Contactless Heart and Respiration Rates Estimation and Classification of Driver Physiological States Using CW Radar and Temporal Neural Networks
The measurement and analysis of vital signs are a subject of significant research interest, particularly for monitoring the driver’s physiological state, which is of crucial importance for road safety. Various approaches have been proposed using contact techniques to measure vital signs. However, al...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 23; p. 9457 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
28.11.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The measurement and analysis of vital signs are a subject of significant research interest, particularly for monitoring the driver’s physiological state, which is of crucial importance for road safety. Various approaches have been proposed using contact techniques to measure vital signs. However, all of these methods are invasive and cumbersome for the driver. This paper proposes using a non-contact sensor based on continuous wave (CW) radar at 24 GHz to measure vital signs. We associate these measurements with distinct temporal neural networks to analyze the signals to detect and extract heart and respiration rates as well as classify the physiological state of the driver. This approach offers robust performance in estimating the exact values of heart and respiration rates and in classifying the driver’s physiological state. It is non-invasive and requires no physical contact with the driver, making it particularly practical and safe. The results presented in this paper, derived from the use of a 1D Convolutional Neural Network (1D-CNN), a Temporal Convolutional Network (TCN), a Recurrent Neural Network particularly the Bidirectional Long Short-Term Memory (Bi-LSTM), and a Convolutional Recurrent Neural Network (CRNN). Among these, the CRNN emerged as the most effective Deep Learning approach for vital signal analysis. |
---|---|
AbstractList | The measurement and analysis of vital signs are a subject of significant research interest, particularly for monitoring the driver's physiological state, which is of crucial importance for road safety. Various approaches have been proposed using contact techniques to measure vital signs. However, all of these methods are invasive and cumbersome for the driver. This paper proposes using a non-contact sensor based on continuous wave (CW) radar at 24 GHz to measure vital signs. We associate these measurements with distinct temporal neural networks to analyze the signals to detect and extract heart and respiration rates as well as classify the physiological state of the driver. This approach offers robust performance in estimating the exact values of heart and respiration rates and in classifying the driver's physiological state. It is non-invasive and requires no physical contact with the driver, making it particularly practical and safe. The results presented in this paper, derived from the use of a 1D Convolutional Neural Network (1D-CNN), a Temporal Convolutional Network (TCN), a Recurrent Neural Network particularly the Bidirectional Long Short-Term Memory (Bi-LSTM), and a Convolutional Recurrent Neural Network (CRNN). Among these, the CRNN emerged as the most effective Deep Learning approach for vital signal analysis.The measurement and analysis of vital signs are a subject of significant research interest, particularly for monitoring the driver's physiological state, which is of crucial importance for road safety. Various approaches have been proposed using contact techniques to measure vital signs. However, all of these methods are invasive and cumbersome for the driver. This paper proposes using a non-contact sensor based on continuous wave (CW) radar at 24 GHz to measure vital signs. We associate these measurements with distinct temporal neural networks to analyze the signals to detect and extract heart and respiration rates as well as classify the physiological state of the driver. This approach offers robust performance in estimating the exact values of heart and respiration rates and in classifying the driver's physiological state. It is non-invasive and requires no physical contact with the driver, making it particularly practical and safe. The results presented in this paper, derived from the use of a 1D Convolutional Neural Network (1D-CNN), a Temporal Convolutional Network (TCN), a Recurrent Neural Network particularly the Bidirectional Long Short-Term Memory (Bi-LSTM), and a Convolutional Recurrent Neural Network (CRNN). Among these, the CRNN emerged as the most effective Deep Learning approach for vital signal analysis. The measurement and analysis of vital signs are a subject of significant research interest, particularly for monitoring the driver’s physiological state, which is of crucial importance for road safety. Various approaches have been proposed using contact techniques to measure vital signs. However, all of these methods are invasive and cumbersome for the driver. This paper proposes using a non-contact sensor based on continuous wave (CW) radar at 24 GHz to measure vital signs. We associate these measurements with distinct temporal neural networks to analyze the signals to detect and extract heart and respiration rates as well as classify the physiological state of the driver. This approach offers robust performance in estimating the exact values of heart and respiration rates and in classifying the driver’s physiological state. It is non-invasive and requires no physical contact with the driver, making it particularly practical and safe. The results presented in this paper, derived from the use of a 1D Convolutional Neural Network (1D-CNN), a Temporal Convolutional Network (TCN), a Recurrent Neural Network particularly the Bidirectional Long Short-Term Memory (Bi-LSTM), and a Convolutional Recurrent Neural Network (CRNN). Among these, the CRNN emerged as the most effective Deep Learning approach for vital signal analysis. |
Audience | Academic |
Author | Elbahhar, Fouzia El Abbaoui, Amal Sodoyer, David |
Author_xml | – sequence: 1 givenname: Amal surname: El Abbaoui fullname: El Abbaoui, Amal – sequence: 2 givenname: David surname: Sodoyer fullname: Sodoyer, David – sequence: 3 givenname: Fouzia orcidid: 0000-0002-0408-3486 surname: Elbahhar fullname: Elbahhar, Fouzia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38067830$$D View this record in MEDLINE/PubMed https://hal.science/hal-04419992$$DView record in HAL |
BookMark | eNplkstu1DAUhiNURC-w4AVQJDawmNaxHV-W1VCYSiNAbRFLy3FOph4y8WB7ivoWPDJnJu1wUxaOfn_nk318jouDIQxQFC8rcsqYJmeJMso0r-WT4qjilE8UpeTgj__D4jilJSGUMaaeFYdMESEVI0fFz2kYsnW5h5TKGdiYSzu05RWktY82-zCUVzZDKi9S9qsx2ALT3qbkO-_GKHTlu-jvIJafb--TD31Y4FZfXudd8Zfkh0U5_Yqu1sad4AZW6xAR-Qibcck_QvyWnhdPO9snePGwnhTX7y9uprPJ_NOHy-n5fOK4knlCpWukUJI7JqB2iinOKKmEYrpVzlVSCICaAV5S4l4rLaWaU1prpdqWnRSXo7UNdmnWEa8W702w3uyCEBcGW-FdDwYE0U2j26pxhNdCqIZUriO11JpJJwBdb0fXre3_Us3O52abEc4rrTW9q5B9M7LrGL5vIGWz8slB39sBwiYZqgnVdSWIQvT1P-gybOKAPTFUaXxthRhSpyO1sHhWP3QhR-vwa2HlHY5J5zE_l7JWmjLJseDVg3bTrKDdH_hxJBA4GwEXQ0oROuN83r0ymn1vKmK2Q2f2Q_e7AfuKR-n_7C8bANNe |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3514157 crossref_primary_10_3390_s24072058 crossref_primary_10_1109_ACCESS_2024_3482690 |
Cites_doi | 10.1109/TMTT.2016.2597824 10.3390/s21051836 10.1016/j.protcy.2012.05.143 10.1109/ACCESS.2019.2921240 10.1109/COMPEM.2019.8779202 10.1109/JERM.2019.2923673 10.1038/s41597-020-00629-5 10.3390/s21155126 10.1007/s11571-018-9481-5 10.3390/s18051463 10.1109/LSENS.2020.2983706 10.1002/mop.24877 10.1109/ACCESS.2021.3068480 10.2196/28974 10.1038/s41598-022-05810-x 10.1109/TBME.2019.2915762 10.3390/s22031100 10.3390/s21103542 10.1109/JBHI.2020.3026481 10.3390/s20082351 10.3390/s17020290 10.3390/s23063116 10.1109/MWSCAS.2018.8624097 10.3390/s22093106 10.1016/j.bspc.2014.03.012 10.5755/j01.eie.26.3.25810 10.5694/j.1326-5377.2008.tb01825.x 10.1109/TIM.2015.2479103 10.1109/TMTT.2017.2730182 10.21203/rs.3.rs-2465673/v1 10.3390/s20123396 10.1109/ACCESS.2019.2954294 10.20944/preprints201608.0206.v3 10.1038/s41598-022-12726-z |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 1XC VOOES DOA |
DOI | 10.3390/s23239457 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_e609bb9d1bc045668b01cf0579937c6e oai_HAL_hal_04419992v1 A775892374 38067830 10_3390_s23239457 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 1XC VOOES PUEGO |
ID | FETCH-LOGICAL-c487t-27cb76874c36e5c838432016839d8cc1766ee53e8307384d7a2294225988dd3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:14 EDT 2025 Fri May 09 12:24:52 EDT 2025 Thu Jul 10 17:11:20 EDT 2025 Sat Jul 26 00:36:47 EDT 2025 Tue Jun 10 21:12:28 EDT 2025 Wed Feb 19 02:08:14 EST 2025 Thu Apr 24 23:12:39 EDT 2025 Tue Jul 01 03:50:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | Bi-LSTM CRNN CNN temporal neural networks vital signs CW radar heart and respiration rate physiological state TCN vital signs CW radar heart and respiration rate physiological state temporal neural networks Bi-LSTM CNN TCN CRNN |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c487t-27cb76874c36e5c838432016839d8cc1766ee53e8307384d7a2294225988dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0408-3486 0000-0001-9081-3950 |
OpenAccessLink | https://doaj.org/article/e609bb9d1bc045668b01cf0579937c6e |
PMID | 38067830 |
PQID | 2899458160 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e609bb9d1bc045668b01cf0579937c6e hal_primary_oai_HAL_hal_04419992v1 proquest_miscellaneous_2902951608 proquest_journals_2899458160 gale_infotracacademiconefile_A775892374 pubmed_primary_38067830 crossref_citationtrail_10_3390_s23239457 crossref_primary_10_3390_s23239457 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-Nov-28 |
PublicationDateYYYYMMDD | 2023-11-28 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-Nov-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ye (ref_25) 2019; 67 Seflek (ref_11) 2020; 26 ref_14 Huang (ref_8) 2021; 25 ref_13 ref_12 ref_10 Li (ref_16) 2018; 66 (ref_18) 2022; 12 ref_31 Saluja (ref_20) 2020; 4 ref_30 ref_19 Ren (ref_34) 2016; 64 ref_38 ref_37 Arefnezhad (ref_3) 2022; 12 Wu (ref_26) 2019; 7 Arsalan (ref_21) 2020; 4 Wang (ref_2) 2018; 12 Petrovic (ref_17) 2019; 7 Sadhukhan (ref_35) 2012; 4 Schellenberger (ref_33) 2020; 7 Obeid (ref_32) 2010; 52 (ref_36) 2022; 2022 ref_24 Cretikos (ref_29) 2008; 188 ref_22 ref_1 Tu (ref_15) 2016; 65 Nazarian (ref_6) 2021; 23 ref_28 ref_27 ref_9 ref_5 ref_4 Wu (ref_23) 2021; 9 ref_7 |
References_xml | – ident: ref_28 – volume: 64 start-page: 3319 year: 2016 ident: ref_34 article-title: Phase-Based Methods for Heart Rate Detection Using UWB impulse Doppler radar publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2016.2597824 – ident: ref_37 doi: 10.3390/s21051836 – volume: 2022 start-page: 4696163 year: 2022 ident: ref_36 article-title: An Efficient Heart Rate Measurement System Using Medical Radar and LSTM Neural Network publication-title: J. Electr. Comput. Eng. – ident: ref_30 – volume: 4 start-page: 873 year: 2012 ident: ref_35 article-title: R-Peak Detection Algorithm for ECG Using Double Difference and RR Interval Processing publication-title: Procedia Technol. doi: 10.1016/j.protcy.2012.05.143 – volume: 7 start-page: 74721 year: 2019 ident: ref_17 article-title: High-Accuracy Real-Time Monitoring of Heart Rate Variability Using 24 GHz Continuous-Wavedoppler Radar publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921240 – ident: ref_10 doi: 10.1109/COMPEM.2019.8779202 – volume: 4 start-page: 45 year: 2020 ident: ref_20 article-title: A Supervised Machine Learning Algorithm for Heart-Rate Detection Using Doppler Motion-Sensing Radar publication-title: IEEE J. Electromagn. RF Microwaves Med. Biol. doi: 10.1109/JERM.2019.2923673 – volume: 7 start-page: 291 year: 2020 ident: ref_33 article-title: A Dataset of Clinically Recorded Radar Vital Signs with Synchronised Reference Sensor Signals publication-title: Sci. Data doi: 10.1038/s41597-020-00629-5 – ident: ref_7 doi: 10.3390/s21155126 – volume: 12 start-page: 365 year: 2018 ident: ref_2 article-title: A Novel Real-Time Driving Fatigue Detection System Based on Wireless Dry EEG publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-018-9481-5 – ident: ref_9 doi: 10.3390/s18051463 – volume: 4 start-page: 7001304 year: 2020 ident: ref_21 article-title: Improved Contactless Heartbeat Estimation in FMCW Radar via Kalman Filter Tracking publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2020.2983706 – volume: 52 start-page: 192 year: 2010 ident: ref_32 article-title: Multitunable microwave system for touchless heartbeat detection and heart rate variability extraction publication-title: Microw. Opt. Technol. Lett. doi: 10.1002/mop.24877 – volume: 9 start-page: 49614 year: 2021 ident: ref_23 article-title: A Non-Contact Vital Signs Detection in a Multi-Channel 77 GHz LFMCW Radar System publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3068480 – volume: 23 start-page: e28974 year: 2021 ident: ref_6 article-title: Diagnostic Accuracy of Smartwatches for the Detection of Cardiac Arrhythmia: Systematic Review and Meta-Analysis publication-title: J. Med. Internet Res. doi: 10.2196/28974 – volume: 12 start-page: 2650 year: 2022 ident: ref_3 article-title: Driver Drowsiness Estimation Using EEG Signals with a Dynamical Encoder–Decoder Modeling Framework publication-title: Sci. Rep. doi: 10.1038/s41598-022-05810-x – volume: 67 start-page: 482 year: 2019 ident: ref_25 article-title: Blind Source Separation on Non-Contact Heartbeat Detection by Non-Negative Matrix Factorization Algorithms publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2915762 – ident: ref_1 doi: 10.3390/s22031100 – ident: ref_4 doi: 10.3390/s21103542 – volume: 25 start-page: 1397 year: 2021 ident: ref_8 article-title: A Heart Rate Monitoring Framework for Real-World Drivers Using Remote Photoplethysmography publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.3026481 – ident: ref_12 doi: 10.3390/s20082351 – ident: ref_22 doi: 10.3390/s17020290 – ident: ref_27 doi: 10.3390/s23063116 – ident: ref_31 – ident: ref_5 doi: 10.1109/MWSCAS.2018.8624097 – ident: ref_24 doi: 10.3390/s22093106 – ident: ref_13 doi: 10.1016/j.bspc.2014.03.012 – volume: 26 start-page: 54 year: 2020 ident: ref_11 article-title: Small Motion Detection and Non-Contact Vital Signs Monitoring with Continuous Wave Doppler Radars publication-title: Elektron. Elektrotechnika doi: 10.5755/j01.eie.26.3.25810 – volume: 188 start-page: 657 year: 2008 ident: ref_29 article-title: Respiratory rate: The neglected vital sign publication-title: Med. J. Aust. doi: 10.5694/j.1326-5377.2008.tb01825.x – volume: 65 start-page: 112 year: 2016 ident: ref_15 article-title: Fast Acquisition of Heart Rate in Noncontact Vital Sign Radar Measurement Using Time-Window-Variation Technique publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2015.2479103 – volume: 66 start-page: 568 year: 2018 ident: ref_16 article-title: Wavelet-Transform-Based Data-Length-Variation Technique for Fast Heart Rate Detection Using 5.8-GHz CW Doppler Radar publication-title: IEEE Trans. Microw. Theory Technol. doi: 10.1109/TMTT.2017.2730182 – ident: ref_38 doi: 10.21203/rs.3.rs-2465673/v1 – ident: ref_14 doi: 10.3390/s20123396 – volume: 7 start-page: 168484 year: 2019 ident: ref_26 article-title: Person-Specific Heart Rate Estimation with Ultra-Wideband Radar Using Convolutional Neural Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2954294 – ident: ref_19 doi: 10.20944/preprints201608.0206.v3 – volume: 12 start-page: 8675 year: 2022 ident: ref_18 article-title: et al. Methodology for the Determination of Human Respiration Rate by Using Doppler Radar and Empirical Modal Decomposition publication-title: Sci. Rep. doi: 10.1038/s41598-022-12726-z |
SSID | ssj0023338 |
Score | 2.4216988 |
Snippet | The measurement and analysis of vital signs are a subject of significant research interest, particularly for monitoring the driver’s physiological state, which... The measurement and analysis of vital signs are a subject of significant research interest, particularly for monitoring the driver's physiological state, which... |
SourceID | doaj hal proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 9457 |
SubjectTerms | Bi-LSTM Computer Science CW radar Electrocardiography heart and respiration rate Neural networks physiological state Radar systems Respiration Sensors Signal and Image Processing Signal processing temporal neural networks vital signs |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VnsoB8SalIIOQyiVq1nYc-7iUVqsKOLRF9GY5tqMeqmy12fI7-MnM2NlokUBceorkjBLH8_A3yvgbgA_cSOUUleJQbYWsjSidiF1JzeOqlgcRDZ13_vpNLb7Ls6v6aqvVF9WEZXrgvHBHUVWmbU2YtZ7Qh9JtNfMdHaHEjdWrSNEX97xNMjWmWgIzr8wjJDCpPxoQNwgjaQ_a2n0SSf8Uih9cUyXkv2Bm2m5OH8OjESeyeZ7fE9iJ_VN4uMUe-Ax-EbOU86jsYWALtNg1c31g5-PPc1xwdk5Ikp2gG-cTikkg9cGkCqE8tOzY5xVVZ7BUDboJhizDUJZqCtjxD3xWcKv0gMtMZ3XDiNkjXVIp-fAcLk5PLo8X5dhgofSYp6xL3vgW041GeqFi7bXQUiAgUAiagvaeuCNjrEXUFAi0DI3jqFuMAEbrEMQL2O2XfXwFDDGXqF1UsQlCdrwznTeyjVwG4b3uXAEfN8tu_cg9Ti0wbizmIKQhO2mogPeT6G0m3Pib0CfS3SRAHNlpAC3HjpZj_2c5BRyS5i15Mk7Gu_FAAn4ScWLZeYO5FOLfRuKc0Dj-eNti_sXSWIVwEjE2_zkr4GBjO3aMA4OldFbWeqaqAt5Nt9GD6beM6-PyDmUMukmNIrqAl9nmplcJTWhCVPv38cGvYY-ja9BJSq4PYHe9uotvEFKt27fJe34DR3QcbA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RcoEDKu9AiwxCgkvUbOw49qnallYrBBxKEXuzHNuBQ5WUzba_oz-ZGcebUgk4RXJGzmMe-SYefwPwttRCWkmlOFRbISrNc8tDm1PzuKIpPQ-a9jt__iIX38THZbVMP9yGVFa5iYkxUPve0T_yfUoMRKVmsji4-JVT1yhaXU0tNLbgLlGXUUlXvbxJuDjmXyObEMfUfn9A9MBxkvrWNyhS9U8Beesn1UP-C2zGj87JDjxIaJHNR_U-hDuhewT3_-AQfAzXxC9lHap8GNgC7XbNbOfZaVpCx9fOTglPsmN05nGfYhSI3TCpTmgc6lv2YUU1GizWhG5CIhvBKIuVBezoO87l7SpOcDaSWp0z4veIh1hQPjyBryfHZ0eLPLVZyB1mK-u8rF2DSUctHJehcoorwREWSIROXjlHDJIhVDwoCgdK-NqWqGGMA1op7_lT2O76LjwHhsiLVzbIUHsu2rLVrdOiCaXw3DnV2gzeb167cYmBnBphnBvMREhDZtJQBm8m0YuRduNvQoeku0mAmLLjQL_6YZLjmSAL3TTazxpH6FWqppi5lrbgIjBzMmTwjjRvyJ_xZpxN2xLwkYgZy8xrzKgQBdcC7wmN49bVFvNPhsYKBJWItMurWQa7G9sxKRoM5sZ2M3g9nUY_psUZ24X-EmU0OkuFIiqDZ6PNTZfiijAFL178f_KXcK9Eo6edkqXahe316jLsIWRaN6-iX_wG5n0UOw priority: 102 providerName: ProQuest |
Title | Contactless Heart and Respiration Rates Estimation and Classification of Driver Physiological States Using CW Radar and Temporal Neural Networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38067830 https://www.proquest.com/docview/2899458160 https://www.proquest.com/docview/2902951608 https://hal.science/hal-04419992 https://doaj.org/article/e609bb9d1bc045668b01cf0579937c6e |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB5tdy9wQLzJslQGIcElkMaO7RwQ6i4tFWJXqOyK3qzEceBQpUvSRfAv-MnMOA9RaZG4tJI7eTQzY38Tz3wD8DxOhcwkpeJQboVIUh5m3JUhNY-L8rjgLqV659MzubgQH1bJag_6HpvdA2yuDe2on9RFvX718_uvt-jwbyjixJD9dYOogKciUSM4wAVJkX-eimEzIebcN7Smmq4Q18OoJRjaPXRnWfLs_cMcPfpGKZL_wp9-HZrfhlsdgGTTVuN3YM9Vd-HmX7SC9-A3UU5lFq2gadgCTXnLsqpgy25XHTXBlgQx2Qz9uy1d9AK-QSalDrVDm5K9qyltg_k00X6WZC0-ZT7ZgJ18wXMVWe1PcN7yXK0ZUX74L59j3tyHz_PZ-cki7DovhBYDmG0YK5tjHKKE5dIlVnMtOCIFiWiq0NYSqaRzCXeaZggtCpXFqHScGlKti4I_gP1qU7lHwBCM8SRz0qmCizIu09KmInexKLi1uswCeNk_dmM7UnLqjbE2GJyQhsygoQCeDaKXLRPHdULHpLtBgMiz_cCm_mo6XzRORmmep8UktwRopc6jiS2pKhexmpUugBekeUNGhzdjs65SAf8SkWWZqcIgC4GxEnhPaBw7V1tMPxoaixBnIviOf0wCOOptx_T2bSjOFYmeyCiAp8PP6Nq0X5NVbnOFMin6T4IiOoCHrc0Nl-KaYAaPDv_j6MdwI0YvoArKWB_B_ra-ck8QSm3zMYzUSuGnnr8fw8Hx7OzTcuxfS4y9C_0BewUdzQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615QAcEG8CBQwCwSVq1nYS54DQ0oe2dNtDWcSeaiW2Qw9V0m62IP4FP4QfyYzzKJWAW08reUeO43n4m3geAK94JpM8oVAciq2QcSbCXLgypOZxUcGtcBnlO-8fJJPP8uM8nq_Arz4XhsIqe5voDbWtDX0j3yDHQMZqlETvT89C6hpFt6t9C41WLPbcj-_osjXvdreQv68539mebU7CrqtAaBCcL0OemgIxdiqNSFxslFBS4CmYIFKwyhgqmOhcLJwi6VfSpjnHF0Kxz5SyVuCsq3ANj92I9CmdX7h3Ar29tnaREFm00SBWEbjk9NKJ5xsDDOZ_9ZiiL_8Fbf0Rt3MbbnXYlI1bYboDK666Czf_qFh4D35SNavcoIA1DZvgdixZXll22F3YI5PZIaFXto2mo82K9AS-9yZFJbVDdcm2FhQRwnwEam-AWQt9mY9jYJtfcC6bL_wEs7aE1gmjaiL-x4evN_fh0xVs_wNYq-rKPQKGOE_EuUtcaoUseZmVJpOF49IKY1SZB_C233Ztunrn1HbjRKPfQxzSA4cCeDmQnrZFPv5G9IF4NxBQXW4_UC--6k7NtUuirCgyOyoMYeVEFdHIlJTwizDQJC6AN8R5TdYDF2PyLgkCX4nqcOlxiv4bYu5U4ppQOC49bTKeahqLEMIiruffRgGs97KjO9vT6AtNCeDF8DdaDboKyitXnyNNhqoZI4kK4GErc8OjhCIEI6LH_5_8OVyfzPanerp7sPcEbnBUAMrR5God1paLc_cUwdqyeOZ1hMHR1arkb1kXTQA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RUJwQLwJFDAIBJdoE9tJnANCS7erLS0VKkXdE1ZiO3CosmWzBfEv-Dn8PGacR6kE3HpayTtyHM_D38TzAHjGc5kWKYXiUGyFTHIRFsJVITWPi0puhcsp3_ndfjr7KN_Ok_ka_OpzYSissreJ3lDbhaFv5CNyDGSi4jQaVV1YxPvJ9PXJ15A6SNFNa99OoxWRXffjO7pvzaudCfL6OefT7cOtWdh1GAgNAvVVyDNTIt7OpBGpS4wSSgo8EVNEDVYZQ8UTnUuEU6QJStqs4PhyqAK5UtYKnHUdLmUiiUnDsvmZqyfQ82vrGAmRR6MGcYvA5WfnTj_fJGA4Cta_UCTmv2CuP-6m1-Fah1PZuBWsG7Dm6ptw9Y_qhbfgJ1W2KgwKW9OwGW7HihW1ZQfd5T0ynB0QkmXbaEbaDElP4PtwUoRSO7So2GRJ0SHMR6P2xpi1MJj5mAa2dYRz2WLpJzhsy2kdM6os4n98KHtzGz5cwPbfgY16Ubt7wBDziaRwqcuskBWv8srksnRcWmGMqooAXvbbrk1X-5xacBxr9IGIQ3rgUABPB9KTtuDH34jeEO8GAqrR7QcWy8-6U3nt0igvy9zGpSHcnKoyik1Fyb8ICU3qAnhBnNdkSXAxpugSIvCVqCaXHmfoyyH-ziSuCYXj3NNm4z1NYxHCWcT4_FscwGYvO7qzQ40-05oAngx_owWha6GidotTpMlRTRMkUQHcbWVueJRQhGZEdP__kz-Gy6iMem9nf_cBXOEo_5SuydUmbKyWp-4h4rZV-cirCINPF6uRvwH_A1E2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contactless+Heart+and+Respiration+Rates+Estimation+and+Classification+of+Driver+Physiological+States+Using+CW+Radar+and+Temporal+Neural+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=El+Abbaoui%2C+Amal&rft.au=Sodoyer%2C+David&rft.au=Elbahhar%2C+Fouzia&rft.date=2023-11-28&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=23&rft_id=info:doi/10.3390%2Fs23239457&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |