Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies

The protein tau is implicated in several brain disorders, including Alzheimer's disease, suggesting that it could be a target of therapeutics. However, because it is unclear how the pleiotropic roles of tau lead to neural pathology in different brain diseases, drug development remains challengi...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 371; no. 6532
Main Authors Chang, Che-Wei, Shao, Eric, Mucke, Lennart
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 26.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The protein tau is implicated in several brain disorders, including Alzheimer's disease, suggesting that it could be a target of therapeutics. However, because it is unclear how the pleiotropic roles of tau lead to neural pathology in different brain diseases, drug development remains challenging. Chang et al. review the possible mechanisms of tau in brain diseases and possible paths forward to improving research and drug development. Science , this issue p. eabb8255 Several lines of evidence implicate the protein tau in the pathogenesis of multiple brain disorders, including Alzheimer’s disease, other neurodegenerative conditions, autism, and epilepsy. Tau is abundant in neurons and interacts with microtubules, but its main functions in the brain remain to be defined. These functions may involve the regulation of signaling pathways relevant to diverse biological processes. Informative disease models have revealed a plethora of abnormal tau species and mechanisms that might contribute to neuronal dysfunction and loss, but the relative importance of their respective contributions is uncertain. This knowledge gap poses major obstacles to the development of truly impactful therapeutic strategies. The current expansion and intensification of efforts to translate mechanistic insights into tau-related therapeutics should address this issue and could deliver better treatments for a host of devastating conditions.
AbstractList Several lines of evidence implicate the protein tau in the pathogenesis of multiple brain disorders, including Alzheimer's disease, other neurodegenerative conditions, autism, and epilepsy. Tau is abundant in neurons and interacts with microtubules, but its main functions in the brain remain to be defined. These functions may involve the regulation of signaling pathways relevant to diverse biological processes. Informative disease models have revealed a plethora of abnormal tau species and mechanisms that might contribute to neuronal dysfunction and loss, but the relative importance of their respective contributions is uncertain. This knowledge gap poses major obstacles to the development of truly impactful therapeutic strategies. The current expansion and intensification of efforts to translate mechanistic insights into tau-related therapeutics should address this issue and could deliver better treatments for a host of devastating conditions.
The protein tau is implicated in several brain disorders, including Alzheimer's disease, suggesting that it could be a target of therapeutics. However, because it is unclear how the pleiotropic roles of tau lead to neural pathology in different brain diseases, drug development remains challenging. Chang et al. review the possible mechanisms of tau in brain diseases and possible paths forward to improving research and drug development. Science , this issue p. eabb8255 Several lines of evidence implicate the protein tau in the pathogenesis of multiple brain disorders, including Alzheimer’s disease, other neurodegenerative conditions, autism, and epilepsy. Tau is abundant in neurons and interacts with microtubules, but its main functions in the brain remain to be defined. These functions may involve the regulation of signaling pathways relevant to diverse biological processes. Informative disease models have revealed a plethora of abnormal tau species and mechanisms that might contribute to neuronal dysfunction and loss, but the relative importance of their respective contributions is uncertain. This knowledge gap poses major obstacles to the development of truly impactful therapeutic strategies. The current expansion and intensification of efforts to translate mechanistic insights into tau-related therapeutics should address this issue and could deliver better treatments for a host of devastating conditions.
Several lines of evidence implicate the protein tau in the pathogenesis of multiple brain disorders, including Alzheimer's disease, other neurodegenerative conditions, autism, and epilepsy. Tau is abundant in neurons and interacts with microtubules, but its main functions in the brain remain to be defined. These functions may involve the regulation of signaling pathways relevant to diverse biological processes. Informative disease models have revealed a plethora of abnormal tau species and mechanisms that might contribute to neuronal dysfunction and loss, but the relative importance of their respective contributions is uncertain. This knowledge gap poses major obstacles to the development of truly impactful therapeutic strategies. The current expansion and intensification of efforts to translate mechanistic insights into tau-related therapeutics should address this issue and could deliver better treatments for a host of devastating conditions.Several lines of evidence implicate the protein tau in the pathogenesis of multiple brain disorders, including Alzheimer's disease, other neurodegenerative conditions, autism, and epilepsy. Tau is abundant in neurons and interacts with microtubules, but its main functions in the brain remain to be defined. These functions may involve the regulation of signaling pathways relevant to diverse biological processes. Informative disease models have revealed a plethora of abnormal tau species and mechanisms that might contribute to neuronal dysfunction and loss, but the relative importance of their respective contributions is uncertain. This knowledge gap poses major obstacles to the development of truly impactful therapeutic strategies. The current expansion and intensification of efforts to translate mechanistic insights into tau-related therapeutics should address this issue and could deliver better treatments for a host of devastating conditions.
Several lines of evidence implicate the protein tau in the pathogenesis of multiple brain disorders, including Alzheimer’s disease, other neurodegenerative conditions, autism, and epilepsy. Tau is abundant in neurons and interacts with microtubules, but its main functions in the brain remain to be defined. These functions may involve the regulation of signaling pathways relevant to diverse biological processes. Informative disease models have revealed a plethora of abnormal tau species and mechanisms that might contribute to neuronal dysfunction and loss, but the relative importance of their respective contributions is uncertain. This knowledge gap poses major obstacles to the development of truly impactful therapeutic strategies. The current expansion and intensification of efforts to translate mechanistic insights into tau-related therapeutics should address this issue and could deliver better treatments for a host of devastating conditions. Summary Figure: Potential tau pathomechanisms. Developing effective tau-targeting therapeutics will require a better understanding of how exactly tau contributes to Alzheimer’s disease and other disorders of the central nervous system. Potential mechanisms likely fall into the three broad categories shown. However, the relative pathogenic impact and overall importance of individual mechanisms have yet to be defined in truly disease-relevant contexts and may differ among diseases and even patients. The blue box on the right indicates tau activities that do not directly mediate but indirectly promote or facilitate pathogenic processes. Expanding efforts to develop tau-targeting therapeutics will shed light on this enigmatic protein and could yield better treatments for multiple brain disorders.
The many faces of tauThe protein tau is implicated in several brain disorders, including Alzheimer's disease, suggesting that it could be a target of therapeutics. However, because it is unclear how the pleiotropic roles of tau lead to neural pathology in different brain diseases, drug development remains challenging. Chang et al. review the possible mechanisms of tau in brain diseases and possible paths forward to improving research and drug development.Science, this issue p. eabb8255BACKGROUNDThe microtubule-associated protein tau has been implicated in the pathogenesis of Alzheimer’s disease and a range of other neurodegenerative disorders (called “tauopathies”). As the number of people with tauopathies is rising in aging populations across the world, interest in the fundamental biology of this protein and in the development of tau-targeting treatments has been expanding rapidly. Recent insights into the complexity of this intrinsically disordered protein suggest that tau is a worthy but challenging target whose multifaceted nature will likely require a multipronged therapeutic approach. Derived from a single gene by alternative splicing, six major isoforms of tau have been identified in the human brain. In addition, tau is subject to many different posttranslational modifications, further indicating that it may be regulated by multiple processes and may participate in diverse functions.ADVANCESTau is widely presumed to stabilize microtubules. However, the experimental reduction or ablation of tau in vivo does not alter many neural properties and processes that likely depend on microtubules, including neuronal integrity, axonal transport, synapse formation, and complex brain functions. Although tau reduction seems to have minimal effects on otherwise unmanipulated brains, it can prevent or diminish aberrant cell signaling, neural network dysfunctions (e.g., epileptic activity), and behavioral alterations caused by diverse disease processes, which suggests that tau activities are needed for other pathogenic triggers to cause these derangements. In addition to this “enabling bystander” role, tau’s interactions with a large number of other proteins can cause adverse gains of function, which are associated with—and possibly caused by—the formation of abnormal tau structures and assemblies. Because abnormal forms of tau trigger a plethora of pathomechanisms, targeting individual downstream mechanisms may have limited therapeutic impact, unless the relative pathogenic importance of the specific mechanism has been well established in experimental models that allow for conclusive validation of cause-and-effect relationships. Although much attention has focused on the abnormal aggregation of tau in tauopathies and on the ability of tau “seeds” to spread from neuron to neuron, internalization of propagating tau does not appear to impair neuronal survival or brain functions. Moreover, tau reduction prevents or diminishes neural network dysfunction and behavioral abnormalities also in disease models that do not have abnormal tau inclusions, which suggests that there is more to tau than aggregation and propagation. A promising diversification of tau-targeting therapeutic strategies is beginning to address this complexity. Lowering overall tau levels may have the greatest potential, as this strategy bypasses the unresolved questions of which forms of tau and which downstream mechanisms are most detrimental in any given condition.OUTLOOKMany efforts to develop better treatments for neurodegenerative diseases have failed, in large part because of an inadequate understanding of disease mechanisms and, perhaps, because too many fundamental knowledge gaps, alternative interpretations of data, and methodological complexities did not receive the attention they deserved. This Review highlights important gaps in the understanding of tau and the methodological advances needed to fill them. It also pinpoints obstacles that could complicate the translation of tau-related scientific discoveries into better therapeutics and offers pragmatic strategies to overcome these challenges. Despite the extraordinary progress that has been made to date, the main physiological functions that tau fulfills in the adult and aging brain remain to be defined. Another critical objective is to develop better experimental models and technologies to rigorously compare different tau species and pathomechanisms, particularly their relative impacts on neuronal functions and survival in vivo. For the development of truly informative biomarkers and effective therapeutics, it will be critical to rigorously differentiate between associations and cause-and-effect relationships. Until the main drivers of neuronal dysfunction and demise have been identified for Alzheimer’s disease and other conditions in which tau has a causal or enabling role, it seems prudent to focus on pragmatic strategies, such as overall tau reduction, while also expanding efforts to further validate the importance of more-specific targets and approaches. Investigational approaches to lower overall tau levels include tau-targeting antisense oligonucleotides, which have advanced into a clinical trial for early Alzheimer’s disease, and the development of small-molecule drugs that can modulate the production or degradation of tau. The most desirable tau-targeting therapeutics would be efficacious across diverse tauopathies, as well as affordable, easy to access, and well tolerated when administered over long periods of time to fragile groups of people who likely take multiple other medications.Several lines of evidence implicate the protein tau in the pathogenesis of multiple brain disorders, including Alzheimer’s disease, other neurodegenerative conditions, autism, and epilepsy. Tau is abundant in neurons and interacts with microtubules, but its main functions in the brain remain to be defined. These functions may involve the regulation of signaling pathways relevant to diverse biological processes. Informative disease models have revealed a plethora of abnormal tau species and mechanisms that might contribute to neuronal dysfunction and loss, but the relative importance of their respective contributions is uncertain. This knowledge gap poses major obstacles to the development of truly impactful therapeutic strategies. The current expansion and intensification of efforts to translate mechanistic insights into tau-related therapeutics should address this issue and could deliver better treatments for a host of devastating conditions.
Author Shao, Eric
Mucke, Lennart
Chang, Che-Wei
AuthorAffiliation 2 Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
1 Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
AuthorAffiliation_xml – name: 1 Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
– name: 2 Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
Author_xml – sequence: 1
  givenname: Che-Wei
  orcidid: 0000-0003-1043-581X
  surname: Chang
  fullname: Chang, Che-Wei
  organization: Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
– sequence: 2
  givenname: Eric
  orcidid: 0000-0001-5307-8264
  surname: Shao
  fullname: Shao, Eric
  organization: Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
– sequence: 3
  givenname: Lennart
  orcidid: 0000-0001-6256-9559
  surname: Mucke
  fullname: Mucke, Lennart
  organization: Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA., Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33632820$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rVDEUxYNU7LS6dicP3LiZNp9v8lwIpVQrFNzUpYSb5L5pyptkTPIG-t-boVOxBVch9_7O4STnhBzFFJGQ94yeMcb78-ICRodnYK3mSr0iC0YHtRw4FUdkQanol5qu1DE5KeWe0rYbxBtyLEQvuOZ0QX7dwvy5u4pgJ8xdGjsfdpgLdjZDiO1WUvZt0EH0XYW8xrqnMmyDnx463KVpF-K6q3fYZjjX4LpSM1RcByxvyesRpoLvDucp-fn16vbyennz49v3y4ubpZN6VZccuOcA1vNeinEYYWWBj1R5aQfhrRdSKk0dl3xUljHRI_dWeuFAaM2ZEqfky6PvdrYb9A5jizCZbQ4byA8mQTDPNzHcmXXaGc2Y7hVtBp8OBjn9nrFUswnF4TRBxDQXw-Ug-SDZSjT04wv0Ps05tuftKaF6qSlr1Id_E_2N8vTzDVCPgMuplIyjcaFCDWkfMEyGUbNv2BwaNoeGm-78he7J-n-KPx-lrXQ
CitedBy_id crossref_primary_10_1016_j_nbd_2022_105632
crossref_primary_10_3390_biology10101047
crossref_primary_10_1002_ijch_202300104
crossref_primary_10_1021_acsnano_4c14571
crossref_primary_10_3389_fnins_2024_1345225
crossref_primary_10_1523_ENEURO_0089_21_2021
crossref_primary_10_3389_fnins_2023_1145318
crossref_primary_10_3934_mbe_2023741
crossref_primary_10_1002_alz_13028
crossref_primary_10_1038_s41467_024_45851_6
crossref_primary_10_15212_AMM_2024_0075
crossref_primary_10_3390_ijms22147475
crossref_primary_10_1212_WNL_0000000000207663
crossref_primary_10_1172_JCI168549
crossref_primary_10_1002_adhm_202400149
crossref_primary_10_1021_acschembio_2c00919
crossref_primary_10_1039_D4SC07379G
crossref_primary_10_1111_bpa_13317
crossref_primary_10_1080_14728222_2023_2206561
crossref_primary_10_2174_1570159X23666241101093436
crossref_primary_10_3233_JAD_220351
crossref_primary_10_1039_D4SC05469E
crossref_primary_10_15252_embj_2022112101
crossref_primary_10_1111_epi_17355
crossref_primary_10_3389_fnagi_2021_761913
crossref_primary_10_1016_j_lanhl_2024_100678
crossref_primary_10_1073_pnas_2206240119
crossref_primary_10_1039_D1CS00127B
crossref_primary_10_2147_NDT_S393773
crossref_primary_10_1038_s41467_022_32951_4
crossref_primary_10_1002_bmm2_12011
crossref_primary_10_1186_s12979_024_00437_0
crossref_primary_10_3390_biomedicines11123156
crossref_primary_10_1016_j_celrep_2021_110141
crossref_primary_10_1016_j_chembiol_2024_09_003
crossref_primary_10_1126_scitranslmed_abm5527
crossref_primary_10_15252_embj_2021110242
crossref_primary_10_1038_s41467_023_42295_2
crossref_primary_10_15252_embj_2022111265
crossref_primary_10_1038_s41583_024_00797_y
crossref_primary_10_3390_biomedicines9121910
crossref_primary_10_3390_cells11111735
crossref_primary_10_1016_j_isci_2021_103658
crossref_primary_10_3390_pharmaceutics16111443
crossref_primary_10_1523_JNEUROSCI_1225_24_2024
crossref_primary_10_1016_j_molimm_2022_02_006
crossref_primary_10_1186_s13024_022_00521_3
crossref_primary_10_1007_s12031_023_02143_w
crossref_primary_10_1177_13872877251320123
crossref_primary_10_3390_neuroglia6010001
crossref_primary_10_1007_s11010_024_05164_0
crossref_primary_10_3389_fphar_2024_1459655
crossref_primary_10_1523_ENEURO_0052_23_2023
crossref_primary_10_1016_j_ecoenv_2022_114151
crossref_primary_10_1016_j_snb_2024_136797
crossref_primary_10_1126_sciadv_abl8809
crossref_primary_10_1016_j_ajhg_2023_12_015
crossref_primary_10_1016_j_neuron_2021_07_013
crossref_primary_10_1093_hmg_ddad049
crossref_primary_10_14283_jpad_2023_106
crossref_primary_10_1016_j_bbamcr_2021_119116
crossref_primary_10_1186_s40478_024_01920_x
crossref_primary_10_3390_molecules26175113
crossref_primary_10_3390_biom12121792
crossref_primary_10_1016_j_ejmech_2023_116065
crossref_primary_10_1002_alz_13533
crossref_primary_10_1016_j_isci_2021_103245
crossref_primary_10_1016_j_neuroscience_2022_11_003
crossref_primary_10_1016_j_celrep_2022_111249
crossref_primary_10_1016_j_xgen_2024_100563
crossref_primary_10_1093_braincomms_fcae333
crossref_primary_10_1021_acsnano_4c16435
crossref_primary_10_1038_s41398_025_03304_8
crossref_primary_10_1001_jamaneurol_2021_5181
crossref_primary_10_1126_sciadv_adm8449
crossref_primary_10_1177_15357597221126332
crossref_primary_10_1186_s12877_022_03454_0
crossref_primary_10_3233_JAD_230927
crossref_primary_10_1016_j_jconrel_2024_01_019
crossref_primary_10_1016_j_freeradbiomed_2022_01_025
crossref_primary_10_1111_cns_70305
crossref_primary_10_1186_s13073_023_01205_3
crossref_primary_10_1186_s13075_023_03133_4
crossref_primary_10_1016_j_celrep_2021_109855
crossref_primary_10_1016_j_cell_2023_09_023
crossref_primary_10_1111_gtc_13101
crossref_primary_10_3390_biomedicines10081890
crossref_primary_10_1016_j_brainres_2024_148823
crossref_primary_10_1016_j_cell_2022_09_029
crossref_primary_10_3389_fnagi_2021_751897
crossref_primary_10_3390_ijms22094805
crossref_primary_10_3390_biomedicines10081772
crossref_primary_10_1016_j_omtn_2022_07_027
crossref_primary_10_1186_s13195_023_01321_7
crossref_primary_10_3390_biomedicines10092261
crossref_primary_10_1111_jnc_15909
crossref_primary_10_1002_anie_202423801
crossref_primary_10_3389_fnmol_2022_1019999
crossref_primary_10_1016_j_nbd_2024_106656
crossref_primary_10_1007_s10735_025_10361_2
crossref_primary_10_1001_jamaneurol_2022_1375
crossref_primary_10_1038_s41422_024_01016_0
crossref_primary_10_1038_s41573_021_00371_6
crossref_primary_10_1146_annurev_pathmechdis_030421_112756
crossref_primary_10_12677_acm_2024_1482177
crossref_primary_10_1016_j_cell_2021_12_041
crossref_primary_10_1016_j_biomaterials_2024_123042
crossref_primary_10_1186_s40478_024_01839_3
crossref_primary_10_3389_fnins_2022_1021131
crossref_primary_10_3389_fimmu_2022_782434
crossref_primary_10_1002_ange_202423801
crossref_primary_10_1016_j_smim_2022_101628
crossref_primary_10_1007_s12192_023_01363_8
crossref_primary_10_3390_ijms23020851
crossref_primary_10_1016_j_biosx_2024_100528
crossref_primary_10_1016_j_neuroscience_2022_01_005
crossref_primary_10_1016_j_expneurol_2023_114355
crossref_primary_10_1002_alz_14250
crossref_primary_10_1016_j_celrep_2023_113252
crossref_primary_10_1007_s11357_022_00526_2
crossref_primary_10_1176_appi_neuropsych_21060166
crossref_primary_10_2139_ssrn_4114949
crossref_primary_10_1002_cm_21790
crossref_primary_10_1016_j_neubiorev_2022_104541
crossref_primary_10_1007_s12035_023_03720_1
crossref_primary_10_1016_j_neuroscience_2022_10_014
crossref_primary_10_1038_s41380_023_02113_z
crossref_primary_10_1021_acs_jpcb_1c10752
crossref_primary_10_1007_s00018_021_03986_5
crossref_primary_10_12677_ACM_2023_1361387
crossref_primary_10_1038_s43587_021_00076_w
crossref_primary_10_1021_acschemneuro_1c00554
crossref_primary_10_1172_JCI169064
crossref_primary_10_1111_jnc_16053
crossref_primary_10_1016_S1474_4422_22_00168_5
crossref_primary_10_1093_brain_awab433
crossref_primary_10_1016_j_celrep_2023_112152
crossref_primary_10_1016_j_ymthe_2024_01_033
crossref_primary_10_3390_cells10040721
crossref_primary_10_1080_1028415X_2022_2145426
crossref_primary_10_1093_braincomms_fcae017
crossref_primary_10_1016_S1474_4422_23_00108_4
crossref_primary_10_1093_braincomms_fcac235
crossref_primary_10_3390_ijms241813900
Cites_doi 10.1126/science.1194653
10.1038/nature24016
10.1001/jama.2020.12134
10.3389/fneur.2013.00114
10.1385/JMN:17:2:225
10.1016/j.cub.2018.05.045
10.1126/science.1062097
10.1038/s41591-018-0004-z
10.1056/NEJMoa1900907
10.1002/hipo.20798
10.1038/s41593-018-0298-7
10.1016/S0002-9440(10)64963-2
10.1186/s40478-017-0489-6
10.1083/jcb.201407065
10.1016/j.neurobiolaging.2014.05.001
10.1126/science.aah6205
10.1038/s41467-017-00618-0
10.1038/ng.2257
10.1523/JNEUROSCI.2369-17.2018
10.1074/jbc.M115.641902
10.1186/s13024-015-0025-8
10.1126/science.1058189
10.1001/jamaneurol.2020.0989
10.1016/j.neurobiolaging.2014.09.007
10.1038/s41593-017-0022-z
10.1074/jbc.RA119.007527
10.7554/eLife.45457
10.1186/s40478-015-0210-6
10.1038/s41586-019-1769-z
10.1523/JNEUROSCI.2107-13.2013
10.1016/j.neuron.2017.04.010
10.1038/s41591-020-0938-9
10.1038/embor.2013.15
10.1126/scitranslmed.aag0481
10.1093/brain/awv222
10.1101/gr.233866.117
10.1186/s13100-019-0176-1
10.1001/archneur.63.9.1312
10.1016/j.neuron.2018.10.031
10.1083/jcb.150.5.989
10.3389/fnins.2019.00659
10.1038/srep19393
10.1126/science.1141736
10.1523/JNEUROSCI.0188-12.2012
10.2174/15672050113109990143
10.1126/scitranslmed.aat3005
10.3389/fnins.2012.00104
10.1093/brain/awx005
10.1038/ncb1901
10.1016/j.neurobiolaging.2011.10.020
10.1523/JNEUROSCI.4361-12.2013
10.1084/jem.20190980
10.1093/brain/awy117
10.1091/mbc.e14-06-1099
10.1523/JNEUROSCI.23-18-06972.2003
10.1186/s40478-019-0664-z
10.1073/pnas.91.12.5562
10.1016/j.neuron.2018.02.015
10.1016/j.cell.2019.11.031
10.1172/JCI137040
10.1021/bi00035a017
10.1186/1750-1326-9-43
10.1016/j.neurobiolaging.2014.05.005
10.1038/s41582-018-0013-z
10.1038/s41588-018-0311-9
10.1093/brain/aww187
10.1073/pnas.092136199
10.1038/nrn2055
10.1007/978-981-32-9358-8_28
10.1038/s41588-019-0358-2
10.1016/j.celrep.2018.07.072
10.1038/nrn.2015.1
10.1098/rstb.2013.0144
10.1126/scitranslmed.aau5732
10.1038/nn.4067
10.1007/s00401-014-1254-6
10.3233/JAD-2010-100285
10.1016/j.smrv.2014.03.007
10.1186/s13024-017-0231-7
10.1371/journal.pone.0084849
10.1523/JNEUROSCI.1590-19.2019
10.1186/s13024-019-0354-0
10.1038/nm.4199
10.1016/S2352-3018(20)30069-2
10.1016/j.nbd.2019.01.008
10.1016/j.cell.2012.02.046
10.1016/j.sbi.2020.05.011
10.1523/JNEUROSCI.4922-11.2012
10.1016/j.neuron.2016.03.005
10.1038/s41467-019-10428-1
10.1007/978-981-32-9358-8_1
10.1016/j.neurobiolaging.2012.12.003
10.1038/nature20587
10.1038/s41582-020-0348-0
10.1016/j.neuron.2018.01.022
10.1016/j.neuron.2016.09.055
10.1083/jcb.103.6.2739
10.1523/JNEUROSCI.4040-10.2010
10.1016/j.neuron.2009.05.012
10.1126/science.1113694
10.1186/s13024-019-0306-8
10.1523/JNEUROSCI.5242-07.2008
10.15252/embr.201541438
10.1016/j.stem.2018.12.013
10.1084/jem.20161731
10.1038/s41586-019-1688-z
10.1038/s41586-020-2156-5
10.1186/s40478-019-0723-5
10.1016/j.cell.2012.02.040
10.1016/j.stemcr.2017.06.005
10.1038/369488a0
10.1038/s41591-020-0781-z
10.1186/s40478-019-0754-y
10.1016/j.neuron.2010.08.044
10.1001/jamaneurol.2018.2505
10.1038/nn.4328
10.1091/mbc.6.12.1887
10.1016/j.neuron.2018.06.003
10.1016/j.neuron.2020.01.038
10.1523/JNEUROSCI.4315-03.2004
10.1016/j.neuron.2019.08.008
10.1016/j.ajpath.2013.11.021
10.1523/JNEUROSCI.4152-10.2011
10.1523/JNEUROSCI.2552-14.2015
10.1056/NEJMoa1710504
10.1016/j.nbd.2018.05.020
10.1021/jacs.0c00768
10.1111/acel.12692
10.31887/DCNS.2012.14.4/gbuzsaki
10.1002/ana.24230
10.1016/j.nbd.2013.06.005
10.1126/science.aav2546
10.1038/s41593-018-0194-1
10.1016/j.neulet.2020.134919
10.1016/j.cell.2010.06.036
10.1021/acs.analchem.5b04509
10.1038/nm.2613
10.1016/j.conb.2018.04.027
10.1038/nm.4011
10.1074/jbc.M117.784702
10.1523/JNEUROSCI.3439-13.2014
10.1016/j.neurobiolaging.2017.05.017
10.1523/JNEUROSCI.2642-12.2013
10.1084/jem.20131685
10.1093/hmg/ddr603
10.1016/j.celrep.2018.05.004
10.1093/hmg/dds161
10.1038/s41580-019-0101-y
10.1007/s00401-017-1674-1
ContentType Journal Article
Copyright Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.abb8255
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
ExternalDocumentID PMC8118650
33632820
10_1126_science_abb8255
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH115679
– fundername: NIA NIH HHS
  grantid: R56 AG060631
– fundername: NINDS NIH HHS
  grantid: UH3 NS100128
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
GX1
NPM
OK1
UIG
YCJ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c487t-2a2d2aabd2643f9fa7ba2f05d4b93dbd344580c242f5b1136e2db4d3ca3882153
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 18:45:37 EDT 2025
Fri Jul 11 00:49:14 EDT 2025
Fri Jul 25 19:06:26 EDT 2025
Thu Apr 03 06:53:04 EDT 2025
Thu Apr 24 22:52:30 EDT 2025
Tue Jul 01 01:35:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6532
Language English
License Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c487t-2a2d2aabd2643f9fa7ba2f05d4b93dbd344580c242f5b1136e2db4d3ca3882153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5307-8264
0000-0001-6256-9559
0000-0003-1043-581X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8118650
PMID 33632820
PQID 2493564801
PQPubID 1256
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8118650
proquest_miscellaneous_2494294173
proquest_journals_2493564801
pubmed_primary_33632820
crossref_citationtrail_10_1126_science_abb8255
crossref_primary_10_1126_science_abb8255
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-26
20210226
PublicationDateYYYYMMDD 2021-02-26
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2021
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_1_118_2
e_1_3_1_81_2
e_1_3_1_137_2
e_1_3_1_114_2
e_1_3_1_133_2
e_1_3_1_110_2
e_1_3_1_43_2
e_1_3_1_66_2
e_1_3_1_89_2
e_1_3_1_140_2
e_1_3_1_24_2
e_1_3_1_62_2
e_1_3_1_85_2
e_1_3_1_20_2
e_1_3_1_6_2
e_1_3_1_47_2
e_1_3_1_2_2
e_1_3_1_28_2
e_1_3_1_106_2
e_1_3_1_129_2
e_1_3_1_70_2
e_1_3_1_93_2
e_1_3_1_102_2
e_1_3_1_148_2
e_1_3_1_125_2
e_1_3_1_144_2
e_1_3_1_121_2
e_1_3_1_32_2
e_1_3_1_78_2
e_1_3_1_151_2
e_1_3_1_13_2
e_1_3_1_51_2
e_1_3_1_74_2
e_1_3_1_97_2
e_1_3_1_17_2
e_1_3_1_36_2
e_1_3_1_59_2
e_1_3_1_119_2
e_1_3_1_115_2
e_1_3_1_138_2
e_1_3_1_80_2
e_1_3_1_111_2
e_1_3_1_134_2
e_1_3_1_141_2
e_1_3_1_65_2
e_1_3_1_23_2
e_1_3_1_46_2
e_1_3_1_88_2
e_1_3_1_7_2
e_1_3_1_61_2
e_1_3_1_42_2
e_1_3_1_84_2
e_1_3_1_3_2
e_1_3_1_69_2
e_1_3_1_27_2
e_1_3_1_107_2
e_1_3_1_103_2
e_1_3_1_126_2
e_1_3_1_149_2
e_1_3_1_92_2
e_1_3_1_122_2
e_1_3_1_145_2
e_1_3_1_54_2
e_1_3_1_35_2
e_1_3_1_77_2
e_1_3_1_12_2
e_1_3_1_50_2
e_1_3_1_96_2
e_1_3_1_31_2
e_1_3_1_73_2
e_1_3_1_16_2
e_1_3_1_58_2
e_1_3_1_39_2
e_1_3_1_139_2
e_1_3_1_116_2
e_1_3_1_60_2
e_1_3_1_135_2
e_1_3_1_112_2
e_1_3_1_131_2
e_1_3_1_22_2
e_1_3_1_45_2
e_1_3_1_68_2
e_1_3_1_87_2
e_1_3_1_8_2
e_1_3_1_41_2
e_1_3_1_64_2
e_1_3_1_83_2
e_1_3_1_4_2
e_1_3_1_26_2
e_1_3_1_49_2
e_1_3_1_108_2
e_1_3_1_127_2
e_1_3_1_91_2
e_1_3_1_104_2
e_1_3_1_146_2
e_1_3_1_123_2
e_1_3_1_100_2
e_1_3_1_142_2
e_1_3_1_130_2
e_1_3_1_34_2
e_1_3_1_57_2
e_1_3_1_76_2
e_1_3_1_99_2
e_1_3_1_11_2
e_1_3_1_30_2
e_1_3_1_53_2
e_1_3_1_72_2
e_1_3_1_95_2
e_1_3_1_15_2
e_1_3_1_19_2
e_1_3_1_38_2
e_1_3_1_117_2
e_1_3_1_82_2
e_1_3_1_113_2
e_1_3_1_136_2
Ke Y. D. (e_1_3_1_44_2) 2012; 2012
e_1_3_1_132_2
e_1_3_1_21_2
Cantero J. L. (e_1_3_1_55_2) 2011; 21
e_1_3_1_67_2
e_1_3_1_40_2
e_1_3_1_86_2
e_1_3_1_9_2
e_1_3_1_63_2
e_1_3_1_29_2
e_1_3_1_5_2
e_1_3_1_25_2
e_1_3_1_48_2
e_1_3_1_109_2
e_1_3_1_128_2
e_1_3_1_71_2
e_1_3_1_105_2
e_1_3_1_124_2
e_1_3_1_147_2
e_1_3_1_90_2
e_1_3_1_101_2
e_1_3_1_120_2
e_1_3_1_143_2
e_1_3_1_33_2
e_1_3_1_79_2
e_1_3_1_150_2
e_1_3_1_56_2
e_1_3_1_98_2
e_1_3_1_75_2
e_1_3_1_10_2
e_1_3_1_52_2
e_1_3_1_94_2
e_1_3_1_14_2
e_1_3_1_37_2
e_1_3_1_18_2
References_xml – ident: e_1_3_1_40_2
  doi: 10.1126/science.1194653
– ident: e_1_3_1_138_2
  doi: 10.1038/nature24016
– ident: e_1_3_1_83_2
  doi: 10.1001/jama.2020.12134
– ident: e_1_3_1_17_2
  doi: 10.3389/fneur.2013.00114
– ident: e_1_3_1_127_2
  doi: 10.1385/JMN:17:2:225
– ident: e_1_3_1_32_2
  doi: 10.1016/j.cub.2018.05.045
– ident: e_1_3_1_129_2
  doi: 10.1126/science.1062097
– ident: e_1_3_1_134_2
  doi: 10.1038/s41591-018-0004-z
– ident: e_1_3_1_143_2
  doi: 10.1056/NEJMoa1900907
– volume: 21
  start-page: 827
  year: 2011
  ident: e_1_3_1_55_2
  article-title: Role of tau protein on neocortical and hippocampal oscillatory patterns
  publication-title: Hippocampus
  doi: 10.1002/hipo.20798
– ident: e_1_3_1_97_2
  doi: 10.1038/s41593-018-0298-7
– ident: e_1_3_1_136_2
  doi: 10.1016/S0002-9440(10)64963-2
– ident: e_1_3_1_20_2
  doi: 10.1186/s40478-017-0489-6
– ident: e_1_3_1_39_2
  doi: 10.1083/jcb.201407065
– ident: e_1_3_1_62_2
  doi: 10.1016/j.neurobiolaging.2014.05.001
– ident: e_1_3_1_80_2
  doi: 10.1126/science.aah6205
– ident: e_1_3_1_21_2
  doi: 10.1038/s41467-017-00618-0
– volume: 2012
  year: 2012
  ident: e_1_3_1_44_2
  article-title: Lessons from tau-deficient mice
  publication-title: Int. J. Alzheimers Dis.
– ident: e_1_3_1_63_2
  doi: 10.1038/ng.2257
– ident: e_1_3_1_105_2
  doi: 10.1523/JNEUROSCI.2369-17.2018
– ident: e_1_3_1_9_2
  doi: 10.1074/jbc.M115.641902
– ident: e_1_3_1_6_2
  doi: 10.1186/s13024-015-0025-8
– ident: e_1_3_1_130_2
  doi: 10.1126/science.1058189
– ident: e_1_3_1_81_2
  doi: 10.1001/jamaneurol.2020.0989
– ident: e_1_3_1_125_2
  doi: 10.1016/j.neurobiolaging.2014.09.007
– ident: e_1_3_1_85_2
  doi: 10.1038/s41593-017-0022-z
– ident: e_1_3_1_96_2
  doi: 10.1074/jbc.RA119.007527
– ident: e_1_3_1_151_2
  doi: 10.7554/eLife.45457
– ident: e_1_3_1_71_2
  doi: 10.1186/s40478-015-0210-6
– ident: e_1_3_1_113_2
  doi: 10.1038/s41586-019-1769-z
– ident: e_1_3_1_28_2
  doi: 10.1523/JNEUROSCI.2107-13.2013
– ident: e_1_3_1_141_2
  doi: 10.1016/j.neuron.2017.04.010
– ident: e_1_3_1_77_2
  doi: 10.1038/s41591-020-0938-9
– ident: e_1_3_1_119_2
  doi: 10.1038/embor.2013.15
– ident: e_1_3_1_46_2
  doi: 10.1126/scitranslmed.aag0481
– ident: e_1_3_1_93_2
  doi: 10.1093/brain/awv222
– ident: e_1_3_1_90_2
  doi: 10.1101/gr.233866.117
– ident: e_1_3_1_104_2
  doi: 10.1186/s13100-019-0176-1
– ident: e_1_3_1_49_2
  doi: 10.1001/archneur.63.9.1312
– ident: e_1_3_1_112_2
  doi: 10.1016/j.neuron.2018.10.031
– ident: e_1_3_1_35_2
  doi: 10.1083/jcb.150.5.989
– ident: e_1_3_1_86_2
  doi: 10.3389/fnins.2019.00659
– ident: e_1_3_1_87_2
  doi: 10.1038/srep19393
– ident: e_1_3_1_23_2
  doi: 10.1126/science.1141736
– ident: e_1_3_1_36_2
  doi: 10.1523/JNEUROSCI.0188-12.2012
– ident: e_1_3_1_144_2
  doi: 10.2174/15672050113109990143
– ident: e_1_3_1_149_2
  doi: 10.1126/scitranslmed.aat3005
– ident: e_1_3_1_59_2
  doi: 10.3389/fnins.2012.00104
– ident: e_1_3_1_26_2
  doi: 10.1093/brain/awx005
– ident: e_1_3_1_123_2
  doi: 10.1038/ncb1901
– ident: e_1_3_1_147_2
  doi: 10.1016/j.neurobiolaging.2011.10.020
– ident: e_1_3_1_114_2
  doi: 10.1523/JNEUROSCI.4361-12.2013
– ident: e_1_3_1_116_2
  doi: 10.1084/jem.20190980
– ident: e_1_3_1_66_2
  doi: 10.1093/brain/awy117
– ident: e_1_3_1_3_2
  doi: 10.1091/mbc.e14-06-1099
– ident: e_1_3_1_14_2
  doi: 10.1523/JNEUROSCI.23-18-06972.2003
– ident: e_1_3_1_139_2
  doi: 10.1186/s40478-019-0664-z
– ident: e_1_3_1_64_2
  doi: 10.1073/pnas.91.12.5562
– ident: e_1_3_1_91_2
  doi: 10.1016/j.neuron.2018.02.015
– ident: e_1_3_1_150_2
  doi: 10.1016/j.cell.2019.11.031
– ident: e_1_3_1_132_2
  doi: 10.1172/JCI137040
– ident: e_1_3_1_30_2
  doi: 10.1021/bi00035a017
– ident: e_1_3_1_126_2
  doi: 10.1186/1750-1326-9-43
– ident: e_1_3_1_51_2
  doi: 10.1016/j.neurobiolaging.2014.05.005
– ident: e_1_3_1_140_2
  doi: 10.1038/s41582-018-0013-z
– ident: e_1_3_1_25_2
  doi: 10.1038/s41588-018-0311-9
– ident: e_1_3_1_69_2
  doi: 10.1093/brain/aww187
– ident: e_1_3_1_131_2
  doi: 10.1073/pnas.092136199
– ident: e_1_3_1_95_2
  doi: 10.1038/nrn2055
– ident: e_1_3_1_12_2
  doi: 10.1007/978-981-32-9358-8_28
– ident: e_1_3_1_24_2
  doi: 10.1038/s41588-019-0358-2
– ident: e_1_3_1_111_2
  doi: 10.1016/j.celrep.2018.07.072
– ident: e_1_3_1_2_2
  doi: 10.1038/nrn.2015.1
– ident: e_1_3_1_53_2
  doi: 10.1098/rstb.2013.0144
– ident: e_1_3_1_65_2
  doi: 10.1126/scitranslmed.aau5732
– ident: e_1_3_1_10_2
  doi: 10.1038/nn.4067
– ident: e_1_3_1_121_2
  doi: 10.1007/s00401-014-1254-6
– ident: e_1_3_1_56_2
  doi: 10.3233/JAD-2010-100285
– ident: e_1_3_1_58_2
  doi: 10.1016/j.smrv.2014.03.007
– ident: e_1_3_1_88_2
  doi: 10.1186/s13024-017-0231-7
– ident: e_1_3_1_8_2
  doi: 10.1371/journal.pone.0084849
– ident: e_1_3_1_124_2
  doi: 10.1523/JNEUROSCI.1590-19.2019
– ident: e_1_3_1_106_2
  doi: 10.1186/s13024-019-0354-0
– ident: e_1_3_1_18_2
  doi: 10.1038/nm.4199
– ident: e_1_3_1_68_2
  doi: 10.1016/S2352-3018(20)30069-2
– ident: e_1_3_1_48_2
  doi: 10.1016/j.nbd.2019.01.008
– ident: e_1_3_1_75_2
  doi: 10.1016/j.cell.2012.02.046
– ident: e_1_3_1_79_2
  doi: 10.1016/j.sbi.2020.05.011
– ident: e_1_3_1_37_2
  doi: 10.1523/JNEUROSCI.4922-11.2012
– ident: e_1_3_1_109_2
  doi: 10.1016/j.neuron.2016.03.005
– ident: e_1_3_1_89_2
  doi: 10.1038/s41467-019-10428-1
– ident: e_1_3_1_16_2
  doi: 10.1007/978-981-32-9358-8_1
– ident: e_1_3_1_43_2
  doi: 10.1016/j.neurobiolaging.2012.12.003
– ident: e_1_3_1_76_2
  doi: 10.1038/nature20587
– ident: e_1_3_1_84_2
  doi: 10.1038/s41582-020-0348-0
– ident: e_1_3_1_94_2
  doi: 10.1016/j.neuron.2018.01.022
– ident: e_1_3_1_78_2
  doi: 10.1016/j.neuron.2016.09.055
– ident: e_1_3_1_31_2
  doi: 10.1083/jcb.103.6.2739
– ident: e_1_3_1_137_2
  doi: 10.1523/JNEUROSCI.4040-10.2010
– ident: e_1_3_1_54_2
  doi: 10.1016/j.neuron.2009.05.012
– ident: e_1_3_1_67_2
  doi: 10.1126/science.1113694
– ident: e_1_3_1_128_2
  doi: 10.1186/s13024-019-0306-8
– ident: e_1_3_1_41_2
  doi: 10.1523/JNEUROSCI.5242-07.2008
– ident: e_1_3_1_70_2
  doi: 10.15252/embr.201541438
– ident: e_1_3_1_146_2
  doi: 10.1016/j.stem.2018.12.013
– ident: e_1_3_1_47_2
  doi: 10.1084/jem.20161731
– ident: e_1_3_1_15_2
  doi: 10.1038/s41586-019-1688-z
– ident: e_1_3_1_117_2
  doi: 10.1038/s41586-020-2156-5
– ident: e_1_3_1_103_2
  doi: 10.1186/s40478-019-0723-5
– ident: e_1_3_1_115_2
  doi: 10.1016/j.cell.2012.02.040
– ident: e_1_3_1_92_2
  doi: 10.1016/j.stemcr.2017.06.005
– ident: e_1_3_1_33_2
  doi: 10.1038/369488a0
– ident: e_1_3_1_82_2
  doi: 10.1038/s41591-020-0781-z
– ident: e_1_3_1_110_2
  doi: 10.1186/s40478-019-0754-y
– ident: e_1_3_1_148_2
  doi: 10.1016/j.neuron.2010.08.044
– ident: e_1_3_1_118_2
  doi: 10.1001/jamaneurol.2018.2505
– ident: e_1_3_1_120_2
  doi: 10.1038/nn.4328
– ident: e_1_3_1_29_2
  doi: 10.1091/mbc.6.12.1887
– ident: e_1_3_1_5_2
  doi: 10.1016/j.neuron.2018.06.003
– ident: e_1_3_1_19_2
  doi: 10.1016/j.neuron.2020.01.038
– ident: e_1_3_1_135_2
  doi: 10.1523/JNEUROSCI.4315-03.2004
– ident: e_1_3_1_108_2
  doi: 10.1016/j.neuron.2019.08.008
– ident: e_1_3_1_50_2
  doi: 10.1016/j.ajpath.2013.11.021
– ident: e_1_3_1_52_2
  doi: 10.1523/JNEUROSCI.4152-10.2011
– ident: e_1_3_1_133_2
  doi: 10.1523/JNEUROSCI.2552-14.2015
– ident: e_1_3_1_142_2
  doi: 10.1056/NEJMoa1710504
– ident: e_1_3_1_42_2
  doi: 10.1016/j.nbd.2018.05.020
– ident: e_1_3_1_145_2
  doi: 10.1021/jacs.0c00768
– ident: e_1_3_1_98_2
  doi: 10.1111/acel.12692
– ident: e_1_3_1_73_2
  doi: 10.31887/DCNS.2012.14.4/gbuzsaki
– ident: e_1_3_1_22_2
  doi: 10.1002/ana.24230
– ident: e_1_3_1_72_2
  doi: 10.1016/j.nbd.2013.06.005
– ident: e_1_3_1_57_2
  doi: 10.1126/science.aav2546
– ident: e_1_3_1_101_2
  doi: 10.1038/s41593-018-0194-1
– ident: e_1_3_1_38_2
  doi: 10.1016/j.neulet.2020.134919
– ident: e_1_3_1_45_2
  doi: 10.1016/j.cell.2010.06.036
– ident: e_1_3_1_11_2
  doi: 10.1021/acs.analchem.5b04509
– ident: e_1_3_1_61_2
  doi: 10.1038/nm.2613
– ident: e_1_3_1_13_2
  doi: 10.1016/j.conb.2018.04.027
– ident: e_1_3_1_100_2
  doi: 10.1038/nm.4011
– ident: e_1_3_1_7_2
  doi: 10.1074/jbc.M117.784702
– ident: e_1_3_1_34_2
  doi: 10.1523/JNEUROSCI.3439-13.2014
– ident: e_1_3_1_74_2
  doi: 10.1016/j.neurobiolaging.2017.05.017
– ident: e_1_3_1_122_2
  doi: 10.1523/JNEUROSCI.2642-12.2013
– ident: e_1_3_1_4_2
  doi: 10.1084/jem.20131685
– ident: e_1_3_1_60_2
  doi: 10.1093/hmg/ddr603
– ident: e_1_3_1_102_2
  doi: 10.1016/j.celrep.2018.05.004
– ident: e_1_3_1_27_2
  doi: 10.1093/hmg/dds161
– ident: e_1_3_1_99_2
  doi: 10.1038/s41580-019-0101-y
– ident: e_1_3_1_107_2
  doi: 10.1007/s00401-017-1674-1
SSID ssj0009593
Score 2.6547432
SecondaryResourceType review_article
Snippet The protein tau is implicated in several brain disorders, including Alzheimer's disease, suggesting that it could be a target of therapeutics. However, because...
Several lines of evidence implicate the protein tau in the pathogenesis of multiple brain disorders, including Alzheimer's disease, other neurodegenerative...
The many faces of tauThe protein tau is implicated in several brain disorders, including Alzheimer's disease, suggesting that it could be a target of...
Several lines of evidence implicate the protein tau in the pathogenesis of multiple brain disorders, including Alzheimer’s disease, other neurodegenerative...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Ablation
Abnormalities
Agglomeration
Aging
Aging (Individuals)
Alternative splicing
Alzheimer's disease
Animals
Antisense oligonucleotides
Antisense therapy
Autism
Axonal transport
Barriers
Biological activity
Biomarkers
Brain
Brain - physiology
Brain diseases
Brain Diseases - metabolism
Brain Diseases - therapy
Complexity
Drug development
Epilepsy
Humans
Inclusions
Internalization
Isoforms
Microtubule-associated proteins
Microtubules - metabolism
Neural networks
Neurodegenerative diseases
Neurodevelopmental disorders
Neurons - physiology
Oligonucleotides
Pathogenesis
Pathology
Pragmatics
Proteins
Reduction
Seeds
Semiotics
Signaling
Splicing
Survival
Synapses
Synaptogenesis
Tau protein
tau Proteins - chemistry
tau Proteins - genetics
tau Proteins - metabolism
Tauopathies - metabolism
Tauopathies - therapy
Title Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies
URI https://www.ncbi.nlm.nih.gov/pubmed/33632820
https://www.proquest.com/docview/2493564801
https://www.proquest.com/docview/2494294173
https://pubmed.ncbi.nlm.nih.gov/PMC8118650
Volume 371
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdZymCXsXYf9dYNDXboCA62JNvxbmmWUEbWXRKWy_AkSyaB4pTGGXR__Z4syXHaDrpdTLDlKOT309N7T-8DoQ8JT1UM24Yfpkr4LOTCT0Et9dOCBSpVjBWxznf-ehGfz9mXRbTodH62opa2lejnv-_NK_kfVOEe4KqzZP8B2eZL4QZ8BnzhCgjD9WEY86226Md1_lPt7pd1mIXqCd35QZ--1KU1TR1mE_StR13zq5W8vOkpkE2_bL6Uy8LqbSpXPaKtuDoZAAppc8jTgraJVhyamAIXYmBfa_kbRs5DPVoq_7taNS6eJV87wbxjQW5ih6awHbhqTNZFQcI65TtuSdVAN4QkgZFk6p57VhRT047Fci6OjOvzrpRv9aVUfS4EmLnRbkNzh_gX37LJfDrNZuPF7BE6IGBIkC46GJ59PpvcLszc_Bxb_qmVWOUm2Ndc7pgjt6NqW2rK7Bl6au0LPDRkOUQdVR6hx6bj6M0ROrSAbPCpLTj-8Tn6ATz6hC2L8LrAlkW4ZhFuWISBRdiwSI-yLMKORbjFIrxj0Qs0n4xno3Pftt3wc7BeK59wIgnnQoKuTIu04IngpAgiyURKpZCUsWgQ5KDbFZHQLYEUkYJJmnMK5hrsoC9Rt1yX6hhhML5zzlN99gyrPk8GMgxjQSIJVkkKeHio7_7SLLc16XVrlMustk1JnFkMMouBh06bF65MOZa_Dz1xGGV2zW4ywlIaxbpkkofeN49BoupjMl6q9bYeA0oaCxPqoVcG0mYuSmNKQGn2ULIHdjNAV2vff1KulnXV9gGY8mAOvX7AvG_Qk90yOkHd6nqr3oLuW4l3lr5_ABswtg8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tau%3A+Enabler+of+diverse+brain+disorders+and+target+of+rapidly+evolving+therapeutic+strategies&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Chang%2C+Che-Wei&rft.au=Shao%2C+Eric&rft.au=Mucke%2C+Lennart&rft.date=2021-02-26&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=371&rft.issue=6532&rft_id=info:doi/10.1126%2Fscience.abb8255&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon