdF1tmGo8JhzOIBM5hLcdvzLXIphTI415hpEMMTi7weAhvOlfuGzAO_5NutsJIGu1uMp-77khvOyHUf8oqWLKHLlT0yRpojnSPGnk1X9LqDqRqYag1yTZExC29_pI-e1rjfGNYSShtD79_7JewBYqQfbxdHr2DO5yKreJeMDlLgyWV6t8D_2lpX3ebkwGX25bF34B2R4qwg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Mutations+of+Pancreatic+Cancer+and+Genetically+Engineered+Mouse+Models&rft.jtitle=Cancers&rft.au=Saiki%2C+Yuriko&rft.au=Jiang%2C+Can&rft.au=Ohmuraya%2C+Masaki&rft.au=Furukawa%2C+Toru&rft.date=2021-12-24&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=14&rft.issue=1&rft_id=info:doi/10.3390%2Fcancers14010071&rft_id=info%3Apmid%2F35008235&rft.externalDocID=35008235 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon |