Contactless Heart and Respiration Rates Estimation and Classification of Driver Physiological States Using CW Radar and Temporal Neural Networks

The measurement and analysis of vital signs are a subject of significant research interest, particularly for monitoring the driver’s physiological state, which is of crucial importance for road safety. Various approaches have been proposed using contact techniques to measure vital signs. However, al...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 23; p. 9457
Main Authors El Abbaoui, Amal, Sodoyer, David, Elbahhar, Fouzia
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.11.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The measurement and analysis of vital signs are a subject of significant research interest, particularly for monitoring the driver’s physiological state, which is of crucial importance for road safety. Various approaches have been proposed using contact techniques to measure vital signs. However, all of these methods are invasive and cumbersome for the driver. This paper proposes using a non-contact sensor based on continuous wave (CW) radar at 24 GHz to measure vital signs. We associate these measurements with distinct temporal neural networks to analyze the signals to detect and extract heart and respiration rates as well as classify the physiological state of the driver. This approach offers robust performance in estimating the exact values of heart and respiration rates and in classifying the driver’s physiological state. It is non-invasive and requires no physical contact with the driver, making it particularly practical and safe. The results presented in this paper, derived from the use of a 1D Convolutional Neural Network (1D-CNN), a Temporal Convolutional Network (TCN), a Recurrent Neural Network particularly the Bidirectional Long Short-Term Memory (Bi-LSTM), and a Convolutional Recurrent Neural Network (CRNN). Among these, the CRNN emerged as the most effective Deep Learning approach for vital signal analysis.
AbstractList The measurement and analysis of vital signs are a subject of significant research interest, particularly for monitoring the driver's physiological state, which is of crucial importance for road safety. Various approaches have been proposed using contact techniques to measure vital signs. However, all of these methods are invasive and cumbersome for the driver. This paper proposes using a non-contact sensor based on continuous wave (CW) radar at 24 GHz to measure vital signs. We associate these measurements with distinct temporal neural networks to analyze the signals to detect and extract heart and respiration rates as well as classify the physiological state of the driver. This approach offers robust performance in estimating the exact values of heart and respiration rates and in classifying the driver's physiological state. It is non-invasive and requires no physical contact with the driver, making it particularly practical and safe. The results presented in this paper, derived from the use of a 1D Convolutional Neural Network (1D-CNN), a Temporal Convolutional Network (TCN), a Recurrent Neural Network particularly the Bidirectional Long Short-Term Memory (Bi-LSTM), and a Convolutional Recurrent Neural Network (CRNN). Among these, the CRNN emerged as the most effective Deep Learning approach for vital signal analysis.The measurement and analysis of vital signs are a subject of significant research interest, particularly for monitoring the driver's physiological state, which is of crucial importance for road safety. Various approaches have been proposed using contact techniques to measure vital signs. However, all of these methods are invasive and cumbersome for the driver. This paper proposes using a non-contact sensor based on continuous wave (CW) radar at 24 GHz to measure vital signs. We associate these measurements with distinct temporal neural networks to analyze the signals to detect and extract heart and respiration rates as well as classify the physiological state of the driver. This approach offers robust performance in estimating the exact values of heart and respiration rates and in classifying the driver's physiological state. It is non-invasive and requires no physical contact with the driver, making it particularly practical and safe. The results presented in this paper, derived from the use of a 1D Convolutional Neural Network (1D-CNN), a Temporal Convolutional Network (TCN), a Recurrent Neural Network particularly the Bidirectional Long Short-Term Memory (Bi-LSTM), and a Convolutional Recurrent Neural Network (CRNN). Among these, the CRNN emerged as the most effective Deep Learning approach for vital signal analysis.
The measurement and analysis of vital signs are a subject of significant research interest, particularly for monitoring the driver’s physiological state, which is of crucial importance for road safety. Various approaches have been proposed using contact techniques to measure vital signs. However, all of these methods are invasive and cumbersome for the driver. This paper proposes using a non-contact sensor based on continuous wave (CW) radar at 24 GHz to measure vital signs. We associate these measurements with distinct temporal neural networks to analyze the signals to detect and extract heart and respiration rates as well as classify the physiological state of the driver. This approach offers robust performance in estimating the exact values of heart and respiration rates and in classifying the driver’s physiological state. It is non-invasive and requires no physical contact with the driver, making it particularly practical and safe. The results presented in this paper, derived from the use of a 1D Convolutional Neural Network (1D-CNN), a Temporal Convolutional Network (TCN), a Recurrent Neural Network particularly the Bidirectional Long Short-Term Memory (Bi-LSTM), and a Convolutional Recurrent Neural Network (CRNN). Among these, the CRNN emerged as the most effective Deep Learning approach for vital signal analysis.
Audience Academic
Author Elbahhar, Fouzia
El Abbaoui, Amal
Sodoyer, David
Author_xml – sequence: 1
  givenname: Amal
  surname: El Abbaoui
  fullname: El Abbaoui, Amal
– sequence: 2
  givenname: David
  surname: Sodoyer
  fullname: Sodoyer, David
– sequence: 3
  givenname: Fouzia
  orcidid: 0000-0002-0408-3486
  surname: Elbahhar
  fullname: Elbahhar, Fouzia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38067830$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04419992$$DView record in HAL
BookMark eNplkstu1DAUhiNURC-w4AVQJDawmNaxHV-W1VCYSiNAbRFLy3FOph4y8WB7ivoWPDJnJu1wUxaOfn_nk318jouDIQxQFC8rcsqYJmeJMso0r-WT4qjilE8UpeTgj__D4jilJSGUMaaeFYdMESEVI0fFz2kYsnW5h5TKGdiYSzu05RWktY82-zCUVzZDKi9S9qsx2ALT3qbkO-_GKHTlu-jvIJafb--TD31Y4FZfXudd8Zfkh0U5_Yqu1sad4AZW6xAR-Qibcck_QvyWnhdPO9snePGwnhTX7y9uprPJ_NOHy-n5fOK4knlCpWukUJI7JqB2iinOKKmEYrpVzlVSCICaAV5S4l4rLaWaU1prpdqWnRSXo7UNdmnWEa8W702w3uyCEBcGW-FdDwYE0U2j26pxhNdCqIZUriO11JpJJwBdb0fXre3_Us3O52abEc4rrTW9q5B9M7LrGL5vIGWz8slB39sBwiYZqgnVdSWIQvT1P-gybOKAPTFUaXxthRhSpyO1sHhWP3QhR-vwa2HlHY5J5zE_l7JWmjLJseDVg3bTrKDdH_hxJBA4GwEXQ0oROuN83r0ymn1vKmK2Q2f2Q_e7AfuKR-n_7C8bANNe
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3514157
crossref_primary_10_3390_s24072058
crossref_primary_10_1109_ACCESS_2024_3482690
Cites_doi 10.1109/TMTT.2016.2597824
10.3390/s21051836
10.1016/j.protcy.2012.05.143
10.1109/ACCESS.2019.2921240
10.1109/COMPEM.2019.8779202
10.1109/JERM.2019.2923673
10.1038/s41597-020-00629-5
10.3390/s21155126
10.1007/s11571-018-9481-5
10.3390/s18051463
10.1109/LSENS.2020.2983706
10.1002/mop.24877
10.1109/ACCESS.2021.3068480
10.2196/28974
10.1038/s41598-022-05810-x
10.1109/TBME.2019.2915762
10.3390/s22031100
10.3390/s21103542
10.1109/JBHI.2020.3026481
10.3390/s20082351
10.3390/s17020290
10.3390/s23063116
10.1109/MWSCAS.2018.8624097
10.3390/s22093106
10.1016/j.bspc.2014.03.012
10.5755/j01.eie.26.3.25810
10.5694/j.1326-5377.2008.tb01825.x
10.1109/TIM.2015.2479103
10.1109/TMTT.2017.2730182
10.21203/rs.3.rs-2465673/v1
10.3390/s20123396
10.1109/ACCESS.2019.2954294
10.20944/preprints201608.0206.v3
10.1038/s41598-022-12726-z
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
1XC
VOOES
DOA
DOI 10.3390/s23239457
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
CrossRef



PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_e609bb9d1bc045668b01cf0579937c6e
oai_HAL_hal_04419992v1
A775892374
38067830
10_3390_s23239457
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
1XC
VOOES
PUEGO
ID FETCH-LOGICAL-c487t-27cb76874c36e5c838432016839d8cc1766ee53e8307384d7a2294225988dd3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:14 EDT 2025
Fri May 09 12:24:52 EDT 2025
Thu Jul 10 17:11:20 EDT 2025
Sat Jul 26 00:36:47 EDT 2025
Tue Jun 10 21:12:28 EDT 2025
Wed Feb 19 02:08:14 EST 2025
Thu Apr 24 23:12:39 EDT 2025
Tue Jul 01 03:50:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Bi-LSTM
CRNN
CNN
temporal neural networks
vital signs
CW radar
heart and respiration rate
physiological state
TCN
vital signs CW radar heart and respiration rate physiological state temporal neural networks Bi-LSTM CNN TCN CRNN
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-27cb76874c36e5c838432016839d8cc1766ee53e8307384d7a2294225988dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0408-3486
0000-0001-9081-3950
OpenAccessLink https://doaj.org/article/e609bb9d1bc045668b01cf0579937c6e
PMID 38067830
PQID 2899458160
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_e609bb9d1bc045668b01cf0579937c6e
hal_primary_oai_HAL_hal_04419992v1
proquest_miscellaneous_2902951608
proquest_journals_2899458160
gale_infotracacademiconefile_A775892374
pubmed_primary_38067830
crossref_citationtrail_10_3390_s23239457
crossref_primary_10_3390_s23239457
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Nov-28
PublicationDateYYYYMMDD 2023-11-28
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov-28
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ye (ref_25) 2019; 67
Seflek (ref_11) 2020; 26
ref_14
Huang (ref_8) 2021; 25
ref_13
ref_12
ref_10
Li (ref_16) 2018; 66
(ref_18) 2022; 12
ref_31
Saluja (ref_20) 2020; 4
ref_30
ref_19
Ren (ref_34) 2016; 64
ref_38
ref_37
Arefnezhad (ref_3) 2022; 12
Wu (ref_26) 2019; 7
Arsalan (ref_21) 2020; 4
Wang (ref_2) 2018; 12
Petrovic (ref_17) 2019; 7
Sadhukhan (ref_35) 2012; 4
Schellenberger (ref_33) 2020; 7
Obeid (ref_32) 2010; 52
(ref_36) 2022; 2022
ref_24
Cretikos (ref_29) 2008; 188
ref_22
ref_1
Tu (ref_15) 2016; 65
Nazarian (ref_6) 2021; 23
ref_28
ref_27
ref_9
ref_5
ref_4
Wu (ref_23) 2021; 9
ref_7
References_xml – ident: ref_28
– volume: 64
  start-page: 3319
  year: 2016
  ident: ref_34
  article-title: Phase-Based Methods for Heart Rate Detection Using UWB impulse Doppler radar
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2016.2597824
– ident: ref_37
  doi: 10.3390/s21051836
– volume: 2022
  start-page: 4696163
  year: 2022
  ident: ref_36
  article-title: An Efficient Heart Rate Measurement System Using Medical Radar and LSTM Neural Network
  publication-title: J. Electr. Comput. Eng.
– ident: ref_30
– volume: 4
  start-page: 873
  year: 2012
  ident: ref_35
  article-title: R-Peak Detection Algorithm for ECG Using Double Difference and RR Interval Processing
  publication-title: Procedia Technol.
  doi: 10.1016/j.protcy.2012.05.143
– volume: 7
  start-page: 74721
  year: 2019
  ident: ref_17
  article-title: High-Accuracy Real-Time Monitoring of Heart Rate Variability Using 24 GHz Continuous-Wavedoppler Radar
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921240
– ident: ref_10
  doi: 10.1109/COMPEM.2019.8779202
– volume: 4
  start-page: 45
  year: 2020
  ident: ref_20
  article-title: A Supervised Machine Learning Algorithm for Heart-Rate Detection Using Doppler Motion-Sensing Radar
  publication-title: IEEE J. Electromagn. RF Microwaves Med. Biol.
  doi: 10.1109/JERM.2019.2923673
– volume: 7
  start-page: 291
  year: 2020
  ident: ref_33
  article-title: A Dataset of Clinically Recorded Radar Vital Signs with Synchronised Reference Sensor Signals
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-00629-5
– ident: ref_7
  doi: 10.3390/s21155126
– volume: 12
  start-page: 365
  year: 2018
  ident: ref_2
  article-title: A Novel Real-Time Driving Fatigue Detection System Based on Wireless Dry EEG
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-018-9481-5
– ident: ref_9
  doi: 10.3390/s18051463
– volume: 4
  start-page: 7001304
  year: 2020
  ident: ref_21
  article-title: Improved Contactless Heartbeat Estimation in FMCW Radar via Kalman Filter Tracking
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2020.2983706
– volume: 52
  start-page: 192
  year: 2010
  ident: ref_32
  article-title: Multitunable microwave system for touchless heartbeat detection and heart rate variability extraction
  publication-title: Microw. Opt. Technol. Lett.
  doi: 10.1002/mop.24877
– volume: 9
  start-page: 49614
  year: 2021
  ident: ref_23
  article-title: A Non-Contact Vital Signs Detection in a Multi-Channel 77 GHz LFMCW Radar System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3068480
– volume: 23
  start-page: e28974
  year: 2021
  ident: ref_6
  article-title: Diagnostic Accuracy of Smartwatches for the Detection of Cardiac Arrhythmia: Systematic Review and Meta-Analysis
  publication-title: J. Med. Internet Res.
  doi: 10.2196/28974
– volume: 12
  start-page: 2650
  year: 2022
  ident: ref_3
  article-title: Driver Drowsiness Estimation Using EEG Signals with a Dynamical Encoder–Decoder Modeling Framework
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-05810-x
– volume: 67
  start-page: 482
  year: 2019
  ident: ref_25
  article-title: Blind Source Separation on Non-Contact Heartbeat Detection by Non-Negative Matrix Factorization Algorithms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2915762
– ident: ref_1
  doi: 10.3390/s22031100
– ident: ref_4
  doi: 10.3390/s21103542
– volume: 25
  start-page: 1397
  year: 2021
  ident: ref_8
  article-title: A Heart Rate Monitoring Framework for Real-World Drivers Using Remote Photoplethysmography
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.3026481
– ident: ref_12
  doi: 10.3390/s20082351
– ident: ref_22
  doi: 10.3390/s17020290
– ident: ref_27
  doi: 10.3390/s23063116
– ident: ref_31
– ident: ref_5
  doi: 10.1109/MWSCAS.2018.8624097
– ident: ref_24
  doi: 10.3390/s22093106
– ident: ref_13
  doi: 10.1016/j.bspc.2014.03.012
– volume: 26
  start-page: 54
  year: 2020
  ident: ref_11
  article-title: Small Motion Detection and Non-Contact Vital Signs Monitoring with Continuous Wave Doppler Radars
  publication-title: Elektron. Elektrotechnika
  doi: 10.5755/j01.eie.26.3.25810
– volume: 188
  start-page: 657
  year: 2008
  ident: ref_29
  article-title: Respiratory rate: The neglected vital sign
  publication-title: Med. J. Aust.
  doi: 10.5694/j.1326-5377.2008.tb01825.x
– volume: 65
  start-page: 112
  year: 2016
  ident: ref_15
  article-title: Fast Acquisition of Heart Rate in Noncontact Vital Sign Radar Measurement Using Time-Window-Variation Technique
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2015.2479103
– volume: 66
  start-page: 568
  year: 2018
  ident: ref_16
  article-title: Wavelet-Transform-Based Data-Length-Variation Technique for Fast Heart Rate Detection Using 5.8-GHz CW Doppler Radar
  publication-title: IEEE Trans. Microw. Theory Technol.
  doi: 10.1109/TMTT.2017.2730182
– ident: ref_38
  doi: 10.21203/rs.3.rs-2465673/v1
– ident: ref_14
  doi: 10.3390/s20123396
– volume: 7
  start-page: 168484
  year: 2019
  ident: ref_26
  article-title: Person-Specific Heart Rate Estimation with Ultra-Wideband Radar Using Convolutional Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2954294
– ident: ref_19
  doi: 10.20944/preprints201608.0206.v3
– volume: 12
  start-page: 8675
  year: 2022
  ident: ref_18
  article-title: et al. Methodology for the Determination of Human Respiration Rate by Using Doppler Radar and Empirical Modal Decomposition
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-12726-z
SSID ssj0023338
Score 2.4216988
Snippet The measurement and analysis of vital signs are a subject of significant research interest, particularly for monitoring the driver’s physiological state, which...
The measurement and analysis of vital signs are a subject of significant research interest, particularly for monitoring the driver's physiological state, which...
SourceID doaj
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9457
SubjectTerms Bi-LSTM
Computer Science
CW radar
Electrocardiography
heart and respiration rate
Neural networks
physiological state
Radar systems
Respiration
Sensors
Signal and Image Processing
Signal processing
temporal neural networks
vital signs
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VnsoB8SalIIOQyiVq1nYc-7iUVqsKOLRF9GY5tqMeqmy12fI7-MnM2NlokUBceorkjBLH8_A3yvgbgA_cSOUUleJQbYWsjSidiF1JzeOqlgcRDZ13_vpNLb7Ls6v6aqvVF9WEZXrgvHBHUVWmbU2YtZ7Qh9JtNfMdHaHEjdWrSNEX97xNMjWmWgIzr8wjJDCpPxoQNwgjaQ_a2n0SSf8Uih9cUyXkv2Bm2m5OH8OjESeyeZ7fE9iJ_VN4uMUe-Ax-EbOU86jsYWALtNg1c31g5-PPc1xwdk5Ikp2gG-cTikkg9cGkCqE8tOzY5xVVZ7BUDboJhizDUJZqCtjxD3xWcKv0gMtMZ3XDiNkjXVIp-fAcLk5PLo8X5dhgofSYp6xL3vgW041GeqFi7bXQUiAgUAiagvaeuCNjrEXUFAi0DI3jqFuMAEbrEMQL2O2XfXwFDDGXqF1UsQlCdrwznTeyjVwG4b3uXAEfN8tu_cg9Ti0wbizmIKQhO2mogPeT6G0m3Pib0CfS3SRAHNlpAC3HjpZj_2c5BRyS5i15Mk7Gu_FAAn4ScWLZeYO5FOLfRuKc0Dj-eNti_sXSWIVwEjE2_zkr4GBjO3aMA4OldFbWeqaqAt5Nt9GD6beM6-PyDmUMukmNIrqAl9nmplcJTWhCVPv38cGvYY-ja9BJSq4PYHe9uotvEFKt27fJe34DR3QcbA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RcoEDKu9AiwxCgkvUbOw49qnallYrBBxKEXuzHNuBQ5WUzba_oz-ZGcebUgk4RXJGzmMe-SYefwPwttRCWkmlOFRbISrNc8tDm1PzuKIpPQ-a9jt__iIX38THZbVMP9yGVFa5iYkxUPve0T_yfUoMRKVmsji4-JVT1yhaXU0tNLbgLlGXUUlXvbxJuDjmXyObEMfUfn9A9MBxkvrWNyhS9U8Beesn1UP-C2zGj87JDjxIaJHNR_U-hDuhewT3_-AQfAzXxC9lHap8GNgC7XbNbOfZaVpCx9fOTglPsmN05nGfYhSI3TCpTmgc6lv2YUU1GizWhG5CIhvBKIuVBezoO87l7SpOcDaSWp0z4veIh1hQPjyBryfHZ0eLPLVZyB1mK-u8rF2DSUctHJehcoorwREWSIROXjlHDJIhVDwoCgdK-NqWqGGMA1op7_lT2O76LjwHhsiLVzbIUHsu2rLVrdOiCaXw3DnV2gzeb167cYmBnBphnBvMREhDZtJQBm8m0YuRduNvQoeku0mAmLLjQL_6YZLjmSAL3TTazxpH6FWqppi5lrbgIjBzMmTwjjRvyJ_xZpxN2xLwkYgZy8xrzKgQBdcC7wmN49bVFvNPhsYKBJWItMurWQa7G9sxKRoM5sZ2M3g9nUY_psUZ24X-EmU0OkuFIiqDZ6PNTZfiijAFL178f_KXcK9Eo6edkqXahe316jLsIWRaN6-iX_wG5n0UOw
  priority: 102
  providerName: ProQuest
Title Contactless Heart and Respiration Rates Estimation and Classification of Driver Physiological States Using CW Radar and Temporal Neural Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/38067830
https://www.proquest.com/docview/2899458160
https://www.proquest.com/docview/2902951608
https://hal.science/hal-04419992
https://doaj.org/article/e609bb9d1bc045668b01cf0579937c6e
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB5tdy9wQLzJslQGIcElkMaO7RwQ6i4tFWJXqOyK3qzEceBQpUvSRfAv-MnMOA9RaZG4tJI7eTQzY38Tz3wD8DxOhcwkpeJQboVIUh5m3JUhNY-L8rjgLqV659MzubgQH1bJag_6HpvdA2yuDe2on9RFvX718_uvt-jwbyjixJD9dYOogKciUSM4wAVJkX-eimEzIebcN7Smmq4Q18OoJRjaPXRnWfLs_cMcPfpGKZL_wp9-HZrfhlsdgGTTVuN3YM9Vd-HmX7SC9-A3UU5lFq2gadgCTXnLsqpgy25XHTXBlgQx2Qz9uy1d9AK-QSalDrVDm5K9qyltg_k00X6WZC0-ZT7ZgJ18wXMVWe1PcN7yXK0ZUX74L59j3tyHz_PZ-cki7DovhBYDmG0YK5tjHKKE5dIlVnMtOCIFiWiq0NYSqaRzCXeaZggtCpXFqHScGlKti4I_gP1qU7lHwBCM8SRz0qmCizIu09KmInexKLi1uswCeNk_dmM7UnLqjbE2GJyQhsygoQCeDaKXLRPHdULHpLtBgMiz_cCm_mo6XzRORmmep8UktwRopc6jiS2pKhexmpUugBekeUNGhzdjs65SAf8SkWWZqcIgC4GxEnhPaBw7V1tMPxoaixBnIviOf0wCOOptx_T2bSjOFYmeyCiAp8PP6Nq0X5NVbnOFMin6T4IiOoCHrc0Nl-KaYAaPDv_j6MdwI0YvoArKWB_B_ra-ck8QSm3zMYzUSuGnnr8fw8Hx7OzTcuxfS4y9C_0BewUdzQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615QAcEG8CBQwCwSVq1nYS54DQ0oe2dNtDWcSeaiW2Qw9V0m62IP4FP4QfyYzzKJWAW08reUeO43n4m3geAK94JpM8oVAciq2QcSbCXLgypOZxUcGtcBnlO-8fJJPP8uM8nq_Arz4XhsIqe5voDbWtDX0j3yDHQMZqlETvT89C6hpFt6t9C41WLPbcj-_osjXvdreQv68539mebU7CrqtAaBCcL0OemgIxdiqNSFxslFBS4CmYIFKwyhgqmOhcLJwi6VfSpjnHF0Kxz5SyVuCsq3ANj92I9CmdX7h3Ar29tnaREFm00SBWEbjk9NKJ5xsDDOZ_9ZiiL_8Fbf0Rt3MbbnXYlI1bYboDK666Czf_qFh4D35SNavcoIA1DZvgdixZXll22F3YI5PZIaFXto2mo82K9AS-9yZFJbVDdcm2FhQRwnwEam-AWQt9mY9jYJtfcC6bL_wEs7aE1gmjaiL-x4evN_fh0xVs_wNYq-rKPQKGOE_EuUtcaoUseZmVJpOF49IKY1SZB_C233Ztunrn1HbjRKPfQxzSA4cCeDmQnrZFPv5G9IF4NxBQXW4_UC--6k7NtUuirCgyOyoMYeVEFdHIlJTwizDQJC6AN8R5TdYDF2PyLgkCX4nqcOlxiv4bYu5U4ppQOC49bTKeahqLEMIiruffRgGs97KjO9vT6AtNCeDF8DdaDboKyitXnyNNhqoZI4kK4GErc8OjhCIEI6LH_5_8OVyfzPanerp7sPcEbnBUAMrR5God1paLc_cUwdqyeOZ1hMHR1arkb1kXTQA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RUJwQLwJFDAIBJdoE9tJnANCS7erLS0VKkXdE1ZiO3CosmWzBfEv-Dn8PGacR6kE3HpayTtyHM_D38TzAHjGc5kWKYXiUGyFTHIRFsJVITWPi0puhcsp3_ndfjr7KN_Ok_ka_OpzYSissreJ3lDbhaFv5CNyDGSi4jQaVV1YxPvJ9PXJ15A6SNFNa99OoxWRXffjO7pvzaudCfL6OefT7cOtWdh1GAgNAvVVyDNTIt7OpBGpS4wSSgo8EVNEDVYZQ8UTnUuEU6QJStqs4PhyqAK5UtYKnHUdLmUiiUnDsvmZqyfQ82vrGAmRR6MGcYvA5WfnTj_fJGA4Cta_UCTmv2CuP-6m1-Fah1PZuBWsG7Dm6ptw9Y_qhbfgJ1W2KgwKW9OwGW7HihW1ZQfd5T0ynB0QkmXbaEbaDElP4PtwUoRSO7So2GRJ0SHMR6P2xpi1MJj5mAa2dYRz2WLpJzhsy2kdM6os4n98KHtzGz5cwPbfgY16Ubt7wBDziaRwqcuskBWv8srksnRcWmGMqooAXvbbrk1X-5xacBxr9IGIQ3rgUABPB9KTtuDH34jeEO8GAqrR7QcWy8-6U3nt0igvy9zGpSHcnKoyik1Fyb8ICU3qAnhBnNdkSXAxpugSIvCVqCaXHmfoyyH-ziSuCYXj3NNm4z1NYxHCWcT4_FscwGYvO7qzQ40-05oAngx_owWha6GidotTpMlRTRMkUQHcbWVueJRQhGZEdP__kz-Gy6iMem9nf_cBXOEo_5SuydUmbKyWp-4h4rZV-cirCINPF6uRvwH_A1E2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contactless+Heart+and+Respiration+Rates+Estimation+and+Classification+of+Driver+Physiological+States+Using+CW+Radar+and+Temporal+Neural+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=El+Abbaoui%2C+Amal&rft.au=Sodoyer%2C+David&rft.au=Elbahhar%2C+Fouzia&rft.date=2023-11-28&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=23&rft_id=info:doi/10.3390%2Fs23239457&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon